
Part 2

Machine
Learning

MachineLearning Overview
MACHINE LEARNING IN EMOJI

SUPERVISED

UNSUPERVISED

REINFORCEMENT

human builds model based
on input / output

human input, machine output
human utilizes if satisfactory

human input, machine output
human reward/punish, cycle continues

BASIC REGRESSION

LINEAR

Lots of numerical data
linear_model.LinearRegression()

LOGISTIC

Target variable is categorical
linear_model.LogisticRegression()

CLUSTER ANALYSIS

K-MEANS

Similar datum into groups based
on centroids

cluster.KMeans()

ANOMALY
DETECTION

Finding outliers through grouping
covariance.EllipticalEnvelope()

OTHER IMPORTANT CONCEPTS

BIAS VARIANCE TRADEOFF

UNDERFITTING / OVERFITTING

INERTIA

ACCURACY FUNCTION
(TP+TN) / (P+N)

PRECISION FUNCTION
manifold.TSNE()

SPECIFICITY FUNCTION
TN / (FP+TN)

SENSITIVITY FUNCTION
TP / (TP+FN)

CLASSIFICATION

NEURAL NET

Complex relationships. Prone to overfitting
Basically magic.

neural_network.MLPClassifier()

K-NN

Group membership based on proximity
neighbors.KNeighborsClassifier()

DECISION TREE

If/then/else. Non-contiguous data.
Can also be regression.

tree.DecisionTreeClassifier()

RANDOM FOREST

Find best split randomly
Can also be regression

ensemble.RandomForestClassifier()

SVM

Maximum margin classifier. Fundamental
Data Science algorithm

svm.SVC() svm.LinearSVC()

NAIVE BAYES

Updating knowledge step by step
with new info

GaussianNB() MultinominalNB() BernoulliNB()

FEATURE REDUCTION

T-DISTRIB STOCHASTIC
NEIB EMBEDDING

Visual high dimensional data. Convert
similarity to joint probabilities

manifold.TSNE()

PRINCIPLE
COMPONENT ANALYSIS

Distill feature space into components
that describe greatest variance

decomposition.PCA()

CANONICAL
CORRELATION ANALYSIS

Making sense of cross-correlation matrices
decomposition.CCA()

LINEAR
DISCRIMINANT ANALYSIS

Linear combination of features that
separates classes

lda.LDA()

BecomingHuman.AI

http://www.emilyinamillion.me/

Cheat-Sheet Skicit learn
Phyton For Data Science

Classification Metrics
Accuracy Score
>>> knn.score(X_test, y_test)
>>> from sklearn.metrics import accuracy_score
>>> accuracy_score(y_test, y_pred)

Classification Report
>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_test, y_pred))

Confusion Matrix
>>> from sklearn.metrics import confusion_matrix
>>> print(confusion_matrix(y_test, y_pred))

Regression Metrics
Mean Absolute Error
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2]
>>> mean_absolute_error(y_true, y_pred)

Mean Squared Error
>>> from sklearn.metrics import mean_squared_error
>>> mean_squared_error(y_test, y_pred)

R² Score
>>> from sklearn.metrics import r2_score
>>> r2_score(y_true, y_pred)

Clustering Metrics
Adjusted Rand Index
>>> from sklearn.metrics import adjusted_rand_score
>>> adjusted_rand_score(y_true, y_pred)

Homogeneity
>>> from sklearn.metrics import homogeneity_score
>>> homogeneity_score(y_true, y_pred)

V-measure
>>> from sklearn.metrics import v_measure_score
>>> metrics.v_measure_score(y_true, y_pred)

Cross-Validation

Evaluate Your
Model’s Performance

Estimator score method
Metric scoring functions

Precision, recall, f1-score
and support

>>> from sklearn.cross_validation import cross_val_score
>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))

Supervised learning
>>> lr.fit(X, y)
>>> knn.fit(X_train, y_train)
>>> svc.fit(X_train, y_train)

Unsupervised Learning
>>> k_means.fit(X_train)
>>> pca_model = pca.fit_transform(X_train)

Fit the model to the data

Fit the model to the data
Fit to data, then transform it

Model Fitting

>>> import numpy as np >> X = np.random.random((10,5))
>>> y = np . array (PH', IM', 'F', 'F' , 'M', 'F', 'NI', 'tvl' , 'F', 'F', 'F'))
>>> X [X < 0.7] = 0

Your data beeds to be nmueric and stored as NumPy arrays
or SciPy sparse matric. other types that they are comvertible
to numeric arrays, such as Pandas Dataframe, are also
acceptable

Loading the Data

A basic Example

Skicit Learn is an open source Phyton library that
implements a range if machine learning, processing, cross
validation and visualization algorithm using a unified

>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.cross validation import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load _iris() >>> X, y = iris.data[:, :2], iris.target
>>> Xtrain, X test, y_train, y test = train_test_split (X, y, random stat33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X train = scaler.transform(X train)
>>> X test = scaler.transform(X test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)

Skicit Learn

Supervised Estimators
>>> y_pred = svc.predict(np.random.radom((2,5)))
>>> y_pred = lr.predict(X_test)
>>> y_pred = knn.predict_proba(X_test)

Unsupervised Estimators
>>> y_pred = k_means.predict(X_test)

Predict labels
Predict labels

Estimate probability of a label

Predict labels in clustering algos

Prediction

Standardization
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)

Normalization
>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)

Binarization
>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)

Encoding Categorical Features
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit_transform(X_train)

Imputing Missing Values
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit_transform(X_train)

Generating Polynomial Features
>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly = PolynomialFeatures(5)
>>> poly.fit_transform(X)

Preprocessing The Data

>> from sklearn.cross validation import train_test_split
>> X train, X test, y train, y test - train_test_split(X,
 y,
 random state-0)

Training And Test Data

Supervised Learning Estimators

Unsupervised Learning Estimators

Linear Regression
>>> from sklearn.linear_model import LinearRegression
>>> lr = LinearRegression(normalize=True)

Support Vector Machines (SVM)
>>> from sklearn.svm import SVC
>>> svc = SVC(kernel='linear')

Naive Bayes
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()

KNN
>>> from sklearn import neighbors
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)

Principal Component Analysis (PCA)
>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=0.95)

K Means
>>> from sklearn.cluster import KMeans
>>> k_means = KMeans(n_clusters=3, random_state=0)

Create Your Model

Grid Search
>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3)
 "metric": ["euclidean","cityblock"]}
>>> grid = GridSearchCV(estimator=knn,
 param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)

Randomized Parameter Optimization
>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5),
 "weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn,
 param_distributions=params,
 cv=4,
 n_iter=8,
 random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)

Tune Your Model

BecomingHuman.AI

https://www.datacamp.com/community/blog/scikit-learn-cheat-sheetwww.datacamp.com/community/blog/scikit-learn-cheat-sheet

https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Skicit-learn Algorithm

SVC Ensemble
Classifiers

Spectral Clustering GMM

MiniBatch KMeans

MeanShift VBGMM

KMeans

KNeighbors Classifier

SGD CLassifier

SGD Regressor

Randomized PCA LLE

kernel approximation

ElasticNet Lasso

kernel
approximation

Text Data Linear SVC

<100K samples

>50 samples

get more data

<10K samples

<10K samples tough luck
<10K samples

just looking

<100K samples few features should
be important

do you have
labeled data

predicting
a quantity

predicting
structure

number of
categories knows

SVR(kernel='rbf')
EnsembleRegressors

RidgeRegression SVR
(kernel='linear')

Isomap Spectral
Embedding

Naive Bayes

predicting
a category

START

classification

clustering

dimensionality
reduction

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO
NO

NO

NO

NO

NO

NO

NO
NO

NO

NO

NO

NOT
WORKING

NOT
WORKING

NOT WORKING

NOT WORKING

NOT
WORKING

NOT
WORKING

NOT WORKING

NOT
WORKING

regression

BecomingHuman.AI

Created by Skikit-Learn.org BSD Licence. See Original here.

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

REGRESSION

Ordinal regression Data in rank
ordered categories

Poisson regression Predicting event counts

Fast forest quantile regression Predicting a distribution

Linear regression Fast training, linear model

Bayesian linear regression
Linear model,

small data sets

Neural network regression
Accuracy, long
training time

Decision forest regression Accuracy, fast training

Boasted decision tree regression Accuracy, fast training

ANOMALY DETECTION

One-class SVM >100 features,
aggressive boundary

PCA-based anomaly detection Fast training

CLUSTERING

K-means

TWO CLASS CLASSIFICATION

Two-class SVM

Two-class averaged perceptron

Two-class logistic regression

Two-class Bayes point machine

Two-class decision forest

Two-class boasted decision tree

Two-class decision jungle

Two-class locally deep SVM

Two-class neural network

>100 features, linear model

Fast training, linear model

Fast training, linear model

Fast training, linear model

Accuracy, fast training

Accuracy, fast training

Accuracy, small
memory footprint

>100 features

Accuracy, long
training times

MULTICLASS CLASSIFICATION

Multiclass logistic regressionFast training, linear model

Multiclass neural network
Accuracy, long
training times

Multiclass decision forestAccuracy, fast training

Multiclass decision jungleAccuracy, small
memory footprint

One-v-all multiclassDepends on the two-class
classifier, see notes below

Finding
unusual

data points

Predicting
categories

Discovering
structure

Three or
more

Two

Predicting
values

START

Algorithm Cheat Sheet
This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive

analytics solution. Your decision is driven by both the nature of your data and the question you're trying to
answer.

BecomingHuman.AI

https://github.com/MicrosoftDocs/azure-docs/blob/master/LICENSE
https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-cheat-sheet

