ALTERNATING PAIRS WITH COEFFICIENTS

ADAM TOPAZ

ABSTRACT. We present a variant of the fundamental theorem of
alternating pairs which works for arbitrary fields of positive char-
acteristic p and arbitrary coefficient fields of characteristic not
dividing 2 - p.
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1. INTRODUCTION

Most results in anabelian geometry have a local step where the goal
is to detect local information using the given data, which is usually of
Galois-theoretic or cohomological nature. In birational contexts, this
local data usually refers to structures arising from wvaluations on the
field(s) in question.

Recently, these techniques have been applied by the author in motivic
contexts. For example, in [10] it was shown that the generic Betti
cohomology ring H*(K |k, Q(*)) of a higher-dimensional function field
over an algebraically closed subfield £ C C, endowed with its natural
mixed Hodge structure in degree one, completely determines the fields
K|k. An integral (-adic analogue of this was also obtained in [11].

In both of these cases, detecting the valuations of the function field in
question was the key first step, and the essential tool used to accomplish
this was the so-called fundamental theorem of alternating pairs. Variants
of this result have appeared several times in the literature (albeit with
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slightly different names), in the work of Bogomolov [3], Bogomolov-
Tschinkel [2], Efrat [5], Koenigsmann [7], Engler-Koenigsmann [6], and
the author [9] [10].

However, the one thing that all of these results have in common
is that the coefficient ring used must, in some sense, be prime. This
is well-suited for contexts arising from Galois theory, where one can
essentially work with Galois cohomology H*(K,Z/¢") or H*(K,Z,).
Similarly, in the context of generic Betti-cohomology H*( K|k, Q(x))
mentioned above, the coefficient ring is Q and thus the results apply.

On the other hand, in order to obtain a more complete motivic pic-
ture, it is desirable to consider objects constructed using crystalline
cohomology, or, since we wish to eventually work with nonproper va-
rieties, using rather rigid cohomology. The function fields in question
here are regular finitely generated fields over perfect fields k& of positive
characteristic p, while the coefficient ring is the fraction field F' of the
p-typical Witt vectors W (k) of k. Unfortunately, such an F' is usually
far from being prime and thus the results used above no longer apply
directly!

In this short note, we overcome this hurdle by describing a variant
of the fundamental theorem of alternating pairs which is applicable to
contexts arising from rigid cohomology as discussed above. We do intend
to apply this result as an initial step in studying the anabelian properties
of generic rigid cohomology. However, the theorem we present here
involves only elementary objects and may be of independent interest,
so we defer the discussion of these applications to future work.

Our main result is formulated as follows.

Theorem A. Let K and F be two fields. Assume that K has positive
characteristic p, that the characteristic of F' does not divide 2 - p. Let
D be a subspace of Hom(K*, F), which is closed in the weak topology,
where F' is considered as being discrete. Assume that for all f,g € D,
and all x,y € K* such that x +y =1, one has

f)-g(y) = fy) - g(x).
Then there exists a valuation v of K such that one has
D C Hom(K* /(1 +m,), F) C Hom(K™, F)
and, setting T := Hom(K* /O, F) C Hom(K*, F), the intersection
DNZin Hom(K*, F) has codimension <1 in D.

The main novelty in this theorem, at least in comparison with its
predecessors, is in the rather weak assumptions on the field F'. However,
this comes at the expense of imposing an additional assumption on K.



ALTERNATING PAIRS WITH COEFFICIENTS 3

The proof of this result stemmed from a detailed investigation of
the rational case, as described in [10, §A]. In fact, the proof of The-
orem [A] has been formally verified using the Lean3 interactive theo-
rem prover [4] and its mathematics library mathlib [§]. The formally
verified proof of Theorem [A] can be found in [12], specifically in the
file src/main theorem char.lean from commit dcf56cd which is the
most recent one on the master branch at the time this note was writ-
ten. The converse of this theorem is valid in full generality with no
further assumptions on K and/or F', and a formal proof of this con-
verse can also be found in the repository mentioned above in the file
src/main _converse.lean.

We discuss the proof of Theorem [A]in the next section, focusing on
the key ideas. The reader may wish to consult the formally verified
proof in [12], where all details can be found.

2. A SKETCH OF THE PROOF

The argument proceeds similarly to the proof of [I0, Theorem A.3].
Namely, we proceed by contradiction, which is obtained by carrying
out some explicit calculations in a certain projective space. The argu-
ment here differs precisely at the point where one obtains the desired
contradiction.

Let D be as in the statement of the theorem and put T := D, the
orthogonal of D with respect to the pairing

K* x Hom(K*,F) — F.

Let H denote the subgroup of K* which is generated by T and all
r € K*~\ H such that 1 +x ¢ TUx-T. By [I, Theorem 2.16], there
exists a valuation v of K and a subgroup HCK* containing H, such
that 1+m, C T, OX C H and [H : H] < 2.

Letting % € Hom(K*, F) denote the dual of K /H, we must there-
fore show that D/H has dimension < 1. By the construction of H
and using the fact that F' has characteristic # 2, it suffices to show
that for all & : K* — F x F of the form ® = (f,g) for f,g € D,
and all z,y € K ~{0,—1} such that ®(1 + z) ¢ {P(1),P(x)} and
O(1+y) ¢ {P(1),P(y)}, the pair &(x) and P(y) is linearly dependent
over F.

Assume this is not the case, and let & = (f,g), f,g € D and z,y
witness this. Thus, ®(z) and ®(y) are linearly independent while
(1 +x) ¢ {P(1),P(x)} and P(y) ¢ {P(1),P(y)}. Note that the
condition on D ensures that ®(a + b), ®(a), P(b) are colinear (in the
affine sense) whenever a,b,a +b € K*.


https://github.com/adamtopaz/lean-acl-pairs/blob/dcf56cd/src/main_theorem_char.lean
https://github.com/adamtopaz/lean-acl-pairs/tree/dcf56cd
https://github.com/adamtopaz/lean-acl-pairs/blob/dcf56cd/src/main_converse.lean
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Embed F' x F = A?(F) into P?(F) in the usual way, and compose
K* 3 F x F =AXF) < PX(F)
with an projective-F-linear automorphism of P?(F) to obtain
U K™ — P(F)
satisfying the following conditions (using homogeneous coordinates):
(1) (1) =(1:0:0); ¥(z)=(1:1:0); ¥(y)=(1:0:1).
(2) V(14+2)=(0:1:0); ¥(14+y)=(0:0:1).
(3) W(a+b),V(a),¥(b) are colinear whenever a,b,a +b € K*.

The crux of the argument is to show that for all natural numbers m,
one has

(1) T(m+(m+1)-2)=(1:(m+1):0).

Here one argues similarly to Step 4 in the proof of [10, Theorem A.3].
This suffices to obtain our desired contradiction by taking m = p to be
the characteristic of K, since that would imply that

(1:1:0)=¥Y(z)=pP+p@p+1)-2)=(1:p+1:0)
hence p = 0 in F, which contradicts the hypothesis on F. Again, we
remark that this is precisely the point where the our argument differs
from that of [I0, Theorem A.3|, where a contradiction is obtained in a
different way.
Here is a sketch of the proof of ([I)). First, use the fact that
l+z4+y=>01+2)+y=(1+y) +=x
along with condition (3) to see that W(1 +x +y) = (1:1:1). Next,
use the fact that
24+z+y=>1+2)+(1+y) =1+1+z+vy)
along with condition (3) to see that V(24 2z +y) = (0:1:1). Finally,
we show by induction on m that
U(m+1)+m+1)-z+y)=(1:m+1:1)
and
Um+(m+1)-2)=(1:m+1:0).
The base case m = 0 follows from the above. For the inductive case,
we use condition (3), the inductive hypothesis and the equation

m+2)+(m+2)-z2+y=m+m+1)-x+y)+2+z+vy)
=((m+1)+m+1)-z+y)+(1+x)
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find U((m+2)+(m+2)-2+y)=(1:m+2:1). Conclude by using

condition (3), the calculation above, the inductive hypothesis, and the
equation

10.
11.

12.

m4+1)+(m+2)-2=((m+2)+(m+2)-z+y)— (1+vy)
=(m+(m+1) -x)+ (1+2).
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