
Master Thesis

From Potential Energy Surface
to

Gas Adsorption
via

Deep Learning

Antonios P. Sarikas
chemp1160@edu.chemistry.uoc.gr

Supervised by
George E. Froudakis

MaterialsModeling
&

Design Group

Department of Chemistry

University of Crete

chemp1160@edu.chemistry.uoc.gr

To my father

Special thanks to my family, Marina, Stella, Angelos and Panagiotis,
for their continued love and support.

Contents

List of Figures 5

List of Algorithms 6

1 Introduction 9
1.1 Applications of Reticular Chemistry . 9
1.2 The Problem . 10
1.3 Literature Review . 11
1.4 Thesis Statement . 13

2 Theoretical Background 14
2.1 Machine Learning Preliminaries . 14

2.1.1 Learning paradigms . 15
2.1.2 Formulating the problem of supervised learning 16
2.1.3 Components of a learning algorithm . 17
2.1.4 Performance, complexity and experience 19

2.2 Fundamentals of Deep Learning . 22
2.2.1 Neural networks . 24
2.2.2 Regularizing neural networks . 28
2.2.3 Convolutional neural networks . 29
2.2.4 Training neural networks . 33

3 Methodology 40
3.1 Datasets . 40

3.1.1 MOFs dataset . 40
3.1.2 COFs dataset . 40

3.2 Voxelized PES . 41
3.3 Machine Learning Details . 42

3.3.1 CNN architecture . 42
3.3.2 Preprocessing& CNN training details . 42
3.3.3 Data augmentation . 43

4 Results& Discussion 45
4.1 Visualizing RetNet . 45
4.2 Learning Curves& Parity Plots . 47
4.3 Discussion . 48

Bibliography 51

3

Contents Contents

Index 58

Acronyms 62

A MOXϵλ 64

B RetNet 77

C Training RetNet 85

D Training Random Forest 88

4

List of Figures

1.1 Unit cell structure of IRMOF-1. 10
1.2 Material space of MOFs. 11
1.3 Generalized framework to predict gas adsorption properties. 13

2.1 Main tasks of supervised learning. 16
2.2 The bias-variance trade-off. 21
2.3 Relation between performance and experience. 22
2.4 The perceptron. 23
2.5 Examples of activation functions. 24
2.6 The multilayer perceptron. 25
2.7 Examples of graphs . 25
2.8 Solving the XOR problem. 27
2.9 Convolution operation. 30
2.10 Neurons’ arrangement in convolutional and dense layers. 31
2.11 Max pooling operation. 32
2.12 Illustration of back-propagation. 35
2.13 Machine learning ̸= optimization. 36
2.14 Variants of gradient descent. 37

3.1 Workflow to construct the voxelized PES. 41
3.2 Geometric transformations for data augmentation. 43
3.3 Effect of data augmentation. 44

4.1 RetNet architecture. 46
4.2 Fingerprints extracted from RetNet. 47
4.3 Learning curves. 48
4.4 Parity plots. 49

5

List of Algorithms

1 Gradient descent . 19
2 Batch normalization . 34
3 Back-propagation . 36
4 Batch, mini-batch and stochastic gradient descent 38
5 Momentum . 38
6 Adam . 39

6

Trilateral

Commission

George E. Froudakis
frudakis@chemistry.uoc.gr

Professor of Computational Chemistry

Pantelis N. Trikalitis
ptrikal@uoc.gr

Professor of Inorganic Chemistry

Constantinos G. Neochoritis
kneochor@uoc.gr

Assistant Professor of Organic Chemistry

Heraklion, 2024

7

frudakis@chemistry.uoc.gr
ptrikal@uoc.gr
kneochor@uoc.gr

M
etal-organic frameworks, or in shortMOFs, thanks to their ultra high poros-
ity and surface area, are deemed as prominent candidates for applications involving gas
adsorption. However, their intrinsic combinatorial nature translates to a practically
infinite material space, rendering the identification of novel materials with traditional
methods cumbersome. Over the last years,machine learning approaches basedonpre-

dictive models have been developed, allowing researchers to rapidly screen large databases of MOFs.
The quality of thesemodels is highly dependent on themathematical representation of amaterial, thus
necessitating the use of informative inputs. In this thesis, we propose a generalized framework for pre-
dicting gas adsorption properties, using as one and only input the potential energy surface. We treat
the latter as a 3D energy image and then pass it through a 3D convolutional neural network, known
for its ability to process image-like data. The proposed pipeline is applied inMOFs for predicting CO2
uptake. The resultingmodel outperforms both in terms of accuracy and data efficiency a conventional
one built upon textual properties. Additionally, we demonstrate the transferability of the approach
to other host-guest systems, by examining CH4 uptake in covalent organic frameworks. The perfor-
mance and generality of the proposed approach along with the fast input calculation thanks to paral-
lelization, renders it suitable for large scale screening. Finally, discussion for improving and extending
the suggested scheme is provided.

Chapter 1

Introduction

R
eticular chemistry, a field that bridges inorganic and organic chemistry (Yaghi
2020), has emerged from a simple albeit powerful idea: combining molecular build-
ing blocks to form extended crystalline structures (Yaghi 2019). It all started in 1990s,
with the advent of metal-organic frameworks (MOFs), the first “offspring” of reticu-
lar chemistry. MOFs, a class of nanoporousmaterials composed ofmetal ions or clusters

coordinated to organic ligands aka organic linkers, possess extraordinary properties, such as ultrahigh
porosity and huge surface areas (Farha et al. 2012). To get a sense of how extraordinary these materi-
als are, it is suffice to say that one gram of such a material can have a surface area as large as a soccer
field. The fact that reticular materials are “brought to life” by combining simple building blocks, al-
lows chemists andmaterial scientists to designmaterials in a judicious manner. The epitome of design
in reticular chemistry is found in the synthesis of a zirconium-based MOF (Trikalitis et al. 2016), in-
corporating the polybenzene network or “cubic graphite” structure, predicted about 70 years ago.

1.1 Applications of Reticular Chemistry
Owing to their aforedescribed properties along with their extremely tunable and modular nature,
MOFshave been considered prominent solutions for gas-adsorption related problems (Y. Li et al. 2007;
Jiang et al. 2022). MOFs find application in fields such as gas storage and separation, catalysis and drug
delivery, just to name a few.
Carbon capture is a prime example (An et al. 2009; Sumida et al. 2011; Qazvini et al. 2021), where

MOF-based sorbents have been deemed as green, low-cost and energy-efficient solutions. These ma-
terials provide versatile solutions to carbon capture, spanning various phases of the capture process,
with direct air capture (DAC) being a noteworthy example. DAC includes chemical or physical meth-
ods for extracting carbon dioxide directly from the ambient air, with MOF-powered DAC showing
great potential as a green and sustainable strategy for reducing carbon dioxide levels, contributing to
the combating of climate change (Bose et al. 2023).
Hydrogen storage is one of the greatest challenges of hydrogen economy, currently inhibiting the

transition from fossil fuels to hydrogen. Fortunately, characteristics of MOF adsorbents such as fast
adsorption/desorption kinetics, low operating pressures and high hydrogen capacities, render them as
promising answers to the aforementioned challenge (Suh et al. 2011; Suresh et al. 2021).

Methane is an attractive fuel for vehicular applications, being a relatively clean-burning fuel com-
pared to gasoline. Methane storage in sorbents known as adsorbed natural gas (ANG) exhibit advan-
tages over compressed natural gas (CNG) and liquefied natural gas (LNG), both in terms of energy-
efficiency and vehicular safety. MOFs (S. Ma et al. 2007; Spanopoulos et al. 2016; Tsangarakis et al.

9

Chapter 1 Introduction 1.2 The Problem

Figure 1.1: Unit cell structure ofMOF-5 or IRMOF-1, one of the highest surface area to volume ratio
amongMOFs, at 2200m2 cm3 and the firstMOF studied for hydrogen storage (Rosi et al.
2003).

2023) and their “reticular siblings” covalent organic frameworks (COFs)—composed only of light
elements—show great promise as ANG solutions (Furukawa et al. 2009; Mendoza-Cortes et al. 2011;
Martin et al. 2014; Tong et al. 2018).

1.2 The Problem
The intrinsic combinatorial character of reticular chemistry, translates to practically an infinite num-
ber of realizable structures. Currently, the Cambridge Structural Database (CSD) contains more than
100 000 experimentally synthesized MOFs (Moghadam, A. Li, et al. 2017) while the arrival of in silico
designedMOFs (Wilmer et al. 2011; Colón et al. 2017; Boyd et al. 2019; Chung, Haldoupis, et al. 2019;
Lee et al. 2021; Rosen et al. 2021; De Vos et al. 2023) has immensely expanded the available material
pool. The huge size of current and future MOF databases (Lee et al. 2021) is both a blessing and a
curse for the identification of novel materials. Blessing, since a large number of candidate structures
doesn’t limit our choices and as such, the chances to find the rightmaterial for a given problem. Curse,
since the enormous size of MOFs space makes it harder for researchers to efficiently explore it, com-
plicating the tracing of materials with the desired properties. It is therefore crucial to find a way that
allows us to efficiently explore such a huge material space (see Figure 1.2). Another way to rephrase
our problem is the following: Given a large catalog of MOFs, is there a way to efficiently filter
out the most promising ones for the application of interest?

As a first approach to deal with this challenge, one could, in principle experimentally synthesize and
characterize each one of the materials listed in the given catalog. Although experimental synthesis and
characterization is the ultimate way to assess the performance of a material1, the fact that a single labo-
ratory study can take days or even months, renders experimental techniques impractical. A more effi-
cient approach is computational screening based onmolecular simulations, which for years has served

1As Richard Feynmann said: “The test of all knowledge is experiment. Experiment is the sole judge of scientific truth”.

10

Chapter 1 Introduction 1.3 Literature Review

←Metal cluster→

←
O
rg
an
ic
lin

ke
r→

Material space

Figure 1.2:Material space of MOFs. Each point in this space corresponds to a unique combination
of organic linker and metal cluster, whereas the associated color denotes the “score” of
material (point) for a given application. Finding the best material (the pentagons) for a
given application, amounts to solving a (probably) non-convex optimization problem.

as the principal tool for the discovery of high-performing MOFs (Simon, J. Kim, et al. 2015; Banerjee
et al. 2016; Gómez-Gualdrón et al. 2016; Jeong et al. 2017; Moghadam, Islamoglu, et al. 2018). Al-
though computational screening dramatically accelerates the assessment of a single material compared
to experimental techniques, brute-force screening of current and upcoming databases is considered
suboptimal, given the size of the latter.
Machine learning (ML) aka data-driven techniques come to the rescue when dealing with big data

and over the last years have picked up the torch from molecular simulations regarding the screening
of large databases. Given a collection of input-output pairs, i.e. a mathematical representation of a
material and a corresponding property, a ML algorithm2 seeks to uncover the underlying structure-
property relationship. To put it in a nutshell, a ML algorithm “eats” data—which may come either
from experiments, simulations or a combination of the two—and “spits out” amodel, which can be
used to sort a large catalog of MOFs in just few seconds. Obviously, for ML approaches to be effective
and reliable, it is necessary that the resulting models are of high quality.

1.3 Literature Review
One of, if not the most important factor for the performance of ML models, is the way we select to math-
ematically represent materials or molecules. In other words, the type and amount of chemical infor-
mation that is “injected” into these representations commonly known as descriptors, can make the dif-
ference between a high-performing and a baseline model. As such, it is of uttermost importance to
employ descriptors that provide sufficient information for the properties of materials or molecules we
are interested in to predict.

2Note thatML algorithms are not limited to solve only such kind of problems, which fall under the umbrella of supervised
learning. See Section 2.1.1 for other types of problems tackled byML.

11

Chapter 1 Introduction 1.3 Literature Review

With regards to gas adsorption in MOFs, one of the first and most commonly used descriptors,
are the so called geometric ones, which aim to capture the pore environment of the framework. This
type of descriptors includes textual characteristics of MOFs such as void fraction, gravimetric surface
area and pore limiting diameter. AlthoughMLmodels build with these descriptors work particularly
well at the high pressure regime (Fernandez et al. 2013; Dureckova et al. 2019; Wu et al. 2020), their
performance deteriorates when adsorption takes place at low pressures or the guest molecules exhibit
non-negligible electrostatic interactions with the framework atoms. This performance drop should
be expected, since geometric descriptors completely ignore the “cornerstone” of adsorption: host-guest
interactions.
In order to improve the performance ofMLmodels and bypass the limitations of geometric descrip-

tors in the aforementioned conditions, another type of descriptors known as energy-based descriptors
(Simon,Mercado, et al. 2015; Fanourgakis, Gkagkas, Tylianakis, Klontzas, et al. 2019; Orhan et al. 2023;
Shi et al. 2023), has been introduced. This type of descriptors supplyML algorithms with information
regarding the energetics of adsorption, and can be used standalone or in combination with geometric
descriptors.
In one of the first works to fingerprint the energetic landscape of MOFs (Bucior, Bobbitt, et al.

2019), energy histograms derived from the interactions of guest molecules with the framework atoms
were used to predict hydrogen andmethane uptake with remarkable accuracy. Prior to calculating the
energyhistograms, a 3Dgrid is overlayedon theunit cell of theMOF.Next, at eachpoint of the grid, the
interaction between the guestmoleculewith the framework atoms is calculated, producing a 3D energy
grid. The latter is finally converted into a histogram, by partitioning the energy values of the grid into
bins of specific energy width. By using solely these histograms as descriptors—without including any
textual property—Bucior, Bobbitt, et al. (2019) trained Lasso regression models, for predicting: i). H2
swing capacity between 100 bar and 2 bar at 77K ii). CH4 swing capacity between 65 bar and 5.8 bar
at 298K. The resulting models were extremely accurate, achieving a mean absolute error (MAE) of
2.3 g L−1 and 12.9 cm3 cm−3 forH2 andCH4, respectively, tested on the hMOFs database (Wilmer et al.
2011).
In another work (Fanourgakis, Gkagkas, Tylianakis, and Froudakis 2020), a set of descriptors based

on the average interaction between fictitious probe particles and the framework atomswas introduced.
Two different types of probe particles were proposed: i). Vprobe particles, which account for the van
der Waals interactions ii). Dprobe particles, which are neutrally charged electric dipoles and account
for the electrostatic interactions. Each of these fictitious probe particles is randomly inserted at differ-
ent positions of the unit cell, and the interaction energy between the probe and the framework atoms is
calculated. The interaction energies at the different positions are averaged out, producing an energetic fin-
gerprint of the material. These fingerprints in combination with six geometric descriptors formed the
input for theRandomForest (RF) algorithm, whichwas trained to predict gas uptake for a plethora of
guest molecules and thermodynamic conditions, on the Computation-Ready Experimental (CoRE)
MOF database (Chung, Camp, et al. 2014). The MLmodels achieved impressive performance, show-
ing anR2 value (see Section 3.3 for a definition) of: i). 0.874 forH2 uptake at 77K and 2 bar ii). 0.889
for CH4 uptake at 298K and 5.8 bar. A highlight of this work was the exceptional performance of the
ML model with regards to CO2 uptake at 300K and 0.1 bar, achieving an R2 score of 0.832. At the
same conditions, theMLmodel trainedwith geometric descriptors only achieved anR2 score of 0.507.
That is, the “injection” of energetic information resulted in 60% increase in accuracy.

12

Chapter 1 Introduction 1.4 Thesis Statement

3D Conv + Pooling

Input

Dense

Feature Maps Output

Gas uptake

Figure 1.3: Proposed scheme topredict gas adsorptionproperties, starting from thePES as raw input.
A 3D convolutional neural network (CNN) extracts its features from the PES, and then
uses them to predict the adsorption property of interest. The IRMOF-1 structure and
PES were visualized with the iRASPA software (Dubbeldam et al. 2018).

1.4 Thesis Statement
In the aforedescribed works, a general pattern can be recognized with regards to the building of the
ML models. Starting from the potential energy surface (PES) or an approximation thereof, energetic
fingerprints are manually handcrafted based on some heuristic, and these fingerprints are then used to
train a ML algorithm. However, a lot of information has been lost during the conversion of the PES
into fingerprints, as a 3D object is converted into an 1D object. Since gas adsorption comes down to the
PES, it is reasonable to question whether one can use the PES itself as descriptor. By doing this: i). The
information content that goes into a ML algorithm is increased ii). The computational cost remains
the same relative to the previously described works iii). It is no longer necessary to manually handcraft
fingerprints.
In this thesis, a generalized framework to predict gas adsorption properties is proposed, us-

ing the PES as raw input. Since the latter captures both the host-guest interactions and the geometry
of the pore, i.e. the factors that mainly determine gas uptake in the low and high pressure regime (Broom
et al. 2019), respectively, it can be regarded as the perfect input. In order to be machine understandable
the PES is first voxelized—the voxelized PES is essentially a 3D energy image where each 3D pixel aka
voxel, is colorized by energy—and then, it is processed by a 3D convolutional neural network, known for
its ability to process image-like data. The proposed scheme is schematically presented in Figure 1.3.

13

Chapter 2

Theoretical Background

D
eep learning, a class of machine learning algorithms based on neural networks, has
revolutionized the way we tackle a problem from a ML perspective and is one if not
the most important factor for recent ML achievements. Solving complex tasks such
image classification or language translation, that for years have bedevilled traditional
ML algorithms, constitutes the signature of deep learning (DL). Admittedly, the ad-

vent of a deep convolutional neural network, the AlexNet (Krizhevsky et al. 2012) on September 30 of
2012, signified the “modern birthday” of this field. On this day, AlexNet not only won the ImageNet
(Deng et al. 2009) Large Scale Visual Recognition Challenge (ILSVRC), but dominated it, achieving
a top-5 accuracy of 85 %, surpassing the runner-up which achieved a top-5 accuracy of 75 %. AlexNet
showed that neural networks (NNs) are notmerely a pipe-dream, but they can be applied in real-world
problems. It is worth to notice that ideas of NNs trace back to 1943, but it was until recently that these
ideas got materialized. The reason for this recent breakthrough of DL (andML) is twofold. First, the
availability of large datasets—the era of big data—such as ImageNet. Second, the increase in compu-
tational power, mainly of GPUs for DL, accelerating the training of deep NNs and traditional ML
algorithms.

2.1 Machine Learning Preliminaries
SinceDL is a subfield ofML, it is necessary to familiarizewith the later before diving into the former. In
this section, the necessary theoretical background and jargonofML is presented. Machine learning can
be defined as “the science and (art) of programming computers so they can learn from the data” (Géron
2017). A more technical definition is the following:
Definition 2.1 (Machine learning,Mitchell 1997). A computer program is said to learn from experi-
ence E with respect to some class of tasks T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.
For instance, a computer program that classifies emails into spam and non-spam (the task T), can

improve its accuracy, i.e. the percentage of correctly classified emails (the performance P), through
examples of spam and non-spam emails (the experience E). But in order to take advantage of the ex-
perience aka data, it must be written in such a way that adapts to the patterns in the data. Certainly,
a traditional spam filter can not learn from experience, since the latter does not affect the classification
rules of the former and as such, its performance. For a traditional spam filter to adapt to new patterns
and perform better, it must change its hard-wired rules, but by then it will be a different program. In
contrast, aML-based filter can adapt to new patterns, simply because it has been programmed to do so.

14

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

In other words, in traditional programmingwe write rules for solvingTwhereas inMLwe write rules
to learn the rules for solving T. This subtle but essential difference is what gives ML algorithms the
ability to take advantage of the data.

2.1.1 Learning paradigms
Depending on the type of experience they are allowed to have during their training phase (Goodfellow
et al. 2016),ML approaches are divided into threemain learning paradigms: unsupervised learning,
supervised learning and reinforcement learning. The following definitions are not by any means
formal, but merely serve as an intuitive description of the different paradigms.
Definition 2.2 (Unsupervised learning). The experience comes in the form Dtrain = {xi}, where
xi ∼ p(x) is the input of the i-th training instance aka sample. In this paradigm we are interested in
learning useful properties of the underlying structure captured by p(x) or p(x) itself.

For example, suppose we are interested in generating images that look like Picasso paintings. In this
case, the input is just the pixel values, i.e. x ∈ RW×H×3. The latter follow a distribution p(x), so all
we have to do is to train anunsupervised learning algorithmwithmanyPicasso paintings to get amodel,
that is p̂(x). Assuming the estimation of the original distribution is good enough, new realistically
looking paintings (with respect to original Picasso paintings) can be “drawn” by just sampling from
p̂(x). In theMLparlance, this task is knownas generativemodelingwhile inputs are also called features,
predictors or descriptors.
Definition 2.3 (Supervised learning). The experience comes in the formDtrain = {(xi,yi)}, where
(xi,yi) ∼ p(x,y) and yi is the output aka label of the i-th training instance. In this paradigm we are
usually interested in learning a function f : X → Y .

This paradigm comes mainly under two flavors: regression and classification, which are schemati-
cally depicted in Figure 2.1. In regression the interest is in predicting a continuous value given an
input, i.e. y ∈ R, such as a molecular property given a mathematical representation of a molecule. In
classification, the interest is to predict in which of k classes an input belongs to, i.e. y ∈ {1, . . . , k},
such as predicting the breed of a dog image given the raw pixel values of the image. The term “su-
pervised” is coined due to the “human supervision” the algorithm receives during its training phase,
through the presence of the correct answer (the label) in the experience. In a sense, in this paradigmwe
“teach” the learning algorithm aka learner. It should be emphasized that the label is not constrained
to be single-valued, but can also be multi-valued. In this case, one talks aboutmulti-label regression or
classification (Read et al. 2009).
A more exotic form of supervised learning is conditional generative modelling, where the interest is

in estimating p(x | y). For example, onemaywant to build amodel that generates images of a specific
category or a model that designs molecules/materials with tailored properties (K. Kim et al. 2018; Yao
et al. 2021; Gebauer et al. 2022). This is one approach of howML can tackle the inverse design problem
in chemistry.
Definition 2.4 (Reinforcement learning). The experience comes from the interaction of the learner,
called agent in this context, with its environment. In other words, there is a feedback loop between the
learner and its environment. In this paradigm we are interested in building an agent that can take
suitable actions in a given situation.
The agent observes its environment, selects and performs actions and gets rewards or penalties in

15

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

x1

x
2

Model
True f

(a) Classification.

x

y

Model
True f

(b) Regression.

Figure 2.1:Main tasks of supervised learning.

return. The goal is to learn an optimal strategy, called a policy, that maximizes the long-term reward
(Géron 2017). A policy simply defines the action that the agent should choose in a given situation.
In contrast to supervised learning, where the correct answers are provided to the learner, in reinforce-
ment learning the learner must find the optimal answers by trial and error (Bishop 2007). Reinforce-
ment learning techniques find application in fields such as gaming (AlphaGo is awell known example),
robotics, autonomous driving and recently chemistry (H. Li et al. 2018; Gow et al. 2022). Since in the
present thesis only supervised learning techniques were employed, the remaining of this chapter is de-
voted to this learning paradigm.

2.1.2 Formulating the problem of supervised learning
The general setting of supervised learning is as follows: we assume that there is some relationship be-
tween x and y:

y = f(x) + ϵ (2.1)

and we want to estimate f from the data. The function f represents the systematic information that
x gives about y while ϵ is a random error term independent ofx and with zero mean. More formally,
we have an input spaceX , an output spaceY and we are interested in learning a function ĥ : X → Y ,
called the hypothesis, which produces an output y ∈ Y given an input x ∈ X . At our disposal we
have a collection of input-output pairs (xi,yi), forming the training set denoted asDtrain, with the
pairs drawn i.i.d from p(x,y).

Ideally, we would like to learn a hypothesis that minimizes the generalization error or loss:

L :=

∫
X×Y

ℓ(h(x),y)p(x,y)dxdy (2.2)

that is, the expected value of some loss function ℓ over all possible input-output pairs. A loss function
just measures the discrepancy of the prediction h(x) = ŷ from the true value y and as such, the best
hypothesis is the one that minimizes this integral. Obviously, it is impossible to evaluate the integral in
Equation 2.2, since in general we don’t know the joint probability distribution p(x,y).

16

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

The idea is to use the training error or loss:

Ltrain :=
1

|Dtrain|
∑

i∈Dtrain

ℓ(h(xi),yi) (2.3)

as an approximation for the generalization loss, and choose the hypothesis that minimizes the training
loss, a principle known as empirical risk minimization. In other words, to get a hypothesis akamodel
M from the data, we need to solve the following optimization problem:

ĥ← argmin
h∈H

Ltrain (2.4)

which is achieved by just feeding the training data into the learning algorithmA:

M←A(Dtrain) (2.5)

2.1.3 Components of a learning algorithm
By breaking down Equation 2.4, i.e. the optimization problem the learner needs to solve, the com-
ponents of a learner can be revealed. The latter is comprised of the following three “orthogonal” com-
ponents: a hypothesis space, a loss function and an optimizer. We now look into each of them
individually and describe the contribution of each one to the solution of the optimization problem.
For the ease of notation and clarity, in the remaining of this chapter we will stick to examples from
simple (single-valued) regression and binary classification.
Definition 2.5 (Hypothesis space). The set of hypotheses (functions), denoted asH, from which the
learner is allowed to pick the solution of Equation 2.4.
A simple example of a hypothesis space, is the one used in univariate linear regression:

ŷ = b+ wx (2.6)

where H contains all lines (or hyperplanes in the multivariate case) defined by Equation 2.6. Of
course, one can get a more expressive hypothesis space, by including polynomial terms, e.g.:

ŷ = b+ w1x+ w2x
2 (2.7)

The more expressive the hypothesis space, the larger the representational capacity of the learning
algorithm. For a formal definitionof representational capacity, the interested reader can look atVapnik-
Chervonenkis Dimension (Hastie et al. 2009).
Definition 2.6 (Loss function). A function that maps a prediction into a real number, which intu-
itively represents the quality of a candidate hypothesis.
For example, a typical loss function used in regression is the squared loss:

ℓ(ŷ, y) := (ŷ − y)2 (2.8)

where y, ŷ ∈ R. A typical loss function for binary classification is the binary cross entropy loss:

ℓ(ŷ, y) := y · log(ŷ) + (1− y) · log(1− ŷ) (2.9)

17

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

where y ∈ {0, 1}, indicating the correct class, and ŷ ∈ [0, 1] which corresponds to the predicted
probability for class-1. Notice that in both cases the loss is minimum when the prediction is equal to
the ground truth. For the cross entropy loss, if y = 1 is the correct class, then the model must predict
ŷ = 1 for the loss to be minimized.
Usually, we are not only penalizing a hypothesis for its mispredictions, but also for its complexity.

This is done in purpose, since a learner with a very rich hypothesis space can easilymemorize the training
set but fail to generalize well to new unseen examples. Every modification that is made to a learner in
order to reduce its generalization loss but not its training loss, is called regularization (Goodfellow et al.
2016).
A common—but not the only—way to achieve that, is by including another penalty term called

regularization term or regularizer, denoted asR, in Equation 2.3:

Ltrain :=
1

|Dtrain|
∑

i∈Dtrain

ℓ(ŷi,yi) + λR (2.10)

Theλ factor controls the strength of regularization and it is an hyperparameter, i.e. a parameter that
is not learned during training but whose value is used to control the training phase. In order to see how
λ penalizes model complexity, assume we perform univariate polynomial regression of degree k:

ŷ = b+
k∑

i=1

wix
i (2.11)

combining mean squared loss (MSL) and lasso regularization as training loss:

Ltrain =
1

|Dtrain|
∑

i∈Dtrain

ℓ(ŷi − yi)
2 + λ

k∑
i=1

|wi| (2.12)

Let’s apply a very strong regularization by setting λ → ∞ (in practice we set λ to a very large value)
and observe what happens to the weights wi. By setting λ → ∞, the regularization term dominates
the MSL and as such, the only way to minimize the training loss is by setting wi = 0. This leave us
with a very simple model—only the bias term b survives—which always predicts the mean value of y
in the training set.
Applying a regularizer, is also useful when we need to select between two (or more) competing hy-

potheses that are equally good. For example, assuming two hypotheses achieve the same (unregular-
ized) training loss, the inclusion of a regularization term help us decide between the two, by favoring
the simplest one. This is reminiscent of theOccam’s razor aka principle of parsimony, which advo-
cates that between two competing theories with equal explanatory power, one should prefer the one
with the fewest assumptions.
Definition 2.7 (Optimizer). An algorithm that searches through H for the solution of Equation
2.4.
Having defined the set of candidate models (the hypothesis space) and ameasure that quantifies the

quality of a given model (the loss function), all that is remaining is a tool to scan the hypothesis space
and pick the model that minimizes the training loss (the optimizer). A naive approach is to check
all hypotheses in H and then pick the one that achieves the lowest training loss. This approach can

18

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

work ifH is finite, but obviously doesn’t scale in the general case whereH is infinite1. More efficient
approaches are needed if we are aiming to solve Equation 2.4 in finite time.

One optimizer that is frequently used inML and is the precursor of more refined ones, is gradient
descent. With this method, the exploration of hypothesis space2 involves the following steps:
Algorithm 1:Gradient descent
1 θ ← random initialization;
2 while stopping criterion not met do
3 θ ← θ − η∇θLtrain(θ);
4 end

where η is a small number called the learning rate. Gradient descent is based on the idea that if a
multivariate function is defined and differentiable at a point x, then f(x) decreases fastest if one takes
a small step from x in the direction of negative gradient at x,−∇f(x).

The motivation becomes clear if we look at the differential of f(x) in directionu:

f(x+ δu)− f(x) = ∇f(x) · δu (2.13)

Equation 2.13 says that this differential is minimized3 when δu is anti-parallel to∇f(x) and that is
whywe subtract the gradient inAlgorithm 1, i.e. move in direction anti-parallel to the gradient. The
fact that Equation 2.13 holds only locally (magnitude of δumust be small) explains why η must be
a small number. It should be added that gradient descent can be trapped to (potential) local minima
of the training loss and therefore fail to solve Equation 2.4. As it will be discussed later, this is not a
problem, because the ultimate purpose is to find a hypothesis that generalizes well, not necessarily the one
that minimizes the training loss4. Optimizers are discussed in further detail in Section 2.2.4.
Before moving on, it is worth to add that both the regularization and the optimizer have an effect

on the “true” or effective capacity (Goodfellow et al. 2016) of the learner,whichmight be less than the
representational capacity of the hypothesis space. For example a regularizer penalizes the complexity of
an hypothesis, effectively “shrinking” the representational capacity of the hypothesis space. The effect
of the optimizer can be understood by looking on its contribution to the solution of Equation 2.4.
As described previously, the optimizer searches through the hypothesis space. If this “journey” is not
long enough, then this “journey” is practically equivalent to a long “journey” in a shortened version
of the original hypothesis space. In the rest of this chapter, by the term complexity or capacity of a
learner, we mean its effective capacity, which is affected by all its three components.

2.1.4 Performance, complexity and experience
Suppose that we have trained our learner, and finally we get our model, as stated by Equation 2.5.
How can we assess its performance? Remember, we can’t calculate the generalization loss, since we are
not given an infinite amount of data. First of all, we should not report the training loss, because it is

1It is not uncommon forH to be infinite. Even for simple learners like linear regressionH is infinite, since there infinite
lines defined by Equation 2.6.

2We have implicitly assumed thatH can be parameterized, i.e. H = {h(x;θ) | θ ∈ Θ}, whereΘ denotes the param-
eter space, the set of all values the parameter θ can take. This allows us to write the training loss as function of model
parameters and optimize them with gradient descent.

3The right hand side of Equation 2.13 is a dot product.
4Remember we use the training loss (see Equation 2.3) as a proxy for the generalization loss (see Equation 2.2).

19

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

optimistically biased, as it is evaluated on the same data that has been trained on5. What we should is
to collect new input-output pairs, forming the test set Dtest, and then estimate the generalization loss
as following:

Ltest :=
1

|Dtest|
∑
i∈Dtest

ℓ(h(xi),yi) (2.14)

The test error or loss is evaluated on new—unseen to the learner during the training phase—samples
and as such, it is an unbiased estimate of the generalization loss. Usually, since many times is not even
possible to collect new samples, we split the initial dataset into training and test sets.

The general recipe for building and evaluating the performance of aMLmodel has already been pre-
sented. What is missing is howwe can improve its performance, or to put it differently, the factors that
affect the quality of the returnedmodel. There are twomain factors that determine the performance of
themodel: complexity and experience. In general, the larger the experience—the training set— the bet-
ter the performance, just like we humans perform improve on a task by keep practicing. With regards
to the complexity, learners of low complexity might fail to capture the patterns in the data, meaning that
the resulting model will fail to generalize. In contrast, learners of higher complexity would be able to
capture these patterns, and as such return models of higher quality. However, as the complexity of the
learner keeps increasing, the latter is more sensitive to noise, i.e. there is a higher chance that the learner
will simply memorize its experience and as such, fail to generalize.
In other words, there is a trade-off between the complexity of the learner and its performance. The

learner should be not too simple but also not too complex, in order to generalize well. This in turn
implies that we need to find a way to “tune” the complexity. A common way to achieve that is by
using another set of instances, known as the validation set. We train learners of different complexity
on the training set, evaluate their performance on the validation set, and then choose the learner that
performsbest on the validation set. The reasonweuse the validation set insteadof the test set for tuning
complexity, is to ensure that the performance estimation is unbiased. The test set should not influence
our decisions in any way. After we have tuned the complexity, we can estimate the performance of the
resultingmodel in the test set. Finally, it is a good practice to retrain the learner on the whole dataset—
including validation and test sets—since more data result in models of higher quality.
Theorem 1 (Bias-variance decomposition, Bishop 2006). From Equation 2.1 and under the as-
sumption that ϵ ∼ N

(
0, σ2

ϵ

)
, the expected squared loss at x∗ can be decomposed as following:

E
[(

y∗ − f̂(x∗)
)2]

=
(
f(x∗)− E

[
f̂(x∗)

])2
+ E

[(
f̂(x∗)− E

[
f̂(x∗)

])2]
+ σ2

ϵ (2.15)

The expected squared loss refers to the average squared loss we would obtain by repeatedly estimating f
using different training sets, each tested at x∗. The overall expected squared loss can be computed by
averaging the left hand side of Equation 2.15 over all possible values x∗.

The trade-off between the complexity of the learner and its performance, is mathematically de-
scribed in Theorem 1. Equation 2.15 states that the error of the learner can be decomposed into
three terms: bias, variance and irreducible error. The bias (squared)—first term of Equation

5Intuitively, this is like assessing students’ performance based on problems they have already seen before. They can easily
achieve zero error, just by recalling their memory.

20

Chapter 2 Theoretical Background 2.1 Machine Learning Preliminaries

Complexity
Er
ro
r

Bias2
Variance
Total error

Figure 2.2: The bias-variance trade-off. For a given task, there is a “sweetspot” of complexity that
minimizes the total error. Bias2 and variance correspond to the first and second term of
Equation 2.15, respectively.

2.15—refers to the error introduced by approximating a real-world problem, which can be highly com-
plicated, by a much simpler model (Hastie et al. 2009; James et al. 2014). For instance, if the input-
output relationship is highly nonlinearity, using linear regression to approximate f , will undoubtedly
introduce some bias in the estimate of f . In contrast, if the input-output relationship is very close to
linear, linear regression should be able to produce an accurate estimate of f . In general, more flexible
learners, result in less bias (Hastie et al. 2009; James et al. 2014).

The variance—second term of Equation 2.15—refers to the degree by which f̂ would change if it
was estimated by different training sets. Since the training data are used to fit the learning algorithm,
different training sets will result in a different estimate of f . Ideally, f̂ should not exhibit too much
variationbetweendifferent training sets, since otherwise small changes in the training can result in large
changes in f̂ . In that case, the learner essentially memorizes the training data. Generally, more flexible
learners, result in higher variance (Hastie et al. 2009; James et al. 2014).

Lastly, the irreducible error—third term of Equation 2.15—refers to the error caused by stochastic
label noise, as can be seen from Equation 2.1. A possible source for this noise, might be ommited
features which are useful in predicting the output. It is called irreducible, because no matter how well
we estimate f , even if we predict ŷ = f(x), we can’t reduce the error associated to the variability of ϵ.
As stated in Section 2.1.2, this random error term is indepedent ofx, and as such, we have no control
over it. The bias-variance trade-off is schematically depicted in Figure 2.2. Interested readers might
also appreciate reading about double descent (Nakkiran et al. 2019), a phenomenon where increasing
further the complexity of the learner, results in a newminimum (hence, the name).
Figure 2.3, shows the learning curves for learners of different complexity. A learning curve is a plot

of the training and test performance6 of the learner as function of its experience. First, let’s look at
the learning curve of the low complexity learner. The accuracy7 starts out high on the training set,
since with a small number of samples, the learner can fit them perfectly. However, by adding more
training data, learner’s training accuracy quickly drops due to learners inflexibility and inexpressivity.
6Usually, only the test performance is plotted.
7By accuracy we mean any performance metric where higher values are better, not necessarily the classification accuracy.

21

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

100%

Number of training samples

A
cc
ur
ac
y

Test accuracy
Training accuracy

(a) Learning curve of learner with low complexity.

100%

Number of training samples

A
cc
ur
ac
y

Test accuracy
Training accuracy

(b) Learning curve of learner with high complexity.

Figure 2.3: Relation between performance and experience.

That is, it can’t fit the patterns in the training data. On the other hand, test accuracy starts out very
low since with very few training data, it is unlikely that the training set is a good representation of the
underlying distribution p(x,y). In other words, it is unlikely that the learner will experience patterns
in the training data, that will help it to generalize well. By increasing the training data, test accuracy
increases but it never reaches a high value. This happens due to the learners inability to detect and
exploit the patterns in the training data. In other words, the learner fails to generalize well not because
its experience is low, but because it is biased. That is, it oversimplifies the problem and make strong
assumptions that do not capture the complexity of the data.
Now let’s consider the learning curve of the high complexity learner. Again, the training accuracy

starts out high with a small amount of training data. However, in contrast to the previous case, as the
number of training samples increases, the training accuracy remains high since the learner is flexible
enough to learn the patterns in the training set, irrespective of its size. At some point, the training data
becomes large enough that is a good representation of the underlying distribution p(x,y) and since
the learner is very flexible, it can capture the true patterns in p(x,y), increasing the test accuracy. It is
worth pointing out that the learning and complexity curves (see Figure 2.2), are just two slices of the
same 3D plot: the plot of performance as function of experience and complexity.

2.2 Fundamentals of Deep Learning
Having covered the basic jargon and concepts of ML, we are now in a position to dive into DL. One
might expect that DL is a very complex subfield of ML, given its astonishing results in complex tasks,
but quite the opposite holds. Notably, DL shares similar ideas with reticular chemistry: combining
simple computational units, known as neurons, to achieve intelligent behavior. And just like we can
tune the properties of MOFs by judiciously selecting and combining their building blocks, we can
design problem-specific neural architectures by reasonably arranging and connecting the neurons.
In other words, both DL and reticular chemistry can be viewed as building with Legos.
Since the term “neuron” is admittedly a neuroscience term, one might wondering what is the re-

lation between DL and the human brain. The neural perspective on DL is mainly motivated by the

22

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

x

w

·
b

+ ⌋⌈ y

Figure 2.4: The perceptron.

following idea: the brain is a proof by example that intelligent behavior is possible and as such, a straight-
forward approach to build an intelligent system is by reverse engineering the computational principles
behind the brain and duplicating its functionality. However, the term “deep learning” is not limited to
this neuroscientific perspective. It appeals to a more general principle of learningmultiple levels of ab-
straction, which is applicable in ML frameworks that are not necessary neurally inspired (Goodfellow
et al. 2016).
Definition 2.8 (Deep learning). Class of machine learning algorithms inspired by brain organiza-
tion, based on learning multiple levels of representation and abstraction. They achieve great power by
learning to represent the world8 as a nested hierarchy of concepts.

Before exploringNNswefirst need to understand how the neuron, the basic building block ofNNs,
works. Aneuron is nothingmore than a device—a simple computational unit—thatmakes decisions
by weighing up evidence (Nielsen 2018). This sounds very similar to the way humans make decisions.
For instance, suppose the weekend is coming up and your favorite singer has scheduled a concert near
your city. In order to decide whether you should go to the concert or not, you weigh up different
factors, such as weather conditions, ease of transportation (you don’t own a car) and whether your
boyfriend or girlfriend is willing to accompany you. This kind of decision-making can be described
mathematically as following:

decision =

{
1 if w⊤x+ b > 0

0 otherwise
where w⊤x :=

∑
i

wixi (2.16)

If this weighted sumplus the bias9—yourwilling to to go to the festival irrespective of the evidence—is
greater than zero, then your decision is positive, otherwise negative.
The simple decision-making rule specified by Equation 2.16, which is known as the perceptron

(Rosenblatt 1957), is schematically depicted in Figure 2.4. Essentially, the perceptron is a linear binary
classifier (see Figure 2.1a). If we pay a little more attention to Equation 2.16, we can see that that
the decision is basically an application of a linear function10 followed by a nonlinearity. As such, we can
rewrite Equation 2.16 as following:

y = ϕ
(
w⊤x+ b

)
(2.17)

8Hierarchy is deeply rooted in our world. Just think the hierarchy from subatomic particles to macroscopic objects.
9If you prefer the neuroscientific analogy, you can think of bias as how easy is for a neuron to “fire”.
10Formally speaking it is an affine function. We can turn it into a linear by “absorbing” the bias term into the weights and

adding 1 to the input vector, a procedure known as the bias trick.

23

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

−4 −2 0 2 4

0

0.5

1

step(·) σ(·) ReLU(·)

Figure 2.5: Examples of activation functions.

where ϕ(·) is the nonlinear function aka activation function.
In the perceptron, the activation function is the Heavyside step function but in modern NNs it

has been substituted by functions such as the sigmoid, hyperbolic tangent and currently the rectified
linear unit (ReLU) and its variants. Some activation functions are graphically shown in Figure 2.5.
The reason that the step function isn’t used anymore is that its derivative vanishes everywhere, which
is problematic for gradient-based optimizationmethods that power the training ofmodernNNs. The
ReLU function is defined as:

ReLU(x) := max(0, x) =

{
x if x > 0

0 otherwise
(2.18)

A common variant of ReLU is the leaky rectified linear unit (LeakyReLU) function which is defined
as:

LeakyReLU(x) := max(0, x) + amin(0, x) =

{
x if x > 0

ax otherwise
(2.19)

where a is a small positive constant usually set to 0.01. It is worth to notice how simple the nonlinear-
ities used in NNs are. For instance, ReLU, the most commonly used activation function these days,
is just a piecewise linear function. This again highlights the fundamental idea behind DL: building
something complex by combining simple elements.

2.2.1 Neural networks
Neural networks can be thought as collection of neurons organized in layers and can be represented
as computational graphs.
Definition 2.9 (Graph). A set of objects in which some pairs of objects are in some sense “related”. See
Figure 2.7 for some types of graphs.

24

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Hidden layer

Feature extraction

x
Input
layer

y
Output
layer

Figure 2.6: The multilayer perceptron. A typical example of a neural network.

1 2

3 4

5

(a) Undirected graph.

1 2

3 4

5

(b) Directed cyclic graph.

1 2

3 4

5

(c) Directed acyclic graph.

a b

× −

+

(d) Computational graph.

Figure 2.7: Examples of graphs. In a directed graph the edges have direction. If at least one loop is
present, they are called cyclic, otherwise acyclic.

Definition 2.10 (Computational graph). A directed acyclic graph (DAG) where nodes correspond to
operations or variables and edges show the data flow between the nodes.
In general, the architecture of a NN can be broken down into the following three layers: input layer,
hidden layer and output layer. Information flow starts from the input layer, passes through the
hidden layer(s) and finally ends at the output layer. Neural networks with more than one hidden layer
are classified as deep, and shallow otherwise. A typical architecture known as multilayer perceptron
(MLP)11 or fully connected neural network (FCNN) is presented in Figure 2.6. It should be em-
phasized that all the neurons in the hidden layers aka hidden units of the network perform exactly the
same operation as that of the perceptron, described in Equation 2.17. As such all the hidden units
at a given layer make decisions based on the decisions of the previous layer. Unsurprisingly, the kind of
decisions made by the neurons depends solely on the problem and the data distribution at hand.

11The termMLP is kind of amisnomer, since the step function used originally in the perceptron is no longer used inmodern
NNs.

25

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Tounderstand better the purpose of the hidden layers and the functionality of aNNas awhole, let’s
consider the problem of image classification. This is by no means a trivial task, since we need to learn
a mapping from a set of pixels to an object identity. Imagine for a moment you are blindfolded and
you need to classify an image. The valid classes are: “person”, “car” and “ship”. Furthermore, assume
that the correct class is “person”. Would you prefer to hear the sequence of pixel values or whether the
image contains a face? In other words, it is a lot easier to classify the content of an image if we know
some high-level features, i.e. a high-level description of the image. Neural networks extract such high-
level features by exploiting the hierarchical structure of images. A complex object like a “face” is defined
in term of simpler ones, such as “eye” and “nose”, which in turn are defined in terms of simpler ones
and so on. This hierarchy allows the NN to solve the complex task of image classification by breaking
it down into smaller sub-problems. The first layer learns to detect edges. The second layer combines
the decisions of the first layer to detect corners. Subsequently, the third layer combines the decisions
of the second layer to identify shapes like circles and squares and so on, until we reach the final layer
which is able to detect high-level features such as objects or object parts. The deeper we are into the
network—i.e. the closer to the output layer—the more abstract and task-specific the detected features
become.
In a FCNNwithN hidden layers, each hidden layer performs the following operation:

hl = ϕ
(
W lhl−1 + bl

)
where 1 ≤ l ≤ N and h0 := x (2.20)

which is just a matrix version of Equation 2.17 with thematrixW l playing the role of the “synapses”
between the neurons of the layers l− 1 and l. Since the “stacking” of many hidden layers is equivalent
to a huge composite function:

τ (x) :=
(
hl ◦ hl−1 · · · ◦ h1

)
(x) (2.21)

and the output layer is just a linear function of the last hidden layer, the output of the FCNN can be
written as:

ŷ = w⊤τ (x) + b (2.22)

or in the general case of multi-valued output:

ŷ = Wτ (x) + b (2.23)

In otherwords, a linearmodel on top of the extracted features. It should be emphasided that Equation
2.23 is not specific to FCNNs, but describes every type of NN used for classification and regression.
Moreover, the use of activation function now becomes more clear: the composition of many linear
functions is just another linear function, which implies nonlinearities must be inserted between them, if
we aim to learn a nonlinear relationship. Equation 2.23 can also be understood in the following way:
a problem that is nonlinear—i.e. complex—in the original space, can become linear—i.e. simple—in a
transformed space. Figure 2.8 shows such an example, known as the XOR problem. The solution of
Equation 2.23 essentially boils down to finding the right transformation funciton τ (x). Please note
that traditional ML algorithms like support vector machines (SVMs), also map the original space to a
transformed space. However, they use a fixed—i.e. not learnable during the training phase—mapping.
Deep learning algorithms on the other hand learn this mapping during their training phase, considering
both the problem and the data at hand.

26

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

0 1

0

1

0

01

1

x1

x
2

Original space

0 1 2

0

1

0

0

1

h1

h
2

Transformed space

Figure 2.8: Solving theXORproblem. A linear classifier in the original space can’t perfectly seperate
the “ones” and “zeros”. In contrast, if the points are projected into a new space, then they
become linearly separable.

Theorem 2 (Universal approximation theorem, Hornik et al. 1989). A feedforward 12 network with
a single hidden layer containing a finite number of neurons can approximate any continuous function.
One interesting fact about NN is summarized in Theorem 2. An informal proof goes like this.

The value of a function f at point x can be viewed as a “spike” or a “bump” at point x with height
f(x). If we put a “bump” at every point xwe have essentially recovered the function f . The question
now boils down to wheter a NN can create “bumps”. The answer is affirmative, and a visual proof of
the “bump” construction and Theorem 2 is provided by Nielsen 2018.
Theuniversal approximation theorem implies that irrespective of the functionwe are trying to learn,

a networkwith just one hidden layer and sufficient number of hiddenunits can represent this function.
However, the theorem does not tell us two important things. First, the number of neurons required
for the problem we are aiming to solve. Second, whether we can learn the function at all (Goodfellow
et al. 2016). Learning the true function can fail since the optimizer is not guaranteed to pick the solu-
tion that minimizes the generalization loss. Remember it optimizes the training loss as a proxy for the
generalization loss.
Theorem 3 (No free lunch theorem, Wolpert 1996). Averaged over all possible data generating dis-
tributions, every learner has the same error rate when predicting previously unobserved points.
Finally, we close this section with Theorem 3. In essence, it states that no learner is universally

better than any other. Please note that by “learner” we mean even “dummy” learners, such as random
guessing. In other words, the more sophisticated learning algorithm we can conceive has the same

12In feedforward newtworks information flows from input to output. In contrast, feedback aka recurrent networks allow
the information to travel in both directions by introducing loops. Computations derived from earlier input are fed back
into the network, which gives them a kind ofmemory. This kind ofNNs find application in natural language processing
(NLP) tasks, such as text generation or classification. Note that although they contain loops, and as such they are not
DAGs, we can convert them to DAGs by “unrolling” their computational graph (LeCun et al. 2015).

27

http://neuralnetworksanddeeplearning.com/chap4.html

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

average performance (over all tasks) as random guessing. While Theorem 3 seems unintuitive at first
glance, it may be easier to understand it with an example. Suppose we see one sheep, and then expect
to see another one. We could devise the following strategies (learning algorithms) for predicting the
color of the second sheep:

strategies =


Same color as the first
Different color than the first
Always black
Always white

(white, white)
(black, black)
(white, black)
(black, white)

 = possible worlds (2.24)

Assuming that all possible worlds (data generating distributions) are equally likely, then each strategy
has the same expected error: 50%. Fortunately, in real-world this assumption breaks down. For example,
animals tend to be the same color, so the worlds where the first and the second sheep have different
colors are unlikely. In this scenario, guessing the same color as the first is more likely to be correct.
Every learning algorithm is equipped with an inductive bias, that is a set of assumptions allowing it to
prioritize one hypothesis over another13. Whether algorithmA1 will outperformA2 on problem P , is
just a matter of who has the right inductive bias.

2.2.2 Regularizing neural networks
Deep NNs typically have hundreds of thousands, million, or even billion parameters. With such a
huge number of parameters, they are capable of memorizing a huge variety of complex training sets.
However, memorization is harmful from a generalization point of view. Therefore, it is necessary to
employ regularization techniques when training deep NNs, especially when the size of the training
set is relatively small. Besides adding penalty terms to the training loss as described in Section 2.1.3,
common regularization techniques include: data augmentation and dropout.
Data augmentation, as the name implies, is a technique to artificially increase the size of the data

set. With this technique, each training instance is replicated many times with each replicate being ran-
domly distorted in such a way that the corresponding label is left unchanged14. For example, in image
classification the original images can undergo geometric transformations such as rotations, vertical or
horizontal flips, small shifts and random crops. Such kind of transformations force theNN to bemore
tolerant to variations in orientation, position and size. Another way to augment the original images is
by applying color transformations, such as changing the brightness or contrast of the image, increasing
the NN’s tolerance in different lighting conditions. Of course, we can further augment our training
set by composing geometric and color transformations. The performance boost thanks to data aug-
mentation can be understood in twoways: i).More data is better. ii). As introducing a useful inductive
bias. That is, we know a priori that the true function ought to be invariant in certain transformations,
and the augmented images are a way of imposing this knowledge.

13For example, the composition of layers in NNs provides a type of relational inductive bias: hierarchical processing. Another
example of inductive bias is the linear relationship assumed in linear regression.

14We should be careful on howwe augment the training set. For example, in character classification tasks there is difference
between the characters “b”↔ “d” and “6”↔ “9”. As such, horizontal flips and 180° rotations are not advisable for this
task.

28

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Dropout (Hinton et al. 2012; Srivastava et al. 2014) is a powerful and computational inexpensive
method to regularize neural networks, which has proven to be extremely successful. Even the state-of-
the-art architectures improved by 1–2 % when dropout was added to them. This may not sound like
a lot, but if we consider a model that has already 95 % accuracy, a performance boost of 2 % amounts
to 40% drop in the error rate (going from 5% to 3 %). Let’s see how it works: at every training step
the neurons of a hidden layer can be temporarily “dropped out” with probability p aka dropout rate,
meaning that they will entirely ignored during this training step, but may become active again in the
next training step. And that’s it except for one technical detail. Dropout is applied only during training
and as such, all neurons are active during testing. This means that during this phase a neuron will
receive a different amount of input signal compared to its (average) input signal during training. For
example, if the dropout rate is set to 0.5, then during testing a neuron will be connected to twice as
many input neurons as it was during training (on average). To compensate for that, the neuron’s input
connections must be multiplied by 0.5 during testing. Otherwise, each neuron in the network will
receive a total input signal roughly twice as large as what it was trained on, meaning that each neuron
and thenetwork aswholewon’t performwell. In general, during testingweneed tomultiply each input
connection by the keep probability (1 − p). Another way15 to retain the same amount of input signal
for both training and testing phases, is by just dividing each neuron’s outputwith the keep probability,
a technique known as inverted dropout.
It is quite surprising that this random “resurrection” of neurons improves the performance of the

network. Dropout works because it forces neurons to pay attention to all of their inputs, rather than
relying exclusively on just a few of them, making them robust to the loss of any individual piece of evi-
dence. Or to put it differently, it strengthens them by forcing them to “live” in a stochastic handicap
environment. Another way to understand dropout is the following. When different sets of neurons
are “dropped out”, it is like we are training different NNs. That is, the dropout procedure acts as an
average of these different networks. The latter will overfit in different ways and so the net effect of
dropout will hopefully mitigate this effect.

2.2.3 Convolutional neural networks
Convolutional neural networks are specializedNN architectures to process image-like data and in gen-
eral, data which exhibit spatio-temporal relationships. They find application in tasks such as text, au-
dio, video and image classification, semantic segmentation and object detection, just to name a few.
As their name implies, CNNs make use of the convolution operation, so to understand the former
we first need to understand the latter.
The convolution between the functions f and g, denoted as f ∗ g, is defined as following:

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ (2.25)

which is the integral of the product of f and g when g is reflected about the y-axis and shifted. In
CNN terminology the first argument of the convolution operation is referred to as the input and the
second one as the kernel orfilter. What is the interpretation? It is just amoving inner product between

15Note that these alternative are not perfectly equivalent, but in practice they work equally well.

29

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

1 0 1

0 0

0 1

1

1
* = 5 4

3 2

Input

Filter Feature map0 1 0 1

0

0

0 0 0

1

1

1 0 1

00 0 00

00 0 0

1

1

Figure 2.9: Convolution operation. Convolving a filter with an image can be seen as template
matching. When a local image patch matches the filter—template to be matched—the
output in the feature map is highly positive. Sliding of the filter over the image and
recording the output of this template-patch similarity, produces the feature map.

the two functions. Recall that the inner product between two vectors f and g is defined as:

f · g :=
∑
i

figi (2.26)

and can be viewed as a measure of similarity between f and g. Conceptualizing functions as infinite-
dimensional vectors and ignoring the reflection part of convolution16 let us understand the latter as the
inner products between f and shifted versions of g by t. If g represents a pattern—usually local—we
are interested in to detect in the signal f , then the output of convolution known as feature map in
the DL jargon, essentially tell us where (hence the term “map”) the pattern described by g is located in
the signal f .
Usually when we work with data on a computer, the index twill be discretized, meaning that it can

take only integer values. Assuming that f and g are defined only for integer t, the discrete convolution
is defined as following:

(f ∗ g)(t) :=
∞∑

τ=−∞
f(τ)g(t− τ) (2.27)

In ML applications, the input and the filter are usually multidimensional arrays aka tensors. Because
these two tensors must be explicitly stored separately, we treat the input and the kernel as functions
that are zero everywhere except the finite set of points for which their values are stored (Goodfellow
et al. 2016).
Please note that we can and often use convolutions over more than one axis at a time. A typical

example is when the input is a 2D image. In that case, the convolution between the image I and the
filterK is defined as:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.28)

and is schematically shown in Figure 2.9. The reason that the flipping of the filter is not necessary in
ML applications, is simply because the values of the filter are adapted, i.e. learned, during the training

16As it will be latter discussed, whether the kernel is reflected or not, doesn’t make a difference for ML applications.

30

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Conv layer Dense layer

Shared Shared

Figure 2.10:Neurons’ arrangement in convolutional and dense layers. In convolutional layers, neu-
rons are organized into groups and share the same parameters. The receptive field of
each member is a small region of the input. In contrast, the receptive field of neurons
in a dense layer is the whole input and there is no parameter sharing. Note that the re-
ceptive field of neurons incrementally increases as we transition to convolutional layers
deeper in the network.

phase. Many DL frameworks instead of the convolution implement a related operation called cross-
correlation, which is the same as convolution but without flipping the filter. We will stick to this con-
vention for the rest of this section.
Now that the convolution operation has been presented, we can appreciate its contribution to the

mechanics of a CNN. Convolution introduces a beneficial inductive bias to the network, namely sparse
connections and parameter sharing, as shown in Figure 2.10, and that’s why CNNs outperform
FCNNs in object recognition tasks. Sparse connections express the prior knowledge that closely placed
pixels are related to each other or to put it differently, local features such as edges are useful to understand
images. On the other hand, parameter sharing encodes the idea that a feature detector that is useful in
one part of the image is also useful in another part of the image. Thanks to parameter sharing, once the
CNN has learned to recognize a pattern in one location, it can recognize it in any other location. In
contrast, once a FCNN has learned to recognize a pattern in one location, it can recognize it only in
that particular location (Géron 2017).

The basic building block of a CNN is the convolutional layer which contains many learnable convo-
lutional filters, each of which is a template that determines whether a particular local pattern is present
in an image. It should be emphasized that a feature map of a given layer combines all the feature maps
of the previous layer or just the raw image (in the case of the 1-st convolutional layer). This means that
if the layers t− 1 and t contain n andm feature maps, respectively, then the layer tmust learnm× n
filters. By stacking many such layers a CNN extract features hierarchically, with the level of (feature)
abstraction increasing the deeper we go into the network.
It is worth to mention that CNNs are essentially regularized FCNNs, meaning that the latter can

learn to behave like the former. The catch is that they will probably need a great amount of training
data. To understand why this is the case, let’s examine the horizontal edge detection problem. The
CNN can learn to detect horizontal edges at any position by adjusting the values for one of its filters to

31

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Output

MaxPool2D

MaxPool2D

Input

0
1

0
1

1

Figure 2.11:Max pooling operation. Small translations to the input (input B is just a shifted version
of input A by one pixel to the right) produce the same output when passed through
themax pooling layer, meaning that the latter introduces into the network some level of
invariance to small translations.

the following ones17:

K
edge
x =

−1 0 1
−1 0 1
−1 0 1

 (2.29)

What about the FCNN? Figure 2.9 gives the answer. A neuron in a fully connected aka dense layer
can also learn to detect edges by just zeroing the weights for its inputs except the small region where the
edge needs to be detected18. For this region, it must learn the weights specified by Equation 2.29. The
problem is that the aforementioned zeroing of weights and the non-zero weights themselves, must be
learned by many other neurons for horizontal edges to be detected at different positions, which is of
course not guaranteed with limited amount of training data.
Besides convolutional layers, another typical of building block of CNNs are the pooling layers.

Their role is to downsample (reduce the resolution) in a parameter-free way the featuremaps produced
by convolutional layers. By downsampling in this manner, they reduce the memory-computational
footprint of the CNN and also the number of parameters, thereby reducing the risk of overfitting
(Géron 2017). A pooling layer takes as inputs the feature maps of the preceding convolutional layer
and subsamples them by substituting the outputs in a small neighborhood of the feature map with a
summary (Goodfellow et al. 2016). Figure 2.11 illustrates a common type of pooling, known asmax
pooling, which uses the max function to compute the summary statistic. Another type of pooling is
average pooling, which computes the summary statistic through averaging. Just like convolution, the
idea of pooling generalizes to more than two dimensions.

17Recall that an “edge” is nothing else than a significant local change in the image intensity. Based on the formula of sym-
metric derivative: ∂xf ∝ f(x+ h, y) + 0 · f(x, y) − f(x− h, y) . In essence, by convolving an image with the
filter specified in Equation 2.29, we calculate the gradient along the x-axis in a discretized fashion. Detecting vertical
or adges along any direction follows the same idea. You can play with different filters here.

18We can view each neuron in a dense layer as performing convolution with a kernel size as large as the input.

32

https://en.wikipedia.org/wiki/Symmetric_derivative
https://en.wikipedia.org/wiki/Symmetric_derivative
https://setosa.io/ev/image-kernels/

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

2.2.4 Training neural networks
Training deep NNs might seem like a nightmare, given their enormous number of parameters. How-
ever, modern techniques make it possible to train very deep networks very efficiently. We will start this
section by discussing some of the challenges onemight face when training deepNNs and thenmove to
describe the optimizers which take the hard job of finding model parameters that hopefully will gen-
eralize well. The training of NNs essentially boils down to the following two steps: i). Initialize model
parameters ii). Update model parameters.
Therefore, the first question that must be answered is how the parameters must be initialized. First

of all, it is important that all weights are initialized randomly, otherwise training will fail. For instance,
suppose that allweights andbiases are initialized to the same constant value, e.g. zero. Then, all neurons
in a given layer will be perfectly identical and thus, any update of the parameters will affect the in exactly
the same way. That is, despite having hundreds or thousands of neurons per layer, the model will end
up having “duplicates” of a single neuron in each layer, or to put it differently, it will act as if it had
only one neuron per layer (Géron 2017). On the contrary, the random initialization ofweights breaks the
symmetry and makes it possible to train a diverse team of neurons. What about the biases? Well, since
the asymmetry breaking is already provided by the random initialization of the weights, it is possible
and common to initialize the biases to be zero.
It is important that random initialization is performed carefully, otherwise we may end up with

vanishing or exploding gradients. Since we need the gradients with respect to the parameters in
order to update them, if these gradients vanish—i.e. take very small values—then the learning will be
very slow. On the other hand, if they explode—i.e. take very large values—then the training either
stops due to NaNs or diverges. For simplicity, but without loss of generality consider a NN withN
hidden layers and one neuron per layer. The gradient of the loss with respect to the layer l found k
steps behind the final hidden layer, equals:

∂Ltrain
∂wl

=
∂Ltrain
∂y

· ∂y

∂hn
·

(
k∏

i=0

∂hn−i

∂hn−i−1

)
· ∂h

n−k

∂wn−k
where n− k = l (2.30)

Theoriginof vanishing and exploding gradients is rooted in themiddle termof Equation2.30,which
can be expanded to:

k∏
i=0

∂hn−i

∂hn−i−1
=

k∏
i=0

ϕ′(zn−i)wn−i (2.31)

The right hand side of Equation 2.31 essentially says that the calculation of gradient involves a series of
multiplications. If the terms involved are all greater than one, thenwe end upwith a very large gradient.
In contrast, if all the terms are smaller than one, then the gradient vanishes19. These effects are more
pronounced for earlier layers.
How can we avoid these problems? In essence, we need to find a way to control the magnitude of

this product. First, notice that Equation 2.31 besides the values of weights involves also the derivative

19A toy example to understand the problem of unstable gradients is the following. First, replace the activation functionϕ(·)
with the identity function, i.e. ϕ(z) = z, then set all weights to the same value w (either smaller or greater than one).
In that case, the right hand side of Equation 2.31 reduces towk which forw = 1.2 and k = 50 is approximately equal
to 9.1 × 104.

33

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

values of the activation function ϕ(·). If these are smaller than one, then vanishing gradients are more
likely to appear. This is the case when the sigmoid is used as activation function, since the maximum
value of its derivative equals 0.25. For this reason, the sigmoid is no longer used as activation func-
tion in modern NN architectures. The hyperbolic tangent was used as a replacement but due to its
derivative taking values extremely close to zero for large inputs, has given its position to ReLU and its
variants. Nevertheless, even if we use ReLU the risk of unstable gradients remains due to the repeated
multiplications of weights in Equation 2.31. An answer that elegantly accounts for all these subtleties
was given byHe et al. 2015, who proposed20 an initialization scheme that mitigates the problem of un-
stable gradients, at least in the early stages of training. For a FCNNwith ReLU as activation function
this scheme suggests21:

W l
ij ∼ N

(
0,

2

nl−1

)
(2.32)

where nl denotes the size (i.e. number of neurons) of layer l.
Although proper initialization can significantly reduce the risk of unstable gradients at the begin-

ning of the training, it doesn’t guarantee that they won’t come back later on. The reason is as the
training training phase proceeds, the parameters keep changing, so the initial control over the product
in Equation 2.31 is lost. A techique called batch normalization (Ioffe et al. 2015) was proposed to
address the problem of unstable gradients and its steps are summarized in Algorithm 2. A batch
normalization layer is inserted between or after the activation function of each hidden layer and it con-
tains two learnable parameters that allow the model to learn the optimal scale and mean of each of the
layer’s inputs.
Algorithm 2: Batch normalization
Input: Values of xi over mini-batch B ⊂ Dtrain, learnable parameters γ and β

/* Mini-batch mean */
1 µ|B| =

1
B
∑

i xi;
/* Mini-batch variance */

2 σ2
B = 1

|B|
∑

i(xi − µB)
2;

/* Normalize */
3 x̂i ← xi−µB√

σ2
B+ϵ

;

/* Scale and shift */
4 zi ← γx̂i + β;
5 return zi for all samples in mini-batch B
The authors demonstrated that the addition of batch normalization layers improved all NNs they

experimented with, leading to significant improvements in the ImageNet classification task. More-
over, the vanishing gradients problem was significantly reduced, making even possible the use of tanh
and sigmoid as activation functions. Adding batch normalization layers decreased the sensitivity to
weight initialization and also allowed the use of higher learning rates, accelerating the learning process.
Additionaly, since the mean and the variance are calculated over mini-batches, batch normalization

20Similar ideas were proposed by Glorot et al. 2010 five years earlier for NNs with tanh as activation function, when the
latter was still a common choice.

21Similar scheme applies for CNNs and ReLU variants.

34

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

x h1 h2 h3 y L

θ1 θ2 θ3 θ4

1 · ∂L∂y

ȳ · ∂y
∂θ4

ȳ · ∂y
∂h3

h̄3 · ∂h3
∂θ3

h̄2 · ∂h2
∂θ2

h̄1 · ∂h1
∂θ1

h̄3 · ∂h3
∂h2

h̄2 · ∂h2
∂h1

Figure 2.12: Illustration of back-propagation. The black and blue arrows show the information flow
during the forward and backward pass, respectively. The notation z̄ denotes the partial
derivative of the loss with respect to the node z. That is, z̄ := ∂L

∂z .

brings a regularization effect due to noisy estimates. It should be noted that during testing the mean
and variance are obtained from a running average of the values seen during training.
Training NNs efficiently requires that the calculation of the gradient is extremely fast. A naive ap-

proach to calculate the gradient of the training loss with respect to model parameters is based on the
definition of the gradient:

∂L
∂θij

≈ L(θ + heij)− L(θ)
h

(2.33)

That is, first the training loss for a given parameter configuration θ is calculated by performing a for-
ward pass of our training data through the network. Then, we perturb each parameter θij by a small
amount, perform another forward pass and compare it with the initial loss. Themain drawback of this
approach is that we need to perform as many forward passes as the number of model parameters. Such
computational overhead is of course prohibitive for training modern NNs.
Since aNN is ultimately a huge composite function, a more refined approach is to employ the tools

of calculus and calculate the derivatives based on the chain rule. For a network with 3 hidden layers
this amounts to the following calculations:

∂L
∂θ4

=
∂L
∂y
· ∂y
∂θ4

∂L
∂θ3

=
∂L
∂y
· ∂y
∂h3

· ∂h3

∂θ3
∂L
∂θ2

=
∂L
∂y
· ∂y
∂h3

· ∂h3

∂h2
· ∂h2

∂θ2
∂L
∂θ1

=
∂L
∂y
· ∂y
∂h3

· ∂h3

∂h2
· ∂h2

∂h1
· ∂h1

∂θ1

(2.34)

From Equation 2.34 it is obvious that some calculations are repeated. As such, a faster calculation of
the gradient is possible by avoiding these repetitions. This is the main idea behind the algorithm called
back-propagation algorithm, often simply called backprop. The procedure for a general computa-
tional graph is described in Algorithm 3whereas a schematic representation for the aforementioned
NN is provided in Figure 2.12. With this algorithm, a single forward and backward pass are enough
to obtain the gradient.

35

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

x

f θ
(x
)

fθ fθ

θ

L
(θ
)

Ltrain Ltest

Figure 2.13:Machine learning ̸= optimization. From a purely optimization perspective, the blue
solution is the ideal. In contrast, from a generalization point of view the red solution is
preferred since it has lower error on new unseen samples.

Algorithm 3: Back-propagation (Rumelhart et al. 1986)
Input: Computational graph G where nodes ui follow a topological ordering

/* Forward pass */
1 for i = 1 toN do
2 Compute ui as a function of PaG(ui);
3 end
4 uN = 1;
/* Backward pass */

5 for i = N − 1 to 1 do
6 ūi =

∑
j∈ChG(ui)

ūj∂ujui;
7 end
8 return derivatives ūi
In the rest of this section, the most common optimizers used for trainingNNs are presented. All of

them are first-order iterative optimizationmethods, meaning that they can be trapped in local minima
of the training loss landscape. However, this is not much of a problem since in ML the interest is in
finding parameters that generalize well, not necessarily the ones that perfectly fits the training data. As
shown in Figure 2.13 a local minimummight be a better choice than the global optimum. Moreover,
flatter minima should be preferable because they are less sensitive to parameter perturbations or to put
it differently, they are less tailored to the specifics of the training set at hand.
Since the training loss is a sum of individual losses (see Equation 2.3) and the gradient operator
∇(·) is linear, the gradient of the training loss with respect to model parameters equals:

∇θLtrain =
1

|Dtrain|
∑

i∈Dtrain

∇θℓi(θ) (2.35)

The problem is that we need to compute all the individual gradients of the training samples. Typical

36

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

θ1

θ 2
BGD MBGD SGD

Figure 2.14: Variants of gradient descent.

datasets these days contain million training instances, hence it seems wasteful to perform all these cal-
culations for just a single parameter update. Vanilla gradient descent variants come at the rescue by
using a only a small subset—aka mini-batch in the DL jargon—of the training set. The insight of
these algorithms is that the gradient over the whole training set is an expectation and as such, it may be
approximately estimated using only a small number of training samples.
The mini-batches are usually drawn from the training set without replacement. These algorithms

pass through the training samples until all the training data are used, at which point they start sampling
from the full training set again. A single pass through the training set is called epoch and the number
epochs is the most common criterion for stopping the traning of DL algorithms. Depending on the
batch size |B|, the gradient descent variants are classified as following22:

variants =


SGD |B| = 1

MBGD 1 < |B| < |Dtrain|
BGD |B| = |Dtrain|

(2.36)

Thedecrease in the computational cost at each iteration comes at the expense of noisyupdates as shown
in Figure 2.14, meaning that these algorithms can’t settle at the minimum. Although this is not a
major problem, it can be mitigated by increasing the batch size at the last iterations or decrease the
learning rate gradually (or both). Usually, the value of the batch size remains constant and only the
learning rate changes through the training phase via a learning rate scheduling scheme. It should be
added that the noisy gradient estimates might be beneficial since they can escape “bad” (e.g. sharp)
local minima and saddle points. The aforementioed optimizers are described in Algorithm 4.

22Essentially, the batch gradient descent (BGD) algorithm is the vanilla gradient descent.

37

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Algorithm 4: Batch, mini-batch and stochastic gradient descent (Bottou 1998)
Input: Dtrain, loss function ℓ, model parameters θ, learning rate η, batch size |B|

1 θ ← random initialization;
2 while stopping criterion not met do
3 B ← sample |B| datapoints fromDtrain;
4 ∇θLB ← 1

|B|
∑

i∈B∇θℓi(θ);
5 θ ← θ − η∇θLB;
6 end
7 return optimized parameters θ

A commonmodification to theMBGDand SGD algorithms is the addition of amomentum term.
Instead of using only the gradient of the current step to guide the search, momentum also accumulates
the gradient of the previous steps to determine the next update. Momentum keeps track of the previ-
ous gradients via an exponentially decaying sum controlled by the hyperparameter β ∈ (0, 1) which
is typically set to 0.9. By averaging past gradients, their zig-zag directions (see Figure 2.14) effectively
cancel out, leading to a smoother trajectory. Note that the value of β essentially controls how quickly
the effect of the past gradients decay.
Algorithm 5:Momentum (Polyak 1964)
Input: Model parameters θ, momentum β, learning rate η

1 θ ← random initialization;
2 while stopping criterion not met do
3 m← βm−∇θLB;
4 θ ← θ +m;
5 end
6 return optimized parameters θ

Another commonly used optimizer for training NNs is the Adam optimizer, which is described in
Algorithm 6. Besides the momentum term23 m the update is controlled also by the term s which
keeps track the square24 of the past gradients. This term provides the means for using adaptive learn-
ing rates which can speed up convergence by pointing the resulting updates more towards the local
minimum. The steps 5 and 6 are somewhat of a technical detail: since m and s are both initialized
at 0, they will be biased towards 0 at the first iterations. These steps just boost m and s at the be-
ginning of the training (Géron 2017). Typical values for the hyperparameters β1 and β2 are 0.9 and
0.999, respectively. Please note that the symbol⊙ represents the element-wise multiplication whereas
⊘ represents the element-wise division.

23Compared tomomentum, Adam computes an exponentially decaying average rather than an exponentially decaying sum
but these are actually equivalent except for a constant factor.

24That is, each si accumulates the squares of the partial derivative ∂L
∂θi

.

38

Chapter 2 Theoretical Background 2.2 Fundamentals of Deep Learning

Algorithm 6:Adam (Kingma et al. 2017)
Input: Model parameters θ, learning rate η, smoothing term ϵ, momentum decay β1, scaling

decay β2
1 θ ← random initialization;
2 while stopping criterion not met do
3 m← β1m− (1− β1)∇θLB;
4 s← β2s+ (1− β2)∇θLB ⊙∇θLB;
5 m̂← m

1−βt
1
;

6 ŝ← s
1−βt

2
;

7 θ ← θ + ηm̂⊘
√
ŝ+ ϵ;

8 end
9 return optimized parameters θ

39

Chapter 3

Methodology

N
eural networks arenotorious forbeing “datahungry”, requiring a relatively large
amount of training data, in order to unleash their full potential. As such, to get a
representative picture of the capabilities of the proposed DL framework, two large
datasets are employed to train the 3D CNN. The first one, is a subset of the Univer-
sity of Ottawa (UO) database (Boyd et al. 2019), and is used to verify the applicability

of the proposed pipeline, examining CO2 uptake. The second one, is the COFs database generated by
(Mercado et al. 2018), and is employed to demonstrate the transferability of the approach, examining
CH4 uptake. Please note, that these datasets are already labeled, and as such nomolecular simulations
were performed in this study to generate the labels (gas uptakes) of the materials. Information regard-
ing the Grand Canonical Monte Carlo (GCMC) calculations that were performed to produced the
labels, can be found in the original works.

3.1 Datasets
3.1.1 MOFs dataset
The UO database is composed of 324 426 hypothetical MOFs. Randomly selected subsets of size
32 432, 5000 and 27 438, served as the training, validation1 and test sets (see Section 2.1.4), respec-
tively. The absolute CO2 uptake at 298K and 0.15 bar was examined and the following eight textual
properties were used as input for the conventional models: unit cell’s mass and volume, gravimetric
surface area, void fraction, void volume, largest free sphere diameter, largest included sphere along free
sphere path diameter and largest included sphere diameter. For producing the learning curves shown
in Figure 4.3a, the training set size was varied and the following training set sizes were considered:

{100, 500, 1000, 2000, 5000, 10 000, 15 000, 20 000, 32 432} (3.1)

The energy voxels of MOFs are publicly available in figshare.

3.1.2 COFs dataset
The COFs database contains 69 839 and provides data for five textual properties and CH4 uptake at
different thermodynamic conditions. A randomly selected subset of 55 871materials served as the train-
ing set, whereas the remaining 13 698 correspond to the test set. In this work, CH4 uptake at 298K and

1The validation set was used to select the number of epochs, see Section 3.3.2.

40

https://figshare.com/articles/dataset/RetNet/24598845

Chapter 3 Methodology 3.2 Voxelized PES

Voxelized PES

E
ne

r�

Structure

Grid

Potential

Voxels

Figure 3.1:Workflow to construct the voxelized PES. The grid size and the type of the potential con-
trol the “trade-off” between information content and computational cost. The IRMOF-1
structure was visualized with the iRASPA software (Dubbeldam et al. 2018).

5.8 bar was examined. The following five textual properties were used to build the conventional mod-
els: density, gravimetric surface area, void fraction, pore limiting diameter and largest cavity diameter.
For producing the learning curves shown in Figure 4.3b, the training set size was varied and the fol-
lowing training set sizes were considered:

{5000, 10 000, 15 000, 20 000, 35 000, 55 871} (3.2)

3.2 Voxelized PES
In order to calculate the voxelized PES, first a 3D grid of sizen×n×n is overlayed over the unit cell of
thematerial. Second, at each voxel centered at grid point ri, the interaction of the guest molecule with
the framework atoms V(ri) is calculated, and this energy value “colorizes” the corresponding voxel.
The workflow to construct the voxelized PES is schematically depicted in Figure 3.1. The grid size n
and the type of the potential control the “trade-off” between information content and computational
cost. The greater the grid size n, the greater the resolution of the energy image and as such, the in-
formation content. However, this comes at the cost of increased computational cost which is by no
means negligible, since voxelization scales up asO(n3). Similarly, the more accurate the modeling of
interactions, the greater the information content, but again, extra computational burden is required.
The voxelized PES converges to the exact one as n→∞ and when the voxels are filled with energy values
derived from ab-initio calculations.
In thisworkwe strived forminimal computational cost, settingn = 25 andmodeling all interactions

with the Lennard-Jones (LJ) potential, using a spherical probe molecule as guest. The interaction
energy V(ri) between the spherical probe and the framework atoms was calculated as following:

V(ri) =
N∑
j=1

rij≤rc

4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3.3)

where N is the number of framework atoms, rc is the cutoff radius which was set to 10Å, rij is the
distance between the j-th framework atom and the probemolecule and ϵij and σij combine the ϵ and

41

Chapter 3 Methodology 3.3 Machine Learning Details

σ values of the probemolecule and the j-th framework atomusing the Lorentz-Berthelotmixing rules:

σij =
σi + σj

2
∧ ϵij =

√
ϵi + ϵj (3.4)

If there is geometric overlapbetween a grid point and the position of a framework atom, the interaction
energy can be extremely repulsive, leading to very large, even infinite values, which can hamper or not
allow the training of a NN at all. For this reason, each voxel was filled with e−βV(ri), which tends to
0 as V(ri)→∞, where β = 1

kBT
is the Boltzmann constant and T is the temperature, which was set

at 298K. The Python packageMOXϵλwas introduced to facilitate and speed through parallelization
the calculation of energy voxels. In the remaining of this thesis, the terms “voxelized PES” and “energy
voxels”, are used interchangeably.

3.3 Machine Learning Details
For the conventional ML models, the RF algorithm as implement in the scikit-learn (Pedregosa et
al. 2011) package (version 1.2.2) was used, while the PyTorch (Paszke et al. 2019) framework (version
2.0.1+cu118) was employed for the CNN models. The performance, i.e. the generalization ability of
the models, was assesed by the coefficient of determinationR2:

R2 := 1−
∑Ntest

i=1 (yi − ŷi)
2∑Ntest

i=1 (yi − ȳ)2
(3.5)

whereNtest is the number of samples in test set, ȳ is the mean value of y in the test set and yi, ŷi are
the ground truth and predicted values of the i-the sample, respectively. In all cases where confidence
interval (CI) are presented, they were calculated using the percentile bootstrap method (Efron et al.
1994), with 10 000 bootstrapped samples from the test set.

3.3.1 CNN architecture
The architecture of the 3D CNN is presented in Figure 4.1, whereas a PyTorch implementation is
publicly available in: RetNet. Kernel size is set to 3 for Conv1, Conv2 and 2 for Conv3, Conv4 and
Conv5 layers. Stride equals 1 for all convolutional layers and only Conv1 layer is padded, with “same”
padding and “periodic” mode. For both MaxPool layers, kernel size and stride are both set to 2. For
the Dropout layer (see also Section 2.2.2), the dropout rate p equals 0.3, while the negative slope is
set to 0.01 for all LeakyReLU layers.

3.3.2 Preprocessing& CNN training details
Prior to entering the CNN the energy voxels are standardized “on the fly” based on the training set
statistics—this transformation is applied both during training and inference—which are computed
channel wise2. The voxelized PES of a material x, enters the CNN as following:

x′ =
x− µtrain

σtrain
(3.6)

2The voxelized PES is essentialy a single channel, i.e. grayscale, image.

42

https://github.com/frudakis-research-group/moxel
https://github.com/frudakis-research-group/retnet

Chapter 3 Methodology 3.3 Machine Learning Details

Rot
atio

n

x

z

y

Refl
ecti
on

x x x

z z z

y y y

Flip

x

z

y
x

z

y
x

z

y

x

z

y

x

z

y
x

z

y
x

z

y

x

z

y

Figure 3.2: Geometric transformations for data augmentation.

Regarding CNN training, MSL is used as loss function and weights are initialized according to the
He scheme (He et al. 2015). The Adam optimizer (Kingma et al. 2017) is employed, with |B| = 64,
η = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 1 × 10−8. The CNN training lasts for 50 epochs with the
learning rate being decaybed by 0.5 every 10 epochs. RetNet was trained in theMOFs dataset with the
largest training set size (32 432 training samples), for a different number of epochs, namely 10, 20 and
50. The latter value was selected, since it showed the greatest performance in the validation set.

3.3.3 Data augmentation
With this technique, the training set is artifically increased, by applying transformations on the input
that leave the label unchanged (see also Section 2.2.2). With regards to gas adsorption, this amounts
to applying geometric transformations on the voxelized PES, that leave the gas uptake value of the
material unchanged. Data augmentation, helps the CNN to combat overfitting—e.g. memorizing
specific orientations of the voxelized PES—and focus on the underlying patterns.
In this work, four types of geometric transformations are applied (including the identity one), as

shown in Figure 3.2. At each training iteration, the samples in the batch undergo one of these trans-
formations, with all transformations having the same probability to be applied. For instance, at one
training iteration, the voxelized PES can be rotated 90° around the x-axis, while at another iteration, it
might be flipped along the z-axis. Rotation is performed either clockwise or counterclockwise, around
one the three axes. The voxelized PES can also be viewed as a stack of 2D slices. In this view, reflection
corresponds to transposing each slice, whereas flip reversed the order of the slices. Reflection takes
place along one of the xy, xz, yz planes, whereas flip is performed along one of the three axes. Fig-
ure 3.3 illustrates the performance difference when theCNN is trained on theMOFs dataset with and

43

Chapter 3 Methodology 3.3 Machine Learning Details

5k 10k 15k 20k 25k 30k
Training set size

0.74

0.76

0.78

0.80

0.82

0.84

0.86
R

2

MOFs & CO2

W/o data augmentation
With data augmentation

Figure 3.3: CNN performance (R2 score) on test set with and without data augmentation. Shaded
areas correspond to the 95 % CI.

without data augmentation, for training set sizes:

{5000, 10 000, 15 000, 20 000, 32 432} (3.7)

44

Chapter 4

Results& Discussion

T
he proposed framework is initially tested on the UO database, for predicting
CO2 uptake in MOFs, the gas that mainly “triggered” the development of energy-
based descriptors. In order to evaluate the transferability of the approach, a different
host-guest system is also examined. We apply the suggested approach in the database
created by Mercado et al. (2018), for predicting CH4 uptake in COFs. In both cases,

the resulting ML models are compared with conventional ones, built upon geometric descriptors. In
the rest of this chapter, results from these comparisons are presented, followed by discussion for im-
provements of the proposed framework. Before delving into the results, we first take a look at RetNet,
the 3D CNN under the hood, that takes as input a voxelized PES and outputs a prediction for a gas
adsorption property, hereon gas uptake.

4.1 Visualizing RetNet
Figure4.1 illustrates theprocessing a voxelizedPESundergoes, as it is passing throughRetNet. For the
purpose of this visualization,weuse themodel trainedon theMOFsdatasetwith the largest training set
size (see Section 3.1). Moreover, for the ease of visualization, only some feature maps (see Section
2.2.3) of RetNet are visualized. Please note, that each feature map of a given layer, combines all the
featuremaps of the precedent layer. The only exception are the pooling layers, which just downsample
the feature maps from the previous layers.
For example, each featuremap of theConv2 layer takes into account all the 12 featuremaps ofConv1

layer. In contrast, the feature maps of the MaxPool1 layer, are just downsampled versions of the cor-
responding feature maps in Conv2 layer. Although feature maps of CNNs are not meant to be inter-
preted by humans—especially the ones found deeper in the network—it is worth noticing that early
convolutional layers (i.e. Conv1 and Conv2) emphasize the texture of the structure. For instance, the
3rd feature map of Conv1 layer delineates the skeleton of the framework.
Moving towards the output layer, the alternation ofmax pooling and convolutional layers continues

until the flatten layer, which just flattens out and concatenates1 all feature maps fromConv2 layer into
a single vector of size 3240. This vector is then processed by a FCNN—i.e. the stack of dense and
output layers—to give the final prediction. Since the output layer is really nothing more than a linear

1Givenm feature maps of size n× n× n, a flatten layer converts them into a vector of sizemn3.

45

Chapter 4 Results & Discussion 4.1 Visualizing RetNet

Feature Maps

Conv1

Conv2

MaxPool1

Conv3

MaxPool2

Conv4

Conv5

Flatten

Dense1

Dense2

Output

Input

Conv3D + BatchNorm3D + LeakyReLU

MaxPool3D

Flatten + Dropout

Linear + BatchNorm1D + LeakyReLU

12

24

24

32

32

64

120

84

20

3240

low medium high

Ma xPool2

Conv3

Ma xPool1

Conv2

Conv1

Figure 4.1: Forward pass of IRMOF-1 throughRetNet. For the sake of visualization, only slices (fea-
ture maps are 3D matrices) of 8 feature maps from the first 5 layers are visualized. For
Conv1 layer, the 5-th slice is presented, while for the remaining layers, the 1-st slice is pre-
sented. The IRMOF-1 structure was visualized with the iRASPA software (Dubbeldam
et al. 2018).

layer (see Section 2.2.1), all that RetNet does is the following:

PES︷︸︸︷
x︸︷︷︸

input

−→

fingerprint︷ ︸︸ ︷
ϕ(x;θ)︸ ︷︷ ︸

feature extraction

−→

gas uptake︷ ︸︸ ︷
β⊤ϕ(x;θ) + β0︸ ︷︷ ︸

output

(4.1)

Equation 4.1 says that RetNet, starting from the PES, extracts a fingerprint—that is, a high level
representation of the PES—and then predicts the gas uptake by using a linear model on top of this fin-
gerprint. All intermediate layers between input and output layer participate in this feature extraction
step, with the Dense2 layer determining the size of the fingerprint, which is a vector of size 20, i.e.
ϕ(x) ∈ R20 (see Figure 4.2). The fact that this fingerprint extraction step is learnable—the param-
eters θ of ϕ are learned during the training phase—is what fundamentally distinguishes the proposed
approach from methods that use hand-crafted fingerprints (see Section 1.3). In these methods the fin-
gerprint or extraction step is fixed, and based on some heuristic, such as energy histograms (Bucior,

46

Chapter 4 Results & Discussion 4.2 Learning Curves & Parity Plots

Bobbitt, et al. 2019) or average interactions (Fanourgakis, Gkagkas, Tylianakis, and Froudakis 2020).
Hereon, feature extraction from the PES is no longer fixed, but is an essential part of the training phase.

0 5 10 15
Index of extracted feature

0

20

40

60

80

In
de

x
of

 m
at

er
ia

l

0

1

2

3

4

Fe
at

ur
e

va
lu

e

(a) Fingerprints extracted from theMOFs dataset.

0 5 10 15
Index of extracted feature

0

20

40

60

80

In
de

x
of

 m
at

er
ia

l

0

2

4

6

8

Fe
at

ur
e

va
lu

e

(b) Fingerprints extracted from the COFs dataset.

Figure 4.2: Output of the last LeakyReLU layer ofRetNet trained onMOFs (left) andCOFs (right)
datasets, with the correspondingmaximum training set size. The fingerprints of the first
100 materials in the training set are depicted.

4.2 Learning Curves& Parity Plots
The learning curves of the conventional models—built upon geometric descriptors—and the pro-
posed ones–built upon energy voxels—are shown in Figure 4.3. As it can be seen from Figure 4.3a,
in the MOFs-CO2 case, the CNN model achieves an R2 score of 0.859, outperforming the conven-
tional model, which shows an R2 score of 0.690. This amounts to around 25 % increase in accuracy,
even with such a coarse approximation of the PES2. Moreover, from the same figure, one can notice
that the proposed model reaches the peak performance of the conventional one—that is, the perfor-
mance when trained with the maximum training set size—by requiring two orders of magnitude less
training data, around 300.
Analogous results are observed when examining the COFs-CH4 case. Again the CNNmodel per-

forms better, showing an R2 score 0.969 compared to 0.941 for the conventional one. Similar to the
previous case, a substantially smaller amount of training data are required—one order of magnitude
less training, around6900—for theCNNmodel tomatch the performance of the conventionalmodel.
The fact that in both cases, the learning curves of the proposed models lie above the corresponding

ones of the conventional models, should be credited to the following factors. First, the increased in-
formativeness of the voxelized the voxelized PES in comparison to geometric descriptors. Second, the
ability of CNNs to handle images and image-like data, such as the voxelized PES, which is essentially a
single channel 3D image. And last but not least, the data augmentation technique, which was applied
during the CNN training (see Section 3.3.3).
A parity plot is a scatter plot that compares a set of predictions from a ML model against a set of

2In this work, all host-guest interactions weremodeledwith the LJ potential (see Section 3.2), which neglects electrostatic
interactions.

47

Chapter 4 Results & Discussion 4.3 Discussion

0 5k 10k 15k 20k 25k 30k 35k
Training set size

0.4

0.5

0.6

0.7

0.8

0.9
R

2

300

MOFs & CO2

Geometric
Voxels

(a) Learning curves for MOFs& CO2.

0 10k 20k 30k 40k 50k 60k
Training set size

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

R
2

6.9k

COFs & CH4

Geometric
Voxels

(b) Learning curves for COFs& CH4.

Figure 4.3: Performance (R2 score) on test set as function of the training set size for conventional
and CNN models. Shaded areas correspond to the 95 % CI. The x-coordinate of the
white star denotes the trainig set size where the CNNmodel reaches the performance of
the conventional one, the y-coordinate. “Geometric” stands for geometric descriptors,
while “Voxels” stands for energy voxels.

benchmark (ground truth) values3. Each point has (x, y) coordinates, where x is the ground truth
value and y is the corresponding (predicted) value from the model. For a perfect model, all the points
should lie on the diagonal. From the parity plots of Figure 4.4, it can be seen that the CNN pro-
ducesmore reliable predictions, sincemore points are closer to the diagonal. Specifically, for the region
of high-performing materials the conventional model significantly underestimates their performance,
while the CNNmodel “pushes” its predictions closer to the diagonal.

4.3 Discussion
It is worth mentioning the increase in performance, approximately 13 %, of the CNN model in the
COFs-CH4 case (R2 = 0.969) compared to the MOFs-CO2 case (R2 = 0.859). In contrast to
CO2, which exhibits strong electrostatic interactions with the framework atoms, CH4 lacks dipole or
quadrupole moment. Given that the same resolution—i.e. the same grid size—was used in both cases
and that the LJ potential doesn’t account for electrostatic interactions, this performance gap should be
attributed to the absence of the latter in the voxelized PES. In other words, the extra “contrast” that such
strong interactions add to the energy image of themasterial, is missing from the voxelized PES. As such, a
straightforward approach to improve the performance of the proposed approach, especially for adsorbates
like CO2, H2 and H2S, is to include this type of interactions into the voxelized PES. Of course, there is no
free lunch, since these refinements require the assignment of partial charges to each framework atom,
which is a computationally expensive task. Luckily, ML-based approaches have already been devel-
oped (Bleiziffer et al. 2018; Raza et al. 2020; Kancharlapalli et al. 2021), which can assign partial charges
rapidly and with high fidelity, enabling the efficient construction of a more accurate voxelized PES.

3Most of the time (and also in this work), the ground truth values are obtained frommolecular simulations.

48

Chapter 4 Results & Discussion 4.3 Discussion

Figure 4.4: Parity plots (top) for theMLmodels with geometric descriptors (RFmodel) and energy
voxels (CNNmodel) regarding CO2 uptake in MOFs. Histograms (bottom) of theR2

values used to constrct the 95 % CIs. Both models were trained with the largest training
set (32 432 training samples). “Geometric” stands for geometric descriptors while “Vox-
els” stands for energy voxels. Ground truth values are the theoretical values obtained
from the UO database (measured in mmol g−1). Circled points in green, blue and green,
correspond to the top-1, top-2 and top-3 materials, respectively.

49

Chapter 4 Results & Discussion 4.3 Discussion

Improving the input, and as such, the performance of the suggested pipeline is amajor concern, but
not the only one. What about the data efficiency of the pipeline? Imagine that we are asked to predict
CH4 uptake at various thermodynamic conditions. A naive approachwould be to collect training data
and retrain from scratch the CNN for every thermodynamic condition, which is of course a laborious
task. Can we do something smarter? Well, the fact that the proposed framework uses a DL algorithm
under the hood, opens the door for applying transfer learning techniques. In a nutshell, transfer
learning (Zhuang et al. 2019; R.Ma et al. 2020; Kang et al. 2023) is based on the following idea: a violist
can learn to play piano faster than others, since both the piano and the violin aremusical instruments, and
may share some common knowledge. Translating this to NNs, a pre-trained NN on an original task—
known as the source task—may require less training data to performwell on a new task—known as the
target task—if there is some similarity between the tasks. Coming back to our “imaginary” scenario,
all we have to do is to train the CNN once in a specific thermodynamic condition4 and then fine-tune
this pre-trained model on the other conditions.
Throughout this work we focused on gas adsorption, but of course this doesn’t mean we are not in-

terested in predicting other properties of reticular materials. What if we are asked to predict properties
such as band gap or bulk modulus? In that case, quantities such as electron density are more informa-
tive over host-guest interactions with regards to the aforementioned properties. This entails that the
voxelized electron density should substitute the voxelized PES, as input to the 3D CNN. Nevertheless,
wouldn’t be great if all properties could be predicted from one and only one input? If our
aim is to predict different properties for the same structure, shouldn’t the structure itself be used as input?
Currently, the approaches to tackle this challenge are based on text representations (Bucior, Rosen, et
al. 2019; Cao et al. 2023) and crystal graphs (Xie et al. 2018; Chen et al. 2019). The main drawback of
these approaches, is their inability to represent exactly the structure, that is the exact arrangement of
the atoms in the 3D space.
Point clouds (Qi et al. 2016; Bello et al. 2020) are a natural way to solve this problem, since they are

justa set of coordinates andassociated features. In our context, the coordinates are the coordinates of the
atoms, and the associated features are the types of the atoms. It shouldbe emphasized, thatapoint cloud
is not anothermathematical representation of amaterial—in the sense of a descriptor—it is thematerial
itself 5. Therefore, an answer to the original question is to couple point clouds with a neural network that
can handle such kind of input. This approach might have to overcome the current immaturity of DL
over point clouds—especially regarding materials and molecules—but from a chemical perspective, it
is the only one that truly respects the 3D nature of chemistry and of course, reticular chemistry.

4Preferably, the one where we have more labeled training data.
5Same ideas apply for molecules and in general, for any chemical system.

50

Bibliography

[1] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para. Report:
Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory, 1957.

[2] B.T. Polyak. “Some methods of speeding up the convergence of iteration methods”. In: USSR
Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17. doi: https://
doi.org/10.1016/0041-5553(64)90137-5.

[3] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations
by back-propagating errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–536. doi: 10.1038/
323533a0.

[4] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are universal
approximators”. In:Neural Netw. 2.5 (June 1989), pp. 359–366.

[5] B. Efron and R.J. Tibshirani.An Introduction to the Bootstrap. Chapman&Hall/CRCMono-
graphs on Statistics & Applied Probability. Taylor & Francis, 1994.

[6] DavidH.Wolpert. “TheLack ofAPrioriDistinctionsBetweenLearningAlgorithms”. In:Neu-
ral Computation 8.7 (Oct. 1996), pp. 1341–1390. doi: 10.1162/neco.1996.8.7.1341.

[7] T.M.Mitchell.Machine Learning. McGraw-Hill International Editions. McGraw-Hill, 1997.
[8] Léon Bottou. “Online Algorithms and Stochastic Approximations”. In: Online Learning and

Neural Networks. Ed. byDavid Saad. revised, oct 2012. Cambridge, UK: Cambridge University
Press, 1998.

[9] Nathaniel L. Rosi et al. “Hydrogen Storage in Microporous Metal-Organic Frameworks”. In:
Science 300.5622 (2003), pp. 1127–1129. doi: 10.1126/science.1083440.

[10] Christopher M. Bishop. Pattern Recognition andMachine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[11] Christopher M. Bishop. Pattern Recognition andMachine Learning (Information Science and
Statistics). 1st ed. Springer, 2007.

[12] Yingwei Li andRalph Yang. “Gas Adsorption and Storage inMetal-Organic FrameworkMOF-
177”. In: Langmuir 23.26 (Nov. 2007), pp. 12937–12944. doi: 10.1021/la702466d.

[13] Shengqian Ma et al. “Metal-Organic Framework from an Anthracene Derivative Containing
Nanoscopic Cages Exhibiting High Methane Uptake”. In: Journal of the American Chemical
Society 130.3 (Dec. 2007), pp. 1012–1016. doi: 10.1021/ja0771639.

[14] JihyunAn, Steven J. Geib, andNathaniel L. Rosi. “High and Selective CO2Uptake in aCobalt
Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores”.
In: Journal of the American Chemical Society 132.1 (Dec. 2009), pp. 38–39. doi: 10.1021/
ja909169x.

51

https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1126/science.1083440
https://doi.org/10.1021/la702466d
https://doi.org/10.1021/ja0771639
https://doi.org/10.1021/ja909169x
https://doi.org/10.1021/ja909169x

Bibliography Bibliography

[15] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, June 2009. doi: 10.1109/cvpr.2009.
5206848.

[16] Hiroyasu Furukawa andOmarM.Yaghi. “Storage ofHydrogen,Methane, andCarbonDioxide
in Highly Porous Covalent Organic Frameworks for Clean Energy Applications”. In: Journal
of the American Chemical Society 131.25 (2009), pp. 8875–8883. doi: 10.1021/ja9015765.

[17] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: DataMin-
ing, Inference, and Prediction. Springer series in statistics. Springer, 2009.

[18] Jesse Read et al. “Classifier Chains for Multi-label Classification”. In:Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2009, pp. 254–269. doi: 10.
1007/978-3-642-04174-7_17.

[19] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of
Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR,May 2010, pp. 249–
256.

[20] Jose L.Mendoza-Cortes, TodA. Pascal, andWilliamA.Goddard. “Design ofCovalentOrganic
Frameworks for Methane Storage”. In: The Journal of Physical Chemistry A 115.47 (Nov. 2011),
pp. 13852–13857. doi: 10.1021/jp209541e.

[21] F. Pedregosa et al. “Scikit-learn:MachineLearning inPython”. In: Journal ofMachineLearning
Research 12 (2011), pp. 2825–2830.

[22] Myunghyun Paik Suh et al. “Hydrogen Storage in Metal-Organic Frameworks”. In: Chemical
Reviews 112.2 (Dec. 2011), pp. 782–835. doi: 10.1021/cr200274s.

[23] Kenji Sumida et al. “Carbon Dioxide Capture in Metal-Organic Frameworks”. In: Chemical
Reviews 112.2 (Dec. 2011), pp. 724–781. doi: 10.1021/cr2003272.

[24] Christopher E.Wilmer et al. “Large-scale screening of hypotheticalmetal-organic frameworks.”
In:Nature chemistry 4 2 (2011), pp. 83–9.

[25] Omar K. Farha et al. “Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is
the Sky the Limit?” In: Journal of the American Chemical Society 134.36 (Aug. 2012), pp. 15016–
15021. doi: 10.1021/ja3055639.

[26] Geoffrey E. Hinton et al. Improving neural networks by preventing co-adaptation of feature de-
tectors. 2012. doi: 10.48550/ARXIV.1207.0580.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In:Advances in Neural Information Processing Systems. Ed.
by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012.

[28] Michael Fernandez et al. “Large-Scale Quantitative Structure-Property Relationship (QSPR)
Analysis ofMethane Storage inMetal-Organic Frameworks”. In:The Journal of Physical Chem-
istry C 117.15 (2013), pp. 7681–7689. doi: 10.1021/jp4006422.

52

https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1021/ja9015765
https://doi.org/10.1007/978-3-642-04174-7_17
https://doi.org/10.1007/978-3-642-04174-7_17
https://doi.org/10.1021/jp209541e
https://doi.org/10.1021/cr200274s
https://doi.org/10.1021/cr2003272
https://doi.org/10.1021/ja3055639
https://doi.org/10.48550/ARXIV.1207.0580
https://doi.org/10.1021/jp4006422

Bibliography Bibliography

[29] Yongchul G. Chung, Jeffrey Camp, et al. “Computation-Ready, Experimental Metal-Organic
Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals”. In:
Chemistry ofMaterials 26.21 (2014), pp. 6185–6192. doi: 10.1021/cm502594j.

[30] G. James et al.An Introduction to Statistical Learning: with Applications in R. Springer Texts in
Statistics. Springer New York, 2014.

[31] Richard L. Martin et al. “In Silico Design of Three-Dimensional Porous Covalent Organic
Frameworks via Known Synthesis Routes and Commercially Available Species”. In: The Jour-
nal of Physical Chemistry C 118.41 (Oct. 2014), pp. 23790–23802. doi: 10.1021/jp507152j.

[32] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting”.
In: J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 1929–1958.

[33] Kaiming He et al.Delving Deep into Rectifiers: Surpassing Human-Level Performance on Ima-
geNet Classification. 2015. doi: 10.48550/ARXIV.1502.01852.

[34] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. 2015. doi: 10.48550/ARXIV.1502.03167.

[35] Yann LeCun, Yoshua Bengio, andGeoffreyHinton. “Deep learning”. In:Nature 521.7553 (May
2015), pp. 436–444. doi: 10.1038/nature14539.

[36] CoryM. Simon, JihanKim, et al. “Thematerials genome in action: identifying the performance
limits formethane storage”. In:Energy&Environmental Science 8.4 (2015), pp. 1190–1199. doi:
10.1039/c4ee03515a.

[37] CoryM.Simon,RocioMercado, et al. “WhatAre theBestMaterialsToSeparate aXenon/Krypton
Mixture?” In: Chemistry of Materials 27.12 (2015), pp. 4459–4475. doi: 10 . 1021 / acs .
chemmater.5b01475.

[38] Debasis Banerjee et al. “Metal–organic framework with optimally selective xenon adsorption
and separation”. In: Nature Communications 7.1 (June 2016), ncomms11831. doi: 10.1038/
ncomms11831.

[39] Diego A. Gómez-Gualdrón et al. “Evaluating topologically diverse metal-organic frameworks
for cryo-adsorbed hydrogen storage”. In: Energy Environ. Sci. 9 (10 2016), pp. 3279–3289. doi:
10.1039/C6EE02104B.

[40] IanGoodfellow,YoshuaBengio, andAaronCourville.DeepLearning.http://www.deeplearningbook.
org. MIT Press, 2016.

[41] Charles R. Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta-
tion. 2016. doi: 10.48550/ARXIV.1612.00593.

[42] Ioannis Spanopoulos et al. “Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced
CH4 Storage”. In: Journal of the American Chemical Society 138.5 (Jan. 2016), pp. 1568–1574.
doi: 10.1021/jacs.5b11079.

[43] Pantelis N. Trikalitis et al. “Reticular Chemistry at Its Best: Directed Assembly of Hexago-
nal Building Units into the Awaited Metal-Organic Framework with the Intricate Polyben-
zene Topology, pbz-MOF”. In: Journal of the American Chemical Society 138.39 (2016). PMID:
27615117, pp. 12767–12770. doi: 10.1021/jacs.6b08176.

53

https://doi.org/10.1021/cm502594j
https://doi.org/10.1021/jp507152j
https://doi.org/10.48550/ARXIV.1502.01852
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.1038/nature14539
https://doi.org/10.1039/c4ee03515a
https://doi.org/10.1021/acs.chemmater.5b01475
https://doi.org/10.1021/acs.chemmater.5b01475
https://doi.org/10.1038/ncomms11831
https://doi.org/10.1038/ncomms11831
https://doi.org/10.1039/C6EE02104B
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.1021/jacs.5b11079
https://doi.org/10.1021/jacs.6b08176

Bibliography Bibliography

[44] Yamil J. Colón,DiegoA.Gómez-Gualdrón, andRandallQ. Snurr. “TopologicallyGuided,Au-
tomatedConstruction ofMetal-Organic Frameworks andTheir Evaluation for Energy-Related
Applications”. In: Crystal Growth & Design 17.11 (2017), pp. 5801–5810. doi: 10.1021/acs.
cgd.7b00848.

[45] Aurélien Géron.Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools,
and techniques to build intelligent systems. Sebastopol, CA: O’Reilly Media, 2017.

[46] WooSeok Jeong et al. “Modeling adsorption properties of structurally deformedmetal–organic
frameworks using structure–propertymap”. In:Proceedings of theNationalAcademy of Sciences
114.30 (2017), pp. 7923–7928. doi: 10.1073/pnas.1706330114.

[47] Diederik P. Kingma and Jimmy Ba. Adam: AMethod for Stochastic Optimization. 2017.
[48] Peyman Z. Moghadam, Aurelia Li, et al. “Development of a Cambridge Structural Database

Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future”. In: Chem-
istry ofMaterials 29.7 (2017), pp. 2618–2625. doi: 10.1021/acs.chemmater.7b00441.

[49] Patrick Bleiziffer, Kay Schaller, and Sereina Riniker. “Machine Learning of Partial Charges De-
rived from High-Quality Quantum-Mechanical Calculations”. In: Journal of Chemical Infor-
mation andModeling 58.3 (Feb. 2018), pp. 579–590. doi: 10.1021/acs.jcim.7b00663.

[50] David Dubbeldam, Sofía Calero, and Thijs J.H. Vlugt. “iRASPA: GPU-accelerated visualiza-
tion software for materials scientists”. In:Molecular Simulation 44.8 (Jan. 2018), pp. 653–676.
doi: 10.1080/08927022.2018.1426855.

[51] Kyungdoc Kim et al. “Deep-learning-based inverse designmodel for intelligent discovery of or-
ganic molecules”. In: npj Computational Materials 4.1 (Dec. 2018). doi: 10.1038/s41524-
018-0128-1.

[52] Haichen Li et al. “Tuning the molecular weight distribution from atom transfer radical poly-
merization using deep reinforcement learning”. In:Mol. Syst. Des. Eng. 3 (3 2018), pp. 496–508.
doi: 10.1039/C7ME00131B.

[53] RocioMercado et al. “InSilicoDesignof 2Dand 3DCovalentOrganicFrameworks forMethane
Storage Applications”. In: Chemistry of Materials 30.15 (June 2018), pp. 5069–5086. doi: 10.
1021/acs.chemmater.8b01425.

[54] Peyman Z.Moghadam, Timur Islamoglu, et al. “Computer-aided discovery of a metal-organic
framework with superior oxygen uptake”. In: Nature Communications 9.1 (Apr. 2018). doi:
10.1038/s41467-018-03892-8.

[55] Michael A. Nielsen.Neural Networks and Deep Learning. misc. 2018.

[56] Minman Tong et al. “Computation-Ready, Experimental Covalent Organic Framework for
Methane Delivery: Screening and Material Design”. In: The Journal of Physical Chemistry C
122.24 (May 2018), pp. 13009–13016. doi: 10.1021/acs.jpcc.8b04742.

[57] TianXie and Jeffrey C. Grossman. “Crystal GraphConvolutional Neural Networks for an Ac-
curate and Interpretable Prediction of Material Properties”. In: Physical Review Letters 120.14
(Apr. 2018). doi: 10.1103/physrevlett.120.145301.

54

https://doi.org/10.1021/acs.cgd.7b00848
https://doi.org/10.1021/acs.cgd.7b00848
https://doi.org/10.1073/pnas.1706330114
https://doi.org/10.1021/acs.chemmater.7b00441
https://doi.org/10.1021/acs.jcim.7b00663
https://doi.org/10.1080/08927022.2018.1426855
https://doi.org/10.1038/s41524-018-0128-1
https://doi.org/10.1038/s41524-018-0128-1
https://doi.org/10.1039/C7ME00131B
https://doi.org/10.1021/acs.chemmater.8b01425
https://doi.org/10.1021/acs.chemmater.8b01425
https://doi.org/10.1038/s41467-018-03892-8
https://doi.org/10.1021/acs.jpcc.8b04742
https://doi.org/10.1103/physrevlett.120.145301

Bibliography Bibliography

[58] Peter G. Boyd et al. “Data-driven design of metal-organic frameworks for wet flue gas CO2

capture”. In:Nature 576.7786 (Dec. 2019), pp. 253–256. doi:10.1038/s41586-019-1798-
7.

[59] D.P. Broom et al. “Concepts for improving hydrogen storage in nanoporous materials”. In: In-
ternational Journal of Hydrogen Energy 44.15 (2019). A special issue on hydrogen-based Energy
storage, pp. 7768–7779. doi: https://doi.org/10.1016/j.ijhydene.2019.01.224.

[60] Benjamin J. Bucior, N. Scott Bobbitt, et al. “Energy-based descriptors to rapidly predict hydro-
gen storage in metal-organic frameworks”. In:Mol. Syst. Des. Eng. 4 (2019), pp. 162–174. doi:
10.1039/C8ME00050F.

[61] Benjamin J. Bucior, Andrew S. Rosen, et al. “Identification Schemes forMetal-Organic Frame-
works To Enable Rapid Search and Cheminformatics Analysis”. In: Crystal Growth & Design
19.11 (Sept. 2019), pp. 6682–6697. doi: 10.1021/acs.cgd.9b01050.

[62] Chi Chen et al. “Graph Networks as a Universal Machine Learning Framework for Molecules
and Crystals”. In: Chemistry of Materials 31.9 (Apr. 2019), pp. 3564–3572. doi: 10.1021/
acs.chemmater.9b01294.

[63] Yongchul G. Chung, Emmanuel Haldoupis, et al. “Advances, Updates, and Analytics for the
Computation-Ready, Experimental Metal-Organic Framework Database: CoREMOF 2019”.
In: Journal of Chemical&EngineeringData 64.12 (Nov. 2019), pp. 5985–5998. doi: 10.1021/
acs.jced.9b00835.

[64] Hana Dureckova et al. “Robust Machine LearningModels for Predicting High CO2 Working
Capacity and CO2 Selectivity of Gas Adsorption in Metal-Organic Frameworks for Precom-
bustion Carbon Capture”. In: The Journal of Physical Chemistry C 123.7 (Jan. 2019), pp. 4133–
4139. doi: 10.1021/acs.jpcc.8b10644.

[65] George S. Fanourgakis, Konstantinos Gkagkas, Emmanuel Tylianakis, Emmanuel Klontzas,
et al. “A Robust Machine Learning Algorithm for the Prediction of Methane Adsorption in
NanoporousMaterials”. In:The Journal of Physical Chemistry A 123.28 (2019), pp. 6080–6087.
doi: 10.1021/acs.jpca.9b03290.

[66] PreetumNakkiran et al.DeepDoubleDescent:WhereBiggerModels andMoreDataHurt. 2019.
doi: 10.48550/ARXIV.1912.02292.

[67] AdamPaszke et al. “PyTorch:An Imperative Style,High-PerformanceDeepLearningLibrary”.
In:Advances inNeural InformationProcessing Systems 32.CurranAssociates, Inc., 2019, pp. 8024–
8035.

[68] OmarM.Yaghi. “EmergenceofMetal-OrganicFrameworks”. In: Introduction toReticularChem-
istry. John Wiley & Sons, Ltd, 2019. Chap. 1, pp. 1–27. doi: https://doi.org/10.1002/
9783527821099.ch1.

[69] Fuzhen Zhuang et al. A Comprehensive Survey on Transfer Learning. 2019. doi: 10.48550/
ARXIV.1911.02685.

[70] Saifullahi Aminu Bello, Shangshu Yu, and Cheng Wang. Review: deep learning on 3D point
clouds. 2020. doi: 10.48550/ARXIV.2001.06280.

55

https://doi.org/10.1038/s41586-019-1798-7
https://doi.org/10.1038/s41586-019-1798-7
https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.01.224
https://doi.org/10.1039/C8ME00050F
https://doi.org/10.1021/acs.cgd.9b01050
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/acs.jced.9b00835
https://doi.org/10.1021/acs.jced.9b00835
https://doi.org/10.1021/acs.jpcc.8b10644
https://doi.org/10.1021/acs.jpca.9b03290
https://doi.org/10.48550/ARXIV.1912.02292
https://doi.org/https://doi.org/10.1002/9783527821099.ch1
https://doi.org/https://doi.org/10.1002/9783527821099.ch1
https://doi.org/10.48550/ARXIV.1911.02685
https://doi.org/10.48550/ARXIV.1911.02685
https://doi.org/10.48550/ARXIV.2001.06280

Bibliography Bibliography

[71] George S. Fanourgakis, Konstantinos Gkagkas, Emmanuel Tylianakis, and George Froudakis.
“AGenericMachine LearningAlgorithm for the Prediction ofGasAdsorption inNanoporous
Materials”. In: The Journal of Physical Chemistry C 124.13 (2020), pp. 7117–7126. doi: 10 .
1021/acs.jpcc.9b10766.

[72] RuiminMa, Yamil J. Colón, and Tengfei Luo. “Transfer Learning Study of Gas Adsorption in
Metal-OrganicFrameworks”. In:ACSAppliedMaterials&Interfaces 12.30 (July 2020), pp. 34041–
34048. doi: 10.1021/acsami.0c06858.

[73] Ali Raza et al. “Message Passing Neural Networks for Partial Charge Assignment to Metal-
Organic Frameworks”. In: The Journal of Physical Chemistry C 124.35 (Aug. 2020), pp. 19070–
19082. doi: 10.1021/acs.jpcc.0c04903.

[74] YingWu,HaipengDuan, andHongxiaXi. “Machine Learning-Driven Insights intoDefects of
ZirconiumMetal-Organic Frameworks for Enhanced Ethane-Ethylene Separation”. In: Chem-
istry of Materials 32.7 (Mar. 2020), pp. 2986–2997. doi: 10 . 1021 / acs . chemmater .
9b05322.

[75] OmarM. Yaghi. “The Reticular Chemist”. In:Nano Letters 20.12 (Nov. 2020), pp. 8432–8434.
doi: 10.1021/acs.nanolett.0c04327.

[76] Srinivasu Kancharlapalli et al. “Fast and Accurate Machine Learning Strategy for Calculating
Partial Atomic Charges in Metal-Organic Frameworks”. In: Journal of Chemical Theory and
Computation 17.5 (Mar. 2021), pp. 3052–3064. doi: 10.1021/acs.jctc.0c01229.

[77] Sangwon Lee et al. “Computational Screening of Trillions of Metal-Organic Frameworks for
High-Performance Methane Storage”. In: ACS Applied Materials & Interfaces 13.20 (2021),
pp. 23647–23654. doi: 10.1021/acsami.1c02471.

[78] OmidT.Qazvini, Ravichandar Babarao, and ShaneG.Telfer. “Selective capture of carbon diox-
ide from hydrocarbons using a metal-organic framework”. In: Nature Communications 12.1
(Jan. 2021). doi: 10.1038/s41467-020-20489-2.

[79] Andrew S. Rosen et al. “Machine learning the quantum-chemical properties of metal-organic
frameworks for acceleratedmaterials discovery”. In:Matter 4.5 (May 2021), pp. 1578–1597. doi:
10.1016/j.matt.2021.02.015.

[80] Kuthuru Suresh et al. “OptimizingHydrogen Storage inMOFs throughEngineering ofCrystal
Morphology and Control of Crystal Size”. In: Journal of the American Chemical Society 143.28
(July 2021), pp. 10727–10734. doi: 10.1021/jacs.1c04926.

[81] Zhenpeng Yao et al. “Inverse design of nanoporous crystalline reticularmaterials with deep gen-
erative models”. In: Nature Machine Intelligence 3.1 (Jan. 2021), pp. 76–86. doi: 10.1038/
s42256-020-00271-1.

[82] NiklasW. A. Gebauer et al. “Inverse design of 3d molecular structures with conditional genera-
tive neural networks”. In:Nature Communications 13.1 (Feb. 2022). doi: 10.1038/s41467-
022-28526-y.

[83] Stephen Gow et al. “A review of reinforcement learning in chemistry”. In:Digital Discovery 1.5
(2022), pp. 551–567. doi: 10.1039/d2dd00047d.

56

https://doi.org/10.1021/acs.jpcc.9b10766
https://doi.org/10.1021/acs.jpcc.9b10766
https://doi.org/10.1021/acsami.0c06858
https://doi.org/10.1021/acs.jpcc.0c04903
https://doi.org/10.1021/acs.chemmater.9b05322
https://doi.org/10.1021/acs.chemmater.9b05322
https://doi.org/10.1021/acs.nanolett.0c04327
https://doi.org/10.1021/acs.jctc.0c01229
https://doi.org/10.1021/acsami.1c02471
https://doi.org/10.1038/s41467-020-20489-2
https://doi.org/10.1016/j.matt.2021.02.015
https://doi.org/10.1021/jacs.1c04926
https://doi.org/10.1038/s42256-020-00271-1
https://doi.org/10.1038/s42256-020-00271-1
https://doi.org/10.1038/s41467-022-28526-y
https://doi.org/10.1038/s41467-022-28526-y
https://doi.org/10.1039/d2dd00047d

Bibliography Bibliography

[84] Chuanhai Jiang et al. “Recent advances inmetal-organic frameworks for gas adsorption/separation”.
In:Nanoscale Advances 4.9 (2022), pp. 2077–2089. doi: 10.1039/d2na00061j.

[85] Saptasree Bose et al. “Challenges andOpportunities:Metal-Organic Frameworks forDirectAir
Capture”. In: Advanced FunctionalMaterials (2023). doi: 10.1002/adfm.202307478.

[86] ZhonglinCao et al. “MOFormer: Self-SupervisedTransformerModel forMetal-OrganicFrame-
workPropertyPrediction”. In: Journal of theAmericanChemical Society 145.5 (Jan. 2023), pp. 2958–
2967. doi: 10.1021/jacs.2c11420.

[87] Juul S. De Vos et al. “ReDD-COFFEE: a ready-to-use database of covalent organic framework
structures and accurate force fields to enable high-throughput screenings”. In: Journal of Ma-
terials Chemistry A 11.14 (2023), pp. 7468–7487. doi: 10.1039/d3ta00470h.

[88] YeonghunKang et al. “Amulti-modal pre-training transformer for universal transfer learning in
metal-organic frameworks”. In:NatureMachine Intelligence 5.3 (Mar. 2023), pp. 309–318. doi:
10.1038/s42256-023-00628-2.

[89] Ibrahim B. Orhan et al. “Accelerating the prediction of CO2 capture at low partial pressures
in metal-organic frameworks using new machine learning descriptors”. In: Communications
Chemistry 6.1 (Oct. 2023). doi: 10.1038/s42004-023-01009-x.

[90] Kaihang Shi et al. “Two-Dimensional Energy Histograms as Features for Machine Learning
to Predict Adsorption in Diverse Nanoporous Materials”. In: Journal of Chemical Theory and
Computation (Feb. 2023). doi: 10.1021/acs.jctc.2c00798.

[91] Constantinos Tsangarakis et al. “Water-Stable etb-MOFs for Methane and Carbon Dioxide
Storage”. In: InorganicChemistry62.14 (2023), pp. 5496–5504.doi:10.1021/acs.inorgchem.
2c04483.

57

https://doi.org/10.1039/d2na00061j
https://doi.org/10.1002/adfm.202307478
https://doi.org/10.1021/jacs.2c11420
https://doi.org/10.1039/d3ta00470h
https://doi.org/10.1038/s42256-023-00628-2
https://doi.org/10.1038/s42004-023-01009-x
https://doi.org/10.1021/acs.jctc.2c00798
https://doi.org/10.1021/acs.inorgchem.2c04483
https://doi.org/10.1021/acs.inorgchem.2c04483

Index

Symbols
LeakyReLU 24, 42
ReLU 24

A
Ab-initio calculations 41
Activation function 24
Adam 38, 39
Adaptive learning rate 38
Agent 15
AlexNet 14
Architecture 22, 25, 29

B
Back-propagation 35, 36
Band gap 50
Batch gradient descent 38
Batch normalization 34
Batch normalization layer 34
Batch size 37
Bias 18, 20, 23
Bias trick 23
Bias-variance decomposition 20
Bias-variance trade-off 21
Big data 11, 14
Binary classifier 23
Binary cross entropy loss 17
Boltzmann constant 42
Bulk modulus 50

C
Calculus 35
Capacity 19
Carbon capture 9
Catalysis 9
Chain rule 35
Chemical system 50
Chemistry 15, 50
Classification 15, 26
Classification accuracy 21
CNN training 43

Coefficient of determination 42
Complexity 19, 20
Complexity curve 22
Composite function 26, 35
Computational cost 13, 41
Computational graph 24
Computational screening 10
Conditional generative modelling 15
Confidence interval 44, 48
Convergence 38
Convolutional filter 31
Convolutional layer 31, 42, 45
Convolutional neural network 14
Coordinates 50
CoREMOF database 12
Covalent organic frameworks 10
Crystal graph 50
Cutoff radius 41

D
Data 11, 14
Data augmentation 28, 43, 44, 47
Data efficiency 50
Data generating distribution 27
Data-driven 11
Database 10
Dataset 14, 20, 40
Deep learning 14, 22
Deep learning algorithm 50
Dense layer 32, 45
Derivative 24
Descriptor 11, 15, 50
Dipole moment 48
Direct air capture 9
Directed graph 25
Distribution 22, 25
Double descent 21
Downsample 45
Dropout 28, 42
Dropout rate 29, 42
Drug delivery 9

58

INDEX INDEX

E
Effective capacity 19
Electron density 50
Electrostatic interactions 48
Empirical risk minimization 17
Energetic fingerprint 12, 46
Energy grid 12
Energy histogram 12
Energy image 13
Energy voxels 42
Energy-based descriptors 12, 45
Epoch 43
Expected square loss 20
Experience 14, 20, 22
Experimental characterization 10
Experimental synthesis 10
Exploding gradients 33
Extracted feature 26

F
Feature 13, 15, 21
Feature extraction 46
Feature map 30, 45, 46
Feedforward network 27
Filter 29
Fine-tune 50
Fingerprint extraction 46
Flatten layer 45
Forward pass 35, 46
Fully connected neural network 25
Function 23

G
Gas 45
Gas adsorption 12, 45
Gas separation 9
Gas storage 9
Gas uptake 12, 40
Generalization ability 42
Generalization error 16
Generalization loss 16, 19, 27
Generative modeling 15
Geometric descriptors 12, 45
Geometric transformations 28, 43
Gradient descent 19
Gradient operator 36
Gradient-based optimization 24
Graph 24
Gravimetric surface area 12

Grayscale image 42
Guest molecule 12

H
Hand-crafted fingerprints 46
Heavyside step function 24
Hidden layer 25
Hidden unit 25
High complexity 22
High level representation 46
High-level feature 26
hMOFs database 12
Horizontal edge 32
Host-guest interactions 12, 50
Hydrogen storage 9
Hydrogen storage. 10
Hyperbolic tangent 24, 34
Hyperparameter 18, 38
Hypothesis 16
Hypothesis space 17
Hypothetical MOFs 40

I
Image classification 14, 26
Image-like data 29, 47
ImageNet 14
Index phase 26
Inductive bias 28
Information content 41
Inner product 30
Input 11, 15
Input layer 25, 46
Intelligent behavior 22, 23
Intelligent system 23
Inverse design 15
Inverted dropout 29
IRMOF-1 10, 46
Irreducible error 20

K
Keep probability 29
Kernel 29
Kernel size 32, 42

L
Label 15, 28, 40, 43
Language translation 14
Lasso regression 12
Lasso regularization 18
Learner 21, 27

59

INDEX INDEX

Learning algorithm 17
Learning curve 21, 40, 41, 47
Learning paradigms 15
Learning rate 19, 37
Lennard-Jones potential 41
Linear binary classifier 23
Linear function 23
Linear layer 46
Linear model 26
Linear regression 17, 28
Linearly separable 27
Local minimum 38
Lorentz-Berthelot mixing rules 42
Loss function 16
Low complexity 20, 22

M
Machine learning 11, 14
Machine learning algorithm 11
Macroscopic objects 23
Mapping 26
Material 11
Material space 11
MaxPool layer 42
Mean absolute error 12
Mean squared loss 18
Metal clusters 9
Metal ions 9
Metal-organic frameworks 9
Methane storage 9
Mini-batch gradient descent 38
Model 11, 17
MOF-5 10
Molecular simulations 10, 40
Molecule 11
Momentum 38
Multi-label classification 15
Multi-label regression 15
Multi-valued output 26
Multilayer perceptron 25

N
Natural language processing 27
Neural network 40
Neuron 22, 23, 26
Neuroscience 22
Non-convex optimization 11
Non-linearity 23

O
Object detection 29
Object recognition 31
Occam’s razor 18
Optimistically biased 20
Optimization 11, 36
Optimization problem 11
Optimizer 38
Organic ligand 9
Organic linker 9
Output 11, 15, 26
Output layer 25, 26, 45
Overfitting 43

P
Padding 42
Parallelization 42
Parameter sharing 31
Parity plot 48, 49
Partial charge 48
Perceptron 23
Performance 19, 20, 22
Performance measure 14
performance metric 21
Piecewise linear function 24
Point cloud 50
Polynomial regression 18
Pooling layer 45
Pore limiting diameter 12
Potential energy surface 13
Pre-trained model 50
Predictor 15
Pressure 12
Principle of parsimony 18
Probe molecule 41
Probe particle 12
PyTorch 42

Q
Quadrupole moment 48

R
Random error term 16
Random forest 12
Random guessing 27
Reflection 43
Regression 12, 15, 26
Regularization 18
Regularization techniques 28

60

INDEX INDEX

Regularizer 18
Reinforcement learning 15
Representation 50
Representational capacity 17, 19
Reticular chemistry 9, 22, 50
Reticular materials 9, 50
RetNet 42, 45, 46
Rotation 43

S
Sample 42
Scikit-learn 42
Semantic segmentation 29
Sigmoid 24, 34
Source task 50
Spam filter 14
Sparse connections 31
Spatio-temporal relationship 29
Squared loss 17, 20
Stochastic gradient descent 38
Stride 42
Subatomic particles 23
Supervised learning 11, 15
Surface area 10
Swing capacity 12
Synapses 26

T
Target task 50
Task 14, 21
Temperature 42
Test accuracy 22
Test error 20
Test loss 20
Test performance 21
Test set 20, 40, 42, 44
Text representation 50
Textual properties 40
Thermodynamic conditions 12, 40, 50

Top-5 accuracy 14
Traditional programming 15
Training accuracy 21
Training data 21, 32, 35, 40, 50
Training error 17
Training instance 15
Training loss 17, 19, 27, 28, 35, 36
Training performance 21
Training phase 15, 18, 20, 46
Training sample 15
Training set 16, 20, 21, 28, 37, 40, 43
Transfer learning 50

U
Unbiased estimate 20
Unit cell 12
Universal approximation theorem 27
Unstable gradients 34
Unsupervised learning 15
UO database 40

V
Validation set 20, 40, 43
Van der Waals interactions 12
Vanishing gradients 33
Vapnik-Chervonenkis dimension 17
Variance 20, 21
Void fraction 12
Voxelization 41
Voxelized electron density 50
Voxelized PES 41, 45

W
Weighted sum 23
Weights 18, 43

X
XOR problem 26

61

Acronyms

LeakyReLU leaky rectified linear unit.

ReLU rectified linear unit.

ANG adsorbed natural gas.

BGD batch gradient descent.

CI confidence interval.

CNG compressed natural gas.

CNN convolutional neural network.

COF covalent organic framework.

CoRE Computation-Ready Experimental.

CSD Cambridge Structural Database.

DAC direct air capture.

DAG directed acyclic graph.

DL deep learning.

FCNN fully connected neural network.

GCMC Grand Canonical Monte Carlo.

GPU graphics processing unit.

i.i.d independent and identically distributed.

ILSVRC Large Scale Visual Recognition Challenge.

LJ Lennard-Jones.

LNG liquefied natural gas.

62

Acronyms Acronyms

MAE mean absolute error.

MBGD mini-batch gradient descent.

ML machine learning.

MLP multilayer perceptron.

MOF metal-organic framework.

MSL mean squared loss.

NaN Not a Number.

NLP natural language processing.

NN neural network.

PES potential energy surface.

RF Random Forest.

SGD stochastic gradient descent.

SVM support vector machine.

UO University of Ottawa.

63

Appendix A

MOXϵλ

This file is part of MOX��.
Copyright (C) 2023-2024 Antonios P. Sarikas

MOX�� is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

r"""
This module provides helper functions for creating voxels.

.. note::
Currently, interactions are modelled with the Lennard-Jones (LJ)

potential.↪→

.. attention::
Consider playing with the ``n_jobs`` parameter to get the best

performance↪→

for your system::

from timeit import timeit

setup = 'from moxel.utils import voxels_from_file'
n_jobs = [1, 2, 8, 16] # Modify this according to your system.

64

for n in n_jobs:
stmt = f'voxels_from_file("path/to/cif", n_jobs={n})'
time = timeit(stmt=stmt, setup=setup, number=1)
print(f'Time with {n} jobs: {time:.3f} s')

"""

import os
import json
import itertools
from pathlib import Path
from multiprocessing import Pool
from itertools import repeat
import warnings
import numpy as np
from tqdm import tqdm
from pymatgen.core import Structure
from . _params import lj_params
warnings.filterwarnings('ignore')

def load_json(fname):
r"""
Load a ``.json`` file.

Parameters

fname : str

Pathname to the ``.json`` file.

Returns

names : list
"""
with open(fname, 'r') as fhand:

data = json.load(fhand)

return data

def mic_scale_factors(r, lattice_vectors):
r"""
Return scale factors to satisfy minimum image convention [MIC]_.

65

Parameters

r : float

The cutoff radius used in MIC convetion.
lattice_vectors : array of shape (3, 3)

The lattice vectors of the unit cell.
Each row corresponds to a lattice vector.

Returns

scale_factors : array of shape (3,)

``scale_factors[i]`` scales ``lattice_vectors[i]``.

References

.. [MIC] W. Smith, "The Minimum Image Convention in Non-Cubic MD

Cells", 1989.↪→

"""
a, b, c = lattice_vectors
volume = np.linalg.norm(np.dot(a, np.cross(b, c)))

w_a = volume/np.linalg.norm(np.cross(b, c))
w_b = volume/np.linalg.norm(np.cross(a, c))
w_c = volume/np.linalg.norm(np.cross(a, b))

return np.ceil(2*r/np.array([w_a, w_b, w_c]))

class Grid:
r"""
A 3D energy grid over a crystal structure.

Parameters

grid_size : int, default=25

Number of grid points along each dimension.
cutoff : float, default=10

Cutoff radius (Å) for the LJ potential.
epsilon : float, default=50

Epsilon value (�/K) of the probe atom.
sigma : float, default=2.5

Sigma value (�/Å) of the probe atom.

66

Attributes

structure : :class:`pymatgen.core.structure.Structure`

Available only after :meth:`Grid.load_structure` has been
called.↪→

structure_name : str
Available only after :meth:`Grid.load_structure` has been

called.↪→

cubic_box : bool
Available only after :meth:`Grid.calculate` has been called.

voxels : array of shape (grid_size,)*3
Available only after :meth:`Grid.calculate` has been called.

"""
def __init__(self, grid_size=25, cutoff=10, epsilon=50, sigma=2.5):

self.grid_size = grid_size
self.cutoff = cutoff
self.epsilon = epsilon
self.sigma = sigma

def load_structure(self, pathname):
r"""
Load a crystal structure from a file in a format supported by
:meth:`pymatgen.core.Structure.from_file`.

Parameters

pathname : str

Pathname to the file.
"""
self.structure = Structure.from_file(pathname)
self.structure_name = Path(pathname).stem

def calculate(self, cubic_box=False, length=30, potential='lj',
n_jobs=None):↪→

r"""
Iterate over the grid and return voxels.

For computational efficiency and to assure (approximately) the
same↪→

spatial resolution, the grid is overlayed over a supercell
scaled↪→

according to MIC, see :func:`mic_scale_factors`.

67

If lattice angles are significantly different than 90°, to
avoid↪→

distortions set ``cubic_box`` to ``True``. In this case, the
grid is↪→

overlayed over a cubic box of size ``length`` centered at the
origin but↪→

periodicity is no longer guaranteed.

Parameters

potential : str, default='lj'

The potential used to calculate voxels. Currently, only the
LJ potential is supported.

cubic_box : bool, default=False
If ``True``, the simulation box is cubic.

length : float, default=30
The size of the cubic box in Å. Takes effect only
if ``cubic_box=True``.

n_jobs : int, optional
Number of jobs to run in parallel. If ``None``, then the

number returned↪→

by ``os.cpu_count()`` is used.

Returns

voxels : array of shape (grid_size,)*3

The energy voxels as :math:`e^{-\beta \mathcal{V}}`, to
ensure↪→

numerical stability.
Notes

For structures that can not be processsed, their voxels are

filled with↪→

zeros.
"""
self.cubic_box = cubic_box

if cubic_box:
d = length / 2
probe_coords = np.linspace(0-d, 0+d, self.grid_size) #

Cartesian.↪→

self._simulation_box = self.structure
else:

68

probe_coords = np.linspace(0, 1, self.grid_size) #
Fractional.↪→

scale = mic_scale_factors(self.cutoff,
self.structure.lattice.matrix)↪→

self._simulation_box = self.structure * scale

if potential == 'lj':
Cache LJ parameters for all atoms in the simulation box.
self._lj_params = np.array([lj_params[atom.species_string]

for atom in self._simulation_box])↪→

Cache fractional coordinates since this is a slow
function in pymatgen.↪→

self._frac_coords = self._simulation_box.frac_coords

Embarrassingly parallel.
with Pool(processes=n_jobs) as p:

energies = p.map(
self.lj_potential,

itertools.product(*(probe_coords,)*3)↪→

)

self.voxels = np.array(energies,
dtype=np.float32).reshape((self.grid_size,)*3)↪→

return self.voxels

def lj_potential(self, coords):
r"""
Calculate LJ potential at cartesian or fractional
coordinates.

Parameters

coordinates : array_like of shape (3,)

If ``cubic_box=True`` cartesian. Else, fractional.

Returns

energy : float

Energy as :math:`e^{-\beta \mathcal{V}}`, to ensure
numerical stability.↪→

"""

69

if self.cubic_box:
cartesian_coords = coords

else:
cartesian_coords =

self._simulation_box.lattice.get_cartesian_coords(coords)↪→

_, r_ij, indices, _ =
self._simulation_box._lattice.get_points_in_sphere(↪→

self._frac_coords, cartesian_coords,
self.cutoff, zip_results=False,
)

Need to check for length of r_ij because of
https://github.com/materialsproject/pymatgen/issues/3794
if len(r_ij) == 0: # No neighbor, zero energy.

return 1.

if np.any(r_ij < 1e-3): # Close contact, infinite energy.
return 0.

es_j = self._lj_params[indices]
x = (0.5 * (es_j[:, 1] + self.sigma)) / r_ij
e = 4 * np.sqrt(es_j[:, 0] * self.epsilon)
energy = np.sum(e * (x**12 - x**6))

This should be changed with clipping in future versions.
return np.exp(-(1 / 298) * energy) # For numerical stability.

def voxels_from_file(
cif_pathname, grid_size=25, cutoff=10,
epsilon=50, sigma=2.5, cubic_box=False, length=30,
n_jobs=None, only_voxels=True,
):

r"""
Return voxels from ``.cif`` file.

Parameters

cif_pathname : str

Pathname to the ``.cif`` file.
grid_size : int, default=25

Number of grid points along each dimension.

70

cutoff : float, default=10
Cutoff radius (Å) for the LJ potential.

epsilon : float, default=50
Epsilon value (�/K) of the probe atom.

sigma : float, default=25
Sigma value (�/Å) of the probe atom.

cubic_box : bool, default=False
If ``True``, the simulation box is cubic.

length : float, default=30
The size of the cubic box in Å. Takes effect only if

``cubic_box=True``.↪→

n_jobs : int, optional
Number of jobs to run in parallel. If ``None``, then the number

returned↪→

by ``os.cpu_count()`` is used.
only_voxels : bool, default=True

Determines ``out`` type.

Returns

out : ``array`` or :class:`Grid`

If ``only_voxels=True``, array of shape ``(grid_size,)*3``.
Otherwise, :class:`Grid`.

Notes

For structures that can not be processsed, their voxels are filled

with zeros.↪→

"""
grid = Grid(grid_size, cutoff, epsilon, sigma)
try:

grid.load_structure(cif_pathname)
grid.calculate(cubic_box=cubic_box, length=length,

n_jobs=n_jobs)↪→

except:
grid.voxels = np.full(shape=(grid_size,)*3, fill_value=0,

dtype=np.float32)↪→

if only_voxels:
return grid.voxels

return grid

71

def voxels_from_files(
cif_pathnames, out_dirname, grid_size=25, cutoff=10,
epsilon=50, sigma=2.5, cubic_box=False, length=30,
n_jobs=None,
):

r"""
Calculate voxels from a list of ``.cif`` files and store them under
``out_dirname`` as :class:`numpy.array` of shape
``(n_samples, grid_size, grid_size, grid_size)``,
where ``n_samples == len(cif_pathnames)``.

After processing the following files are created::

out_dirname
���voxels.npy
���names.json

The file ``names.json`` stores the names of the materials as a
:class:`list`, which might be useful for later indexing.

Parameters

cif_pathnames : list

List of pathnames to the ``.cif`` files.
out_dirname : str

Pathname to the directory under which voxels are stored.
grid_size : int, default=25

Number of grid points along each dimension.
cutoff : float, default=10

Cutoff radius (Å) for the LJ potential.
epsilon : float, default=50

Epsilon value (�/K) of the probe atom.
sigma : float, default=25

Sigma value (�/Å) of the probe atom.
cubic_box : bool, default=False

If ``True``, the simulation box is cubic.
length : float, default=30

The size of the cubic box in Å. Takes effect only if
``cubic_box=True``.↪→

n_jobs : int, optional
Number of jobs to run in parallel. If ``None``, then the number

returned↪→

72

by ``os.cpu_count()`` is used.

Notes

* Samples in output array follow the order in ``cif_pathnames``.
* For structures that can not be processsed, their voxels are

filled with zeros.↪→

"""
n_samples = len(cif_pathnames)
names = [Path(i).stem for i in cif_pathnames]

Store the names.
with open(f'{out_dirname}/names.json', mode='w') as fhand:

json.dump(names, fhand, indent=4)

fp = np.lib.format.open_memmap(
f'{out_dirname}/voxels.npy', mode='w+',
shape=(n_samples, *(grid_size,)*3),
dtype=np.float32
)

grids = map(
voxels_from_file, cif_pathnames,
repeat(grid_size), repeat(cutoff),
repeat(epsilon), repeat(sigma),
repeat(cubic_box), repeat(length),
repeat(n_jobs)
)

for i in tqdm(range(n_samples), desc='Creating voxels'):
fp[i] = next(grids)

fp.flush()

def voxels_from_dir(
cif_dirname, out_dirname, grid_size=25, cutoff=10,
epsilon=50, sigma=2.5, cubic_box=False, length=30,
n_jobs=None,
):

r"""
Calculate voxels from a directory of ``.cif`` files and save them

under↪→

73

``out_dirname`` as :class:`numpy.array` of shape
``(n_samples, grid_size, grid_size, grid_size)``,
where ``n_samples == len(cif_pathnames)``.

After processing the following files are created::

out_dirname
���voxels.npy
���names.json

The file ``names.json`` stores the names of the materials as a
:class:`list`, which might be useful for later indexing.

Parameters

cif_dirname : str

Pathname to the directory containing the ``.cif`` files.
out_dirname : str

Pathname to the directory under which voxels are stored.
grid_size : int, default=25

Number of grid points along each dimension.
cutoff : float, default=10

Cutoff radius (Å) for the LJ potential.
epsilon : float, default=50

Epsilon value (�/K) of the probe atom.
sigma : float, default=25

Sigma value (�/Å) of the probe atom.
cubic_box : bool, default=False

If ``True``, the simulation box is cubic.
length : float, default=30

The size of the cubic box in Å. Takes effect only if
``cubic_box=True``.↪→

n_jobs : int, optional
Number of jobs to run in parallel. If ``None``, then the number

returned↪→

by ``os.cpu_count()`` is used.

Notes

* Samples in output array follow the order in

``sorted(os.listdir(cif_dirname))``.↪→

* For structures that can not be processsed, their voxels are
filled with zeros.↪→

74

"""
files = [os.path.join(cif_dirname, f) for f in

sorted(os.listdir(cif_dirname))]↪→

voxels_from_files(
files, out_dirname,
grid_size=grid_size, cutoff=cutoff,
epsilon=epsilon, sigma=sigma,
cubic_box=cubic_box, length=length,
n_jobs=n_jobs,
)

def batch_clean(batch_dirname):
"""
Clean a single batch.

The batch must have the form::

batch
���voxels.npy
���names.json

Cleaning is required since the voxels for some structures might be
zero,↪→

see :func:`Grid.calculate`. After cleaning, the directory has the
form::↪→

batch
���voxels.npy
���names.json
���clean_voxels.npy
���clean_names.json

Parameters

batch_dirname : str

Pathname to the directory which requires cleaning.

Returns

exit_status : int

If no voxels are missing ``0`` else ``1``.

75

"""
Case 1: no missing voxels.
names = load_json(f'{batch_dirname}/names.json')
voxels = np.load(f'{batch_dirname}/voxels.npy', mmap_mode='r')

missing_idx = [i for i, x in enumerate(voxels) if np.all(x == 0)]

if len(missing_idx) == 0:
print('No missing voxels found!')
return 0

Case 2: missing voxels.
print('Missing voxels found! Cleaning...')

clean_size = len(voxels) - len(missing_idx)

Create a new array to store the clean voxels.
clean_fp = np.lib.format.open_memmap(

f'{batch_dirname}/clean_voxels.npy',
shape=(clean_size, *voxels.shape[1:]), # Shape (N, grid, grid,

grid).↪→

mode='w+', dtype='float32',
)

clean_idx = 0
for idx, x in enumerate(voxels):

if idx in missing_idx:
pass

else:
clean_fp[clean_idx] = x
clean_idx += 1

clean_names = np.delete(names, missing_idx)

with open(f'{batch_dirname}/clean_names.json', 'w') as fhand:
json.dump(list(clean_names), fhand, indent=4)

return 1

76

Appendix B

RetNet

import json
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
from torch.utils.data import Dataset
from itertools import cycle, combinations
from torch.utils.tensorboard import SummaryWriter
from torcheval.metrics.functional import r2_score

class RetNet(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Sequential(

nn.Conv3d(in_channels=1, out_channels=12,
kernel_size=3, padding=1, padding_mode='circular',
bias=False),

↪→

↪→

nn.BatchNorm3d(num_features=12),
nn.LeakyReLU(),

)
self.conv2 = nn.Sequential(

nn.Conv3d(in_channels=12, out_channels=24,
kernel_size=3, bias=False),↪→

nn.BatchNorm3d(num_features=24),
nn.LeakyReLU(),

)

self.max1 = nn.MaxPool3d(kernel_size=2)

self.conv3 = nn.Sequential(
nn.Conv3d(in_channels=24, out_channels=32,

kernel_size=2, bias=False),↪→

77

nn.BatchNorm3d(num_features=32),
nn.LeakyReLU(),

)

self.max2 = nn.MaxPool3d(kernel_size=2)

self.conv4 = nn.Sequential(
nn.Conv3d(in_channels=32, out_channels=64,

kernel_size=2, bias=False),↪→

nn.BatchNorm3d(num_features=64),
nn.LeakyReLU(),

)
self.conv5 = nn.Sequential(

nn.Conv3d(in_channels=64, out_channels=120,
kernel_size=2, bias=False),↪→

nn.BatchNorm3d(num_features=120),
nn.LeakyReLU(),

)
self.fc = nn.Sequential(

nn.Flatten(1),
nn.Dropout(0.3),
nn.Linear(3*3*3*120, 84),
nn.BatchNorm1d(num_features=84),
nn.LeakyReLU(),
nn.Linear(84, 20),
nn.BatchNorm1d(num_features=20),
nn.LeakyReLU(),
nn.Linear(20, 1),

)

def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.max1(x)
x = self.conv3(x)
x = self.max2(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.fc(x)

return x

78

class LearningMethod:
def __init__(self, network, optimizer, criterion):

self.net = network
self.optimizer = optimizer
self.criterion = criterion

def train(
self, train_loader, val_loader,
val_loss_freq=15, epochs=1, scheduler=None,
metric=r2_score, device=None, tb_writer=None, verbose=True
):

self.scheduler = scheduler
self.val_loss_freq = val_loss_freq
self.train_hist = []
self.train_metric = []
self.val_hist = []
self.val_metric = []
self.writer = tb_writer
self.train_batch_size = train_loader.batch_size
self.val_batch_size = val_loader.batch_size
self.epochs = epochs

val_loader = cycle(val_loader)

Training and validation phase.
counter = 0
for e in range(epochs):

if verbose:
print(f'\nEpoch: {e}')

Training phase.
for i, (X_train, y_train) in enumerate(train_loader):

self.net.train() # Set to training mode.

Keep track of the iteration number.
counter += 1

X_train, y_train = X_train.to(device),
y_train.to(device)↪→

Initialize zero gradients.

79

self.optimizer.zero_grad()

Calculate train loss.
y_train_hat = self.net(X_train)
train_loss = self.criterion(input=y_train_hat.ravel(),

target=y_train)↪→

Update the parameters.
train_loss.backward()
self.optimizer.step()

Validation phase.
if (counter % val_loss_freq == 0):

self.net.eval() # Set to inference mode.

X_val, y_val = next(val_loader)
X_val, y_val = X_val.to(device), y_val.to(device)

Account for correct training metric calculation.
yth = self.predict(X_train)

Calculate validation loss.
y_val_hat = self.predict(X_val)
val_loss = self.criterion(input=y_val_hat.ravel(),

target=y_val)↪→

train_metric = metric(input=yth.ravel(),
target=y_train)↪→

val_metric = metric(input=y_val_hat.ravel(),
target=y_val)↪→

Print train and validation metric per
`val_loss_freq`.↪→

if verbose and (counter % val_loss_freq == 0):
print(

f'{f"Iteration {counter}":<20} ->',
f'{f"train_metric =

{train_metric:.3f}":<22}',↪→

f'{f"val_metric = {val_metric:.3f}":>22}',
sep=4*' '↪→

)

Learning rate scheduler.

80

if scheduler:
self.scheduler.step()

Store train/val history. Needs to be fixed!
#self.train_hist.append(train_loss.item())
#self.train_metric.append(train_metric.item())
#self.val_hist.append(val_loss.item())
#self.val_metric.append(val_metric.item())

Tensorboard log.
#if tb_writer:
self.writer.add_scalars(
'learning_curve',
{'train': train_loss, 'val': val_loss},
{'train': train_metric, 'val': val_metric},
e
)
self.writer.add_scalar('Metric/train', train_metric,

e)↪→

self.writer.add_scalar('Metric/val', val_metric, e)

for name, value in self.net.named_parameters():
self.writer.add_histogram(f'Values/{name}', value,

e)↪→

self.writer.add_histogram(f'Gradients/{name}',
value.grad, e)↪→

#if scheduler:
self.scheduler.step()

#if tb_writer:
self.writer.flush()
self.writer.close()

print('\nTraining finished!')

@torch.no_grad()
def predict(self, X):

self.net.eval()
y_pred = self.net(X)

return y_pred

81

class CustomDataset(Dataset):
def __init__(self, X, y, transform_X=None, transform_y=None):

self.transform_X = transform_X
self.transform_y = transform_y
self.X = X
self.y = y

def __len__(self):
return len(self.y)

def __getitem__(self, idx):
sample_x = torch.tensor(self.X[idx])
sample_y = torch.tensor(self.y[idx])

if self.transform_X:
sample_x = self.transform_X(sample_x)

if self.transform_y:
sample_y = self.transform_y(sample_y)

return sample_x, sample_y

class Rotate90:
def __init__(self):

self.planes = list(combinations([1, 2, 3], 2))
self.n_choices = len(self.planes)

def __call__(self, sample):
plane = self.planes[np.random.choice(self.n_choices)]
direction = np.random.choice([-1, 1])

return torch.rot90(sample, k=direction, dims=plane)

class Flip:
def __call__(self, sample):

axis = np.random.choice([1, 2, 3])

return torch.flip(sample, [axis])

class Reflect:

82

def __init__(self):
self.planes = list(combinations([1, 2, 3], 2))
self.n_choices = len(self.planes)

def __call__(self, sample):
plane = self.planes[np.random.choice(self.n_choices)]

return torch.transpose(sample, *plane)

class Roll:
def __call__(self, sample):

axis = np.random.choice([1, 2, 3])
shift = np.random.choice([1, 2, 4, 6, 10])
direction = np.random.choice([-1, 1])

return torch.roll(sample, shifts=shift * direction, dims=axis)

class Identity:
def __call__(self, sample):

return sample

@torch.no_grad()
def init_weights(m, initialization='normal', **kwargs):

if initialization == 'normal':
if type(m) == nn.Linear:

m.weight = nn.init.kaiming_normal_(m.weight, **kwargs)

elif initialization == 'uniform':
if type(m) == nn.Linear:

m.weight = nn.init.kaiming_uniform_(m.weight, **kwargs)

def load_data(dir_batch, path_to_csv, target_name, index_col,
size=None):↪→

with open(f'{dir_batch}/clean_names.json', 'r') as fhand:
names = json.load(fhand)['names']

df = pd.read_csv(path_to_csv, index_col=index_col)

83

y = df.loc[names, target_name].values.astype('float32')
X = np.load(f'{dir_batch}/clean_voxels.npy', mmap_mode='r')

return X[:size], y[:size]

84

Appendix C

Training RetNet

import torch
import random
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torcheval.metrics.functional import r2_score
from model import CustomDataset, Flip, Rotate90, Reflect, Identity
from torch.utils.tensorboard import SummaryWriter
from model import load_data, LearningMethod, RetNet, init_weights

For reproducible results.
See also -> https://pytorch.org/docs/stable/notes/randomness.html
np.random.seed(1)
torch.manual_seed(1)
random.seed(1)

Requires installation with GPU support.
See also -> https://pytorch.org/get-started/locally/
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Load training data.
X_train, y_train = load_data(

'data/MOFs/batch_train',
'data/MOFs/all_MOFs_screening_data.csv',
'CO2_uptake_P0.15bar_T298K [mmol/g]',
'MOFname',
)

Load validation data.
X_val, y_val = load_data(

'data/MOFs/batch_val_test',

85

'data/MOFs/all_MOFs_screening_data.csv',
'CO2_uptake_P0.15bar_T298K [mmol/g]',
'MOFname',
size=5_000
)

Transformations for standardization + data augmentation.
standardization = transforms.Normalize(X_train.mean(), X_train.std())

augmentation = transforms.Compose([
standardization,
transforms.RandomChoice([Rotate90(), Flip(), Reflect(),

Identity()]),↪→

])

Adding a channel dimension required for CNN.
X_train, X_val = [X.reshape(X.shape[0], 1, *X.shape[1:]) for X in

[X_train, X_val]]↪→

Create the dataloaders.
train_loader = DataLoader(

CustomDataset(X=X_train, y=y_train, transform_X=augmentation),
batch_size=64, shuffle=True, pin_memory=True,
)

val_loader = DataLoader(
CustomDataset(X=X_val, y=y_val, transform_X=standardization),
batch_size=512, pin_memory=True,
)

Define the architecture, loss and optimizer.
net = RetNet().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=1e-3)

Define the learning rate scheduler.
scheduler = optim.lr_scheduler.StepLR(

optimizer, step_size=10,
gamma=0.5, verbose=True
)

Initialize weights.
net.apply(lambda m: init_weights(m, a=0.01))

86

Initialize bias of the last layer with E[y_train].
torch.nn.init.constant_(net.fc[-1].bias, y_train.mean())

model = LearningMethod(net, optimizer, criterion)
print(net)
model_name = 'RetNet'

Use Tensorboard. Needs to be fixed!
See also ->

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html↪→

#writer = SummaryWriter(log_dir='experiments/')

model.train(
train_loader=train_loader, val_loader=val_loader,
metric=r2_score, epochs=1, scheduler=scheduler,
device=device, verbose=True, #tb_writer=writer,
)

Calculate R^2 on the whole validation set.
predictions = [model.predict(x.to(device)) for x, _ in val_loader]

y_pred = torch.concatenate(predictions)
y_true = torch.tensor(y_val).reshape(len(y_val), -1).to(device)

print(f'R2 for validation set: {r2_score(input=y_pred,
target=y_true)}')↪→

Save the trained model.
See also ->

https://pytorch.org/tutorials/beginner/saving_loading_models.html↪→

#torch.save(model, f'{model_name}.pt')

87

Appendix D

Training Random Forest

import json
import joblib
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

For reproducible results.
np.random.seed(1)

Load the names of materials used as train data.
with open('data/MOFs/batch_train/clean_names.json', 'r') as fhand:

mof_train = json.load(fhand)['names']

Load the names of materials used as test data.
with open('data/MOFs/batch_val_test/clean_names.json', 'r') as fhand:

mof_test = json.load(fhand)['names'][5000:]

Define the features and the target.
features = [

'volume [A^3]', 'weight [u]', 'surface_area [m^2/g]',
'void_fraction', 'void_volume [cm^3/g]',

'largest_free_sphere_diameter [A]',↪→

'largest_included_sphere_along_free_sphere_path_diameter [A]',
'largest_included_sphere_diameter [A]',
]

target = 'CO2_uptake_P0.15bar_T298K [mmol/g]'

Load the data set.
df = pd.read_csv('data/MOFs/all_MOFs_screening_data.csv',

index_col='MOFname')↪→

88

Instantiate the regressor.
reg = RandomForestRegressor(n_jobs=-1)

Create the test set.
df_test = df.loc[mof_test]
X_test = df_test.loc[:, features]
y_test = df_test.loc[:, target]

train_sizes = [
100, 500, 1_000, 2_000, 5_000,
10_000, 15_000, 20_000, len(mof_train)
]

Iterate over different training set sizes and estimate performance.
for size in train_sizes:

df_train = df.loc[mof_train[:size]]

X_train = df_train.loc[:, features]
y_train = df_train.loc[:, target]

reg.fit(X_train, y_train)

print(size, reg.score(X_test, y_test))

Save the trained model.
#with open('rf_model.pkl', 'wb') as fhand:
joblib.dump(reg, fhand)

89

	List of Figures
	List of Algorithms
	Introduction
	Applications of Reticular Chemistry
	The Problem
	Literature Review
	Thesis Statement

	Theoretical Background
	Machine Learning Preliminaries
	Learning paradigms
	Formulating the problem of supervised learning
	Components of a learning algorithm
	Performance, complexity and experience

	Fundamentals of Deep Learning
	Neural networks
	Regularizing neural networks
	Convolutional neural networks
	Training neural networks

	Methodology
	Datasets
	mof dataset
	cof dataset

	Voxelized PES
	Machine Learning Details
	CNN architecture
	Preprocessing & cnn training details
	Data augmentation

	Results & Discussion
	Visualizing RetNet
	Learning Curves & Parity Plots
	Discussion

	Bibliography
	Index
	Acronyms
	MOX
	RetNet
	Training RetNet
	Training Random Forest

