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Abstract

Demand responsive transport (DRT) provides a modern solution to rural mobility. User
travel requests can be received in real time, via an Uber-style interface, and a route for a
fleet of vehicles can be calculated in real time, which serves all users’ needs.

This project aims to create the basis for a system to calculate these routes.

OpenStreetMap road data is imported and modelled as a graph. Inputs, in the form
of a series of coordinates of locations at which travellers will board or alight, are pro-
cessed into an “abstracted” graph, with the edge weights calculated using A* search. A
hill-climbing based Travelling Salesman Problem (TSP) solver finds a (close to) optimal
ordering of the locations to be served. The resulting route is then be returned.

This algorithm is made available as a JSON API, to enable it to be incorporated into
a wide variety of route planning and resource allocation systems.
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Chapter 1

Introduction

1.1 Chapter outline

This chapter explains what Demand Responsive Transport (DRT) is, and the real-
world political explanation of its purpose.

It then outlines a high-level plan for what the project will entail.

1.2 The problem

Public transport in rural areas is slow, irregular, and unreliable. Why?

Gavin Booth, in “What Bus Passengers Want” (from the Chartered Institute of Logis-
tics and Transport) gave the salient and pithy statement that “The needs of bus passengers
could be simply expressed as excellent service at low prices.” [Cil].

Only 50% of rural households are within a 13 minute walk of a bus stop with at
least an hourly service, compared to 96% of urban households [Gre]. It is hard to get an
absolute definition of what constitutes “excellent” service, but these figures seem to show
that people in rural areas would not consider their level of service as excellent, simply by
comparison with that received by urban resident.

This less-than-excellent service will likely cause less patronage, causing less funding,
requiring increased pricing. Poor service at higher prices causes even less patronage,
causing a downward spiral of diminishing public transport in rural areas.

1.3 Potential solutions

1.3.1 Increased funding

The Transport Act 1985 recognised the fact that there would be areas that commercial
operators would not serve due to a lack of expected profits, so it gave local authorities
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the statutory duty to provide funding to these “socially necessary services” [Par85].

The subsidy for a given service could be increased to have a service than runs every
1 hour, as opposed to every 2. This would be an improvement, but still not as good as
more densely populated areas. How frequent would be “frequent enough”?

In 2021, the government announced an additional £3bn of funding for public transport,
under the “Bus Back Better” scheme [Tra21]. This money has already been distributed
and, by the time it reaches the level of individual services, hadn’t caused the startling
improvement one might have hoped for from a lump sum that could cover 1

3 of the cost
of the pay-rise that UK nurses are requesting at the time of writing [Gua22].

Additional funding is something that would benefit any bus service operated by any
entity, but it isn’t a good solution to the problem of infrequent rural services.

1.3.2 Replan routes

Lots of these infrequent bus services are tendered by local councils. This means that
the routes being operated are not planned by the operators (the people actually on the
ground, interacting with passengers) but by politicians who may never have visited the
communities that these routes are serving.

In addition, the effects of the financial crisis have caused the total budget for Highways
and Transport services to fall from £6.6B in 2007 [Hou10] to £4.3B in 2018 [Hou18]. This
is a fall of 58% in real terms [Eng]. This lack of funding, post financial crisis, has meant
far fewer transport planners being employed by local authorities. This in turn has caused
“route rot” where demand has shifted and services haven’t pivoted to meet it.

To address this, bus operators could be given more autonomy over the routes they are
operating. This would put the power in the hands of people close to the demand, who
will be better placed to make adjustments to meet changing needs.

However, bus operators don’t have to act in the interest of the public and, in the
case of privately owned companies, must act in the interest of their shareholders, which
means maximising profit. This is usually closely aligned with customer needs, as happy
customers purchase more services, but not always.

If there was a package of routes put out for tender, with 1 route out in the middle
of nowhere that was tricky for the operator to serve, they could suggest (or make the
decision solo, depending on the level of autonomy handed out) that this route be cut.
They could make arguments that the resource wasn’t needed there, and that there was a
potential route with much more demand, that conveniently finished right by their depot.
And the small community “in the middle of nowhere” would have lost their only low-cost
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powered transport option.
This is not to say that bus operators are evil, or in the business of disappointing their

customers, quite the opposite, but they are in the business of making money. And rural
public transport is subsidised to the point of it being almost entirely a public service,
which sometimes means taking slightly counterintuitive decisions when viewed through a
purely financial lens.

1.3.3 Demand-responsive transport

What if we could take a small fleet of vehicles, currently operating infrequent services
along rigid routes, and have them serve the exact stops that passengers want to travel
from and to. Not using historic travel data to host a monthly planning session. Not even
taking pre-bookings up to the night before travel. In real-time, minutes before travel
occurs.

This would represent no increase in PVR (Peak vehicle requirement), no increase in
admin during the tender process, and provide a vastly superior offering to customers, who
would pay bus prices for taxi service.

This is not a new concept. In the early 2000’s Lincolnshire CallConnect had one of
the first “dial-a-ride” services. They had a call centre with people taking bookings, and a
team of transport planners rerouting buses manually on massive paper maps. This was,
however, very costly, and not a solution available to all local authorities in all areas, even
at the time. Post financial crisis, this is even more unattainable (although CallConnect
has continued existing in various forms up to the time of writing).

In 2023, however, everyone carries a device that can send an operator their desired
route with a far higher precision than a phone conversation could have managed, with
zero staff involved. Advances in hardware and open data have transformed the task of
routing vehicles from an error-prone manual process, to a very well understood automatic
one. And drivers can have navigation on a smartphone, updating in real-time, without
them ever needing to know what their old route was going to be and what has changed.

Figure 1.1 shows an 4-vehicle DRT operation near Huntingdon, in comparison with
Greater London at the same scale.
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(a) Ting zone (4 vehicles) (b) Comparable area in London

Figure 1.1: Comparing a 4-vehicle DRT operation with a comparable area in London

Creating a useful set of fixed routes to serve this area would be an almost impossible
task, however the Ting DRT service has been successfully taking people exactly where
they want to go for several years.

1.4 Technical solution

There are existing players in the DRT space, most notably Via, who have a lot of
deployments in the USA. However, every existing solution is a closed platform, requiring
operators and drivers to deal with separate apps and management tools for each different
technology provider.

Creating a routing API which can be used by existing operations management sys-
tems represents the “last mile” of DRT technology, making it possible for drivers and
operations controllers to seamlessly switch between operating pre-planned routes, and
demand-responsive ones.

An Uber-style interface for passengers, an admin interface for operations staff, and a
driver app are all required for a full end-to-end solution to be enacted. However, app and
web design and development are not the focus of this dissertation, so I will focus on the
algorithmic core of the project that takes on the job of the transport planners.

1.5 Aims and objectives

This project aims to investigate and implement algorithms for planning bus routes, in
response to demand.

This project aims to fulfil the following objectives:

1. Research shortest path algorithms, potential optimisations, and heuristics.

4

https://localbus.vectare.co.uk/ting
https://info.viavan.com/uk/microtransit


2. Research solutions to the travelling salesman problem (TSP), their performance as
the size of network scales, and metaheuristics that can be employed to produce
real-world results.

3. Research the vehicle routing problem (VRP), how it is different to the TSP, and
how it can be solved or approximated.

4. Investigate the availability of, and interaction with, OpenStreetMap data to use as
the basis for a graph representation of the UK road network.

5. Develop a system of algorithms that can give approximate answers to the VRP on
a reasonably-sized (UK road network) graph.

6. Develop an API/web service that accepts real-world (longitude and latitude) VRP
inputs as requests, and returns vehicle routes for the UK road network, using the
algorithms laid out in objective 5, and the OpenStreetMap data referenced in ob-
jective. 4

7. Evaluate the outputs produced by the VRP algorithms, against vehicle routes pro-
duced by human schedulers.

1.6 Working methodology

The objectives lend themselves to an iterative approach. I will develop the core of
algorithms on test data, before bringing in real OpenStreetMap data, and finally building
the web service.
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Chapter 2

Background

2.1 Chapter outline

This chapter gives the theoretical basis for, and history of, real-world routing problems
and graph theory.

It begins with a background on algorithms and graphs, then goes in depth on the
two main problems solved in this project: the shortest path problem and the travelling
salesman problem.

2.2 Algorithms

2.2.1 Algorithms vs Heuristics

Algorithms are step-by-step procedures for solving a problem. They are (supposed to
be) guaranteed to produce a correct result, and usually have proofs accompanying them.

Heuristics sacrifice some guarantees for the sake of some other efficiency (usually
time or space complexity). For example you might accept a 5% chance of an inaccurate
result for a heuristic that is 90% faster than an equivalent algorithm.

2.2.2 Complexity Classes

A complexity class is a way of grouping problems by how “complex” they are to solve.
There are lots of types of measures of complexity which are used to group problems, some
which are very often discussed in computer science are P, NP, and their related groups.
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Figure 2.1: Venn diagram of complexity classes

P, also known as PTIME, contains all decision problems (problems with Yes/No
answers) that can be solved in polynomial time. If the relationship between the size of
the input to a problem and the time taken to solve it can be described as a polynomial
function, then the problem can be solved in polynomial time. For example, performing
insertion sort on a list with n elements requires at most n

2 steps (of arbitrary but fixed
size).

NP (nondeterministic polynomial time) contains all decision problems that can have
positive answers (Yes’s) verified in polynomial time. P is contained within NP.

A problem, p1, is a member of NP-hard if every problem in NP can be transformed
into p1 in polynomial time.

If a problem is a member of both NP and NP-hard, then it is a member of NP-
complete. Their membership of NP means that solutions can be verified quickly, but
not found found quickly. Their membership in NP-hard means that every problem in
NP can be transformed into them in polynomial time. And their membership in both
means that every problem in NP-complete can be transformed into any other problem in
NP-complete.

It is not known whether every member of NP is also a member of P. This is an open
problem in computer science, referred to as P = NP, and is 1 of the 7 Millennium Prize
Problems posed by the Clay Mathematics Institute [Coo01], with $1 million of prize money
attached.

2.3 Graphs

2.3.1 Origin

A graph, in the mathematical sense, is a way of representing interconnected entities.
They were first conceived of by Euler, in order to solve the Königsberg bridge problem.
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Figure 2.2: The Königsberg bridges [Britannica]

Königsberg was a Prussian city that had 7 bridges crossing it, and the people of the
city had a long-standing challenge to cross all seven bridges exactly once whilst walking
through the town.

Euler, in his typical manner of founding fields of mathematics, noted that the bridges
could be abstracted to a series of “nodes” and “edges” whilst maintaining the relationships
key to the problem.

Figure 2.3: The Königsberg bridges (abstracted) [Weber State University]

He then observed that in any walk between distinct points (visiting the same point
multiple times is allowed), the start and end vertices have an odd number of crossings,
and the rest have even. This is a requirement, because if I enter a node I must exit it
(unless it is the start or the end), giving an even number of edge intersections. If you
have a walk that starts and ends at the same node then the 2 odd numbers of edges add
to an even number. So a walk can either have all even vertices, or exactly 2 odd vertices
and the rest even.

All 4 nodes in the Königsberg bridge graph have an odd number of edges, so Euler
proved that the challenge was unfortunately not possible. He presented this finding in a
paper to the Academy of Sciences [Eul41].

A trail (a walk without repeated edges) in a finite graph that visits every edge exactly
once is now referred to as an Eulerian trail or Eulerian path, in reference to this paper.
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And an Eulerian trail that starts and ends on the same node is termed an Eulerian
circuit or Eulerian cycle.

The field of graph theory has grown into a very vital field in mathematics and com-
puter science, and is at the core of a litany of innovations, including packet routing for
the Internet, scheduling complex systems, search engine ranking, and of course routing
journeys [Iñi23].

This project will represent real-world geographies, and passenger journeys, as graphs,
and use a number of algorithmic techniques to implement the solution laid out in the
introduction.

2.3.2 Formalism

Undirected graph

An undirected graph can be defined as

G = (V,E)

Where

• V is a set of vertices, and

• E is a set of edges, e = (v1, v2), where v1, v2 2 V

If a pair of vertices, (v1, v2), is in E, then there is a bidirectional edge between v1, and
v2.

Directed graphs

A directed graph has the same structure, G = (V,E), however a pair of vertices,
(v1, v2), only denotes an edge in one direction, from v1 to v2.

Weighted graphs

A weighted graph can be directed or undirected. It is defined as

G = (V,E,w)

Where

• V , and E are defined as previously

• w is a function w : E ! R1, where the output of the function is a rational number
giving the weight of the edge
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2.3.3 Representing Road Networks As Graphs

A road network maps onto a graph very neatly; as can be seen in their very first
application above.

The graph used will be weighted, as the distance between two nodes on the road
network is not consistent, and is relevant to the calculation. In future the weights could
be replaced with the time taken to get between nodes, if this information was able to be
collected.

The graph will be directed because of roundabouts, one way roads, priorities, and
other oddities of reality that make travelling the same stretch of road in opposite direc-
tions take more or less distance/time.

There is also the question of “resolution”. This is really a consideration for imple-
mentation, but it’s useful to be aware of the vague shape of the graphs at play when
considering the algorithms.

In the Königsberg problem Euler was able to abstract away all the parts of the graph
not relevant to solving the problem.

In the datasets used for this project, roads are represented with twists and turns in,
so that they look accurate to the ground. The fact that the input graph will be “high
resolution” enough to accurately geographically represent the road network (as opposed
to abstractly representing links between a smaller number of roads, e.g. intersections)
means that the weights for the edges of the graph can be suitably accurately calculated
by taking the “as the crow flies” distance.

This does however lead to lots of nodes with only 2 edges. These can cause a lot of
unnecessary calculation exploring them, when they are equivalent (in terms of routing)
to a line between the first and last node in a series of 2-edge nodes. There are techniques
to deal with this, discussed in 2.4.8 and 2.4.9.

2.4 Shortest Path Algorithm

2.4.1 Motivation

Before we can determine the “best” order in which to visit our passenger’s origins and
destinations, we need to know how far apart they are.

In the source data, all of the nodes will have longitudes and latitudes attached to
them, making it possible to determine the crow’s distance between any two points, but
we want to follow the road network.

This is an instance of the shortest path problem, to which there are a number of
approaches.
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2.4.2 Comparing Shortest Path Algorithms

The first thing to consider when considering shortest path algorithms (or heuristics)
is what type of graph we’re working with. As discussed earlier, the road network will be
represented by a weighted, directed graph.

It’s also important to note that the graph will have cycles, there will be trails that
take you from a node, back to that same node, without backtracking.

The algorithms each solve subtly different issues, so it’s important to consider exactly
what problem needs solving.

And lastly speed of execution (and space used, to some extent) is important.

2.4.3 Bellman-Ford

Bellman-Ford is useful if the graph has negative weights, but it is much slower than
Dijkstra [Abu+20]. The road network doesn’t have negative weights, so this is doesn’t
seem worth pursuing.

2.4.4 Floyd-Warshall (all pairs)

This algorithm solves the “all pairs shortest paths” problem, i.e. the distance between
every pair of nodes on the network. This could be extremely useful in some applications,
but would be very impractical on the scale of the millions of nodes of the road network.

In order to achieve it’s increased scope, it has a much higher time complexity than
Dijkstra: O(V 3) vs O(E log v) [Gee19].

2.4.5 Goldberg-Radzik

The Goldberg-Radzik algorithm was published in a paper, Shortest paths algo-
rithms: Theory and experimental evaluation [CGR96], that empirically com-
pared various shortest path algorithms, including a novel one.

The conclusion of the paper highlighted the fact that there is no single best shortest
path algorithm, and that even their empirical analysis was done on “on restricted classes
of graphs and small problem sizes”. They did, however, suggest two algorithms: one for
networks with negative arcs, and one for networks without.

For networks with negative arcs, they recommended the Goldberg-Radzik method,
created by the authors of the paper.

For networks without, they recommended Dijkstra.
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2.4.6 Dijkstra’s Algorithm

This is probably the most famous shortest path algorithm, the most famous graph
algorithm, and one of the most famous algorithms full stop [Icp].

It was conceived of in 20 minutes over a coffee, and the proof of its correctness fits on
2 sides of A4 (minus title and references) [Dij59].

The process involves using a breadth first search, using a priority queue prioritising
nodes closest to a defined source point [Bae22].

The time complexity depends on the data structures used to store the current state of
the algorithm, but it is commonly quoted as O(E + V logV ).

2.4.7 A* Search

Whilst Dijkstra (and variations and optimisations thereof) seems to be the front-
runner in the world of algorithms, we can achieve much higher speeds with a heuristic.

The variety of different implementations of Dijkstra, A*, and other shortest path
heuristics muddies the water about which algorithm a piece of code is implementing. As
such, this section essentially refers to any shortest path heuristic that is a version of A*,
or builds on Dijkstra.

A* is very similar to Dijkstra, with a slight alteration to the priority queue. Instead of
selecting the next node to visit solely based on which is closest to the origin, it will also try
to take into account which is heading in the correct direction for the destination [HNR68].

Take towns/cities UK as an example, routing from London to Edinburgh, say that we
have determined that it is 60 miles to Cambridge. The next closest node on our graph
may be Norwich. Looking at this on a map, however, it seems very unlikely that Norwich
will be part of our shortest path to Edinburgh. A human intuition might suggest trying
Peterborough next. A* tries to mimic this intuition by prioritising nodes which are closer
(by some heuristic) to the destination node, even if they may be farther from the source.

This “reprioritisation” means that A* can potentially be an order of magnitude or two
faster, but it’s heavily dependent on the specific structure of the data in the use case.

2.4.8 Highway Hierarchies

This is not a shortest path algorithm in itself, rather a preprocessing technique that
can dramatically speed up methods like Dijkstra and A*, particularly when the base data
is a road network.

Road networks have millions of nodes, which aren’t able to be practically visited, but
they’re also not likely to be useful.

As humans we relatively intuitively know to head from smaller roads to larger roads
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in order to reach our destination faster. We can achieve a similar behaviour in a shortest
path algorithm by defining multiple layers of graphs [SS06],

The lowest layer is the complete road network, which we very quickly try to exit by
getting to the closest node in the layer above (e.g. from a residential street to a dual
carriageway). Then, depending on the distance of the journey, we may want to reach a
motorway.

At the end of the motorway portion of the route, it is then unclear where to go, so
we simply do the same process in reverse. Starting from the desired origin, seek the
“entrance point” of the “neighbourhood” with the next highest level until both the origin
and destination searches meet.

In order to achieve this, there is a preprocessing step that has to be done, to determine
the levels and neighbourhoods of the input graph.

N.B. it is interesting to note that the algorithm doesn’t have to be informed about
the priority, capacity, or even speed limit of the roads it is analysing, in order to (almost
always) correctly determine that a road we refer to as a motorway is of the highest level
of importance.

2.4.9 Contraction hierarchies

As mentioned in 2.3.3, roads represented in graphs tend to have lots of nodes all in a
line, connected only to the previous node and the next node. To a human, it is obvious
that they form a line, but Dijkstra (or A*) will independently calculate the path for each
node one by one.

Contraction hierarchies extend the concept of highway hierarchies by giving all nodes
priorities (as opposed to a few groups of nodes). They then add edges to the graph, by-
passing lower importance nodes (unless those nodes are the origin/destination) [Gei+08].

Counterintuitively, adding edges to the graph makes the algorithm faster. Similarly
to highway hierarchies, contraction hierarchies require a preprocessing time.

2.5 Travelling salesman problem

2.5.1 History

In 1857 William Rowan Hamilton presented his Icosian Game at a meeting of the
British Association in Dublin. The aim of the game was to find a path around a dodeca-
hedron which visits each corner exactly once [Dar23].
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Figure 2.4: The Icosian Game [David Darling]

One year prior, Reverend Thomas Kirkman posed a more general problem about
visiting every vertex in a polyhedron [Kir56]. However, Hamilton’s work ended up being
better known, causing his stating of the problem to be known as a Hamiltonian cycle.

Karl Menger (son of the economist Carl Menger) studied what he referred to as the
“Messenger problem” [Men32] in the 1920s, which was very close to what the modern
understanding of the TSP is. He noted that “The rule, that one should first go from the
starting point to the point nearest this, etc., does not in general result in the shortest
path.” I.e. that a greedy algorithm is not optimal.

It was first referred to as the Travelling Salesman Problem in a 1949 paper [Rob49]
by Julia Robinson who was working for RAND corporation. Notably for this project, the
problem was introduced to RAND corporation by Merrill Flood in the 1940’s, who had
first started working on it to solve a school bus routing problem.

In 1962 Proctor & Gamble published a competition asking for the shortest possible
route through 33 US cities, starting and finishing in Chicago, offering a $10,000 prize. This
was the first of several contests based on the TSP offering large cash prizes, highlighting
how commercially valuable this piece of applied mathematics is.

Figure 2.5: Procter & Gamble contest, 33-city road TSP, 1962 [University of Waterloo]

Several people tied for first place in this competition, including George Dantzig, Ray
Fulkerson, and Selmer Johnson, whose work on the problem proved invaluable to future
researchers. David Applegate, a Google researcher who helped solve an 85,900 city tour
in 2009 [DLA09], said “Dantzig, Fulkerson, and Johnson showed a way to solve large
instances of the TSP; all that came afterward is just icing on the cake”.

Their groundbreaking approach used the simplex algorithm developed by Dantzig,
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which took a series of linear rules and optimised a given variable, by encoding instances
of the TSP as a series of linear rules. However, the 33 city tour would have produced
over 2 trillion rules, which would have had to be calculated by hand. To resolve this,
they took an unrestricted model of the problem, then only added rules based on human
intuition (and excellent comprehension of the problem). This resulted in a stunning 9
rules that produced an optimal solution [DFJ54]. This method was formally known as
the “cutting-plane method”, because each rule added cuts away a portion of the possible
answer space that is being optimised.

As several people found the same best result, the winner of the $10,000 prize came
down to an essay competition about the benefits of one of P&G’s products, which was
won by mathematicians Robert Karg and Gerald Thompson, who implemented one of the
first electronic TSP solvers. It turned out that, whilst their method didn’t guarantee an
optimised tour, they had in fact found one. Karg and Thompson later decided to create
a larger test graph with 57 cities (with which they came within 30 miles of the optimal
route [Wat16]), which became a common test instance for future researchers.

Figure 2.6: XKCD 399 Travelling Salesman Problem [XKCD]

Very little happened in TSP research until 1971 when the Held-Karp algorithm was
published. It used a dynamic programming approach to quickly solve the original P&G
problem, found the optimal solution to Karg and Thompson’s 57 cities, and a random 64-
city instance. This algorithm had a time complexity of O(n22n) (a dramatic improvement
on the brute-force O(n!) but still exponential). Karp would go on to receive the Turing
award in 1985 for contributions to the theory of algorithms.

In 1985 an article was published about the TSP in Discover, accompanied by fig-
ure 2.7(a), which was stated to be the shortest such tour. Unfortunately the ordering
used was from Dantzig et al., which was not a tour through the state capitals but rather a
(specific) city in every state. To rectify his embarrassing editorial error, Martin Gardner
(who wrote the article) tried contacting various TSP experts until he got into contact
with Shen Lin.

15

https://xkcd.com/399/


(a) Incorrect tour (April 1985) (b) Correct tour (July 1985)

Figure 2.7: USA state capital tours [Discover magazine]

Lin’s approaches to the problem were iterative in nature, taking an initial tour (either
random, or an intuitive best guess) and then finding rules to improve that tour. He went
on to work with Brian Kernighan to produce the Lin-Kernighan method. These rules have
proved invaluable in modern approaches to the TSP, and are expanded on in section 2.5.5.

Most further developments used modifications and combinations of cutting-planes,
and dynamic programming (Held-Karp), or metaheuristics.

In 1987 Grötschel and Holland worked on 666 cities (the number of the beast, repre-
senting a “beastly challenge for TSP computations”) using a hybrid of cutting-plane and
general integer programming [GH91].

In 1991 Gerhard Reinelt published TSPLIB, a collection of 100+ TSP instances from
various sources, to give a benchmark against which researchers could compare their work.

In 2000 the DIMACS TSP Challenge was announced [DIM01], calling for the global
academic community to collate and compare their best algorithms and implementations
against the TSPLIB, as well as randomly generated instances (in the TSPLIB format).
This is still an invaluable resource when developing new TSP solvers today.

In the late 90’s the Concorde solver [Wat13a] began to be developed by David Ap-
plegate, Bob Bixby, Vašek Chvátal and William Cook. It would go on to solve all the
remaining TSPLIB instances, including an 85,900 city tour [Wat13b] for optimising the
route of a laser used in circuit manufacturing (see fig 2.8).
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Figure 2.8: Optimal path for the TSPLIB pla85900 instance [University of Waterloo]

The current challenge for the TSP community is the World TSP, an instance with
1,904,711 cities from across the globe. The current (at time of writing) shortest tour is
7,515,755,956.

Also, Robert Bosch has produced 6 TSP instances, from 100K-200K cities, which
produce line drawings of famous pieces of art [Wat14]. The results are rather beautiful
(see fig 2.9)

Figure 2.9: Mona Lisa 100K, solution by Yuichi Nagata [University of Waterloo]

2.5.2 TSP and variations

In graph theory a walk is a sequence of edges which join a sequence of vertices. A
trail is a walk with all edges being distinct. A path is a trail with all vertices being
distinct. A cycle is a trail with all vertices being distinct, except for the first and last
which must be equal.

An Eulerian trail (sometimes incorrectly termed an Eulerian path) is a trail in graph
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which visits every edge exactly once. An Eulerian cycle has the equivalent definition
for a cycle.

A Hamiltonian path is a path in a graph which visits each vertex exactly once. A
Hamiltonian cycle has the equivalent definition for a cycle.

The Travelling Salesman Problem (TSP) is less cleanly defined, as the problem
being solved varies from implementation to implementation, however it essentially asks for
the Hamiltonian path/cycle on a weighted graph with the shortest total weight (typically
distance). The vertices on a graph in the TSP are commonly referred to as cities, due
to early research focussing on specific test data sets. The resulting path/cycle/route is
commonly referred to as a tour.

In the Symmetric TSP, the distance between two cities is the same in each direction,
i.e. the graph is undirected. In the Asymmetric TSP, the distance between two cities
can be different in each direction, i.e. the graph is directed.

In the Metric TSP, the distances between cities satisfy the triangle inequality. I.e.,
the distance AB must be shorter than (or equal to) the sum of the distances AC and
CB. This restriction naturally maps onto the real world, and is a requirement for various
algorithms/heuristics/methods.

The Euclidean TSP is a special case of the Metric TSP where the distances between
the cities are calculated using the Euclidean distance.

The Vehicle Routing Problem (VRP) is a generalisation of the TSP, where multiple
“salesman” (typically vehicles) can be used, to parallelise the process of visiting the cities.
This problem is essentially what shipping companies have to solve in order to efficiently
deliver packages.

Beyond the VRP there are numerous variations which try to take into account addi-
tional factors, such as Vehicle Routing Problem with Pickup and Delivery (where
visiting city A necessitates the same vehicle visits city B), Vehicle Routing Problem
with Time Windows (where specific pickup/drop off times are imported, such as a
scheduled taxi), Capacitated Vehicle Routing Problem (where a vehicle can only
carry certain quantity of items), and many more.

In practice, individual needs of specific businesses mean that a solution to a cross-breed
of the varieties of problems studied academically is typically required. In this project I
aim to produce a solution that can take into account common restrictions, and easily
include more in the future if required.
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2.5.3 Complexity of the problem

In 1972 Richard Karp showed that the Hamiltonian cycle problem (determining whether
or not a Hamiltonian cycle exists for a given graph) was NP-complete, implying that the
TSP is NP-hard [Kar72].

The decision version of the TSP (determining whether a tour exists shorter than a
certain length) is also NP-complete.

If we want to find the shortest path visiting 4 cities, then we have 4 choices for the
first city. There are then 3 cities left from which to choose the second city, then 2 for
the third, and only 1 for the fourth. Multiplying these gives 24 possible combinations of
cities, therefore 24 possible tours to check to find the shortest.

Generalising this we see that for n cities, the number of possible tours is n⇥ (n� 1)⇥
(n�2)⇥· · ·⇥1 or n!. Assuming the time taken to check a possible tour is roughly constant,
the time complexity of checking every combination (i.e. a brute-force approach) is on
the order of n!, or O(n!).

A factorial time complexity is typically regarded as very poor and, wherever possible,
necessitates a different approach: preferably one which achieves at least a polynomial time
complexity. Unfortunately, we know that the TSP is NP-hard, meaning that a polynomial
time solution is something that has eluded the mathematics community so far.

Nevertheless, we have solutions better than factorial time. The Held-Karp algorithm
produced a time complexity of O(n22n), offering a massive improvement (see fig 2.10).

(a)
n! < n22n, 0.7408 / n / 7.2074

(b) n! � n22n, n ! 1

Figure 2.10: Brute force (red) vs Held-Karp bound (blue)

The cutting-plane method pioneered by Dantzig et al., and taken to its limits by
Concorde, is the most effective algorithm currently published, however determining its
time complexity has proven very tricky. Chvátal, Cook, and Hartmann proved in 1989 that
a strong variant of branch-and-cut requires at least 2

n
72

n2 operations to solve a deliberately
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adversarial instance of the Hamiltonian-circuit problem [Coo12]. Other TSP instances
may require even more steps, however there haven’t been large amounts of work done to
determine this.

2.5.4 Heuristics

(Almost) all of the incredible work done by mathematicians from Reverend Thomas
Kirkman, to Dantzig et al., to Applegate et al. has been focussed on finding the absolute
best solution, to specific test datasets, sometimes with incredible amounts of computing
power, and relatively relaxed time constraints.

This project needs to handle random sets of test data, 100s (or 1000s or 10,000s) of
times a day, in as close to real time as possible, on affordable enough hardware that the
DRT services have a chance of turning a profit. But it doesn’t need a perfect solution: it
needs a good solution.

These requirements mean that a heuristic is better suited for this project than an
algorithm.

The Christofides Algorithm [sic] is a heuristic which uses Euler’s original observations
about the bridges of Königsberg. You add edges that meet every odd vertex exactly once
(a perfect matching), producing a graph with all even degrees, making an Eulerian path
possible. This path can then be shortcutted into a tour.

The most time-consuming process is producing the perfect matching, for which there
are a few different implementations. Two common ones give time complexities of O(n3),
and O(n2 log n). These are a staggering improvement over any algorithm guaranteeing a
perfectly shortest tour [OT22].

A tour produced by the Christofides Algorithm is guaranteed to have a total dis-
tance no more than one and half times the optimal tour [Chr22]. This is known as an
↵-approximation with ↵ = 1.5. Since its publication in 1976 the first potential improve-
ment, giving ↵ = 1.5 � 10�36, was released in 2020 [KKG21], however this has not yet
been peer-reviewed.

2.5.5 Local search heuristics

Another heuristic approach tries to take an existing tour and gradually improve it. At
the core of these approaches are “opts”.

First floated by Merrill Flood in 1956 [Flo56], and formalised by G. A. Croes in
1958 [Cro58], a 2-opt is an operation on a TSP tour which takes 2 edges and swaps their
connections, as seen in fig 2.11.

The 2-opt algorithm is a relatively naive local search algorithm which consists of
looking for 2-opt moves that improve a tour until no more can be found. In worst cases
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finding an optimal it could have O(2n), however this is highly implementation dependent
and a close-to-optimal tour can usually be found relatively quicker.

Figure 2.11: Example 2-opt move [Wikipedia]

A 3-opt operation involves deleting 3 edges, producing 3 sub-tours; there are 7 ways
that these can be reconnected (see fig 2.12). The length of each of the possible 7 tours is
found, and the shortest one selected. Similarly, the 3-opt algorithm involves iteratively
applying the 3-opt until no better paths can be found. A single iteration of the 3-opt
algorithm has a time complexity of O(n3).

Figure 2.12: Possible 3-opt moves [Cho+21]

A k-opt operation extends the ideas above, by deleting k edges from a graph and
iterating through all the possible ways to reconnect them, finding the best path [Mah].

2.5.6 Metaheuristics

Motivation

The Christofides Algorithm (and it’s variations) is a very powerful tool, however it
specifically optimises for length of tour. Almost no work has been done adding in addi-
tional constraints (such as vehicle capacity, or time windows).

Some attempts have been made at adding these types of constraints to the dynamic
programming [Dum+95] and cutting planes [Coo99] algorithms. Looking at the ap-
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proaches taken, each different constraint requires a restating of the problem, and a re-
working of the maths behind the solution.

In a transport company, the requirements desired to be optimised will change and
grow as the company does, as well as when regulation changes. Some requirements are
quite foreseeable, such as vehicles requiring fuel after a certain distance, or drivers have
restrictions on how long they can work without breaks. However some considerations may
not always be important, and then be required at a later date, such as trying to make
sure that a uniform set of vehicles have roughly the same number of miles on the clock,
to make them easier to sell.

To achieve this we can use metaheuristics. These are heuristic methods that can be
applied to most problems. They typically borrow metaphors from other fields.

Hill climbing

Figure 2.13: Example hill climbing graph [Bat19]

A very common metaheuristic is hill climbing, where one imagines a graph with all
possible tours enumerated along the x-axis, and the lengths of those tours on the y-axis
(typically with shorter tours at the top, so that the metaphor of reaching the peak lines
up with the goal of this problem). The aim is to find the highest point on that graph.

To do this, you take a starting tour (often random) and you mutate it in some way to
produce a neighbour. This mutation can be swapping 2 nodes (i.e. a 2-opt), reversing
a subset of nodes, or any other definable operation. If the neighbour has a shorter total
distance then we have ascended a small amount, and this tour is the new tour being
mutated.

This process is repeated until no shorter neighbouring tour is found.

The Lin-Kernighan algorithm is a very well-known hill climbing heuristics. It uses
k-opts, and produces excellent efficient results by varying k on the fly, depending on how
successfully an individual opt is progressing [LK73]. Each iteration involves removing
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more and more edges (simultaneously planning how to reconnect them) until a positive
move cannot be found. At this point, the graph is reconstructed and a new iteration
begins on the next node in the tour. Every node will end up having at least 2-opt run
on it, up to an unknowable (instance specific) k-opt, different for each node. As such,
an exact time complexity cannot be known, however it has been practically estimated at
O(n2.2).

Repeated 2-opts (which is what many applications of Lin-Kernighans end up being)
are only guaranteed to produce a solution less than 4

p
n times longer than the optimum

tour (on the Metric TSP), however in practice the results tend to be much better than this.

LKH (Lin-Kernighan-Helsgaun) is an implementation of the Lin-Kernighan heuristic,
however the work put into it merits its independent fame. Where the classical Lin-
Kernighan heuristic is typically based on the 2-opt, LKH is based on the 5-opt. This
seems like a simple and obvious improvement, however it involved Helsgaun considering
and optimally dealing with 148 separate cases for rejoining 5 edges. Since the release of
LKH several attempts to use 6-, 7-, 8-, and 9-opt, however LKH still holds the record for
all DIMACS instances with unknown optima [Lkh].

The main problem with hill climbing is that you can get stuck in local maxima. This
is a region of the graph which is higher than any of its neighbours, but not the highest
point overall.

Lin-Kernighan tries to avoid this by repeating the process several times with random
starting points and taking the best resulting tour, in order to have a higher chance of
finding a global maxima.

Simulated annealing

Another way to deal with local maxima is an approach called simulated anneal-
ing. This borrows a metaphor from metal-working where, when metal is hot its crystal
structure is very malleable, then as it cools it becomes more solid.

Simulated annealing is a variation of hill climbing where we keep track of a global
“temperature”. When a neighbour is generated, if it is shorter than the current best tour,
then it is accepted. If it is longer, there is still a chance that it will be accepted, with the
probability of this chance being proportional to the temperature.

When the temperature is high, the heuristic often makes moves that give longer tours.
Gradually the temperature decreases over time, heading towards a local maxima, that is
hopefully also the global maxima, thanks to the random movements at the start.
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Chained local optimisation

This approach also models the solution space as a landscape to be navigated. The
first step is running a single iteration of Lin-Kernighan on a random tour. Then, instead
of picking another random starting tour, we “kick” the current best tour.

This “kick” is designed to jump the current tour over low points in the landscape to
reach a neighbouring (potentially higher) peak. The way to achieve such a kick is by
performing a move that Lin-Kernighan cannot easily undo. It was found that a special
type of 4-opt (see fig 2.13) achieves this very successfully [Mar91].

Figure 2.14: “Double bridge” 4-opt “kick” [ACR03]

A version of this approach was used in Concorde, and was able to find solutions for
100,000 city instances in 1–2 seconds which were within 1% of the optimal solution.

Genetic algorithms

This approach models the tour as living being that can evolve. An initial “generation”
of tours is randomly generated, ideally with lots of diversity. Then, pairs of tours in the
generation “mate” to produce a new generation of (hopefully better) tours.

There are several ways to take this loose metaphor and implement it. Ideally several
chunks of each “parent” will end up intact in the “child”. One very successful approach is
known as edge-assembly crossover (EAX) which was developed by Yuichi Nagata.

His approach currently holds the best known tour for the 100,000-city Mona Lisa TSP
(as seen in fig 2.9).

Ant colonies

This approach uses the observation that ants typically move in a single straight line.
This is because they leave pheremone trails as they walk, to signify a good route. If an
ant discovers an obstacle free path to food, then it makes sense for the rest of the colony
to use that same route, as opposed to try to blaze their own trail.

Taking this concept, a number of agents perform separate walks of a graph, making
decisions at each node, which node to go to next. This decision is informed by a pheremone
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value associated with each edge. After each walk, the pheremone values are updated
according with how short the walk was relative to others.

This approach hasn’t proved competitive with Lin-Kernighan-based methods, however
it has been applied in other areas of optimization.

25



Chapter 3

Requirements and analysis

3.1 Chapter outline

This chapter ties together the introduction and background chapters, in order to syn-
thesise an actionable set of requirements from which to work.

3.2 Requirement Reasoning

This project aims to create a route optimisation tool specifically for the public trans-
port sector. It should facilitate the production of close to optimal (by various metrics)
routes through user defined pick-ups and drop-offs.

To achieve this, the road network needs to be represented as a graph, so that the graph
algorithms discussed in 2.4 and 2.5 can be ran on it.

The needs of a transport company are constantly changing, and individual use cases
of this tool within the same company could have different requirements. As such, the
tool should be able to be easily extended to optimise for additional variables, such as
passenger onboard time, or fuel usage. It should also be able to be easily extended to add
restrictions on routes, for example keeping within driving hours legislation, or not leaving
a certain geographic area.

Speed of execution is very important, particularly for the travelling salesman problem
as the time complexity grows very quickly with the size of graph, and the road network
is very large. A low-level compiled language such as C or Rust is the best fit for this.

This project will need to be accessed from web/mobile applications which act as a
UI for DRT services, which are typically not written in low-level languages. In addition,
while it is possible to produce these systems in C or Rust, this tool could be useful to an
array of customers who will each have a different tech stack.
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To facilitate this, a hosted web API will allow users to interact with the system cleanly
without worrying about the implementation.

3.3 Requirements

These requirements are collated from the introduction, background, and reasoning
above.

They use the MoSCoW analysis technique to prioritise development within the timeline
of this project.

Each has an ID with ‘F’/‘N’ for functional/non-functional, ‘B’ or ‘W’ for backend/web
interface, and a sequential number.

3.3.1 Functional requirements

ID Requirement
FB1 The tool must have the ability to find the shortest path between two points

in a graph
FB2 The tool must have the ability to find the ordering of nodes in the graph

close to the shortest length (travelling salesman problem)
FB3 The tool could have the ability to find n separate orderings of the nodes in

a graph with close to the shortest total length (vehicle routing problem)
FB4 The tool must have the ability to read OpenStreetMap data so that the

above algorithms can operate on it
FB5 The tool must be able to combine the shortest path and travelling salesman

solvers on OpenStreetMap data, to accept passenger journey information
as a pair of longitude and latitudes (pickup/drop-off) and produce a close
to optimal route as a series of longitude and latitudes following the road
network

FB6 The tool could have the ability to accept requested pickup/drop-off
times along with journey location information, and attempt to order the
pickup/drop-offs as close to the requested times as possible

FB7 The tool should have the ability to read TSPLIB data so that it can be
compared against existing tools

FB8 The tool could have the ability to produce a visual representation of a graph
for ease of debugging

FW1 The tool should have a web API interface, which accepts and producing
JSON data representing the problem and solution (shortest path/travelling
salesman/vehicle routing)
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Non-functional requirements

ID Requirement
NB1 The tool should be implemented in a language chosen primarily for speed,

whilst taking into account ease-of-use, ecosystem, and community.
NB2 The tool must have a data structure to represent weighted directed graphs

in memory
NB3 The travelling salesman solver should be extensible, to be able to add mul-

tiple parameters to optimise for, and add hard restrictions on outputs
NB4 The tool should have > 90% test coverage
NB5 The tool should have good documentation in the form of inline comments
NB6 The tool should have benchmarks for each problem, to check for unexpected

regressions in performance
NW1 The API should have a response time of < 1s
NW2 The API should have documentation for its endpoints for ease of use by

future integrators
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Chapter 4

Design and implementation

4.1 Chapter outline

This chapter details the full development process of the specific tool created in this
project.

It details the reasoning behind the choices made about what tools and data to use
for the project. It then goes over the iterative development processes for the two main
problems (shortest path and travelling salesman).

It shows how the different components fit together to create a full usable routing
system, and a few important odds and ends.

4.2 Language & tools

4.2.1 Programming language

According to requirement NB1, the primary consideration should be speed of execu-
tion. A single language will never be the fastest at everything across the board, however
The Computer Language Benchmarks Game attempts to give some data for comparison.

Figure 4.1 shows that C, C++, and Rust are far faster than the other compared
languages [Ben], as their medians are outside the interquartile ranges of almost all others.

These 3 are close enough together that it seems reasonable to consider the other
requirements of NB1: ease-of-use, ecosystem, and community.
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Figure 4.1: "Fastest" contributed programs [The Computer Language Benchmarks Game]

C is a very powerful language, underpinning many mature performant projects includ-
ing the Linux Kernel. This power allows experienced developers to make optimisations
that a compiler couldn’t. However, it also provides many potential pitfalls.

C++ is an attempt to add some niceties to C that you might come to expect after
working with newer languages, such as types, exceptions, and standard implementations
of common things. However, if you search “programming footgun” into Google, the only
language explicitly mentioned is C++. The attempts to modify C to add these features
has resulted in multiple ways to do the same thing, which can cause unexpected results.

Rust, in comparison, has been designed from the start with many of these consider-
ations in mind. Not only does it have a strict type system, like Haskell, it also has its
“borrow checker”. This is a concept (relatively) unique to Rust, which tracks ownership
over objects, allowing for a whole new class of errors to be spotted at compile time. As a
result, memory errors, segfaults, and null pointers are almost entirely removed.

As well as null pointers, the entire concept of null is not present in the language. The
“null” value was introduced by Tony Hoare in 1965 in ALGOL W “simply because it was
so easy to implement”, and the concept was replicated in almost every language from then
on (including C, Java, Python, Ruby, and many more). Unfortunately, not considering
null values is the cause of many software errors, and Hoare now refers to it as his “Billion
Dollar Mistake” [Hoa09]. To fill this role, the Rust stdlib provides enums such as Option,
which either contains Some(T) or None. None may sound like null, but, as it is a value
of the Option type, the compiler requires that you deal with the potential of the None
value wherever an Option is returned.

The Box struct effectively replaces malloc and free. It allocates memory on the
heap, which can be accessed exactly as you would expect without Box being there. And
when the variable holding the Box goes out of scope, the heap space is automatically
freed.
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These features, along with many other elegant design decisions, make Rust much eas-
ier to use (purely from a code style perspective) in my opinion.

The Rust ecosystem is neatly encapsulated within the cargo command line tool
included with your Rust installation. You use cargo to build and run your code. It also
runs your tests, automatically discovering them from various locations, including central
test folders, tests alongside implementations, and even doctests (a fantastic functionality,
inspired by Python [Pyt], where code snippets including in inline documentation are ran
as part of testing). cargo also includes a built-in code formatter (rustfmt) and style
linter (clippy).

Also, cargo manages your dependencies. Users enter a list of package names and
versions (like osmpbf = "0.3") into the Cargo.toml file (which also includes other
metadata about your project, like rust version). Then, whenever the project is run/test-
ed/benchmarked, as part of the build process cargo checks that the currently installed
dependencies match those specified in Cargo.toml and fixes any differences.

All of this functionality built into 1 tool which is bundled with the language has pre-
vented the sprawl of duplication that many other languages suffer from. For example, the
various testing frameworks for JavaScript (Jest/Jasmine/Karma/Cypress etc.), or litany
of Python linters (pycodestyle/Pylint/PyFlakes etc.).

Taking into account the above, the Rust programming language meets the require-
ments set out in requirement NB1.

4.2.2 Version Control

Version control is a very valuable tool for software engineering, as it allows developers
to “Code Fearlessly” [Cam]. Once you have a stable version, you can commit your code
and then freely break things until you have something stable again.

The landscape of version control has changed dramatically over the last 20 years,
going from multiple choices including Subversion, Mercurial, and Perforce, to essentially
just Git [Atl]. It’s branching workflow attracted enough of a market share that hosting
companies started to be built around it, and this symbiosis has caused it to be completely
dominant. As such I am going to use Git.

Leading on from this, as well as the version control system used, the host is also
an important decision. Hosts like GitHub, GitLab, and Bitbucket now offer much more
than just git hosting, including project planning and CI/CD. These offerings, particularly
for open-source software (where all services are typically provided for free) are relatively
undifferentiated, so I have chosen to use GitHub because I am already very familiar with
it.
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4.2.3 Code Editor/IDE

Many developers use command line tools like vim and emacs, and strictly fight for
their choice. A lot of newer developers (particularly in the web development space) have
chosen Visual Studio Code, with almost 75% market share in the Stack Overflow 2022
Developer Survey [Sta].

Personally, I have found the suite of IDE’s developed by JetBrains to be invaluable.
In comparison to VS Code, each editor (whilst based on the same core) comes already
setup for the language(s) it is designed for, with subtleties already taken care of. And, in
comparison to command line editors, they are very easy to learn and often more powerful,
particularly when it comes to refactoring.

In addition, partially thanks to the centrality of cargo, lots of Rust tooling integrates
very nicely with the editor. For example, test runs are incorporated into the GUI, with
individual test run outputs separated out, and the ability to easily rerun specific tests (as
opposed to a long command line output, and having to type another command to specify
a test).

Rust doesn’t have a specific JetBrains IDE (like CLion for C-like languages), so it is
wrapped into in IntelliJ IDEA.

The reason JetBrains editors are able to be so feature rich and finely tuned out of the
box is that they are typically paid products, however they offer free licenses to students,
so I will be using IntelliJ IDEA for this project.

4.2.4 Continuous integration

As mentioned in 4.2.2, I am using GitHub to host my git repository. One of the
services they offer is GitHub Actions, a Continuous integration/Continuous deployment
(CI/CD) service, which allows you to trigger services, and arbitrary code, to be run when
certain events occur. They give 2,000 free minutes for personal accounts, which was more
than enough for my purposes.

I’ve created a “workflow” which builds my project, runs my tests, and runs Rust’s
built-in linter Clippy, every time new code is pushed to a branch.

See Appendix D for the workflow file.

I’m also using a service called DeepSource. Their primary product is a set of linters
for various different languages, which I enabled for Rust (as their checks cover different
things to Clippy). However, they also offer a service called Transformers, which runs
auto-formatting tools on code bases.

Cargo (the rust CLI) has a built in formatter called rustfmt, which is set up to run on
my code every time I push. This means I don’t have to worry about minor style issues
like spacing and quotes, whilst producing a clean-looking code-base. This will make any
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future collaboration much easier.

I will be using several Cargo crates (Rust libraries) for this project, for reading file
formats, creating graphs, creating API’s etc. In order to keep these up-to-date I used
a service called Renovate. This runs periodically, checking for updates for the packages
I depend on, and creates Pull Requests for me. I can easily tell whether these package
updates will break my code, because the testing workflow runs against the created PR’s.

4.3 Mapping data

4.3.1 Data source

There are several entities with high quality mapping data. Google Maps, Apple Maps,
and Mapbox are all large players in the space, however they only give access to derivatives
of their data. They will give you “map tiles” which are rasterised versions of the underlying
network data. This is what a user sees when looking at a map on their phone/browser.

They will also give API access to routing algorithms, however these are very expensive
per request (up to $0.005 per A to B route [Goo]), and they aren’t able to take into account
bus lanes/bus only roads.

For this project, I need access to the underlying network (or graph) which these services
are doing routing on.

In the UK, the Ordnance Survey publishes their (very high quality) road network data,
however this is a premium service, and also doesn’t include bus specific data.

OpenStreetMap (OSM) is a project founded in 2004 in response to the Ordnance
Survey not releasing its mapping data publicly. It is an open source dataset of the
geography of the world, collated from various open data sources and the continued input
of its community of users. (Since the creation of OSM, OS has released many of its
datasets as open data, however their full road network is still a premium product).

Notably for this project, OSM roads (or “ways”) have ways of denoting whether they
have bus only lanes, or are bus only roads. However, there are actually several different
fields for this purpose (busway, lanes:psv, \verbbus:lanes|, etc.) and the data is
not very accurate because most users don’t care about these attributes. As such, for the
implementation of this project I will just use the full OSM road network, and recommend
that any deployment of this tool should be accompanied with manual verification of the
OSM bus-lane data of the area being operated in.
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4.3.2 OpenStreetMap data handling

Format

OSM data is represented as XML, in files typically ending with .osm. It is designed
to be able to represent almost any real world mapping feature.

It is commonly distributed in “Protocol Buffer Format” (PBF) in files ending with
.osm.pbf. These files are about half the size of the raw XML [Osm].

Geofabrik

The central OSM dataset is stored as a PostgreSQL database, being updated in real-
time. Exporting this data as PBF files, and cutting out specific regions, requires keeping
a synced copy of this database maintained. Luckily, a German company called Geofabrik,
maintains daily-updated downloads of regions of varying specificity, from continents to
counties.

Osmium

Whilst useful, the PBF files produced by Geofabrik are not always exactly what is
required. Sometimes you want a smaller region, or you may want to convert between
PBF and OSM formats, as some tools only accept one or the other.

To do this, there is a command line tool called Osmium which allows you to do both
of those things and more.

JOSM

It’s also useful to be able to directly edit OSM data, either to fix an error, or to create
custom test instances in the OSM/PBF format. JOSM is a graphical OSM editor, which
facilitates just that.

4.3.3 Finding distances between points

In this project I mention the phrase “as the crow flies”, or “crow-flies distances” a lot.
Finding the distance between two longitudes and latitudes is not as simple as simply using
Pythagoras, as this doesn’t take into account the curvature of the earth.

The great circle distance, finds the distance between two points on a sphere. The
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formula for this is commonly called the Haversine distance:
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Technically the earth is not spherical so this approach is slightly inaccurate. There
is another approach, called Vincenty’s formulae, however this is iterative and therefore
much slower. Finding the distance between two points will have to happen for each edge
that is imported, which could be millions. The Haversine formula is known to be accurate
to 0.5%. In addition, it is much more consistent with points close by. As the algorithms
in this project are all about finding the best result in comparison to others, if the tool
thinks a distance is 0.5% different from reality, but it finds this about all the distances
nearby, the resulting path will still be correct.

As such, I will use the Haversine formula to determine the distance between two
longitudes and latitudes, and this will be very easy to change in the future if needs be.
All references to “crows-distance” or similar, is referring to the great circle (or Haversine)
distance.

4.4 Graph implementation

4.4.1 Types of graph implementation

There are 2 common representations of a graph data structure: adjacency matrices,
and adjacency lists.

1

3

3.2

21.5

41.2

2.7

Figure 4.2: Example graph
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An adjacency matrix has a column for every node, and a row for every node. For a
weighted directed graph, the a value in a cell is the weight of the edge from the column
node to the row node. For the graph in figure 4.2, an adjacency matrix would look like:

1 2 3 4
1 2.7
2 1.5
3 3.2
4 1.2

An adjacency list has a new record in the list for each edge on the graph. The records
hold which node the edge is to and from, and the weight of the edge. For the graph in
figure 4.2, an adjacency list would look like:

• 1 ! 2 : 1.5

• 1 ! 3 : 3.2

• 3 ! 4 : 1.2

• 4 ! 1 : 2.7

The two representations have different use cases, due to how their storage requirements
scale.

An adjacency matrix requires storage proportional to the number of nodes in a graph.
If you have 10 nodes in your graph, even if you only have 1 edge, the adjacency matrix
needs 100 memory locations, 99 of which will be unused.

An adjacency list requires storage proportional to the number of edges in your graph.
You could have a graph with 1,000,000 nodes, but if there is just 1 edge between node
34,985 and node 903,400 then you only need space for 1 record in memory. However, the
space used to represent 1 edge for an adjacency list is not the same as the space used to
represent 1 edge for an adjacency matrix because the from and to nodes have to be saved
in memory alongside the weight, whereas in an adjacency matrix the from and to nodes
are implied by the structure of the data.

As a result, adjacency lists are more space-efficient on sparse graphs where there are
lots more nodes than edges (this is not a concrete definition as it depends on the exact
space usage for an implementation), whereas adjacency lists are more space-efficient on
connected graphs, where every node is connected to every other node, or graphs which
are close to connected.

In addition, adjacency matrices are more time efficient for looking up data. If you
want to know whether there is an edge between two points, and what its weight is, in
an adjacency list you could have go through every adjacency in the list before finding it
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(O(E)). Whereas with an adjacency list you can calculate the exact memory location
of the information with from_node_id + to_node_id * num_nodes, which is a
constant time operation (O(1)).

4.4.2 Selecting a graph implementation

The final TSP solver can’t run on the whole OSM network because even the smallest
regions have 10’s of thousands of nodes. As such, there will be a two-step process, where
the inputted locations have the shortest path between every pair calculated and a new
“abstracted” graph is formed with as many nodes as there were inputted locations (see
fig 4.3).

Figure 4.3: Forming abstracted graph for 4 nodes [base map from Google Maps]

The full OSM data for a region will have potentially millions of nodes, and each node
will probably have at most 4 or 5 edges connected to it (at a complex intersection) so
the graph would be sparse, meaning an adjacency list would be the most space-efficient
representation.

The abstracted graph will then be a fully connected graph, so an adjacency matrix
would be most space efficient. In addition, the weights in the abstracted graph will be
being accessed repeatedly, meaning the faster lookup times will be very useful.

As such, I have implemented both data representation methods in this project.

4.4.3 Implementing graphs in Rust

Having two different graph implementations in the same project opens up the potential
for duplicated code. This is not always a bad thing, but it can lead to confusion and
unnecessary additional work. For this project I wanted a consistent API for my graph
data structures, so that input, output and processing code could run the same, regardless
of the underlying storage format.

Rust doesn’t have the concept of classes, objects, and inheritance that object-oriented
languages such as Java do. Instead, in Rust, you define and implement traits. A trait
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defines a set of methods that a struct which conforms to that trait should implement.
They can also include default implementations of these traits.

For example, the Debug trait requires your struct to implement the fmt function,
which should return a string representing the struct. This trait is used when printing an
instance of your struct to the terminal. This is similar to __str__ in Python, except
Rust gives you access to a generic version of this system to allow creation of user-defined
traits.

To give my 2 graph implementations a consistent API, I created the Digraph trait.
This requires defining certain methods such as num_vertices, add_edge_by_index,
and dist. The ALDigraph and AMDigraph structs both implement this trait, and the
various methods which operate on graphs (such as dijkstra) accept arguments of the
type impl Digraph, as opposed to specifically ALDigraph or AMDigraph.

4.4.4 Storing additional node data

The adjacency list/matrix only store the structure of the graph itself. For real-world
routing, there is additional data that is useful to store against each node.

Firstly it is important to store the longitude and latitude of each node. This data
is used to create the initial graph representation, by finding the distance between two
nodes, but it is also needed at runtime so that a user-inputted longitude and latitude can
be matched to the closest node on the graph.

Also, the abstracted graph will have different indexes for each node than the original
graph. To map the solution on the abstracted graph back onto the original graph, in order
to get the road-accurate path, some form of ID needs to be stored with the nodes to link
them back together. All OSM nodes are allocated an ID so this should be able to be stored.

To do this, I created another struct called NodesData. This contains a hash map
linking node ID’s to node indexes, node indexes to node ID’s, and node indexes to instance
of the NodeData struct, which currently just holds longitudes and latitudes.

The code for managing node data is the same across adjacency lists and matrices, so
the two implementations can have a field holding an instance of NodesData, centralising
the implementation of this identical functionality.

4.5 Shortest path problem

4.5.1 Dijkstra’s algorithm

As discussed in 2.4.6 there are various possible algorithms to find the shortest path
between two points on a graph.
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As the graphs in this project won’t have negative weights, and the specific problem be-
ing solved is between specific pairs of nodes (as opposed to all pairs), Dijkstra’s algorithm
is the best choice.

In addition, Dijkstra is the basis for the heuristics/optimisations discussed: A*, high-
way hierarchies, and contraction hierarchies.

The core idea of Dijkstra is a breadth-first-search, but choosing to priorities exploring
nodes which are closer to the source node.

Pseudocode

1 // Input: g, from_node, to_node
2
3 // Initialise data structures
4 from_node_to_current_node = [inf; g.num_vertices()]
5 queue = PriorityQueue()
6
7 // Distance to from_node is 0
8 from_node_to_current_node[from_node] = 0
9 // Start exploring graph at from_node

10 queue.push(from_node, 0)
11
12 while v:= queue.pop()
13 for edge in v.adj()
14 distance_to_edge_node = from_node_to_current_node[v] + edge.weight
15 if distance_to_edge_node < from_node_to_current_node[edge.to_node]
16 queue.push(edge.to_node, distance_to_edge_node)
17
18 return from_node_to_current_node[to_node]

4.5.2 Implementing Dijkstra’s algorithm

Instead of implementing a function, I created a struct Dijkstra which holds the
current state of the algorithm. This makes it much neater to access multiple different
outputs from a single run of the algorithms, for example the distance between two points,
A and B, and also the list of points between A and B. I used this pattern for all the graph
algorithms implemented in this project.

My initial implementation of queue, used a VecDeque (a double ended queue based
on the Vec type) as the underlying data structure. To get the next item with the smallest
distance from the start (queue.pop()), it iterated through every item in the queue. This
approach was functional, and allowed me to write a test on a small (8-node) network, but
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it was unnecessarily inefficient as it looped through every item in the queue with each
iteration.

To resolve this, I needed the queue to store its values in order. I could have used
the same VecDeque and found the correct location for each item to be inserted, but
this would still potentially require running through the whole queue on each iteration.
Instead, I used a binary tree, which is a tree that guarantees that every parent node is
greater than all of its children. This fact allows insert operations to have a worst-case
time complexity of O(log n), and an average case of O(1), and pop operations to have a
worst- and average-case time complexity of O(log n) [Rus].

To implement it I created a struct called PriorityQueue, which was a wrapper
around the BinaryHeap struct from the Rust stdlib. Thanks to Rust’s trait system, I
was able to make it generic over the queue’s prioritys, requiring that they satisfy the
trait PartialOrder. This means that in the future I could use more complex objects
to rank where to go next, by just implementing that trait.

This change decreased runtime of my benchmarks by 24–99%. On the OSM Monaco
instance (with 9936 nodes), the average runtime went from 133.58 ms, to 981.10 µs.

4.5.3 Benchmarking shortest path algorithms

To have a measure of how much optimisations improved efficiency, and try and prevent
regressions in speed wherever possible, I used several benchmark instances.

Firstly, a randomly generated graph, where the probability of nodes being linked
is based on a normal distribution function. This is a very unpredictable instance, as
it doesn’t model anything like the real-world, and was only useful before I could load
standard test data into my graph representations.

The DIMACS d1291 is a TSP test instance. Whilst the first stage of TSP for this
project will start by running shortest path, in this case the data is not properly geograph-
ical, but it is a stable and useful test instance nonetheless.

OSM Monaco is the closest to the real use-case of the shortest path algorithm, as this
is real road data taken from the OpenStreetMap with real longitudes and latitudes.

Lastly, DIMACS ran a separate challenge for shortest path algorithms in 2005 [Dim],
and I started benchmarking against the USA-road-d.NY instance after the first 2 imple-
mentations of Dijkstra.

After using the binary heap and before switching to A*, the ability to trace what the
shortest path is (as opposed to just knowing how long it is) was added, which necessarily
increased runtime.
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See 4.6 for more information on Benchmarking. See A.1 for the full benchmarking
data on the iterations of the shortest path algorithm.

4.5.4 A* Heuristic

Figure 4.4: Dijkstra vs A* [Stanford]

The A* algorithm is an extension of Dijkstra’s. The primary difference is the priority
value used for the binary heap.

We define g(n) to be the current best distance from the start node to n, h(n) to be
the estimated distance from n to the end, and f(n) = g(n) + h(n) to be the estimated
total distance from the start to the end, via the node n.

In Dijkstra’s algorithm, the priority used for the binary heap is g(n), meaning that
the node closest to the start (which hasn’t yet been explored) is explored next. This
is guaranteed to give an optimal result, however it does cause nodes which are almost
certainly not useful for the final path to be explored. For example, if you’re travelling from
UCL main campus to UCL East, the quickest route starts by taking the Metropolitan line
eastbound to King’s Cross St. Pancras, but the closest station is Great Portland Street
via the Circle line westbound. See figure 4.5.
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Figure 4.5: Next closest station (light blue) vs Best next station (dark blue) [base map
from TFL]

To try and explore nodes which are heading in the right direction, A* search uses
f(n) as the priority for the binary heap. This prioritises nodes which are heading roughly
towards the target. In the example above, while g(GPS) < g(KXSP ), h(GPS) �
h(KXSP ) to the point that f(GPS) > f(KXSP ) so King’s Cross St Pancras would be
explored next.

For each explored node, we know g(n), but we don’t know h(n), otherwise we could
use h(start) to solve the whole problem, so we need to estimate it. If the estimated value
of h(n) is smaller than or equal to the true value, then A* is still guaranteed to give an
optimal output [HNR68]. When working with real-world graph data, an easy heuristic
therefore is the “as the crow flies” distance between n and the target node, as this is
guaranteed to be a lower bound on the route taken between the two nodes.

Switching from Dijkstra to A* sped up USA-road-d.NY by 59%. OSM Monaco, which
is from the real dataset that these algorithms will be run on, only improved by 14%. This
is mainly because the effects of A* get more powerful, the larger the graph being worked
on (9936 vs 264346 nodes). On larger OSM test instances the performance benefits will
be much larger.

The random graph benchmark never have correct longitude and latitude values (they
were both set to 0). This meant that the algorithm that ended up being run was simply
Dijkstra’s, because h(n) always evaluated to 0. But, with the added overhead of unnec-
essary calculations, this cause a large slowdown comparing A* to Dijkstra. The random
graph benchmark had been quite unpredictable up to this point, so I removed it before
continuing working on the shortest path algorithm.

An additional complication specific to this project is that, while forming the abstracted
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graph, we need to find the distances between all combinations of locations we are trying
to order. Currently, a single run of Dijkstra can give all the distances between one source
node and every other, meaning Dijkstra is run n times for n nodes inputted to the TSP.
The A* h(n) heuristic described above targets a specific node for each run of the algorithm,
meaning that the distances for any other node are not guaranteed to be optimal, and they
may not have even been explored.

To resolve this, while maintaining the guarantee that the estimate is less than the true
value, we take h(n) to be the crow-flies distance to the closest target node.

Each node on the graph can be visited multiple times, as parts of paths from different
parent nodes. This means that h(n) will be calculated multiple times, causing unnecessary
memory accessing and calculations.

I precomputed the shortest distance between each node and the closest to_node and
stored it in a HashMap, to be read when adding to the queue, as opposed to calculating
on the fly. This was a case where benchmarking was critical, as something which (I felt)
intuitively should have sped up the algorithm instead made it much slower, particularly
on large instances. The overhead of reading values from a large HashMap caused the
largest test instance to slow down by 247%.

Some caching was still possible however, as each calculation of h(n) required getting
the locations of all of the to_nodes, which there is only likely to be on the order of 100’s
of at an absolute maximum.

The algorithm only needs to know the location of the closest node, not which node
it is, so they could be stored in a Vec of LatLng‘s and iterated through sequentially
(instead of accessing specific keys from a HashMap). Loading them once from the graph’s
NodesData halved the number of NodesData accesses when calculating h(n), and saved
15–29% of runtime.

4.5.5 Routing on real world roads

Importing PBF files

Once I had a stable graph representation, and a functioning (if slow) implementation
of Dijkstra, I expected to be able to import a PBF file and get a route from A to B on
real roads.

The smallest country in the world is Vatican City, but it doesn’t have public roads,
and Geofabrik doesn’t offer it as a download; as such, I used Monaco as my test area, and
I’ve found this to be very common in the OSM community.

I loaded monaco-latest.osm.pbf into the ALGraph struct (adjacency list graph
implementation) successfully, however running Dijkstra on it produced the following error.
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1 thread ’main’ panicked at ’Couldn’t get node_with_min_distance’

The node_with_min_distance variable should contain the next node to be “re-
laxed”.

The Monaco graph had 28,092 nodes at time of writing, making it frustrating to debug
with, so I created a small test PBF file using JOSM.

Figure 4.6: Screenshot showing creation of my custom “house” instance in JOSM

I ran Dijkstra and successfully found the shortest path between two points

Figure 4.7: Shortest path between two points on the “house” instance

N.B. The path image doesn’t exactly match the view in JOSM as my SVG exporter
ignored the projection of longitude and latitude at this stage.

Connected components

Dijkstra worked on the “house” graph imported from a PBF file, implying that the
issue was not a fundamental issue with the PBF importer. Some debugging on the Monaco
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file showed that, just before the error occurred, the distance from the start point to every
unexplored node is infinite.

This could mean that the start point must be on an “island”, disconnected from the
rest of the graph. It could also mean that a single point wasn’t linked to the rest of the
graph; as Dijkstra explores from the start node to every single node, just 1 disconnected
node could cause this error.

To test this I created another test graph, with 2 groups of disconnected nodes.

Figure 4.8: Screenshot showing creation of my custom “separate squares” instance in
JOSM

This produced the same error as Monaco, providing a small enough test area to debug
with.

Strongly connected components

In an undirected graph, a connected component is a set of vertices that have paths
(finite sequence of edges) between all vertices.

In a directed graph, a strongly connected component is a set of vertices where
every vertex is “reachable” from every other vertex.

My plan was to find the strongly connected components of the graph, and find the
largest to be the “main” one.

There are several algorithms for strongly connected components (all significantly more
complex than connected components on an undirected graph); 2 very common ones are
Kosaraju’s, and Tarjan’s. Kosaraju’s algorithm requires 2 passes of depth-first search,
whereas Tarjan’s only requires 1.

This algorithm will need to run on graphs the size of countries, with 100’s of thousands
of nodes, so I decided to use Tarjan’s.
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Tarjan’s strongly connected components algorithm pseudocode

My original implementation was based on pseudocode from Wikipedia. I implemented
it in Rust, and modified it for my specific use case. The below pseudocode is based on
my Rust implementation, however the general structure is similar to the original.

1 // Input: g
2
3 // Initialise variables
4 index = 0
5 node_stack = []
6 indexes = [-1; g.num_vertices]
7 low_links = [-1; g.num_vertices]
8 components = []
9

10 // Main loop
11 for i in 0..g.num_vertices
12 // If we haven’t grouped this node yet
13 if indexes[i] == -1
14 strong_connect(i)
15
16 // Recursive function
17 fn strong_connect(v)
18 indexes[v] = index
19 low_links[v] = index
20 index += 1
21 node_stack.push(v)
22
23 for w in g.adj(v)
24 if indexes[w] == -1
25 strong_connect(w)
26 low_links[v] = min(low_links[v], low_links[w])
27 elif node_stack.contains(w)
28 low_links[v] = min(low_links[v], indexes[w])
29
30 if low_links[v] == indexes[v]
31 w = -1
32 node_indexes_this_component = []
33 while w != v
34 w = node_stack.pop();
35 node_indexes_this_component.push(w)
36
37 components.push(node_indexes_this_component)
38
39 return components
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Success

After running Tarjan’s on the OSM Monaco graph, I took the largest connected com-
ponent (18797/28092 nodes) and successfully ran Dijkstra on real world data.

Figure 4.9: Example route produced by my Dijkstra implementation on the OSM Monaco
dataset [base map from OpenStreetMap]

The demo in figure 4.9 uses the web API, discussed in 4.9

The explanation and implication of using only 2
3 of the nodes in the input data are

discussed in 6.3.1.

4.6 Benchmarking

For a performance-sensitive system like this, it was import that each improvement to
functionality didn’t (unnecessarily) detriment performance.

Rust has a very handy benchmarking tool called Criterion, which made it easy to
define benchmarks, and it would compare a benchmark run to the previous one.

I’m using GitHub Pull Requests to manage my development process, and I already
have a GitHub Actions workflow (4.2.4) set up, so I added benchmarking.

This wasn’t quite as simple as simple to set up as building, testing, and linting, be-
cause I wanted to compare the latest commit’s benchmark against the master branch. To
achieve this on each CI run: it checks out the master branch, runs benchmarks on it, then
checks out the current branch again, and runs benchmarks again relative to master.

The data from benchmarking was very useful for developing both the shortest path
and travelling salesman problem algorithms, and is discussed in both sections. Below are
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a couple of examples not strictly relevant to the development of either algorithm, but
notable nonetheless.

4.6.1 Pitfalls avoided by benchmarking

Unnecessary data in commonly created structs

When I added the capability for graph nodes to have data associated with them (e.g.
longitudes and latitudes), both the shortest path and travelling salesman benchmarks
became 500–800% slower.

To diagnose the issue, I split up the new functionality into several small (fully func-
tional) steps:

1. Add the new functions to the interface

2. Add fields to the graph structs to store this new node data

3. Update benchmarks/tests/main code to start reading/writing node data

The first step shouldn’t have had much of an effect, however it was already causing
an 50% decrease in performance.

The adj(node_id: usize) function which should give a vector of nodes linked to
node_id actually returned a vector of a struct called DigraphAdjacency, in order
to include additional data (e.g. the weight of the edge linking the nodes). It felt neat to
include the node data for the linked nodes, so I updated the struct:

1 // Old struct
2 pub struct DigraphAdjacency {
3 pub to: usize,
4 pub weight: f64,
5 }
6 // New struct(s)
7 pub struct NodeData {
8 pub node_index: usize,
9 pub longitude: f64,

10 pub latitude: f64,
11 }
12 pub struct DigraphAdjacency {
13 pub node_data: NodeData,
14 pub weight: f64,
15 }

I first thought that having to allocate 2 pieces of memory per DigraphAdjacency
was causing the slow down, so I flattened NodeData back into DigraphAdjacency:
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1 pub struct DigraphAdjacency {
2 pub node_index: usize,
3 pub node_longitude: f64,
4 pub node_latitude: f64,
5 pub weight: f64,
6 }

However, Rust is able to tell at compile-time how large of a space to allocated for
NodeData in the same way as a primitive type, so this had minimal effect.

I realised the actual issue was just that more memory was being allocated, because
I was including the longitudes and latitudes in this struct that will be initialised on the
order of whichever algorithm is being run, e.g. O(E log V) for Dijkstra.

This data wasn’t actually needed anywhere I was currently using adj, and if it’s needed
in the future I can either look it up each time using the node_index, or create a different
version of DigraphAdjacency and adj which includes longitudes and latitudes, so I
ended up with

1 pub struct DigraphAdjacency {
2 pub node_id: usize,
3 pub weight: f64,
4 }

Adding the new functions to the interface (step 1) then had no impact on performance,
as you would expect.

Unnecessary function calls in commonly called functions

OpenStreetMap nodes all have an ID associated with them, which are represented by
64-bit numbers. My initial graph representations used the “node ID” as the index to the
adjacency list/matrix (as they were sequential), which would require allocating vectors
1.8e+ 19 items long to accommodate every possible OSM node ID.

To avoid this, I wanted to accept arbitrary 64-bit node IDs, but internally map them
to sequential “node indexes”, keeping the size of the adjacency data structure as small as
possible.

I created a HashMap to store this relationship, and updated the Digraph trait so
that all the functions would accept node ids, and convert them to node indexes on the fly.

This increased runtime by more than 800%!
I quickly realised that the shortest path/travelling salesman algorithms were calling

adj and dist thousands of times, and each call could end up with at least 1 if not 2, or
even O(n) memory accesses to convert IDs to indexes.

As a compromise between ease-of-use and functionality, I had the graph creation
(add_node_data and add_edge) and graph data lookup (get_node_data) func-
tions still accept node IDs, because these would only be called at the start and end of
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a run (whilst population or interpreting a graph). And the high-throughput functions
would still use node indexes.

The shortest path/travelling salesman algorithms never needed to create or read data
from the graphs so they cleanly interact with node indexes, and the user is left to process
the node indexes returned back into IDs.

The addition of node IDs ended up only adding 0–15% of runtime.

4.7 Travelling salesman problem

4.7.1 Benchmarking

Different approaches work better at different scales of TSP solver, and ⇡ 1000 nodes
is a good upper bound for the size of instance needing solving for DRT applications.

As such, all TSP implementations were tested on the smallest DIMACS instance,
d1291. This instance has 1,291 nodes, and an optimal tour length of 50,801 [Rut].

4.7.2 Simulated annealing (naive)

The first approach I tried was a custom simulated annealing algorithm.

With each iteration it would perform a mutation. This mutation had a 50/50 chance
of being either a swap between two adjacent nodes, or a transposition of a node to another
point in the tour. These are both equivalent to cyclic permutations.

It had a starting temperature (T ) of 100, an ↵ value (the multiplier used to reduce
the temperature with each iteration) of 0.999, and would run until the temperature was
10�9 (Tmin). This essentially mutated the graph 25,316 times:

T ⇥ ↵
i
> Tmin

100⇥ 0.999i > 10�9

0.999i > 10�11

i log 0.999 > �11 log 10

i >
�11 log 10

log 0.999

i > 25315.76969

imax = 25, 316

The number of iterations (i) can be calculated quickly, and using float multiplication
over integer addition is a more expensive way to keep track of a loop. However, the value
T provides an exponentially decreasing variable which can be used to take “risks” early
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on in the optimisation process.

Figure 4.10: T = 100⇥ 0.95i

If the result of mutation (the neighbour path) was shorter than the current best path,
it would be accepted. If it was longer, the probability of accepting it was calculated with
the following formula:

P (accepting longer tour) = e
��path length

T

�path length is guaranteed to be positive because a negative delta would have been
automatically accepted. T is guaranteed to be positive because it starts off positive, and
is only altered by being multiplied by another positive value. Therefore ��path length

T is
guaranteed to be negative, and so e

��path length
T is guaranteed to be between 0 and 1. This

makes it a suitable formula to use as a probability function.

(a) �path length = 10 (b) �path length = 100

(c) �path length = 500

Figure 4.11: # iterations vs probability of accepting a worse tour (blue), P = 0.5 (purple)

As can be seen in figure 4.10, T quickly drops off to a (visually) indistinguishable value
at around 110 iterations. This is even more clear in figure 4.11 where the likelihood of
taking a risk is almost 0 at 30 iterations, for a � of just 100.

51



For an instance on the scale of a room, with values in metres (e.g. a robot solving
a maze) a Delta of 100 is very significant. Whereas on the scale of the UK with values
in millimetres (for example) it would be very insignificant. Further development of this
approach would require tuning this probability function.

Running this 10 times on the d1291 instance achieved a minimum tour length of
705099.4863 (13.88⇥ optimum) a mean of 724126.1288 (14.25⇥ optimum). It took 2–3
seconds to run each iteration, which is more than double the requirement set out in 3.3.1,
excluding all the overhead outside of TSP solving.

See A.2 for full benchmarks for all TSP solvers.

4.7.3 Simulated annealing (2-opt)

As noted above, the mutation function was simply picking between two different types
of cyclic permutation. This was a good starting point, however a more common approach
is k-opts. As discussed in 2.5.5, a k-opt is a mutation that involves disconnecting k edges,
and reconnecting them in various combinations. The simplest form of k-opt is the 2-opt,
which only has 1 possible method of recombination.

The practical way do this, with a tour represented as a list of nodes, is reversing a
subset of the list, e.g. a, b, c, d, e, f, g, h could be mutated to a, b, c, g, f, e, d, h.

This change improved the minimum tour length of by 34% over the original mutation
function.

I expected the simpler function to be faster, however it still consistently took 2–3
seconds to run. My potential theory for this is that both mutation functions required 2
calls to a random number generator, which was likely the time bottleneck.

4.7.4 Simulated annealing (multiple iterations per temp)

As noted in 4.7.2, the period of time in which “worse” mutations are accepted is
relatively short (the first ⇠ 200 out of ⇠ 25, 000). To increase this ability I introduced a
new variable N , the number of iterations performed at each temperature.

With N = 2, the minimum tour length decreased by 27%, and with N = 5 by 50%!
These did however increase runtime to 4.89s and 9.80s respectively.

4.7.5 Simulated annealing (tuning parameters)

There are several interconnected parameters which needed tuning:

• T0: the initial temperature value (T )
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• N : the number of inner iterations for each external loop

• ↵: the multiplier used to decrease the value of T with each external loop

• Tmin: the smallest allowed value of T

The values used in the previous section were T0 = 100;N = 1, 2, 5;↵ = 0.999, Tmin =

10�9.

Tuning T0 and Tmin

These values are very tightly linked, as the combination of the two determine the num-
ber of iterations. Setting T0 = 100, Tmin = 10�5 will give the same number of iterations as
T0 = 10, Tmin = 10�6, because the ratio between both values is 107, and the loop variable
runs on multiplication.

To try to optimise them in tandem, I tried all possible combinations of the following
values:

• ↵ = 0.95, 0.99, 0.999

• N = 1, 5, 10

• T0 = 1, 10, 100, 1000, 10000

• Tmin = 10�1
, 10�3

, 10�5
, 10�7

, 10�9

This yielded 225 combinations. I loaded them into excel, and ran a Pivot Table,
grouping by the same values of ↵ and N , and grouping by the same ratio between T0 and
Tmin.

Unfortunately, there was no clear visual pattern that I could see. As shown in fig-
ure 4.12, there are seemingly random better and worse cells in the middle of almost
promising gradients. The full data is in table A.3.1

Figure 4.12: T = 100⇥ 0.95i

Optimising 2 parameters (shortest distance, and duration) with 4 inputs is quite tricky
(particularly when the decision making is partly qualitative). Without a clear pattern, I
decided to fix Tmin at 10�5, and tune T0.
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Tuning T0

I kept the same set of combinations for ↵ and N , and restricted to T = 10, 100, 1000,
keeping Tmin fixed. This yielded 27 combinations.

0

0.5

1

1.5

·106

↵
=
0.
95
N
=
1

↵
=
0.
95
N
=
5

↵
=
0.
95
N
=
10

↵
=
0.
99
N
=
1

↵
=
0.
99
N
=
50

↵
=
0.
99
N
=
10

↵
=
0.
99
5
N
=
1

↵
=
0.
99
5
N
=
5

↵
=
0.
99
5
N
=
10

Optimal tour length

Sh
or

te
st

fo
un

d
to

ur
(D

IM
A

C
S

d1
29

1)
T = 10
T = 100
T = 1000

(a) ↵, N vs Shortest tour

0

1

2

3

↵
=
0.
95
N
=
1

↵
=
0.
95
N
=
5

↵
=
0.
95
N
=
10

↵
=
0.
99
N
=
1

↵
=
0.
99
N
=
50

↵
=
0.
99
N
=
10

↵
=
0.
99
5
N
=
1

↵
=
0.
99
5
N
=
5

↵
=
0.
99
5
N
=
10

R
un

du
ra

tio
n

(s
)

(D
IM

A
C

S
d1

29
1)

T = 10
T = 100
T = 1000

(b) ↵, N vs Run duration

Figure 4.13: Charts of data for tuning T0

Figure 4.13 shows the effects of different values of T on various value of ↵ and N . In
almost all cases, a larger T gives a shorter tour. However this improvement is roughly
linear, whereas the effect on runtime is increasing in a non-linear fashion. The full data
is in table A.3.2.

As such, I have chosen to use T = 10, in the hopes that a better distance vs run time
trade off is possible for ↵ or N .

Tuning ↵ and n

Using T0 = 10, Tmin = 10�5, ↵ = 0.99, 0.995, 0.999, 0.9995, and N = 50, 100, 500, 1000,
giving 16 combinations.
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Figure 4.14: Charts of data for tuning ↵ and N

The charts in figure 4.14 show that the approach is viable, as the best result achieves
a tour 30% more than the optimum. In the context of the TSP this is an acceptable
result, for example the Christofides Algorithm only guarantees values within 50% of the
optimum. However, the runtime for this result was 262.64s, which is far too long for a
useable web API. The full data is in table A.3.3.

Selecting values here is quite subjective. To have some rationale for the decision, I
have taken the path length with the shortest duration which has a shorter path length
than the previous record. This is ↵ = 0.999, N = 10.

With the tuned parameters (Tmin = 10�5
, T0 = 10,↵ = 0.999, N = 10), the minimum

tour length achieved was 200,453.14 (n=10).

4.7.6 Simulated annealing vs Hill climbing

The two pairs of graphs in figure 4.14. This was surprising, as higher values of n

mean more iterations at higher temperatures than higher values of ↵. Whether this had
a positive or negative impact, it should have had some impact.

This caused me to question whether the simulated annealing was having a meaningful
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improvement over simple hill climbing. For the parameters listed above, I calculated the
equivalent number of iterations of simple hill climbing using the following formula:

imax = N ⇥
log

⇣
Tmin
T0

⌘

log(a)

Figure 4.15 shows that there is very little difference between the two approaches (with
equivalent numbers of iterations) and in most cases tested here, hill climbing actually
performs better.
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Figure 4.15: Simulated annealing vs Hill climbing (Shortest tour)

I was surprised by figure 4.16, as it seems the run duration overhead from simulated
annealing was completely negligible.
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Figure 4.16: Simulated annealing vs Hill climbing (Run duration)

Either way, it seems the simulated annealing was having no effect, and therefore was
an unnecessary complication.

4.7.7 Hill climbing

Despite the simulated annealing having no runtime overhead, it was still adding a lot
of indirection to tuning the number of iterations of the algorithm. Replacing 4 parameters
with 1, the number of iterations i, allows much easier cost-benefit analysis to be performed.

As discussed in 4.7.2, ideally the parameters to the solver would be dependent on
input size. With simulated annealing it was relatively unclear how to do this, however
with hill climbing it is a lot simpler.

I took 1.5 times the optimal tour length as a rough goal (the best guarantee for the
current best non-meta heuristic: Christofides). Using several different sizes of TSPLIB
instances from the National TSP dataset, I found the median number of iterations (with
10 attempts) required to reach 1.5 times the optimal tour length. I used the median
instead of the mean to remove the effect outliers, as most values should be close together.

The number of iterations required to hit this goal happens to be very close to the
number of cities in the instance squared.

Instance No. cities Median iterations for 1.5⇥ optimum (No. cities)2

Djibouti 38 cities 1,277 iterations 1,444
Qatar 194 cities 33,167 iterations 37,636

Uruguay 734 cities 561,049 iterations 538,756
Oman 1,979 cities 399,8070 iterations 3,916,441
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For very small instances (< 10 cities) the number of iterations will be < 100. With
the random nature of the approach, a large proportion of those iterations could end up
not going anywhere useful. Iterations on instances this small will be very quick, so I will
set the minimum number of iterations to be 1000.

On very large instances, the runtime will be completely impractical; to obtain the
data for Oman in the table above, it took about 11 minutes per iteration. However, I
don’t think there should be a cap placed on the number of iterations here, as the result
given will likely not be very close to the optimal solution. Instead, users will realise that
instances of more than ⇠ 100 cities will take more than a few seconds.

Using this method of determining the number of iterations to be ran, the minimum
tour length reduced dramatically to 77402.36, however it took 160.19 s on average to run.

4.7.8 Hill climbing (path length delta)

With a distance target (1.5⇥ optimal) as well as a time target (< 1 s), there was clearly
further optimisation required. To determine where to focus effort, I used a profiling tool
called pprof-rs, which measures which areas of the code are being used the most.

Figure 4.17: Initial profiling flamegraph of hill climbing algorithm

My assumption was that the random number generation would be the slowest factor,
however the “flamegraph” generated (fig 4.17), shows that it is the get_length_on_graph
function. This is a 3-line function that iterates over a GraphPath and finds how long it
is by summing all the weights for the edges in the path. This requires a number of array
access equal to the size of the graph every single iteration.

Unlike the original mutation method, the 2-opt is a consistent operation, which hap-
pens to have a consistent effect on the length of the path. Removing two edges and adding
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two others, means that the new length of the path is equal to the old length minus the
lengths of the removed edges, plus the lengths of the new edges.

Keeping track of the current path length in this incremental method produced paths
with the (roughly) the same lengths, but taking an average of 7.32 s: a 95% runtime
improvement!

The ability to calculate the path length delta separately from performing the mutation,
means that the delta can be found first. If the delta would be positive, the mutation
doesn’t need to be run, potentially saving hundreds of array read and writes per iteration.

This improvement decreased runtime a further 40%, with roughly consistent tour
lengths.

4.7.9 Hill climbing (better random numbers)

Running profiling again revealed that the bottleneck was now in the random number
generation function, as expected.

Figure 4.18: Profiling flamegraph of hill climbing algorithm, after incremental path lengths
and conditional mutations

Random generation is not built into the Rust standard library, however the rand
package is so popular (almost 190M downloads) that it is the de-facto standard. The
documentation uses the thread_rng function in most examples, so I used that with
little examination.

A large consideration for random number generation is cryptographic security, meaning
that the results of the random number generation shouldn’t be possible to be predicted.
This is vital for applications where the random numbers are being used as encryption

59



keys. It makes sense for a library to push a cryptographically secure random number
generator (RNG) as the default, to try and prevent people making mistakes, however it
is not necessary for this application.

Comparing the available RNGs I chose Pcg64Mcg, because it has a high throughput
(7 GB/s), and still relatively good statistical quality [Pcg].

Using the new RNG produced tours with comparable distances, with a mean duration
of 848.1 ms, the first value under the 1s requirement set out in 3.3.1!

4.7.10 Hill climbing (micro-optimisations)

Looking at the new flamegraph (fig 4.19), the two_opt_cost function is now taking
the majority of the runtime.

Figure 4.19: Profiling flamegraph of hill climbing algorithm, after new random number
generator

It currently looks like this (Rust-based pseudocode)

1 fn two_opt_cost(g: AMDigraph, path: GraphPath, i: i32, j: i32) -> f64 {
2 first = min(i, j);
3 second = max(i, j);
4 length_delta = - g.dist(
5 path[first],
6 path[(first + 1) % path.length]
7 ) + g.dist(
8 path[first],
9 path[second]

10 );
11 if second < path.length - 1 {
12 length_delta -= g.dist(
13 path[second],
14 path[(second + 1) % p.path.length]
15 )
16 length_delta += g.dist(
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17 path[(first + 1) % path.length],
18 path[(second + 1) % path.length],
19 )
20 }
21 return length_delta;
22 }

Each of the 4 nodes is accessed from p.path twice, causing unnecessary memory
accesses.

1 pub fn two_opt_cost(g: &AMDigraph, p: &GraphPath, i: usize, j: usize) ->
f64 {

2 first = min(i, j);
3 second = max(i, j);
4 a = path[first];
5 b = path[(first + 1) % path.length];
6 c = path[second];
7 d = path[(second + 1) % path.length];
8 length_delta = - g.dist(a, b) + g.dist(a, c);
9 if second < p.path.length - 1 {

10 length_delta += -g.dist(c, d) + g.dist(b, d)
11 }
12 return length_delta;
13 }

Accessing them once (as above), reduces mean runtime to 731.32 ms.

In addition, the function currently accepts values of i and j in any order, and then
finds which is first and second. This is also separately carried out by the two_opt
function. If both functions are defined to require i < j, this reduces mean runtime to
714.6 ms.

1 pub fn two_opt_cost(g: &AMDigraph, p: &GraphPath, i: usize, j: usize) ->
f64 {

2 a = path[first];
3 b = path[(first + 1) % path.length];
4 c = path[second];
5 d = path[(second + 1) % path.length];
6 length_delta = - g.dist(a, b) + g.dist(a, c);
7 if second < p.path.length - 1 {
8 length_delta += -g.dist(c, d) + g.dist(b, d)
9 }

10 return length_delta;
11 }

The flamegraph now shows that the majority of time in two_opt_cost is spent
in Index which is the built-in code for accessing values from vectors. Typically when
most time is being spent in core or standard library code, the function is close to fully
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optimised.

Figure 4.20: Profiling flamegraph of hill climbing algorithm, after micro-optimisations

4.7.11 Hill climbing (Rust optimisations)

All of the timing values given in this section (4.7) have been produced running Rust
in debug mode. This collects information like line numbers for errors, and also does less
optimisation, reducing build times.

When running the TSP solver on the d1291 instance with the release profile enabled,
the average runtime is just 37.62 ms.

4.8 DRT routing

4.8.1 Approach structure

Whilst the TSP is the crux of the DRT routing problem (DRP), the DRP is a larger
problem due to having to work with real-world data.

The OSM data for Greater London contains over 8 million nodes, and, ignoring the
fact that industry leading TSP solvers would take hours to find a close to optimal path,
it’s not actually necessary. We don’t care what the optimal path through every street
corner in London is, we care what the optimal order to serve certain points is.

As discussed in 4.4.2, the tool will instead create an “abstracted” graph, containing
only the nodes being served. The abstracted graph will be created by running A* between
all pairs of inputted nodes, and creating a fully connected graph which the TSP can then
run on.

This means that the number of “cities” the TSP will need to run on is simply the
number of pick up and drop off locations, which is unlikely to ever go above 1000 nodes
in a single DRT area in a single day.
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The random nature of the TSP solver means that a single run is not guaranteed to
give an optimal result. As the runtime is just 37.62 ms, it’s possible to run the solver 5
times and select the best result, and still expect to achieve < 1s response times on the
API@.

Once a (close to) optimal tour has been found on the abstracted graph, the route on
the full graph can then be worked out, again using A*, to get a list of longitudes and
latitudes which can be plotted into an accurate line on a map.

The full process is laid out in figure 4.21
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On server load

Load PBF file

Find largest connected component Find closest nodes

Form abstracted graph

Find ~optimal path

Map ~optimal path onto OSM graph

PBF file

PBF reader

Full OSM graph

Tarjan's algorithm

Connected OSM graph

A* heuristic

A* heuristic

API input

Location 1Location 2 Location i

Node geocoder

Node ID 1Node ID 2 Node ID i

Abstracted graph

TSP solver Repeat 5x

~Optimal path

Leg 1 Leg 2 Leg j

API output

Figure 4.21: Full TSP API pipeline
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For the API input and output, see 4.9

4.8.2 Node geocoding

Users (both end users accessing a product, and developers using the API) (almost
certainly) don’t have any information about OSM or where its nodes are. Instead, they
want to work in WGS84 coordinates (AKA longitudes and latitudes).

To deal with this, the tool takes the list of coordinates, iterates through all nodes in
memory, and finds the closest node by crow’s distance. This produces a list of OSM Node
ID’s.

4.8.3 Forming abstracted graph

To form the abstracted graph, we need the distance between each pair of points
(see 4.4.2). Using the multi-goal functionality in the A* implementation, it’s possible
to get this data with 1 run of A* per node.

For speed of lookup the A* algorithm works on node indexes, not Node ID’s. This is
tricky when forming the abstracted graph, because the node indexes will not be consistent
between the original full-size graph, and the new abstracted graph.

Pseudocode

1 // Input: g, node_ids
2
3 abstracted_graph = AMGraph()
4
5 node_indexes = node_ids.map(
6 node_id -> g.get_node_index_by_id(node_id)
7 )
8
9 for from_node_id in node_ids

10 from_node_index = g.get_node_index_by_id(from_node_id)
11 astar = AStar(g, from_node_index, node_indexes)
12 for to_node_id in node_ids
13 if to_node_id != from_node_id
14 to_node_index = g.get_node_index_by_id(to_node_id)
15 abstracted_graph.add_edge_by_id(
16 from_node_id,
17 to_node_id,
18 astar.dist(to_node_index)
19 )
20
21 return abstracted_graph
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4.8.4 Finding the optimal path

The abstracted graph is setup just how TSP solver expects, as a fully connected
(relatively) small graph, similar to the TSPLIB test instances.

The solver is run 5 times, in case the randomness of the solver gives an unexpectedly
poor result. The shortest of the 5 paths found is returned.

4.8.5 Mapping optimal path onto OSM

The result returned from the TSP solver is a list of node indexes for the abstracted
graph. These first need to be turned into Node ID’s, to be mapped onto the main OSM
graph. Then, the distance from each Node ID to the next is calculated using A*

Pseudocode

1 // Input: g, abstracted_graph, path
2
3 p_node_ids = path.map(
4 node_index -> g.get_node_id_by_index(node_index)
5 )
6
7 legs = []
8
9 for i in 0..(p_node_ids.length - 1)

10 from_node_index = g.get_node_index_by_id(p_node_ids.length[i])
11 to_node_index = g.get_node_index_by_id(p_node_ids.length[i + 1])
12 astar = AStar(g, from_node_index, [to_node_index])
13
14 leg_node_indexes = astar.get_graph_path(to_node_index)
15
16 leg = leg_node_indexes.map(
17 node_index -> g.get_node_data_by_index(node_index).latlng
18 )
19 legs.push(leg)
20
21 return legs

4.9 Web interface

In order for the tool to be accessible to users, without them worrying about interfacing
with rust, I created a JSON-based REST API@.

Rust is not currently a common language to write website backends in, however there
is a library (still under development) called Rocket which makes this task a lot easier.
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There are 2 API endpoints: 1 to directly access the A*-based shortest path problem
solver, and 1 to access the travelling salesman solver.

Creating an API endpoint in Rocket is as simple as defining a function. There is a
macro which allows you to define the URL for the endpoint, along with any parameters;
the parameters in the URL should then be listed as parameters to the function (with ex-
pected types), and when the URL is accessed the function will be called, with the desired
parameters passed in. And, if you define a struct with the desired return values, Rocket
will convert the data to JSON for you. This is all possible thanks to Rust’s incredible
macro system, which allows complete introspection of the types of the function’s input
parameters, and the output struct’s fields.

In order to efficiently serve multiple user’s requests at once, Rocket highly encourages
using async functions. This means that multiple requests could be being served in parallel.
Both API endpoints need access to the OSM graph, which takes some time to import,
however multiple threads accessing the same piece of memory is treacherous ground.

Luckily, Rust has excellent built-in primitives for dealing with this. Firstly Arc, short
for atomic reference counter, which can hold any value while keeping track of how many
places are still using it (or could still be using it) even across threads. This allows multiple
threads to access the same object at once, without worrying about Rust losing track of
whether memory can be freed or not.

In most languages, this would be sufficient, however one of Rust’s (very valuable)
safety features is it’s move checker. This means that as soon as 1 thread reads the value
in the Arc, it will have been “moved” and therefore not available to any other threads.
To get around this, we can copy the data to each thread, but this seems an unnecessary
memory (and time) overhead.

Luckily, Rust provides another useful primitive: RwLock. This allows any number
of threads to read the data inside it, while only allowing 1 to edit it at a given time.
Placing the OSM graph inside an RwLock inside the Arc, gives a thread-safe, borrow-
safe, efficient way of providing access to the data to as many user requests as is needed
(subject to system resources).

4.10 Automated test coverage

The rust compiler has the ability to collect code coverage data at a source-code level,
using LLVM tooling.

Mozilla maintains a tool called grcov which can take this code coverage data and
process it into a human-readable HTML format.
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Figure 4.22: grcov HTML report

Figure 4.22 shows a lot of red, however the line coverage is still 93.93%. Some lines
are not covered by tests because they are not currently used, but they still make sense
to be there. For example LatLng.latitude_radians() is used in the haversine
function but LatLng.longitude_radians() is not used anywhere. Nevertheless, for
parity it seems sensible to keep it.

It can also process the data into lcov format. This format was originally created for
the Linux kernel, but is now a standard code coverage format which lots of tools produce
and interpret.

Codecov is one such tool: a SaaS which provides a nice interface for viewing and
managing code coverage. It provides a visual representation of which parts of a GitHub
repository are covered (Fig 4.23a), and comments on Pull Requests with the effect that
merging the PR will have on coverage (Fig 4.23b).
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(a) Coverage graph

(b) Coverage PR comment

Figure 4.23: Coverall features

The final code coverage for the project was 93.93%.

4.11 Documentation

Another feature wrapped into Rust’s cargo CLI is rustdoc. This searches for triple-
slash comments: /// (normal rust comments are double-slashes: //), and associates them
with a module/function/struct/etc. It then processes them into HTML to be viewed as
a documentation, with stdlib and dependency code all linked in.
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Figure 4.24: Example documentation page

You can include code samples in the documentation comments (see Fig 4.24). These
code samples are then included in automated tests, potentially adding additional code
coverage, and guaranteeing that documentation examples are correct.

Rust has a number of built-in lints in the form of macros, such as #[warn(dead_code)]
which checks for any unused code. This is enabled by default.

rustdoc provides a lint #![warn(missing_docs)], which checks every place it
is possible to have documentation and generates a warning if there is no documentation.

Thanks to this lint, this project is fully documented.

GitHub provides a free static file hosting feature called Pages. I created a GitHub
Action to generate the documentation and copy it to the hosting each time a PR is
merged.

The documentation is available here.

4.12 Libraries

The main functionality of the tool, described above, is all my own work. However
there are a number of common tasks which I used libraries for, as they were not the focus
of this project.

For version numbers, see cargo.toml in Appendix D

Testing

• criterion (benchmarking)

• float-cmp (comparing floating-point values)

• pprof (profiling)
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• reqwest (HTTP requests for statistics)

Random number generation

• rand (generating random numbers)

• rand_pcg (additional random number generators for rand)

• rand_distr (generating random numbers according to specific statistical distribu-
tions)

File parsing/writing

• osmpbf (reading OSM files)

• tsplib (reading TSPLIB files)

• graphviz-rust (producing GraphViz graphs)

• plotlib (producing data plots)

• svg (writing SVG files)

Web API

• rocket (producing an API interface from Rust functions)

• serde ((de)serialising Rust structs to JSON)

4.13 Name

I have named the tool Broute. This is a portmanteau of “bus route”. It is also a play
on “brute force”, the naive approach to optimisation problems.
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Chapter 5

Testing

5.1 Chapter outline

This chapter details the empirical testing I performed on the various components of
the tool, with graphs of data gathered, and conclusions drawn.

5.2 Hardware

All tests were run on a 2021 MacBook Pro with an M1 Max chip and 32 GB of RAM.

5.3 Shortest path problem solver

As mentioned in 4.5.3, the Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS) ran a challenge for the global community to submit their best shortest
path solvers.

To facilitate this, they provided 12 test instances. Unlike the travelling salesman
problem, there are lots of questions that can be asked of the same graph. In order to
fairly compare solvers, they produced a system of randomisation to try lots of different
routes on each instance, to produce comparable results.

This was hard to get working, as the challenge was from 2006, and macOS is not
knowing for its backwards compatibility. As this project is more focussing on the TSP, I
decided to do use their data but create my own simplified testing methodology.

I ran my A*-based algorithm on each instance 100 times, with a random pair of nodes
each time. The sizes of the instances ranged from 250,000 to 24,000,000 nodes.

Figure 5.1 shows that the run duration scales roughly exponentially with the size of
the test graph. The full data is in table A.4.
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Figure 5.1: Shortest Path: Instance vs Run duration (DIMACS 9 instances)

The final results of the DIMACS challenge were only centrally published for the USA
instance, with 6 different preprocessing techniques. The slowest average query time was
just 2.78ms [DGJ16], however this required 88 minutes of preprocessing time. The quickest
query time was 0.019ms, with 104 minutes of preprocessing. In comparison, my average
runtime for USA was 5.5s.

My implementation, for an OSM graph like Greater London with 8 million nodes,
would take over a second per A* run. This will create a large performance bottleneck for
the TSP pipeline, when creating the abstracted graph.

The results of all the preprocessing algorithms were then run on A* based solvers.
This means that the current solver is still very useful as a core, and can be built on to
achieve much better results.

5.4 Travelling salesman problem solver

5.4.1 DIMACS data

DIMACS also ran a challenge for the TSP; the d1291 instance was used as a reference
during development. The full DIMACS 8 TSP instance set contains 33 instances with
1000 to 85,900 nodes.

I ran the hill climbing algorithm on each instance 100 times, recording the path lengths
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found, and the run duration. I ran this once with the standard number of iterations,
determined in 4.7.7, and once with double this number.

The graphs below show the results of this testing. The full data is available in A.5.1
and A.5.2.
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Figure 5.2: TSP: Testing graphs (DIMACS 8 instances)

I was unable to test the largest instance, pla85900, due to the memory available on
my laptop. The next smallest instance, pla33810, with 33,810 nodes, was using 8.79GB,
whereas pla85900 took 55GB. This makes sense, because the TSPLIB importer adds
edges between every pair of edges. This means that the number of edges scales with the
square of the number of nodes.

My laptop has 32GB of RAM, meaning pla85900 needed to use the permanent
storage as memory (swap), which is much slower than RAM. Whilst pla33810 took an
average of 67.9s per iteration, I calculated that a single iteration of pla85900 would
take 78 days.

Figure 5.2a shows the two sets of test data against the optimal result on a log graph.
The results are a very consistent distance apart, but the range of values of the graph
makes the data tricky to interpret.

Figure 5.2b shows the two sets of data relative to the optimal path. Both numbers
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of iterations are consistently below the target of 1.5⇥ optimum. However, doubling the
number of iterations does consistently improve the output.

Figure 5.2d shows the effect of doubling the number of iterations has relatively little
effect on runtime with less than 10,000 nodes, however figure 5.2c shows an already sig-
nificant increase (almost double the runtime) at 33,000 nodes. This is likely due to more
constant or linear factors taking up a lot of runtime for smaller instances.

Finding up-to-date benchmarks for these results was surprisingly frustrating given the
purpose of the challenge. These results from 2003 are the best I can find, however they
list 4 instances as open problems, which they are no longer. Also, 8 of the values in the
benchmarks table have complications in their data, such as being run on parallel diverse
hardware.

Taking the top “clean” benchmark value, they found the optimum solution for fl3795
in 69886.48 seconds (on 2003 hardware). My solver found a solution with a length of 1.27⇥
the optimum, in 0.9780 seconds.

Every clean value in the table which I also tested my solver on, my solver was faster,
often by several orders of magnitude. In all cases, my result was within 1.5⇥ the optimum.

5.4.2 OSM data

Graphs are very diverse beasts. While having standardised testing is very useful for
comparing solvers, it’s also very insightful to test the solver on the specific data is will be
working with.

Running full end-to-end API requests, on the OSM Monaco instance, 100 times, with
5, 10, 25, 50, and 100 nodes per request, produced the following graph (full data in A.5.3):
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Figure 5.3: TSP: Tour length vs Response time (OSM Monaco)
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This shows that the targeted 1 ms response time is breached at around 50 nodes.

Removing the indirection of the API allows breaking down the response times into the
different stages of requests, shown in the graph below (full data in A.5.4).
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Missing values from the graph indicate a runtime too small to measure

5.5 Conclusions

5.4.1 shows that the speed of the TSP solver is very competitive. Achieving tours
within 1.5⇥ optimum, in under 1 second, for tours with over 5000 nodes.

Figure 5.3 seems to indicate that the solver performs drastically worse on OSM data,
taking almost 4 seconds for a tour with 100 nodes. However, figure 5.4 shows that the
TSP takes close to no time at all, even up to 100 nodes. In fact, the forming of the
abstracted graph is the primary bottleneck.

The primary operation when forming the abstracted graph is the A*-based shortest
path solver. Figure 5.1 shows that it can take over a second for a single run of A* on a
graph the size of London. A* needs to be run once per node in the tour, so a tour of 1000
nodes would take over 15 minutes to form the abstracted graph.
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Chapter 6

Conclusions and evaluation

6.1 Chapter outline

This chapter compares the finished tool with the requirements laid out in 4, and
outlines other potential improvements that could be made to the tool.

It then compares the tool to the current market, lays out what has been produced by
the project, and gives a plan for future development.

6.2 Requirements

6.2.1 Functional requirements

FB1 - Must - Achieved

The tool must have the ability to find the shortest path between two points in a graph

The A*-based shortest path solver can find the shortest path between one source node
and any number of destination nodes.

FB2 - Must - Achieved

The tool must have the ability to find the ordering of nodes in the graph close to the
shortest length (travelling salesman problem)

The hill climbing-based TSP solver, with random 2-opt mutations, is typically able to
find the shortest ordering of nodes to within 1.5% of the optimum (see 5.2b).

FB3 - Could - Not achieved

The tool could have the ability to find n separate orderings of the nodes in a graph with
close to the shortest total length (vehicle routing problem)

77



This was not achieved, however the metaheuristic based approach means that this
functionality can be added as an extension to the TSP solver, as opposed to a whole new
implementation.

Given 4 vehicles, I propose adding 2 values to the path which represent the break
between different vehicle’s tasks.

VRP state:
[12, 1, 8, V, 10, 3, 5, 6, V, 9, 4, 11, 2, V, 7, 13, 14, 0]

Resulting vehicle paths:

V1 = [12, 1, 8]

V2 = [10, 3, 5, 6]

V3 = [9, 4, 11, 2]

V4 = [7, 13, 14, 0]

VRP state after 2-opt (2,5)

[12, 1, 8, 3, 10, V , 5, 6, V, 9, 4, 11, 2, V, 7, 13, 14, 0]

Resulting vehicle paths

V1 = [12, 1, 8, 3, 10]

V2 = [5, 6]

V3 = [9, 4, 11, 2]

V4 = [7, 13, 14, 0]

Assuming the vehicles start and end at their first and last locations (as the TSP solver
currently does) the cost function would be very similar to the TSP, with just the edges
between each vehicle’s paths removed (e.g. 10 ! 5, 6 ! 9, 2 ! 7 above).

FB4 - Must - Achieved

The tool must have the ability to read OpenStreetMap data so that the above algorithms
can operate on it

The PBF importer is able to read OpenStreetMap files for anywhere on earth into a
graph representation that both the shortest path and TSP solvers can operate on.
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FB5 - Must - Achieved

The tool must be able to combine the shortest path and travelling salesman solvers on
OpenStreetMap data, to accept passenger journey information as a pair of longitude and
latitudes (pickup/drop-off) and produce a close to optimal route as a series of longitude
and latitudes following the road network

As laid out in figure 4.21, the tool is able to receive longitude and latitude based
input, match it to OpenStreetMap data, and produce a close to optimal route between
the locations following the road network.

FB6 - Could - Not achieved

The tool could have the ability to accept requested pickup/drop-off times along with
journey location information, and attempt to order the pickup/drop-offs as close to the
requested times as possible

Similarly to FB3, while this was not achieved within the scope of the project, the
overall design of the tool means that significant changes to the functionality of the tool
simply require modifying the cost function.

For example, if accepting timed pickup/drop-off requests, I would propose adding the
square of the difference between the requested and actual times at each location. This
idea, based on linear regression, causes a 20 minute delay to one passenger, to be weighted
much worse than 10 minute delays to two passengers.

As discussed in 1.2, it’s hard to quantify excellent service, but research has shown
that a waiting time of 10 minutes is considered “neutral”, whereas more than that is
unfavourable [Oli16].

FB7 - Should - Achieved

The tool should have the ability to read TSPLIB data so that it can be compared against
existing tools

The TSPLIB reader is able to import the wealth of TSP test instances made available,
in order to compare functionality with existing tools (see 5.4.1).

FB8 - Could - Achieved

The tool could have the ability to produce a visual representation of a graph for ease
of debugging
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The SVG graph exporter (used in figure 4.7), and GraphViz graph exporter (example
below in figure 6.1) were very useful for debugging the various graph algorithms.

Figure 6.1: Example GraphViz export (separate squares testing instance)

FW1 - Should - Achieved

The tool should have a web API interface, which accepts and producing JSON data
representing the problem and solution (shortest path/travelling salesman/vehicle routing)

The Rocket-based web interface, described in 4.9, provides a JSON API for both the
shortest path and travelling salesman solvers.

This allowed me to produce an interactive demonstration of the tools in Javascript,
which can be seen in my Demonstration video. Figure 6.2 shows screenshots of the results,
with the only link between the browser-based map and the tool being the JSON API@.
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(a) Shortest path solver

(b) TSP solver

Figure 6.2: JSON API web demos [base map from Google Maps]

Non-functional requirements

NB1 - Should - Achieved

The tool should be implemented in a language chosen primarily for speed, whilst taking
into account ease-of-use, ecosystem, and community.

The language chosen was Rust, which I believe meets these requirements, as discussed
in 4.2.1.

NB2 - Must - Achieved

The tool must have a data structure to represent weighted directed graphs in memory
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The tool has two data structures to represent weighted directed graphs in memory,
one using an adjacency matrix, and one using an adjacency list. They both conform to a
standard API (trait), meaning all the functions that accept graphs can accept graphs of
either type (see 4.4 for full details of this).

This has allowed using the different storage formats whenever appropriate, saving
space and run time.

NB3 - Should - Achieved

The travelling salesman solver should be extensible, to be able to add multiple param-
eters to optimise for, and add hard restrictions on outputs

As discussed in FB3 and FB6 above, the hill-climbing design of the TSP solver means
that adding new constraints and optimisation variables doesn’t require any changes to
the fundamentals of the tool.

NB4 - Should - Achieved

The tool should have > 90% test coverage

As discussed in 4.10, the tool has 93.93% test coverage.

NB5 - Should - Achieved

The tool should have good documentation in the form of inline comments

Every module, function, struct, struct field, enum, and enum value has an asso-
ciated documentation comment. Thanks to rustdoc this has been checked by the
missing_docs lint, and, as discussed in sec:documentation, these comments have been
processed into an interactive documentation site, available at https://adnathanail.github.io/broute/broute/index.html.

NB6 - Should - Achieved

The tool should have benchmarks for each problem, to check for unexpected regressions
in performance

The tool has benchmarks in the same repository, which were run on each pull request.
These checked the shortest path, connected components, and travelling salesman problem
solvers against problem-specific test instances. See 4.6.
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NW1 - Should - Achieved

The API should have a response time of < 1s

The response time varies according to the size of the requested tour. Figure 5.3 shows
that up to a tour length of 50 nodes, a response time of < 1 second is achieved.

Whilst this is smaller than the figure of 1000 I have quoted throughout the project,
50 is still a reasonably sized request. As no size was specified in the requirement, it has
been achieved.

NW2 - Should - Achieved

The API should have documentation for its endpoints for ease of use by future inte-
grators

The API documentation is available in the main documentation for the project, here.
A version is also available in Appendix B.

6.2.2 Conclusion
Functional requirements Non-functional requirements
Backend Web Backend Web

Must 4/4 1/1
Should 1/1 1/1 5/5 2/2
Could 1/3

Every requirement except for FB3 and FB6 were achieved. These requirements were
both “could” requirements, and the purpose of the “should” requirement NB3, was to
provide the ability to implement these in the future.

6.3 Feature improvements

This section focusses on “critical” features to the project: features which are employed
as part of the end-to-end API user experience. Features such as the various graph im-
port/export features (TSPLIB import, SVG export etc.), whilst useful to the development
of the project, are not core functionality.
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6.3.1 PBF importing

Way accuracy

OpenStreetMap data is very rich with details. Currently the PBF importer simply
extracts all “ways” to produce the resulting graph.

The directionality of way segments (whether a road is one way or two way) is currently
ignored, and all nodes are assumed to be two-directional.

Whether a way segment is for cars, cyclists, or pedestrians is currently ignore.
Critical for this project: whether a way segment is a bus only lane/road is currently

ignored.

Whilst any user generated data is likely to have imperfections, the fact that the con-
nected components algorithm produced a graph with 18,797 nodes, from an original 28,092
(when processing OSM Monaco) is quite notable. This is likely due to various types of
way not meshing together nicely.

These are all things which should be considered and deal with before deploying this
tool to be used with real vehicles.

Real world distances

As discussed in 4.3.3, the Haversine formula is not a completely accurate method of
determining the distance between two coordinates.

Consideration should be given to whether a more accurate method is needed, however
this will have an effect on import time.

6.3.2 Connected components algorithm

When trying to load the full API server on OSM Greater London, the PBF importer
loads all 8M nodes fine, but my implementation of Tarjan’s connected components algo-
rithm reaches the maximum Rust recursion depth. This is due to the recursive nature of
the algorithm.

Refactoring the implementation to be iterative instead of recursive should resolve this
problem, and the speed implications are not too worrying as this algorithm is only run
once, on server loading.

6.3.3 Node geocoding

When users provide coordinates, they need to be matched to their closest OSM node.
Currently this is done by simply iterating through all of the nodes, and finding which has
the shortest distance.
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At large numbers of nodes this will likely become too slow, particularly when handling
a TSP request with potentially hundreds of coordinates.

A common approach to deal with this is a quadtree. This is a type of tree datastruc-
ture, specially designed for geographic/spatial data, where each node has 4 children, each
representing a “quadrant” of the parent. Starting from the top node, the coordinate being
searched with is compared with the 4 child quadrants, to see which one it fits in. This is
repeated for the child’s 4 child quadrants over and over until the matching node is found.

This is analogous to a binary tree, where a node’s left children are always less than
the value it holds, and the right children are always greater.

If all the nodes were processed into a quadtree on import, this would make locating a
matching node much faster. It could take time to do the initial formation of the quadtree,
but this moves time complexity from the critical path onto server load times.

6.3.4 Shortest path problem solver

As shown in figure 5.4, the shortest path solver is by far the bottleneck on the size of
tour able to be solved by the TSP solver.

As such, the highway hierarchies and contraction hierarchies, discussed in 2.4.8 and 2.4.9,
will be critical to be implemented before the tool is deployed.

6.3.5 Travelling salesman problem solver

Surprisingly (to me), this has not ended up being the bottleneck of the project. If the
connected components and shortest path algorithms were developed to deal with larger
networks, I believe the current iteration of the TSP solver could keep up.

The other two algorithms have a scale of work proportional to the geographic area
they are working on, which could reach enormous scales; whereas, the TSP solver has the
luxury of a scale of work proportional the number of locations requested, which is always
likely to be under 1000.

Nevertheless, improved efficiency would have a number of benefits, including the abil-
ity to add lots more repeats (to potentially achieved a better result), and less processing
power used (and therefore a lower cost) per request.

The current solver is based on random applications of the 2-opt operation. Attempting
a similar approach with the 3-opt operation could achieve better results.

Also, trying a systematic application (trying each pair of nodes sequentially) of 2-
opt, 3-opt, or k-opt could yield better results. This is the approach employed by Lin-
Kernighan, who preferred to limit their randomisation to the starting state, and repeated
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application of the algorithm several times.
Combining Lin-Kernighan (or even LKH) with the 4-opt kick described in 2.5.6 could

yield even better results.

6.4 Market research

6.4.1 Comparison with other products

A to B routing
(shortest path)

Parcel delivery
route optimisa-
tion
(Travelling
salesman)

Demand re-
sponsive travel
route optimsia-
tion
(Travelling
salesman)

Geocoding
(matching
places to
coordinates)

Google Maps Y N N Y
Graphhopper Y Y N Y
Amazon loca-
tion service

Y N N Y

Here maps Y Y N Y
Tomtom Y Y N Y
Mapbox Y Y N Y
Broute
(This project)

Y Y* Y*† Y

Via Y‡ N Y‡ Y‡

* With the addition of pickup and drop-off location ordering to the cost function (i.e.
a drop-off cannot be put before its matching pickup)

†With OSM data filtered for buses
‡Only available inside proprietary software (no API)

6.4.2 Potential client comment

While not developed for, or in partnership with, any other entity, this product was
created with the knowledge it could potentially be of interest to the transport-technology
startup Vectare.

Peter Nathanail, the Commercial and Operations Director, had this to say:

“DRT routing is something that only a few companies do, and all the technology is
currently baked into proprietary products. Having an API based tool which we can integrate
into our existing systems will give a massive improvement in quality of life to our drivers
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and service controllers, who will only have to use one piece of software. This in turn will
allow us to give a better service to our customers.”

6.5 Deliverables

• A Rust-based mapping tool, running on real-world geographic data [GitHub]

• A suite of testing, linting, and benchmarking tools to assist its future development
[GitHub]

• Documentation for the Rust code, to assist its future development [Docs]

• Documentation for the JSON API, to assist developers integrating with the tool
[Docs]

• This report, detailing the process of research, design, and development

6.6 Conclusion

With continued development, I would prioritise the following improvements to the
tool, to make it a minimally usable product:

1. Refactor the connected components algorithm to be iterative as opposed to recursive,
allowing much larger OSM graphs to be imported.

2. Read metadata about OSM ways being imported, allowing users to specify routing
on foot, on a bike, in a car, or in a bus.

3. Add highway/contraction hierarchies to the shortest path problem solver, to min-
imise (or remove) the bottleneck on instance size.

Beyond this, there are a few additional features that would likely be required for a full
deployment:

1. Extend the TSP solver to accept pairs of pick-up/drop-off locations, with desired
pick-up/drop-off times.

2. Extend the TSP solver to a VRP solver, allowing the tool to return paths for multiple
vehicles, allowing operators to use it on arbitrary deployment areas.

When taken to scale, there are lots of things that users may require, I think the
following would likely be most important:

1. Implement node geocoding with a quad-tree, to speed up individual request times
(moving time requirements to start-up)
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2. Experiment with other TSP solving approaches, to get closer to optimum paths
within reasonable timeframes

3. Add very specific (potentially user-arbitrary) constraints to the TSP solver, such as
driving hours, or vehicle fuel requirements.

While there are several potential improvements to be made, they are all improvements
of speed and scale. The underlying tool is fully functional end-to-end.

Of the 17 requirements laid out at the start of development, both being incremental
improvements to the existing tool.

No DRT routing API currently exists on the market, and Broute (this project) suc-
cessfully fulfils that role.
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Appendix A

Data tables

A.1 Shortest path problem benchmarks

DIMACS
d1291
(1291 nodes)

Random graph
(3000 nodes)

OSM Monaco
(9936 nodes)

DIMACS USA-
road-d.NY
(264346 nodes)

Naive Dijkstra
(VecDeque)

4.4886 ms 28.762 ms 133.58 ms -

Better Dijkstra
(BinaryHeap)

3.1279 ms
-30%

21.770 ms
-24%

981.10 µs
-99%

-

Dijkstra
+ path-tracing
+ node data

6.9048 ms
+121%

76.816 ms
+253%

896.73 µs
-9%

58.103 ms

A*
h(n) on-the-fly

336.53 µs
-95%

133.84 ms
+1642%

772.91 µs
-14%

23.864 ms
-59%

A*
precomputing
h(n)

406.60 µs
+21%

- 2.0569 ms
+166%

82.730 ms
+247%

A*
caching
to_nodes

266.47 µs
-21%

- 658.07 µs
-15%

16.996 ms
-29%
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A.2 Travelling salesman problem benchmarks

Min tour length Mean tour length Mean run time
10 iterations

Simulated anneal-
ing
(naive)

709,598.77 729,309.28 2.50 s

Simulated anneal-
ing
(new mutation
function)

464,836.28
-34%

479,964.65
-34%

2.43 s
-3%

Simulated anneal-
ing
(N = 2)

337,397.17
-27%

344,141.30
-28%

4.89 s
+101%

Simulated anneal-
ing
(N = 5)

212,834.24
-37%

241,372.85
-30%

13.16 s
+169%

Simulated anneal-
ing
(tuned)

200,453.14
-6%

208,318.76
-14%

13.19 s
0%

Hill climbing
(tuned)

77,261.05
-61%

77,402.36
-63%

160.19 s
+1114%

Hill climbing
(incremental path
lengths)

72,813.92
-6%

74,773.02
-3%

7.32 s
-95%

Hill climbing
(conditional muta-
tion)

73,005.33
0%

74,536.47
0%

4.35 s
-41%

Hill climbing
(faster RNG)

73,011.77
0%

74,817.98
0%

848.1 ms
-81%

25 iterations
Hill climbing
(duplicate array ac-
cesses)

72,589.60
-1%

74,817.98
0%

848.1 ms
0%

Hill climbing
(required ordering)

75,307.12
+4%

74,817.98
0%

742.8 ms
-12%

Hill climbing
(Rust optimised)

72,178.97
-4%

74,863.69
0%

39.68 ms
-95%
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A.3 Travelling salesman problem - Simulated annealing

tuning

A.3.1 Tuning T0 and Tmin

↵ N T0 Tmin Path length Duration (s)
0.95 1 1 0.1 1702418 0.01
0.95 1 1 0.001 1699248 0.01
0.95 1 1 0.00001 1637037 0.02
0.95 1 1 0.0000001 1620121 0.03
0.95 1 1 0.000000001 1582331 0.04
0.95 1 10 0.1 1698903 0.01
0.95 1 10 0.001 1664087 0.02
0.95 1 10 0.00001 1656222 0.03
0.95 1 10 0.0000001 1604113 0.04
0.95 1 10 0.000000001 1557835 0.04
0.95 1 100 0.1 1659613 0.01
0.95 1 100 0.001 1656474 0.02
0.95 1 100 0.00001 1633906 0.03
0.95 1 100 0.0000001 1574209 0.04
0.95 1 100 0.000000001 1573291 0.05
0.95 1 1000 0.1 1656184 0.02
0.95 1 1000 0.001 1612221 0.03
0.95 1 1000 0.00001 1600806 0.04
0.95 1 1000 0.0000001 1593135 0.04
0.95 1 1000 0.000000001 1567376 0.05
0.95 1 10000 0.1 1650048 0.02
0.95 1 10000 0.001 1634493 0.03
0.95 1 10000 0.00001 1618106 0.04
0.95 1 10000 0.0000001 1568125 0.05
0.95 1 10000 0.000000001 1529780 0.06
0.95 5 1 0.1 1624407 0.02
0.95 5 1 0.001 1503687 0.07
0.95 5 1 0.00001 1391214 0.11
0.95 5 1 0.0000001 1314860 0.16
0.95 5 1 0.000000001 1247283 0.19
0.95 5 10 0.1 1588405 0.04
0.95 5 10 0.001 1466230 0.09
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↵ N T0 Tmin Path length Duration (s)
0.95 5 10 0.00001 1331988 0.13
0.95 5 10 0.0000001 1302012 0.17
0.95 5 10 0.000000001 1176857 0.22
0.95 5 100 0.1 1498482 0.07
0.95 5 100 0.001 1417651 0.11
0.95 5 100 0.00001 1302954 0.15
0.95 5 100 0.0000001 1235253 0.2
0.95 5 100 0.000000001 1190197 0.24
0.95 5 1000 0.1 1488506 0.09
0.95 5 1000 0.001 1358874 0.13
0.95 5 1000 0.00001 1260190 0.18
0.95 5 1000 0.0000001 1211216 0.22
0.95 5 1000 0.000000001 1158436 0.26
0.95 5 10000 0.1 1428047 0.11
0.95 5 10000 0.001 1350283 0.15
0.95 5 10000 0.00001 1225416 0.2
0.95 5 10000 0.0000001 1238889 0.24
0.95 5 10000 0.000000001 1146553 0.28
0.95 10 1 0.1 1542441 0.04
0.95 10 1 0.001 1344457 0.13
0.95 10 1 0.00001 1208714 0.22
0.95 10 1 0.0000001 1093858 0.3
0.95 10 1 0.000000001 1020478 0.39
0.95 10 10 0.1 1460569 0.09
0.95 10 10 0.001 1302519 0.18
0.95 10 10 0.00001 1116372 0.27
0.95 10 10 0.0000001 1074922 0.35
0.95 10 10 0.000000001 979509 0.43
0.95 10 100 0.1 1373474 0.13
0.95 10 100 0.001 1214578 0.22
0.95 10 100 0.00001 1136997 0.31
0.95 10 100 0.0000001 1035210 0.39
0.95 10 100 0.000000001 947017 0.48
0.95 10 1000 0.1 1270346 0.17
0.95 10 1000 0.001 1184124 0.26
0.95 10 1000 0.00001 1062924 0.35
0.95 10 1000 0.0000001 979446 0.44
0.95 10 1000 0.000000001 902930 0.52
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↵ N T0 Tmin Path length Duration (s)
0.95 10 10000 0.1 1236897 0.22
0.95 10 10000 0.001 1175580 0.31
0.95 10 10000 0.00001 1064281 0.39
0.95 10 10000 0.0000001 965047 0.48
0.95 10 10000 0.000000001 913252 0.57
0.99 1 1 0.1 1656938 0.02
0.99 1 1 0.001 1497871 0.07
0.99 1 1 0.00001 1398634 0.11
0.99 1 1 0.0000001 1336106 0.16
0.99 1 1 0.000000001 1247617 0.2
0.99 1 10 0.1 1567075 0.05
0.99 1 10 0.001 1463827 0.09
0.99 1 10 0.00001 1359546 0.13
0.99 1 10 0.0000001 1246785 0.18
0.99 1 10 0.000000001 1193612 0.22
0.99 1 100 0.1 1530615 0.07
0.99 1 100 0.001 1430733 0.11
0.99 1 100 0.00001 1331939 0.16
0.99 1 100 0.0000001 1219821 0.2
0.99 1 100 0.000000001 1152691 0.25
0.99 1 1000 0.1 1498087 0.09
0.99 1 1000 0.001 1394914 0.14
0.99 1 1000 0.00001 1269465 0.18
0.99 1 1000 0.0000001 1172355 0.22
0.99 1 1000 0.000000001 1156218 0.27
0.99 1 10000 0.1 1415569 0.11
0.99 1 10000 0.001 1360615 0.16
0.99 1 10000 0.00001 1237663 0.2
0.99 1 10000 0.0000001 1190102 0.25
0.99 1 10000 0.000000001 1123574 0.29
0.99 5 1 0.1 1409819 0.11
0.99 5 1 0.001 1068595 0.33
0.99 5 1 0.00001 893435 0.55
0.99 5 1 0.0000001 790036 0.77
0.99 5 1 0.000000001 724526 0.99
0.99 5 10 0.1 1200680 0.23
0.99 5 10 0.001 967019 0.45
0.99 5 10 0.00001 854059 0.67
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↵ N T0 Tmin Path length Duration (s)
0.99 5 10 0.0000001 751920 0.89
0.99 5 10 0.000000001 678978 1.11
0.99 5 100 0.1 1081222 0.34
0.99 5 100 0.001 905415 0.55
0.99 5 100 0.00001 783864 0.78
0.99 5 100 0.0000001 717629 1
0.99 5 100 0.000000001 671855 1.23
0.99 5 1000 0.1 984973 0.44
0.99 5 1000 0.001 880867 0.66
0.99 5 1000 0.00001 773136 0.88
0.99 5 1000 0.0000001 663821 1.11
0.99 5 1000 0.000000001 629256 1.33
0.99 5 10000 0.1 952776 0.56
0.99 5 10000 0.001 838980 0.78
0.99 5 10000 0.00001 744173 0.99
0.99 5 10000 0.0000001 687515 1.21
0.99 5 10000 0.000000001 625524 1.42
0.99 10 1 0.1 1193773 0.22
0.99 10 1 0.001 868184 0.67
0.99 10 1 0.00001 683755 1.11
0.99 10 1 0.0000001 600126 1.58
0.99 10 1 0.000000001 526808 2.05
0.99 10 10 0.1 982731 0.46
0.99 10 10 0.001 769756 0.92
0.99 10 10 0.00001 636638 1.38
0.99 10 10 0.0000001 556622 1.83
0.99 10 10 0.000000001 489973 2.27
0.99 10 100 0.1 839469 0.68
0.99 10 100 0.001 665926 1.14
0.99 10 100 0.00001 598126 1.59
0.99 10 100 0.0000001 524485 2.05
0.99 10 100 0.000000001 470722 2.5
0.99 10 1000 0.1 753818 0.91
0.99 10 1000 0.001 640294 1.37
0.99 10 1000 0.00001 559002 1.83
0.99 10 1000 0.0000001 506776 2.28
0.99 10 1000 0.000000001 468829 2.73
0.99 10 10000 0.1 729237 1.14
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↵ N T0 Tmin Path length Duration (s)
0.99 10 10000 0.001 617854 1.6
0.99 10 10000 0.00001 536712 2.01
0.99 10 10000 0.0000001 503985 2.45
0.99 10 10000 0.000000001 465600 2.89

0.995 1 1 0.1 1576516 0.05
0.995 1 1 0.001 1373812 0.13
0.995 1 1 0.00001 1179026 0.22
0.995 1 1 0.0000001 1088100 0.31
0.995 1 1 0.000000001 1005708 0.4
0.995 1 10 0.1 1437011 0.09
0.995 1 10 0.001 1284351 0.18
0.995 1 10 0.00001 1152937 0.27
0.995 1 10 0.0000001 1048122 0.36
0.995 1 10 0.000000001 967900 0.45
0.995 1 100 0.1 1341738 0.13
0.995 1 100 0.001 1186968 0.22
0.995 1 100 0.00001 1115056 0.31
0.995 1 100 0.0000001 1014437 0.4
0.995 1 100 0.000000001 936462 0.49
0.995 1 1000 0.1 1292249 0.18
0.995 1 1000 0.001 1130752 0.27
0.995 1 1000 0.00001 1035681 0.36
0.995 1 1000 0.0000001 965608 0.45
0.995 1 1000 0.000000001 901305 0.53
0.995 1 10000 0.1 1238769 0.22
0.995 1 10000 0.001 1143649 0.31
0.995 1 10000 0.00001 1039855 0.4
0.995 1 10000 0.0000001 987172 0.49
0.995 1 10000 0.000000001 916623 0.58
0.995 5 1 0.1 1209180 0.22
0.995 5 1 0.001 832723 0.67
0.995 5 1 0.00001 697534 1.12
0.995 5 1 0.0000001 584640 1.56
0.995 5 1 0.000000001 519580 2
0.995 5 10 0.1 984966 0.45
0.995 5 10 0.001 745866 0.89
0.995 5 10 0.00001 632339 1.33
0.995 5 10 0.0000001 560044 1.79
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↵ N T0 Tmin Path length Duration (s)
0.995 5 10 0.000000001 494925 2.23
0.995 5 100 0.1 864236 0.67
0.995 5 100 0.001 692115 1.11
0.995 5 100 0.00001 591141 1.55
0.995 5 100 0.0000001 539598 2.01
0.995 5 100 0.000000001 476525 2.45
0.995 5 1000 0.1 764684 0.9
0.995 5 1000 0.001 646644 1.34
0.995 5 1000 0.00001 558742 1.78
0.995 5 1000 0.0000001 511562 2.23
0.995 5 1000 0.000000001 481023 2.65
0.995 5 10000 0.1 749470 1.11
0.995 5 10000 0.001 614539 1.55
0.995 5 10000 0.00001 542257 2
0.995 5 10000 0.0000001 501643 2.42
0.995 5 10000 0.000000001 477944 2.89
0.995 10 1 0.1 988643 0.45
0.995 10 1 0.001 648692 1.33
0.995 10 1 0.00001 493989 2.22
0.995 10 1 0.0000001 418680 3.09
0.995 10 1 0.000000001 380870 4.01
0.995 10 10 0.1 744783 0.89
0.995 10 10 0.001 567889 1.78
0.995 10 10 0.00001 467851 2.65
0.995 10 10 0.0000001 389446 3.55
0.995 10 10 0.000000001 343892 4.43
0.995 10 100 0.1 651929 1.33
0.995 10 100 0.001 493461 2.22
0.995 10 100 0.00001 433260 3.12
0.995 10 100 0.0000001 383527 4.01
0.995 10 100 0.000000001 331932 4.87
0.995 10 1000 0.1 557806 1.78
0.995 10 1000 0.001 478644 2.66
0.995 10 1000 0.00001 405152 3.56
0.995 10 1000 0.0000001 363117 4.45
0.995 10 1000 0.000000001 319718 5.31
0.995 10 10000 0.1 573580 2.2
0.995 10 10000 0.001 466323 3.11
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↵ N T0 Tmin Path length Duration (s)
0.995 10 10000 0.00001 403257 3.95
0.995 10 10000 0.0000001 365228 4.83
0.995 10 10000 0.000000001 320216 5.72

A.3.2 Tuning T0

↵ N T0 Path length Duration (s)
0.95 1 10 1624182 0.03
0.95 1 100 1635077 0.03
0.95 1 1000 1616434 0.04
0.95 5 10 1351481 0.13
0.95 5 100 1295731 0.15
0.95 5 1000 1266449 0.18
0.95 10 10 1128244 0.27
0.95 10 100 1140197 0.31
0.95 10 1000 1055590 0.36
0.99 1 10 1323807 0.15
0.99 1 100 1297810 0.16
0.99 1 1000 1269612 0.18
0.99 5 10 857148 0.68
0.99 5 100 814935 0.78
0.99 5 1000 743849 0.91
0.99 10 10 634672 1.34
0.99 10 100 582301 1.56
0.99 10 1000 563702 1.81

0.995 1 10 1141954 0.27
0.995 1 100 1108929 0.31
0.995 1 1000 1035169 0.36
0.995 5 10 642391 1.35
0.995 5 100 605658 1.57
0.995 5 1000 565015 1.78
0.995 10 10 462902 2.68
0.995 10 100 421904 3.11
0.995 10 1000 405543 3.55

A.3.3 Tuning ↵ and N
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↵ N Path length Duration (s)
0.99 5 820871 0.67
0.99 10 641577 1.33
0.99 50 308423 6.56
0.99 100 212357 13.09

0.995 5 646107 1.31
0.995 10 456231 2.64
0.995 50 206505 13.13
0.995 100 150122 26.25
0.999 5 293462 6.59
0.999 10 212834 13.16
0.999 50 98767 65.67
0.999 100 81459 132.58

0.9995 5 205197 13.18
0.9995 10 149298 26.33
0.9995 50 81414 131.36
0.9995 100 67503 262.64

A.3.4 Comparing simulated annealing to hill climbing

↵ N
Simulated annealing

i
Hill climbing

Path length Duration (s) Path length Duration (s)
0.99 5 820871 0.67 6875 843581 0.66
0.99 10 641577 1.33 13750 610891 1.33
0.99 50 308423 6.56 68750 291165 6.67
0.99 100 212357 13.09 137500 208157 13.60

0.995 5 646107 1.31 13785 630172 1.35
0.995 10 456231 2.64 27570 447412 2.68
0.995 50 206505 13.13 137850 199020 13.37
0.995 100 150122 26.25 275700 143848 26.63
0.999 5 293462 6.59 69045 294065 6.69
0.999 10 212834 13.16 138090 207945 13.63
0.999 50 98767 65.67 690450 98966 67.31
0.999 100 81459 132.58 1380900 80687 133.18

0.9995 5 205197 13.18 138125 210560 13.28
0.9995 10 149298 26.33 276250 146624 26.49
0.9995 50 81414 131.36 1381250 79646 131.51
0.9995 100 67503 262.64 2762500 67010 262.65
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A.4 Shortest path problem testing

Instance
Loading

# nodes
Path length (nodes) Runtime (s)

time (s) Mean Std Dev. Mean Std Dev.
NY 0.152 264346 375.39 193.72 0.0270 0.0178

BAY 0.156 321270 486.30 236.30 0.0403 0.0232
COL 0.206 435666 725.98 376.05 0.0493 0.0287
FLA 0.582 1070376 990.00 593.69 0.1522 0.0912
NW 0.641 1207945 1136.33 538.59 0.1902 0.1066
NE 0.836 1524453 1333.56 770.31 0.2466 0.1306

CAL 1.115 1890815 1268.06 621.33 0.3256 0.1624
LKS 1.602 2758119 2525.77 1556.78 0.4799 0.2486

E 2.041 3598623 2156.32 1231.24 0.6319 0.3478
W 3.912 6262104 2646.50 1315.53 1.2334 0.7015

CTR 9.930 14081816 3665.81 1741.26 3.3520 1.8783
USA 18.884 23947347 5093.53 2708.35 5.4988 3.1800

A.5 Travelling salesman problem testing

A.5.1 DIMACS instances (N 2 iterations)

Instance
Loading num Optimum Path length Runtime (s)
time (s) nodes path length Mean Std Dev. Mean Std Dev.

dsj1000 0.02 1000 18660188 24409670.71 434777.96 0.0123 0.00227
pr1002 0.02 1002 259045 339914.02 5037.48 0.0103 0.00122
u1060 0.03 1060 224094 293705.59 4915.37 0.031 0.00141

vm1084 0.03 1084 239297 326639.24 6118.28 0.0312 0.00145
pcb1173 0.03 1173 56892 75659.59 932.15 0.0333 0.00166

d1291 0.04 1291 50801 74924.14 1301.51 0.0359 0.00144
rl1304 0.04 1304 252948 373044.26 6665.93 0.0375 0.00244
rl1323 0.04 1323 270199 396575.64 6403.11 0.0389 0.00243

nrw1379 0.05 1379 56638 71465.65 883.23 0.04 0.0024
fl1400 0.05 1400 20127 26291.45 1109.72 0.0399 0.00249
u1432 0.05 1432 152970 194500.89 2004.8 0.0402 0.00187
fl1577 0.06 1577 22249 32981.73 958.41 0.0468 0.0021
d1655 0.07 1655 62128 85650.56 1063.71 0.0528 0.00282

vm1748 0.08 1748 336556 452359.69 6189.65 0.0591 0.00311
u1817 0.08 1817 57201 80727.71 961.2 0.0623 0.00378
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Instance
Loading num Optimum Path length Runtime (s)
time (s) nodes path length Mean Std Dev. Mean Std Dev.

rl1889 0.08 1889 316536 461480.55 7284.46 0.0709 0.00447
d2103 0.1 2103 80450 115706.54 1476.33 0.1329 0.00832
u2152 0.11 2152 64253 90005.07 1002.96 0.1435 0.01211
u2319 0.12 2319 234256 270389.63 1860.73 0.1613 0.01504

pr2392 0.13 2392 378032 511329.88 5571.27 0.1806 0.01685
pcb3038 0.23 3038 137694 180090.66 1322.5 0.316 0.02295

fl3795 0.34 3795 28772 42990.65 1040.49 0.5287 0.02687
fnl4461 0.48 4461 182566 230523.33 1454.47 0.8283 0.02802
rl5915 0.84 5915 565530 837299.28 7163.87 1.489 0.04107
rl5934 0.84 5934 556045 817771.91 6529.96 1.4571 0.04903

pla7397 1.28 7397 23260728 30921567.63 318201.17 2.2442 0.02373
rl11849 3.54 11849 923288 1298452.01 6578.28 6.2732 0.05878

usa13509 4.67 13509 19982859 25893118.71 148488.37 8.2872 0.08709
brd14051 5.16 14051 469385 592526.96 2611.57 8.7317 0.03576

d15112 5.49 15112 1573084 1981875.03 6703.51 10.0371 0.07632
d18512 8.5 18512 645238 812718.84 2297.09 16.4992 0.11946

pla33810 33.3 33810 66048945 89110150.44 319205.14 67.9235 0.74189

A.5.2 DIMACS instances (2N 2 iterations)

Instance
Loading num Optimum Path length Runtime (s)
time (s) nodes path length Mean Std Dev. Mean Std Dev.

dsj1000 0.02 1000 18660188 22176626.040 412580.57 0.0182 0.00075
pr1002 0.02 1002 259045 308796.860 4344.56 0.0185 0.00142
u1060 0.03 1060 224094 267405.480 4414.75 0.0602 0.00192

vm1084 0.03 1084 239297 290592.550 4933.07 0.0604 0.00112
pcb1173 0.03 1173 56892 68685.070 833.75 0.0638 0.00081

d1291 0.04 1291 50801 65866.410 1182 0.0687 0.00212
rl1304 0.04 1304 252948 321356.290 6558.57 0.0693 0.00115
rl1323 0.04 1323 270199 340339.590 5896.42 0.0706 0.00157

nrw1379 0.05 1379 56638 66300.040 686.08 0.0739 0.00236
fl1400 0.05 1400 20127 24038.330 883.5 0.0737 0.00226
u1432 0.05 1432 152970 181701.830 1802.45 0.0754 0.00191
fl1577 0.06 1577 22249 28304.240 876.41 0.0875 0.00268
d1655 0.07 1655 62128 76732.830 1112.8 0.0981 0.00448

vm1748 0.08 1748 336556 404650.230 6574.35 0.1146 0.00396
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Instance
Loading num Optimum Path length Runtime (s)
time (s) nodes path length Mean Std Dev. Mean Std Dev.

u1817 0.08 1817 57201 72353.710 999.84 0.1379 0.01767
rl1889 0.08 1889 316536 397732.730 6900.71 0.14 0.01248
d2103 0.1 2103 80450 103362.450 1469.67 0.261 0.02004
u2152 0.11 2152 64253 81280.330 874.85 0.2833 0.03905
u2319 0.12 2319 234256 259277.230 1640.18 0.2939 0.0071

pr2392 0.13 2392 378032 458999.530 4621.53 0.3377 0.04068
pcb3038 0.23 3038 137694 164756.100 1207.48 0.5703 0.02185

fl3795 0.34 3795 28772 36634.500 1076.39 0.978 0.03522
fnl4461 0.48 4461 182566 213287.440 1292.31 1.6609 0.04168
rl5915 0.84 5915 565530 721134.050 6353.58 2.9326 0.07175
rl5934 0.84 5934 556045 708540.550 6366.87 2.8785 0.07392

pla7397 1.28 7397 23260728 27957940.150 288992.49 4.4357 0.08869
rl11849 3.54 11849 923288 1152074.150 6995.77 11.6806 0.02925

usa13509 4.67 13509 19982859 23559018.480 188862.26 15.4471 0.0455
brd14051 5.16 14051 469385 547412.020 2031.7 16.9731 0.11166

d15112 5.49 15112 1573084 1829804.820 5996.17 19.4756 0.08794
d18512 8.5 18512 645238 751325.460 2227.95 32.6251 0.48955

pla33810 33.3 33810 66048945 80518468.180 271829.25 132.3775 1.94843

A.5.3 OSM Monaco (API end-to-end)

Num nodes Duration mean Duration std. dev.
5 18.15 0.004486368

10 58.74 0.00596426
25 280.64 0.012237255
50 1030.79 0.059125848

100 3886.09 0.083088278

A.5.4 OSM Monaco (Step-by-step breakdown)

Num nodes
Geocoding (s) Abstracting (s) TSP (s)
Mean Std dev. Mean Std dev. Mean Std dev.

5 0.0010 0.00000 0.0135 0.003 0 0
10 0.0020 0.00000 0.0533 0.005 0 0
25 0.0070 0.00000 0.2627 0.014 0 0
50 0.0140 0.00000 0.9636 0.019 0 0
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Num nodes
Geocoding (s) Abstracting (s) TSP (s)
Mean Std dev. Mean Std dev. Mean Std dev.

100 0.0281 0.00030 3.7220 0.025 0 0
250 0.0713 0.00064 22.4684 0.028 0.003 0
500 0.1428 0.00108 91.0716 8.236 0.0124 0.000489898

1000 0.2907 0.00200 373.9748 52.926 0.0591 0.007175653
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Appendix B

API documentation

B.1 Endpoints

B.1.1 Shortest path

URL:

/shortest_path/<start_lat>/<start_lon>/<end_lat>/<end_lon>

Example response:
1 {
2 from_point: (52.00323, -1.4345),
3 to_point: (52.02323, -1.4365),
4 path: [(52.546734, -1.5436), ...],
5 path_length: 15.43,
6 }

B.1.2 Route optimisation

URL:

/route_optimisation/<points_str>

Where points_str is a list of longitude and latitude pairs (<lat>,<lon>) sepa-
rated by | characters, e.g. 52.432,-1.543|57.356,-3.425

Example response:
1 {
2 legs: [
3 [(52.00323, -1.4345), ...],
4 ...
5 ],
6 }
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Appendix C

Project plan
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Implementing practical route planning algorithms

for demand responsive bus services

Alex Nathanail

Supervised by Robin Hirsch

1 Aims and objectives

Aim:

To investigate and implement algorithms for planning and live

re-planning bus routes, in response to demand

Objectives:

1. Research shortest path algorithms, potential optimisations, and heuris-

tics

2. Research solutions to the travelling salesman problem (TSP), their

performance as the size of network scales, and metaheuristics that can

be employed to produce real-world results

3. Research the vehicle allocation problem (VAP), how it is different to

the TSP, and how it can be solved or approximated

4. Investigate the availability of, and interaction with, OpenStreeMap

data to use as the basis for a graph representation of the UK road

network

5. Develop a system of algorithms that can give approximate answers to

the VAP on a reasonably-sized (UK road network) graph

6. Develop an API/web service that accepts real-world (longitude and

latitude) VAP inputs as requests, and returns vehicle routes for the

UK road network, using the algorithms laid out in 5, and the Open-

StreetMap data referenced in 4

7. Evaluate the outputs produced by the VAP algorithms, against vehicle

routes produced by human schedulers
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2 Expected outcomes/deliverables

• A documented and functional piece of open-source software that serves

a web process that can provide (usefully) approximate answers to the

vehicle allocation problem on the UK road network

• A set of automated tests to verify the functionality of the software

• API documentation for potential users to interact with the web service

• Project report detailing processes and outcomes

3 Work plan

• 7th Oct - 4th Nov (4 weeks) Initial research and project plan (due

Wed 9th Nov)

• 5th Nov - 25th Nov (3 weeks) Develop initial TSP solver, and start

writing background section of report

• 26th Nov - 16th Dec (3 weeks) Apply TSP solver to OpenStreetMap

data (with web server and API), and complete background section of

report

• 17th Dec - 13th Jan (4 weeks) Extend TSP solver to VAP solver, and

prepare interim report (due Wed 18th Jan)

• 14th Jan - 10th Feb (4 weeks) Evaluate VAP solver against humans,

and make improvements

• 11th Feb - 25th Feb (2 weeks) Produce first draft of report for super-

visor review

• 26th Feb - 17th Mar (2 weeks) Work on final report and produce video

preview (due Wed 22nd Mar)

• 18th Mar - 7th Apr (3 weeks) Produce release candidate for final re-

port, ready for supervisor review (due Wed 12th Apr)

• 7th Apr - 21st Apr (2 weeks) Produce final version of final report,

ready for submission (due Wed 26th Apr)

2



4 Ethics review

I don’t believe this project will require ethical approval, having considered

the following factors:

• This project won’t be collecting any data directly from individuals

• The data used (OpenStreetMap) is licensed under the Open Data

Commons Open Database License, which only requires that I credit

OpenStreetMap and its contributors in my use of their data

• None of the OpenStreetMap data contains information that could be

used to identify an individual

• My work doesn’t have any moral implications, its application is will

strictly be useful for bus operators
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Appendix D

Code listing
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