{ "cells": [ { "cell_type": "markdown", "source": [ "# Time Series Regression\n", "\n", "Time Series Regression (TSR) involves training a model from a collection of time\n", "series (real valued, ordered, data) in order to predict a continuous target variable.\n", "\n", "There are two types of TSR.\n", "\n", "1) Time Series Forecasting Regression (TSFR) relates to forecasting reduced to regression\n", "through a sliding window. This is the more familiar type to most people.\n", "\n", "2) Time Series *Extrinsic* Regression (TSER) was formally specified in Tan et al. [1] as a\n", "related, but distinct, type of time series regression problem. Rather than being derived from a\n", "forecasting problem, TSER involves a predictive model built on time series to predict a real-valued\n", "variable distinct from the training input series.\n", "\n", "This notebook focuses on the `aeon` regression module, which consists of algorithms \n", "used for TSER, but also applicable to TSFR.\n", "\n", "\"time\n", "\n", "An example TSER problem is shown in the below image of soil spectrograms which can be used to estimate\n", "the potassium concentration. Ground truth is found through expensive\n", "lab based experiments that take some time. Spectrograms (ordered data series we treat as time series)\n", "are cheap to obtain and the data can be collected in any environment. An accurate regressor from spectrogram\n", "to concentration would make land and crop management more efficient.\n", "\n", "\"spectrograph" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Data Storage and Problem Types\n", "\n", "Regressors take time series input as either 3D numpy of shape`(n_cases, n_channels, n_timepoints)` for\n", "equal length series or as a list of 2D numpy of length `[n_cases]`. All regressors work with equal\n", "length problems. Regression functionality for unequal length is currently limited.\n", "\n", "`aeon` ships two example regression problems in the `datasets` module:" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 9, "outputs": [ { "data": { "text/plain": "(140, 1, 84)" }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import warnings\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "from aeon.datasets import load_cardano_sentiment, load_covid_3month\n", "\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "covid_train, covid_train_y = load_covid_3month(split=\"train\")\n", "covid_test, covid_test_y = load_covid_3month(split=\"test\")\n", "cardano_train, cardano_train_y = load_cardano_sentiment(split=\"train\")\n", "cardano_test, cardano_test_y = load_cardano_sentiment(split=\"test\")\n", "covid_train.shape" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:31.722451500Z", "start_time": "2023-08-23T19:10:31.704499Z" } } }, { "cell_type": "markdown", "source": [ "Covid3Month is from the [monash tser archive](http://tseregression.org/) who in turn got\n", "the data from [WHO's COVID-19 database](https://covid19.who.int/). The goal of this dataset is to predict\n", "COVID-19's death rate on 1st April 2020 for each country using daily confirmed cases for the last three months.\n", "\n", "This dataset contains 201 time series (140 train, 61 test), where each time series is\n", "the daily confirmed cases for a country. The data is univariate, each series length 84." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 10, "outputs": [ { "data": { "text/plain": "[]" }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGzCAYAAACPa3XZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb6ElEQVR4nO3deZwU9Zk/8E/1PRcDwzHD4AADElEg6qKg4kVkJcSLNR5EzeIVo2KUEI1iohweaJJ1XY9ANOst0bjebtQoh/5MPDjEiAdiRGVBTmF6zj6qv78/qr7VVd1Vfcx09zTdn/frNa+Z6a7prulS+pnn+zzPVxFCCBAREREViKu3T4CIiIjKC4MPIiIiKigGH0RERFRQDD6IiIiooBh8EBERUUEx+CAiIqKCYvBBREREBcXgg4iIiAqKwQcREREVFIMPKpgvv/wSiqLgoYce6u1TSXL88cdj7NixvX0aZevRRx/F6NGj4fV60bdv394+nbxSFAXz589Pe9z8+fOhKEr+T6gXDR8+HCeffHJvnwb1AgYflDMPPfQQFEWx/bjuuuvy8py33nornnvuuYyO3bp1K+bPn49169bl5Vyoez799FOcf/75GDlyJO6//37cd999BXnedevW4bzzzkNTUxP8fj/q6uowZcoUPPjgg1BVtSDnkK1bb70VRxxxBAYOHIhAIIBRo0Zh9uzZ2Llzp+W4lStXGv/vPfbYY7aPNWnSJCiKkveg++OPP8b8+fPx5Zdf5vV5aN/i6e0ToNKzcOFCNDc3W24bO3Yshg0bhs7OTni93pw916233oozzjgD06dPT3vs1q1bsWDBAgwfPhyHHHJIzs6BemblypWIxWL4r//6L+y///4Fec4//vGPuPTSS1FfX48f//jHGDVqFFpbW7Fs2TJcdNFF+Oabb3D99dfn5bk7Ozvh8XTvn941a9bgkEMOwYwZM1BTU4NPPvkE999/P/73f/8X69atQ1VVleX4QCCApUuX4rzzzrPc/uWXX+Lvf/87AoFAt3+PTH388cdYsGABjj/+eAwfPjzvz0f7BgYflHPTpk3DYYcdZntfJv/Ytbe3J/0jWsy6urrg8/ngcjGR2B07duwAgJwut3R0dKCystL2vnfeeQeXXnopjjzySPzlL39BTU2Ncd/s2bOxevVqrF+/Pmfnkqgnb/hPP/100m1HHnkkzjjjDLz44ouYMWOG5b4f/OAHeOGFF7Br1y4MGDDAuH3p0qWor6/HqFGjsGfPnm6fD1F38V9LKhi7mo/zzz8f1dXV+Oc//4kf/OAHqKmpwbnnngsA2LhxI374wx+ioaEBgUAA++23H2bMmIGWlhYA2tp5e3s7Hn74YSPFfP7559s+98qVK3H44YcDAC644ALj+MT6k48//hiTJ09GZWUlhgwZgt/85jdJj6MoCp544gn8+te/xpAhQ1BZWYlgMAgAePfdd/H9738ftbW1qKysxHHHHYe//e1vSeezZcsWXHjhhaivr4ff78eYMWPwwAMPZPxaPvbYY5gwYQIqKyvRr18/HHvssfjrX/9q3P/888/jpJNOQmNjI/x+P0aOHImbbropaTkh3Wtsfr7x48ejoqICdXV1mDFjBjZv3tytxzIbPnw45s2bBwAYOHBgUj3E73//e4wZMwZ+vx+NjY2YNWsW9u7da3kMWa+zZs0aHHvssaisrEyZtViwYAEURcHjjz9uCTykww47zPLfUXt7O37xi18YyzMHHHAAfve738G8IfjYsWMxefLkpMeKxWIYMmQIzjjjDOM2u5qPt956C4cffjgCgQBGjhyJP/zhD47nn0hmExJfFwA47bTT4Pf78dRTT1luX7p0Kc466yy43e6kn4lGo7jpppswcuRI+P1+DB8+HNdffz1CoVDS85588sl46623MGHCBAQCAYwYMQKPPPKIccxDDz2EM888EwAwefJk4/+7lStXJv3+To9BpYmZD8q5lpYW7Nq1y3Kb+a+uRNFoFFOnTsXRRx+N3/3ud6isrEQ4HMbUqVMRCoXws5/9DA0NDdiyZQteeukl7N27F7W1tXj00Udx8cUXY8KECbjkkksAACNHjrR9jgMPPBALFy7EjTfeiEsuuQTHHHMMAOCoo44yjtmzZw++//3v4/TTT8dZZ52F//mf/8G1116LcePGYdq0aZbHu+mmm+Dz+XD11VcjFArB5/Nh+fLlmDZtGsaPH4958+bB5XLhwQcfxPe+9z38v//3/zBhwgQAwPbt23HEEUdAURRcccUVGDhwIF5++WVcdNFFCAaDmD17dsrXd8GCBZg/fz6OOuooLFy4ED6fD++++y6WL1+OE088EYD2j351dTXmzJmD6upqLF++HDfeeCOCwSB++9vfAkBGrzEA3HLLLbjhhhtw1lln4eKLL8bOnTtx991349hjj8X777+Pvn37ZvxYie6880488sgjePbZZ7F48WJUV1fju9/9LgCt4HLBggWYMmUKLrvsMmzYsAGLFy/GqlWr8Le//c2yfLd7925MmzYNM2bMwHnnnYf6+nrb5+vo6MCyZctw7LHHYujQoSlfZwAQQuDUU0/FihUrcNFFF+GQQw7Bq6++imuuuQZbtmzBf/7nfwIAzj77bMyfPx/btm1DQ0OD8fNvvfUWtm7dmpSRMPvwww9x4oknYuDAgZg/fz6i0SjmzZvn+DsIIbB7925Eo1Fs3LgR1113HdxuN44//vikYysrK3HaaafhT3/6Ey677DIAwAcffICPPvoIf/zjH/GPf/wj6WcuvvhiPPzwwzjjjDPwi1/8Au+++y4WLVqETz75BM8++6zl2M8//xxnnHEGLrroIsycORMPPPAAzj//fIwfPx5jxozBscceiyuvvBJ33XUXrr/+ehx44IEAYHzO5DGoRAmiHHnwwQcFANsPIYTYtGmTACAefPBB42dmzpwpAIjrrrvO8ljvv/++ACCeeuqplM9ZVVUlZs6cmdH5rVq1Kun5peOOO04AEI888ohxWygUEg0NDeKHP/yhcduKFSsEADFixAjR0dFh3B6LxcSoUaPE1KlTRSwWM27v6OgQzc3N4l//9V+N2y666CIxePBgsWvXLss5zJgxQ9TW1loeN9HGjRuFy+US//Zv/yZUVbXcl/i8iX7605+KyspK0dXVJYTI7DX+8ssvhdvtFrfccovl9g8//FB4PB7j9kyvl5158+YJAGLnzp3GbTt27BA+n0+ceOKJlt/znnvuEQDEAw88YNwmr92SJUvSPtcHH3wgAIirrroqo3N77rnnBABx8803W24/44wzhKIo4vPPPxdCCLFhwwYBQNx9992W4y6//HJRXV1tuR4AxLx584zvp0+fLgKBgPjqq6+M2z7++GPhdruF3T/R33zzjeX/rf322088+eSTlmPkf6dPPfWUeOmll4SiKOLrr78WQghxzTXXiBEjRgghtNduzJgxxs+tW7dOABAXX3yx5fGuvvpqAUAsX77cuG3YsGECgHjzzTeN23bs2CH8fr/4xS9+Ydz21FNPCQBixYoVSb9Lpo9BpYfLLpRz9957L1577TXLRzryrzJJ/qX86quvoqOjIy/nmai6utpSmOfz+TBhwgR88cUXScfOnDkTFRUVxvfr1q3Dxo0bcc4552D37t3YtWsXdu3ahfb2dpxwwgl48803EYvFIITA008/jVNOOQVCCOO4Xbt2YerUqWhpacHatWsdz/G5555DLBbDjTfemFRjYm7LNJ9ba2srdu3ahWOOOQYdHR349NNPAWT2Gj/zzDOIxWI466yzLOfa0NCAUaNGYcWKFRk/VjZef/11hMNhzJ492/J7/uQnP0GfPn3wv//7v5bj/X4/LrjggrSPK5fH7JZb7PzlL3+B2+3GlVdeabn9F7/4BYQQePnllwEA3/nOd3DIIYfgySefNI5RVRX/8z//g1NOOcVyPcxUVcWrr76K6dOnWzIxBx54IKZOnWr7M3V1dXjttdfw4osvYuHChRgwYADa2tocf4cTTzwRdXV1eOKJJyCEwBNPPIEf/ehHjr8vAMyZMyfp9wWQ9LofdNBBRhYR0JbODjjgANv/Z5zk4jFo38NlF8q5CRMmOBac2vF4PNhvv/0stzU3N2POnDm444478Pjjj+OYY47BqaeeivPOO88xhd9T++23X9JchX79+tmmphO7eTZu3AhAC0qctLS0IBKJYO/evbjvvvscW0plAaadf/7zn3C5XDjooIMcjwGAjz76CL/+9a+xfPly4w3XfB7yd0j3Gm/cuBFCCIwaNcr2eeTSR66v11dffQUAOOCAAyy3+3w+jBgxwrhfGjJkCHw+X9rH7dOnDwAtIMv0PBobG5OCFblsYD6Ps88+G9dffz22bNmCIUOGYOXKldixYwfOPvtsx8ffuXMnOjs7bV/fAw44wAgGzHw+H6ZMmQIAOPnkk3HCCSdg0qRJGDRokO3MDK/XizPPPBNLly7FhAkTsHnzZpxzzjmOv6/L5UrqOmpoaEDfvn2TXne7pat+/fplVcSai8egfQ+DD+p1fr/ftlPkP/7jP3D++efj+eefx1//+ldceeWVWLRoEd55552kYCUX7IrvAFgKC6XEv2RjsRgA4Le//a1jG291dTV2794NADjvvPMcAxVZ89Bde/fuxXHHHYc+ffpg4cKFGDlyJAKBANauXYtrr73WOFcg/Wsci8WgKApefvll29enuro648fKJ6fMQqL9998fHo8HH374Yc7P4eyzz8bcuXPx1FNPYfbs2fjzn/+M2tpafP/738/5c5kdddRRGDx4MB5//HHHgV3nnHMOlixZgvnz5+Pggw9OG7xmOtwsm/9n8vkYtO9h8EFFbdy4cRg3bhx+/etf4+9//zsmTZqEJUuW4OabbwaQ+T+S2R6bLVno2qdPH+OvUjsDBw5ETU0NVFVNeVyq54nFYvj4448dg5yVK1di9+7deOaZZ3Dssccat2/atMn2+FSv8ciRIyGEQHNzM77zne+kPb901ytTw4YNAwBs2LABI0aMMG4Ph8PYtGlTt147QCvA/N73vofly5dj8+bNaGpqSnser7/+OlpbWy3ZD7l0Jc8T0LI/EyZMwJNPPokrrrgCzzzzDKZPnw6/3+/4+AMHDkRFRYWROTPbsGFDxr9XV1dXyq6io48+GkOHDsXKlStx++23Ox43bNgwxGIxbNy40VIUun37duzdu9fy+2aq1Ke0Uvew5oOKUjAYRDQatdw2btw4uFwuS8tfVVWVbYuhHTk7JNPjszF+/HiMHDkSv/vd72zX3+UESrfbjR/+8Id4+umnbWdJJE6qTDR9+nS4XC4sXLjQksEA4n8pyr8kzX85hsNh/P73v7ccn8lrfPrpp8PtdmPBggVJf4kKvesi08fKxpQpU+Dz+XDXXXdZnve///u/0dLSgpNOOinrx5TmzZsHIQR+/OMf216rNWvW4OGHHwagzclQVRX33HOP5Zj//M//hKIoSV1QZ599Nt555x088MAD2LVrV8olF0C7VlOnTsVzzz2Hr7/+2rj9k08+wauvvmo5tr293bae5umnn8aePXtSLnUqioK77roL8+bNw49//GPH437wgx8A0LqQzO644w4A6Nbrns//72jfxcwHFaXly5fjiiuuwJlnnonvfOc7iEajePTRR403b2n8+PF4/fXXcccdd6CxsRHNzc2YOHGi7WOOHDkSffv2xZIlS1BTU4OqqipMnDgxqX6jO1wuF/74xz9i2rRpGDNmDC644AIMGTIEW7ZswYoVK9CnTx+8+OKLAIDbbrsNK1aswMSJE/GTn/wEBx10EL799lusXbsWr7/+Or799lvH59l///3xq1/9CjfddBOOOeYYnH766fD7/Vi1ahUaGxuxaNEiHHXUUejXrx9mzpyJK6+8Eoqi4NFHH00KHjJ5jUeOHImbb74Zc+fOxZdffonp06ejpqYGmzZtwrPPPotLLrkEV199dcbXK1MDBw7E3LlzsWDBAnz/+9/Hqaeeig0bNuD3v/89Dj/88KSJndk46qijcO+99+Lyyy/H6NGjLRNOV65ciRdeeMHI1JxyyimYPHkyfvWrX+HLL7/EwQcfjL/+9a94/vnnMXv27KTW7rPOOgtXX301rr76amNcezoLFizAK6+8gmOOOQaXX345otEo7r77bowZM8ZSb7Rx40ZMmTIFZ599NkaPHg2Xy4XVq1fjsccew/Dhw3HVVVelfJ7TTjsNp512WspjDj74YMycORP33XefsXz33nvv4eGHH8b06dNtZ5mkc8ghh8DtduP2229HS0sL/H4/vve972HQoEFZPxaVkMI32FCpkq22q1atsr3fqdW2qqoq6dgvvvhCXHjhhWLkyJEiEAiIuro6MXnyZPH6669bjvv000/FscceKyoqKgSAtG23zz//vDjooIOEx+OxnEtiy6H5/IYNG2Z8b25htPP++++L008/XfTv31/4/X4xbNgwcdZZZ4lly5ZZjtu+fbuYNWuWaGpqEl6vVzQ0NIgTTjhB3HfffSnPX3rggQfEoYceKvx+v+jXr5847rjjxGuvvWbc/7e//U0cccQRoqKiQjQ2Nopf/vKX4tVXX7W0PGb6GgshxNNPPy2OPvpoUVVVJaqqqsTo0aPFrFmzxIYNG7J+rER2rbbSPffcI0aPHi28Xq+or68Xl112mdizZ4/lGKdrl86aNWvEOeecIxobG4XX6xX9+vUTJ5xwgnj44Yct7b2tra3i5z//uXHcqFGjxG9/+1tLa7PZpEmTbNtVJSS02gohxBtvvCHGjx8vfD6fGDFihFiyZInxukg7d+4Ul1xyiRg9erSoqqoSPp9PjBo1SsyePTvptUv336lk99pFIhGxYMEC0dzcLLxer2hqahJz5841WrSlYcOGiZNOOsn2MY877jjLbffff78YMWKE0T4s/xvM5jGotChCsKqHiIiICoc1H0RERFRQDD6IiIiooBh8EBERUUEx+CAiIqKCYvBBREREBcXgg4iIiAqq6IaMxWIxbN26FTU1NRzLS0REtI8QQqC1tRWNjY22+3WZFV3wsXXr1rT7LRAREVFx2rx5c9rNJIsu+JCbN23evNnY/pqIiIiKWzAYRFNTk2UTRidFF3zIpZY+ffow+CAiItrHZFIywYJTIiIiKigGH0RERFRQDD6IiIiooBh8EBERUUEx+CAiIqKCYvBBREREBcXgg4iIiAqKwQcREREVFIMPIiIiKigGH0RERFRQWQcfb775Jk455RQ0NjZCURQ899xzxn2RSATXXnstxo0bh6qqKjQ2NuLf//3fsXXr1lyeMxEREe3Dsg4+2tvbcfDBB+Pee+9Nuq+jowNr167FDTfcgLVr1+KZZ57Bhg0bcOqpp+bkZImIiGjfpwghRLd/WFHw7LPPYvr06Y7HrFq1ChMmTMBXX32FoUOHJt0fCoUQCoWM7+WueC0tLdxYjoiIKIe+2t2OB97ahEF9Apg1ef+cPnYwGERtbW1G7995r/loaWmBoijo27ev7f2LFi1CbW2t8dHU1JTvUyIiIipL21q68PDbX+GZtf/Xq+eR1+Cjq6sL1157LX70ox85RkFz585FS0uL8bF58+Z8nhIREVHZUmPaYofH1bv9Jp58PXAkEsFZZ50FIQQWL17seJzf74ff78/XaRAREZEuqgcfbpfSq+eRl+BDBh5fffUVli9fztoNIiKiImBkPtwlFnzIwGPjxo1YsWIF+vfvn+unICIiom6IqDEA+2Dmo62tDZ9//rnx/aZNm7Bu3TrU1dVh8ODBOOOMM7B27Vq89NJLUFUV27ZtAwDU1dXB5/Pl7syJiIgoK/Gaj30s+Fi9ejUmT55sfD9nzhwAwMyZMzF//ny88MILAIBDDjnE8nMrVqzA8ccf3/0zJSIioh6J7qsFp8cffzxSjQbpwdgQIiIiyqNiqfng3i5ERERloli6XRh8EBERlQk1phWc9nbNB4MPIiKiMsHMBxERERVUVC2OglMGH0RERGWCmQ8iIiIqKKPmg90uREREVAjRIhkyxuCDiIioTKiqXHZhzQcREREVADMfREREVFAqC06JiIiokCIcMkZERESFZNR8sNuFiIiICkHWfHhZcEpERESFwJoPIiIiKih2uxAREVFByQmnrPkgIiKigmDmg4iIiAoqygmnREREVEgqMx9ERERUSFHuaktERESFxMwHERERFVQ0xpoPIiIiKiBmPoiIiKig4t0uDD6IiIioAKLc1ZaIiIgKKcq9XYiIiKiQjJoPttoSERFRIciaDw+7XYiIiKgQ2O1CREREBSULTlnzQURERAXBmg8iIiIqKE44JSIiooKKF5wy80FEREQFwDkfREREVFCqXnDqZc0HERERFQJrPoiIiKigOOeDiIiICoo1H0RERFRQzHwQERFRwQghjOCDmQ8iIiLKO7nkAnBjOSIiIioA1Rx8sNWWiIiI8s2c+eCyCxEREeWdqpqXXRh8EBERUZ5F9emmwD6Y+XjzzTdxyimnoLGxEYqi4LnnnrPcL4TAjTfeiMGDB6OiogJTpkzBxo0bc3W+RERE1A3mThdF2ceCj/b2dhx88MG49957be//zW9+g7vuugtLlizBu+++i6qqKkydOhVdXV09PlkiIiLqnkiRtNkCgCfbH5g2bRqmTZtme58QAnfeeSd+/etf47TTTgMAPPLII6ivr8dzzz2HGTNmJP1MKBRCKBQyvg8Gg9meEhEREaUhaz56u94DyHHNx6ZNm7Bt2zZMmTLFuK22thYTJ07E22+/bfszixYtQm1trfHR1NSUy1MiIiIixGs+Si742LZtGwCgvr7ecnt9fb1xX6K5c+eipaXF+Ni8eXMuT4mIiIhgGq3u7v1ek6yXXXLN7/fD7/f39mkQERGVtGLZVA7IceajoaEBALB9+3bL7du3bzfuIyIiosIrlk3lgBwHH83NzWhoaMCyZcuM24LBIN59910ceeSRuXwqIiIiykIxZT6yXnZpa2vD559/bny/adMmrFu3DnV1dRg6dChmz56Nm2++GaNGjUJzczNuuOEGNDY2Yvr06bk8byIiIspCVC2egtOsg4/Vq1dj8uTJxvdz5swBAMycORMPPfQQfvnLX6K9vR2XXHIJ9u7di6OPPhqvvPIKAoFA7s6aiIiIsrJPZz6OP/54CCEc71cUBQsXLsTChQt7dGJERESUO7Lmw1sE3S69fwZERESUd8WU+WDwQUREVAbUUh0yRkRERMUpqjLzQURERAUUn/PR+2/9vX8GRERElHfFtKstgw8iIqIyYNR8uBl8EBERUQGw5oOIiIgKijUfREREVFDRUt1YjoiIiIqTzHy4WfNBREREhcDMBxERERWU3NWWBadERERUEMx8EBERUUEZNR/sdiEiIqJCkJkPLwtOiYiIqBDkhFPWfBAREVFBsOaDiIiICkpVWfNBREREBcTMBxEREQEAOiIdeHD9g/g6+HX3H+QffwY++2vKQ6Ks+SAiIiIAWPb1Mtyx5g4s/mBx9x6gdTvwzCXA0xenPExl5oOIiIgAIBgOAgBaw63de4CWzQAEEGoBhHA8LKrXfHjcvf/W3/tnQEREVMaisSgAIBKLdO8BWrfFv9Yfyw4zH0RERAQgHnR0O/ho2x7/Wg07HhY1Jpwy+CAiIiprMuiIpshapGQJPpwDGCPzwQmnRERE5S2iBwyRFIFDSuZllxSPwW4XIiIiAgBERdTyOWvmzEeKpRuj4JTBBxERUXnLbeYjk5qP3n/r7/0zICIiKmOy1iMnmQ81fbcLd7UlIiIqc0a3S3cyH7EY0LYj/n3KzAdrPoiIiAimzEd3ul06dgNCjX+fouaDcz6IiIgIQA/nfLRts36fstuFNR9ERESEHmY+Wrdbv89kzgczH0REROUtt5kP55qPiMoJp0RERIQeZj7aEjIfKWs+tIJTZj6IiIjKnDFeXUQhUuxKayuLZZdojLvaEhEREawZj6yzH1kUnKrcWI6IiIgAa61H1nUfSZmPFHM+OF6diIiIAGu2I+vgQ2Y+vFXa5xSZE2Y+iIiICEAPMh9CxDMffZu0zxns7eLheHUiIqLy1u2aj1ArEO3Uvq7dT/ucsuCU3S5ERESEHmQ+ZJutv4/2AaQuOFU54ZSIiIjQg8xHq17vUV0PuH3a1ymClygnnBIRERGQg8xHdT3g9mhfp6j5UFnzQUREREAOMh81psyH6vzzsuajJLtdVFXFDTfcgObmZlRUVGDkyJG46aabsp/aRkREVAa6n/mQyy4NgMurfe2Q+YjFBPTEBzxFUPPhyfUD3n777Vi8eDEefvhhjBkzBqtXr8YFF1yA2tpaXHnllbl+OiIion1axFQkmlXmo22H9rmmPv61Q/CimhIAxZD5yHnw8fe//x2nnXYaTjrpJADA8OHD8ac//Qnvvfee7fGhUAihUMj4PhgM5vqUiIiIilZUdHPIWKsp89G5R/vaodtFTjcFSrTg9KijjsKyZcvw2WefAQA++OADvPXWW5g2bZrt8YsWLUJtba3x0dTUlOtTIiIiKkpqTEVMxIzvs8t86AWnlpoPh+AjFn+Oksx8XHfddQgGgxg9ejTcbjdUVcUtt9yCc8891/b4uXPnYs6cOcb3wWCQAQgREZUFc9YDsC7BpGVutU1T8yE7XYDiyHzkPPj485//jMcffxxLly7FmDFjsG7dOsyePRuNjY2YOXNm0vF+vx9+vz/Xp0FERFT0EoONjJddIl1A117t6+p6wC2DD6fMR4nXfFxzzTW47rrrMGPGDADAuHHj8NVXX2HRokW2wQcREVG5SlxmyXjZpV0vMHX7gYp+8eDDqeDUNGBMUXo/+Mh5zUdHRwdcCW08brcbMdN6ExERESVnOjLOfLSaBowpiqnmw37ZJVpEO9oCech8nHLKKbjlllswdOhQjBkzBu+//z7uuOMOXHjhhbl+KiIion1atzMfbaYBYwDgkhNO7X9e7utSDPUeQB6Cj7vvvhs33HADLr/8cuzYsQONjY346U9/ihtvvDHXT0VERLRP637mw1RsCqTNfESKaLopkIfgo6amBnfeeSfuvPPOXD80ERFRSel+5sO07AJkXvPh7v3ppgD3diEiIuo1Pc581DRon9N1u6jFVfPB4IOIiKiXdD/zoXe7yMyHK3XwITMfXgYfRERE5a3bmY+2xMxHum4XvebDzeCDiIiorCUGGxlnPloTaz70Ek6Hn4/P+SiOt/3iOAsiIqIy1K3MR0yNDxnLOPPBmg8iIiJCN2s+2ncBIgZAASoHaLelqfmIFtmcDwYfREREvaRbmQ9Z71E1ML7cknZvl+Ka88Hgg4iIqJd0K/MhO13kdFMgvuySwd4uxYDBBxERUS/pVubDmG7aEL/NyHykrvngkDEiIqIyl5jpyGrZxZL5kMFH6m4XLrsQERGVuW612hpttqbMhyvDzAeDDyIiovLWo8xHdTY1Hyw4JSIiIgARtTvdLnYFp3rmQ8S0OSAJ2GpLREREAICo0DIfPpeWuchs2SVFwSlg224bHzJWHG/7xXEWREREZUhmPiq8FZbvHQkBtOk1H+bMh8scfCTXfbDmg4iIiADEl1kqPFrwITMhjrpagGiX9rVT5sMme6KqWs2HhxvLERERlTe5zCKDj7SZD5n1CNQC3kD8dpcbUPS3dGY+iIiIyEnWmQ+7eg/J2FwuOYBRWfNBREREQHcyH3qnS/Wg5PtSzPpg5oOIiIgA2GQ+0nW7GNNN7TIfevBhV/MhMx+s+SAiIipvSZmPdHM+2ndqn6tsMh8p9neJyoJTZj6IiIjKW2LmI23wEdE7XfTWXAuj5sN52YUTTomIiMpcYuYj7bKLGtI+e/zJ97k8+jHOyy7MfBAREZU5memo9FRavncU1bMaMsthlkHmw+Mujrf94jgLIiKiMpTTzIdRcOrcasvMBxERUZmzq/kQQjj/QFQPPmwzH7Lg1G5vF+5qS0REREjOfACAKpJ3pY3fqS+p2NZ8OAcfzHwQERERAFPmw9S9krLuw8h82C27ONd8RFROOCUiIiLYZz5S1n0YmQ+7ZRe92yXFkDFmPoiIiMqczHIE3IGk22zJzIcnkHwf53wQERFROjLL4Xf74VbcltvsfyBFwWnKmg+t4NTL8epERETlTWY5PC4PPPqQsJSZj0xabe26XVjzQUREREA8y+F1eeHVMxepMx9yyFiKglPO+SAiIiInETWe+ZDBR8Qmc2EwMh+p5nyw5oOIiIgcREU88yGXXeRt9j+QqtVWBh/JPy+HjHlY80FERFTess98pGi1daXIfKjMfBARERFMmQ93LjIfrPkgIiKiNGSWw1xw6pj5iKmAHL1u2+2iDxmz3dtFBh/F8bZfHGdBRERUZoQQRpbD3Grr2O0isx6Aw8ZycsiYc+bDzZoPIiKi8mUOMiyZD6c5H6op+LCbcJqq5oPLLkRERGQOMrLKfCiu+BKLmex2sa350LpdWHBKRERUxszBh9flhdedJvORqtgUyGjCKWs+iIiIypg5yHArbniUNOPVU7XZAilrPjhkjIiIiCyj1RVFMTIfaZddnDIfLtntklzzwVZbIiIismwqByCDzEeKTeUA05yPMp1wumXLFpx33nno378/KioqMG7cOKxevTofT0VERLRPMmc+AGRQ8yE3lXNadnHudlGLbM6HTblsz+zZsweTJk3C5MmT8fLLL2PgwIHYuHEj+vXrl+unIiIi2mclZT7SdbukzXykKDgtspqPnAcft99+O5qamvDggw8atzU3NzseHwqFEArFe5eDwWCuT4mIiKjoJGU+0s35SJf5cDkHH6pa4jUfL7zwAg477DCceeaZGDRoEA499FDcf//9jscvWrQItbW1xkdTU1OuT4mIiKjoOGU+elzzYbPsEin1OR9ffPEFFi9ejFGjRuHVV1/FZZddhiuvvBIPP/yw7fFz585FS0uL8bF58+ZcnxIREVHRccp8pO92car50BczUm0sVyQFpzlfdonFYjjssMNw6623AgAOPfRQrF+/HkuWLMHMmTOTjvf7/fD7HaI4IiKiEpV15kMGH3aj1YHynvMxePBgHHTQQZbbDjzwQHz99de5fioiIqJ9VtaZj3TLLg41H7GYgNBiD3iLpNsl52cxadIkbNiwwXLbZ599hmHDhuX6qYiIiPZZET1IkEGHkfmwyVwAyKDV1j7zIbMeQAnvavvzn/8c77zzDm699VZ8/vnnWLp0Ke677z7MmjUr109FRES0z4oKLcMhgw4j8yG622prX/OhmoKPku12Ofzww/Hss8/iT3/6E8aOHYubbroJd955J84999xcPxUREdE+KzHzYbTa9jjzYe12kdNNgeKp+ch5wSkAnHzyyTj55JPz8dBEREQlwch8uBOGjHU78yGDD+vPWzMfJVrzQUREROkZmQ8l08xHmlZbh43lImo8+CiSxAeDDyIiot5gdLu4rQWnzt0uelCRdmM5+5oPj0uBohRH9MHgg4iIqBcYcz4Ua8Fp2jkf7jR7u8SiMHprEa/5KJZ6D4DBBxERUa/ofuYjza62gKXdVmY+vO7iecsvnjMhIiIqI4kTTmUQ4pz56NI+O2U+XObgI173UWzTTQEGH0RERL0iacKpkuHeLulqPgBL3Ye55qNYMPggIiLqBVlnPtIVnLrcpmPjjxFVmfkgIiIiJGc+ZOFp+l1tHYIPRbEdsS4LTpn5ICIiKnMyw2Esu2Sc+XAoOAVMm8vZ1HwUyb4uAIMPIiKiXpG47JK22yVd5gOwttvq4jUfxfOWXzxnQkREVEaSCk7TzfnIJPPhtsl8qCw4JSIiIuQr85Fc86Gy1ZaIiIgAm5qPtJmPNK22gGl/F5uCU9Z8EBERlTeZ4cg886EvpThtLGe+z2bOh5s1H0REROUt68yHnHCaKvNhU/MRYc0HERERAd2o+VAzyXzI4CO524U1H0RERGXOqdtFFSpiImbzA7LmI+D8oLZzPjhkjIiIiABEVPvMB2CT/YipgFC1r1MuuzjXfHi4qy0REVF5iwr7zAdgU/chsx5AmmUXu24X1nwQEVEv+L89HVi88p9o6XQoZqScisUEHnhrEz7YvNfxGJn5UGMK/vDGP/F/e8JJ9xlUU/CRSebDtOxSjDUfnvSHEBHRvm7JG//EY+98jQqvC+dPau7t0yl57335LRa+9DEOHdoXz14+yfYYmfl4/6tW3Pvyp/j4myAUKBAQxn3xg2UwocRnedgxaj6Y+SAiol62p117M9rTwcxHIWz+tgMAsDfF6y2zGx16UmNPRyTebuuU+fD4td1rndiOV9cKTosp88Hgg4ioDHRGtGLFLv0z5deOVi1Y6Aw7v96yqDQS1YKCrrDq3G5rDBhLseQCpNlYjsEHEREVkHwT7GTwURA7ZfCR4vWWRaURVTGO9bodBo0ZmY8UxaaAbc1HlBNOiYioN8g3wVR/iVPuZBJ8xDMfLuNYj6JlPpK7XfTppplmPmw2lvNybxciIiokudzCzEdh7GjVgoVwNGa8+ScyMh/6sktnOJ75cFx2SZf5sCs4VYuv24XBBxFRGWDNR2HJmg/A+TWXAUZY1nykynyoGUw3BRyGjHHCKRER9QLWfBSOEAI7gvHgw+k1lwFGKBI/zrHmI5MdbQHTkDHWfBARUS9jzUfhtIWiloDD7jUXQhiZj5BNzUfSsou51TYVo+A0/vPGnA/WfBARUSHFaz5sNiyjnDIvuQD2yy6qUCGgBQXhsBYUCAF4XE6ZD/0x02U+7DaWY80HEREVWlSNIaK/AYW47JJ3OxOCD7tlF3NmI2RKcrjgTrofQDyYSJv5kHM+WPNBRES9qCsaz3aw5iP/kjMfydkmc2ajK56kgMux1VZmPrJvtY2PVy+et/ziORMiIsoLc80Bg4/82xHssnyfLvNh3usvfeYj0yFjyXM+WPNBREQF05Wm+JFyK2nZxeY1l5kNt+JGKBKfA6Kgh5kPV6puFwYfRERUIOa/vEPRGGIOQ68oNzIpOJXBhdfltQQnimPmI8vx6tzbhYiIelPiX95dUWY/8klON5VSLbt4XB7L/T3OfNjsahvhrrZERFRoiW9+XHrJLzlgrH+VloWwXXbRazI8Li8siSihvS0nj1fPds6HTc0Hgw8iIiqUpOCDRad5tbNNCxSG9q8E4JD5EHrmQ+9uMQin8eoZttoaNR/J3S6ccEpERAXTlbjswuAjb0JRFXs7tDf+YXVa8GFb86HKglNr8CHSZT7SLrvY7e3CzAcRERVY8rILp5zmi+x08bldqK/VNoGzW3aRmQ+3KzH40ApOnTMf6QpObSacstWWiIgKjcsuhSM7XQbW+FHp1QILu9dbZj7kXA9JxHqa+ZDBh7nbhQWnRERUYIl/eTP4yB9ZbDqwxo+AN75hXCIZXLgUr+X2mMx8qImZjwxbbVPs7cIJp0REVDCJNQfsdsmfnXqb7aAaPyp8WiCRas6HkpD5iMX0OR8iMfOhBxM9qPlg5oOIiAom8S9vFpzmj6z5GNTHj4BXCyRsaz5k5iMp+NACBOfMR7rgI7nbJcKCUyIiKrTEAlMGH/kjaz4G1QRQIYOPFJkPJAQfqpou89GdvV30mo9yKji97bbboCgKZs+ene+nIiIiGyw4LZx48OE3BR/Ou9oqwtrtEtULTpMyH1F9amraOR+paj6KJ/jwpD+k+1atWoU//OEP+O53v5vPpyEiohRCDD4KRo5W1wpO9ZqPFMsuiTkAVdWDD6dW27SZDxl82M35KJ7FjrwFH21tbTj33HNx//334+abb3Y8LhQKIRSKb8ITDAbzdUpERGVJBhtulwI1JmzfDEvN6i+/xV8+3AYB6yZ6Po8L504YZkwfzTXZ7TKoJoCwvqdKymUXPfMhr42qKoC7J+PV9eDDbshYES275C34mDVrFk466SRMmTIlZfCxaNEiLFiwIF+nQURU9uSbX79KL3a1hcsi8zH3mQ+xcUeb7X2728L43ZkH5/w51ZjArrZ4wenuNi1bkarbRU40ldcmEnUBbrvMhww+AqlPwqj5CANCAIpiGq9e4sHHE088gbVr12LVqlVpj507dy7mzJljfB8MBtHU1JSP0yIiKkuy26Jfpa9sgo/d7dob/48mDEVdlZYN+PSbViz7dAe+bQ+n+tEePGcIMe39Hv2rfOjQX/dUcz6E3lorr01EVSz3x38gy2UXAIipgNtTlOPVcx58bN68GVdddRVee+01BAJpIjQAfr8ffn+aNBIREXWb/Mu7n7HLaumPV28PaW/esyaPxH79tCWWFz/YimWf7jDuyzXZZtu/yg+P22UUnKbOfOjBh35tIlGnmo8Ml11cpuBDDQNuDyJq8U04zXnwsWbNGuzYsQP/8i//YtymqirefPNN3HPPPQiFQnC73SkegYiIckn+5V1Xqb3BlXqrbVSNIRTV3nCr/fG3Ofl1ezg/wYe50wWAEXxEVIGIGoPXHS/4lJmNmN7dIq9NJNrTzIfpfj2AKYuC0xNOOAEffvih5bYLLrgAo0ePxrXXXsvAg4iowDoTMx8lHny0mwpqK30e09fa+09HKD+//07TaHUACPjib/ZdEdUSfMjMhgw+5LUJ68FHtzMf5mUXveOlLGo+ampqMHbsWMttVVVV6N+/f9LtRESUf3KZRdY+lPp4dbms4nO74PPE3/Cr9MxHW56WXXaYRqvL53cpQExoAV9NIB4YxDMfWkAkr004qsCDhMxHLAbI79ONV1cUwOXRjletmQ9vEXW7FE8OhoiI8sKo+agsj8xHh76sUum3Ztpl8NGRp+Brh2m0OgAoihKv+0ios4kYSyJaQCCvTThik/lQ4+Mo0m4sByQNGosW4a62eR0yJq1cubIQT0NERAmEEKZW2/Ko+WjTl1WqfNa3uCo9GGkPRyGEgKLk9s3YPONDqvC50R5WkwI+mdmQ49TltYFegGrJfMjppkD6zAeg1X1EO41sSTHWfBTPmRARUc5FVGG8+fSTyy4lHnx06MsqVYmZDz0YESI/r0HisgsA+D32+7vIzEZUb62V10Z2v1gyH1FTa7C5psOJsbmczHwUX80Hgw8iohJmftMrl8yHLDitTMh8yCUQAGjPQ9HpzjbrsgugZT6A5DobuXdLVB+nXuXzwOd2QW40Z7vs4vZrNR3pmDaXU2MCQh/yWkxzPhh8EBGVsC7TaHVZ8FguBafmNlsAcLkUVOnBQK5nfQghjGWXgdWmZReHWR9y19qo3t1S4XMj4HU5LLvomY90nS6SK76/i6z3AMpsV1siIuo9MtCo8LqNVtMum11WS4mc4yF/X7PKPM36CHZFjdkilsyH12HZRc98RPTMR4XXjQqf237ZJdM2W8m0v4tccgOY+SAiogKRb3oBr9t4IwyrMUTV0g1AnDIf5ttyveyyU6/3qAl4jN1sASDgsOwiMxtyqJhxfWwzH6Zll0y4490uUUvwUTxv+cVzJkRElHMy3V/hcxn1BwDQFS3l4EOv+fDbZD588Y6XXIp3ulgDhAqv9jbrVHAa1sepa8su8eDDmvmQyy4ZtNkCpuAjAlVl5oOIiApMvulVeN3wmwZulXLdh5zzkdhqC5hmfeQ48xEfrW7d08yx5kNmNvRgQy67mDMfQlaKZpv5sNR8aI+hKFrNS7Fg8EFEVMK6TMGHZehVCXe8GHM+bJZd8lVwurM1udMFSNHtIjMberAhl11kzQcQL0rNPvOhH2eq+SimrAfA4IOIqKTJ0eqyDsF4Myzh4KOjFwpO5YyPgdXW4CPgUHBqznz4PC64XYql5gOIF6X2pOajGHe0BRh8EBGVNGPZxRdP7wOlveySsuDU57EckyuJo9WleKbJfry6QLwQOOCzBh9G5kNOOM2220WNFuV0U4DBBxFRSTPXfADQZkmgtDMf8YLT5OCj0hixnuOaD5vR6oBzq6058yGP0T6bdr6VmQ+57OLOcNnFldztwswHEREVTFfYGnyU07JLlc2yS7VRcJqfZZekbheffY1NvObDlZCVUuDSt10zApRoz+d8FNOOtgCDDyKikmbM+UhYdukq4WWXNmNvF5vMh77s0pavbpc+DjUfDnM+hPAk1eMoiSPWs818uJMnnDLzQUREBZO87FIOmQ/7XW2B+GZzHTksOO2KqGjt0h5vYIbLLpbMh74UJq+Nc+bD+tiOEvZ2AVjzQUREBST/4g4kvMGVcvDR5rCrLRAPSNpyuOwi22x9Hhf6BKwBTybdLgGvNSuVnPmQwQdrPoiIaB/QlZD5cOq+KBVCiHjmw27Oh5H5yF3wZa73UBJ2na3waW+zzjUf5oJT+ZacMGJdbiyXbattLIqoyjkfRERUYOa9XQDniZulIhSNGUsN9sFH7lttnUarA5nUfLjj9TiyQDZxxHp3N5ZTw6z5ICKiwjN2tU14gyvVOR/moEIGWmay4DSXQ8acRqubz8G55sOdVI+DxGWXaLYFp7LmI2wEYgw+iIioYMqt4LTD1Fps94ZbnYe9XYxllz7JmQmnVtv4rrU2wUfizrbdznxEjZoPD1ttiYioUJxqPko1+EjVZgvER67nsuA01bKL3UTZmIhBFfr3wp00fVbEEjMfcry6DztbQ1i88p9GkastU8GpqrLbhYiICixpzocsgCzRZRdjwJhNp4t2uxaUhKIxRNXcFN3uatMCgYGpgo+IauxSG8966DUfCXM+hHBZjzMNGXv07S9x+yuf4uG/f+l8QqaN5aLcWI6IiApNdrWUT+bDecYHYA1KcjVivaVTy1DUViTXZMigLyaAsB7sGBkNwGa8OhBLzHyo8czHdj3LIpd6bLn1390054M1H0REVDCd4TKr+Ugx4wMAfG6XkQXI1aAxGXz0qUgOeMxFr136DsPmzIcWfFhnsMRiiZkPveDU40ewS3uuYGeKczcNGZPdLqz5ICKigulK3NW21Ltd9N+r0iHzoSiKqd02N69BUJ9uWlvhTbrPawp2ZMAXz3woAFxJ10YGH8mZD78R6MjPtsxDxlSZ+Siut/viOhsiIsqpxG6XUp/zIVttqx0KToH4hnO5mvVhZD4CycEHkLzUJTMairBmoyqyyHykDD5MQ8ZU1nwQEVEhCSEch4yV6rKLnN9RabOjrWRkPnKw7NIVURGOaksbtZX2wUcgIdsUUWXgYL0mRreLHDKmJg8Zk0GHDEJsuTlenYiIekkoGoPeYGGk9I03wlINPtK02gJAZQ6XXYJ6MKAoQLXDUo+RbYpal10UoR0vr43fo78lyzkfInG8ug8tHZlkPswby2mBkZc1H0REVAjmpZWA/sYWnztRmnu7yIDCqeAUiC+75KLgVGYg+gS8cDlkF4zgI2wNPgSs18TlUrQNAB0yHzGXD616cNUWiiKmZzWSuOLdLvHMR3G93RfX2RARUc7I7IbXrcDjtnZUlGrNR3zOR4qajxxmPuJttvZLLkBytsmo5YgljlXXAhGBxMyHFnx0xDxGJksIoLXLIXgyzflgzQcRERWUrDFIfHMDSjf4aE8z50O7L3cFp6nabCWZdUrsdhHCPvhIynzowUdb1PqW7Vj3wZoPIiLqLYmdLuavozGBSI4mfBaTQhecynkbqTIfie3NMviIiYTdbKFnSRx2tW1NCD4c6z7Me7vo15iZDyIiKojEGR8AEPDF/9kvxaLTjFptjWWXHGY+HNpsgeRsk1x2ETFrzYfxdeLGcnrBaTAx8+EUfLiY+SAiol4ii0rNb24+twvyfagU93eRyy6VKed8yMxH7rpdUmY+EtqbjYyGzHwk1nw4ZD6C4UwzH6z5ICKiXpI44wPQJnyW8qwPuZRSnarbxZ+Pmo8MCk4Tx6uLhBZb6Fkqc/ARiwH68ZkHH8ndLrLguFgU19kQEVHO2NV8AKYahFIMPmTmI0XBqbwvJ3M+urqf+dB2tHVZWnT9noRlFzlgDMCesDV74Vxwap7zwcwHEREVkFxWqUgovjQ2lyvBZRej1TZVt4s/d3M+4jUfzs/nVPNh3tHWODYx8xGNBx/fhjLMfNju7cLgg4iICkBO1Ex6gyvRZZdYTKAjnMmQsdwVnMpul1TLLk7dLoBN8OF1GTUfWuYjbNy3N6QFEopife4klr1d2O1CREQFZDfnA4i/GZbarI8O0++T0ZCxHGR+Mhoy5rCxnBBuox5E0oIRm8yH248WfahYQ5+A5bmTmOZ8RDjhlIiICsmo+fBZ/6kPlOiIdZnJcLsUSxFnokIXnKbqdknMfJjnfFgyHx6/0VnT1K8SQIY1H6osOGXmg4iICsCx4LREl11kMFHpc0NRnN9sK3O57JJJwake/GVU8+F1QwjteC3z0aXd4fYZgU5TnRZ8pK35ECpUVXtO1nwQEVFBGAWnZRJ8GPUeKYpNgfgAso6wCiEcNmfLgBoTxv4qmQwZS6r5EK6kYmBtyJh2ftFYNL7s4vEjqD9XU10FgBRDxtzxcxF65oQ1H0REVBDGnI/ENzhZ81Fi3S5tIbmpnHOxKQBU+uMj5kPR7i89tZk2dku5t4tjzYfHvh7HnPmQyy7mzEc/mflIU3AKAHqgw+CDiIgKojOSPOEUSH4zLBWZ7GgLWDMjHT0IwGQwEPC6tPkcDhJbbS2ZD7trY675MGc+EpZdgp0R+8yNrPkAAH1zOjeHjBERUSE4dbsEvNYahFLRlsGOtoBW/yBfg57UfWRS7wHEX/+uSPKEU3keUtJ4dT3zEXP5jCyNXHYJqzH7zI3LDSj646rMfBARUQF1lVnBaUeGyy5AvO6jJzvbZrKpHJA8UTaipprzYT9kTNWLSF0KUF8TMPbnyWTQGFAGBaeLFi3C4YcfjpqaGgwaNAjTp0/Hhg0bcv00RESUht3eLkDyMkCpiNd8pM58ALnpeMlkUzkgueA0KlLM+fDF53yYx6tHFe05agJeuFyK0drrXHQa31wOKIPMxxtvvIFZs2bhnXfewWuvvYZIJIITTzwR7e3tuX4qIiJKodNhvHrixM1SIes3Uu3rIlX65KyPntd8ZLrs0hnRumuMzIfdnA/zsosaAaJa5iKs+CzPJT+n21xOkTUfRRZ8pL9CWXrllVcs3z/00EMYNGgQ1qxZg2OPPTbp+FAohFAoPrs+GAzm+pSIiMqS07JLqRacthv7umS+7NKT/V1SDRiLiRiWfrIUhw46FMNqDjBuD0VjRubDCD7C7cB79wMHnoIK78B4wamIZz7C8OrPpZ23XOpJO2hMz3x4y63gtKWlBQBQV1dne/+iRYtQW1trfDQ1NeX7lIiIykL6IWOlOeE0o2UX/Zi2HmQ+UhWcrtm+Brevuh03vXMTAqZpq51h1ch8COHWslDrnwFenwcsv8m6sZw586HP/sg48yFrRGLFmfnIa/ARi8Uwe/ZsTJo0CWPHjrU9Zu7cuWhpaTE+Nm/enM9TIiIqG07j1Ut1zkeH7HbJqOC05zvbptrRdkvbFgDA1rat8Lhd8OmZh86ImtDt4gb2fqV9v/drS8FpVESNCaddTsFHR5pBY/pzFVvNR86XXcxmzZqF9evX46233nI8xu/3w+/35/M0iIjKkuPGciW67NKdgtO2HhWcOu9ou6tzFwBgT2gPImoEAa8LYTWGzoiavLdL6zbt+9bt1lZbNWIsu3TFrMstcvkl2JV60JgrVibdLtIVV1yBl156CStWrMB+++2Xr6chIiIbMdP0znKp+ch0vDpgqvnIQcFpquADAHZ37bYU+SYFH207tO/btsPvURKGjGnBQ6d+m8x49ElbcKrVfCiqzHwUV81HzjMfQgj87Gc/w7PPPouVK1eiubk5109BRERpmIdPlUu3iyw4rcyg4NTodunBskuqmo+dHTuNr3d17rK0Nxvj1aHv7dKmZz5iEfgjLVBgHjKmZT46VD3zIYOPQJpWW5fe7VKkNR85Dz5mzZqFpUuX4vnnn0dNTQ22bdNe1NraWlRUVOT66YiIyIY5qxHw2C+7lNqcD1lwWp3BsotcmunJnI9UQ8bMmY+dHTst2aZ45kPf26V1u3Gs0rYdAY+WtRAQUCMhuAG0q9rP98m41VZ7DJfeWeNxF1fwkfM8zOLFi9HS0oLjjz8egwcPNj6efPLJXD8VERE5kMGH3+OCK+Gv3lKt+ZAzOyozCT6MzEcPul30mg/bzEfnTsvX5mxTvODUhQo3gPYd8R9s24aAJ/54EbVTO8+oHnwErBkQ51Zb7X6lSGs+8rLsQkREvctpwBgABHzxzgshBBSluN6YuksuoVRn0O1S2cPMhxDCWPJI3NFWCGHJfGjLLkMBWDMfQrhRre4FhKnluXU7Ap7+kCFFVB+v3hbVrllyq226glPtfm+R1XwU19kQEVFOOA0YM98mBHq0pXyxkcWjmUw47WnBaVckhrCqvXaJmY/2SDs6o53G9zs7d9rWfEC4URneZflZtG1Dhc+c+dBabYOqteC0Nt14dTnnQxRnzQeDDyKiEuS0r0vibaESGTQWjsaDgcxabXtWcCqXO1xKco2JeckFAHZ17DL2cOkMqwjrm71BuBEIWY9F2w5Uer0QQnt7lpmPYET7Pl5wqrfapqn5cMfKpOaDiIh6n9OMD0AbtS2HTpVK3Yd5WFgm3S7VPVx2MbfZJi5bmZdc5Pey6LczEkPElPnwJwQqaN2mDxrT3p4jerdLa8R+2aU1FIUasyl3kHu7MPNBRESFEh+tbv/PfKkVncrCUZ/HldE+Jsautt0sOE21o60MPio9lQBkwal2Tl0RFWG5sRzc8HToxaa+au1z23YtSyJnfeiZj5CwttiaZ4u02hWdJmY+GHwQEVG+GTUfDlmAQInN+simzRaIj2DvcebDps1WzvgYXTcaALC7czcCHu3Nv8tUcOp3e6G06W22Dd/VPrduQ4XXZZpyqu/tAg8qvG749H1ivG6XkeGxbbfVaz7ceqstMx9ERJR3RreLzbKL+faSyXyEMh8wBsTrQjrCKmJ2yxZppBowJjMfB9Rpu9lGRRQudwcAa7eL3+OLDxgbrAcfbdut+7vEZPDhTeqqiQ8aswmgZLeLKM4Jp8V1NkRElBOpCk6B0hs0Jmd8ZJz5MHXEdHTjNZAbuiUGBEC84LShqgH9/P0AAKo7CMA658Pv9sYHjMnMR7gNte4QgOTMR2Kgk3LQmB58eMCCUyIiKpDOFK22QAkuu2QxWh0AAl4X5EpERzeWXloyGDA2sGIgBlQOAABE0QLAuqtthdcHyGWX/vsDXq1GpD9a4pkPvT4kDG/SEk98cznnmg8j+OCyCxER5VtXiiFjQLwQtVSWXWS3SyZttgCgKIqR/ehO0al8w7er+djduRsAMKBiAAZWDAQARPTgoyuiQtWXQgJuU/BRUw9U12s/J76N13zIZReRZeZD39vFC+13Y80HERHlXbrMR6nVfLSFMt/RVqrsQdFpqh1tLZmPCi3z0SX2AgA6IlEj+KhzR4CoNkQM1Q1ATQMAoF9sj5H5kG25IXiTgo+UO9vqmQ8vWPNBREQFkrbmw1daNR9y6aQyg9HqUk82l3NqtQ2rYbSEtCzHwMqBRuajM7ZH+xyOBwoN7nbti0At4A0YmY++6remglPTskti8JFqZ1u95kMGH8x8EBFR3nXpk0sdW229JVbzkWWrLQDTskvuMh+y08Xr8qKPrw8GVmrBR7uqBR8dkbBx7CC0al9UaxkPmfmoie62zXwkPldmBafa9WXNBxER5V25LbvIuo1M9nWR4rM+ulPzYV9wKpdcBlQMgKIo6F/RHwDQFvkWANAVtQs+BumftcxHdWS3MV5dBh9h4TFGqkvxnW3tWm31ZRclCkVB0s7GvY3BBxFRCeoqszkfRsFpht0u2rFy1kf3l10SA4JdHVrmQy63yM9BGXyYMh8DsVf7Qs94yOCjKrwLENrjRoV2fcI2NR+pC07lsotadDvaAgw+iIhKklHz4dTtIms+SmTZxSg4zWbZRT+2rTuZD4eaD3PmA4gHHy1hLfjojGo/J4QbdXodiAw6UKN9rgjtgnx7juj7xoThsan5SLG5nKnmo9jqPQAGH0REJSntnA9jyFhp7GorC06rsio4dVt+NlNqTKBV/xmnmg9Z62F0u6idgCsUX3YRLvSNagFJPPOhffZ37TRabaN63JAq85Eq+PBALbp6D4DBBxFRSYrvamv/z3ygxJZd2kLZzfkA4vUhbVkuu5jf7BPnfMjgQwYdld5KVHmrAACKJ2iMVodwa4WlQFLBqTf0LVyy5gOmzEfSkDFZ8+HcautDFO4im24KMPggIipJXWVWcNoRzn7Oh7G/S5bLLvLN3rzRm5S47GL+2uVphaJozyWEG9URGXzoBacVdcZwML9e6xFRFISFB4CC2krnmg8hEvanMYaMRZn5ICKiwkg/5yO+xXspaO9G5kMWp2Y756PFod4DiO9oK2s9gHjwoXhaAb31FcKNyrCWJTGWXVwuo/4joAcfUUVrs7V7Pvl9RBXJQaQcr66oRVnzkflVIiKifUZn2vHqhZ/z8cr6b/Dupm+Tbq/2e3DR0c3oW+nr9mNnu7cLYBoylvWyi6z3SH4LNZZdKuOZDxmIeH2tCIW1jeYU4YI/Kltt6+MPUD0ICG5BJaJog575gAdul5LUyVPpc8PtUqDGBIKdUWubsV7z4UO06KabAgw+iIhKkjFkLE3BaaGWXYJdEVyx9H1EHbavd7sUzJ7ynW4/fke3ul30gtMsAzCnzIcaU7G7S1tKsct8eH3tCOvLLm6hZyM8AW3CqaTXf1QK7TmiUPR6Dw8UxZrBUBQFtRVefNseRktnBA21gfid5oLTIqz5YPBBRFRiomoMYTV18FHomo+PtwYRjQnUVfnwowlNxu0btrXi9U924B//19LtxxZCGNmLrLpdZMFplssusuYjMfjYE9qDmIhBgYK6QJ1xu+x8cXtbAT348EAPwqrrAXNQobfbVkHrioko+oAxmyUeQGu3/bY9nFx06iruVlsGH0REJaYrGm+fdVx2KfCcj/VbtODisGH9cM3U0cbta77ag9c/2WHc3x1dkRhkQqUQBafGaHWHTpe6QB08rvh5yCyI4okHH15ZICrrPSQ989FHDz6iimK7qZxkFJ12JAQfsuaDrbZERFQI5joOv8f+n/lCZz4+2hoEAIwdUmu5/cDBNXApwI7WEHa0dnXrsWXmQlGcMz12ZH1I1pkPh31dZLGpudMFgDFiXbiDRvDhE3qAKDtdJD3z0QchAFqrbRjepEBHcmy3NdV8uIuw5qP4zoiIiHrE3GabWCcgFbrm46OtWmZjTGMfy+2VPg9GDKzWjwl267HlePRKrzurPUzkJnTZjldPt6mcudgUiGc+Yq6g0Wrrhww+nDIfWvARVbQZH06Zjz5OI9ZlzYfCzAcRERWAMd00ReeHsewSiSHmUASas/MJq/h8RxuA5MwHAIzVA5KPurn0IjeGq8yi2NR8fHuOCk7ljA9zsan5+5jSDri05RQ5x0NmOgz697XoBCC7XZJ3tJXiU04TAqgir/lg8EFEVGI602wql3hfKJrfEeufbAsiJoAB1X4MqvEn3S8DkvVbupf5kMWm1VkGH9V6fUg4GkNEzfw1kLvIJm4qZzfjAwBq/bXw6sGAy7MXAFAh9GAhKfOhL7vEtOAjqg8Zs2vr1c7BKfOh72rLIWNERFQIXcaAMed/4s3Dx/K99CKXU8Y09rFdBjpIZj6+6W7mI/sZH4A1M5RN0alT5iNxtLqkKEp80JhX+x0roQcfiQWnVVoNiE8fRhYBMis4TQo+5ITT4my1ZfBBRFRiMll2cbsUYzR43oMPfTll7JA+tvePadQyH5u/7Uzu2shAezdmfACAz+OCz629Btns79KapuZDttaayWyIy7tXO1fov2d1wrKLxwdU9odXXwmLKortvi6SzIgkF5zKbpfiHDJWfGdEREQ9km5fF6nC2Nk2v8HHer3YdGxjcr0HoP313lRXASBemJoNY8ZHlpkPoHs726ar+UjMfADxjhfFuwdAfIhYUvABANUNRiuurPnIOvOhL/P4FBVFmPhg8EFEVGrS7esiFWLEejgaw2fbtGLTMQ7BBxAPTLrT8dLRjX1dJDmSPNOiUyGE7ZAxIYTjsguQnPnwCQEoLqAq+VjU1MOjBx9RAGHhXHAqMyJBh24XAPC78lvT0x0MPoiISkxnWHuzSRd8yJqQfGY+Nu5oRViNoSbgMbIbdoyi025lPrLf0VaSRaqZbi7XGVERUbXAwBwQtEZaEVK19tjEglMg3n6ruLQgwQOh1Xe4bK5RdQPkI8u9XdJlPlIFHz4lu1biQmDwQURUYjozXHYpxKyPj/QOlrGNtY4zR4B40Wl3Jp0aBadZjFaX5M9kGnzIltbEjd52dWhZjxpvDQKeQNLPJQYkXiGS22ylmnpj2UXuapvYWSPFh4wlnL87vkkfMx9ERJR3Gdd8+PK/7OI0XCyRXHb5Yld71kO/ZOCQbaut+Wcy3dk2PlrdutGbUe9RabOMguTgwyOQ3GZrnFR82SXTmo+2UBRRc7uwaby7TynczsWZYvBBRFRijDkfaQowCzFifb3DWPVEA2v8qO/jhxDAJ99kV/chl10qu7HsIttz2zNstU3XZmu35AIkByVepMh8VNcbyy7GrrYpNpaTLNkPRYGqaPcFGHwQEVG+ZVtwmq+aDzUm8LERfKTOfADxgtRsh43FMx/d6HbxZVfz4bSviww+ZFdLogGBhOBDCPtOFwCoaTBlPgDh8sHrtn+79rhdxvJPYt1HTA8+vKz5ICKifMu45iPPyy6bdrWjM6KiwutG84DqtMcbY9azLDrtSeajKssR645ttg7TTaX+Ff2hIL5Moy27pMh8GDUfClze5BoSM6d2W1Vvt/W7mPkgIqI86zKWXVL/Ex9fdslPQaIMIg4cXJPR/iJjujlmPd5q2/2C00znfMg228ShX077ukgelwfV3r7G91rBqUPNR02DMWQsAgXuNMGH0862qiL3d2HwQUREeZZp5iPfNR/rjcmmqes9JFmU+tn2VoSimZ9TWw/mfFT7ullwmuGOtmZ9ffElGQ+Ec8GprwpwawFHVAE8vuT9cMycdraVyy4sOCUiorzLuObDl9+aDzkwzGmyaaIhfSvQt9KLaExg4/a2jJ+noycFp8acj8xeA9lqm7jRW7rMBwDUBeLBh1fAueAUAHx9AWjdLh5fmsyHMWjMGkDJglNmPoiIKO8y7XYJ5HHCqRDCyHwclKbNVlIUxch+ZDPvo2etttnN+XDsdulI3e0CWCefelIVnAIQfi1QiUKB19/Nmg8j88GCUyIiyrNs93bJx7LL/+3pRLArCq9bwXfqazL+OZklyWbSqVwyyXZXW+1nslt2sRut3hXtQmukFYBztwuQsOGcEgA8zsspLv3YiAL4A86TYc3nkljzEQUzH0REVCBdegFp+uAjf7vaymLTAxpqjN1zMyGLTjPd40WNCeP37U7Nh7GxXJbdLuaCU1nv4XP50MfnnOWpNwUfMU/q7h8ZfEQVBT5/6uBDLgE5ZT68rPkgIqJ8M2o+0g0Z0+8P5SH4kB0rYwZnVu8hyWWXT74JWid2OjBnLLrT7SLnfLRlOefDnPkwBoxVDkw5Qn5w9SDja+FNvRTl05dkMgk+nJZdonLZBVx2ISKiPCuGvV3kskkmw8XMmvtXocrnRlckhi92tac9vkMvFPW4FPgcBnGlIrMlHRkXnCZ3uxij1W12szXLJvjwVA82vvZVpOl2cdjZVtWXXTzlFHzce++9GD58OAKBACZOnIj33nsvX09FREQmcs5H+l1t81dwKpdNxmTYZiu5XIpRoJrJsDFzm22qrIOTqix3tbUrOE03YEwy13woejeLk0DfIcbX6YIPp51tI+VW8/Hkk09izpw5mDdvHtauXYuDDz4YU6dOxY4dO/LxdEREZJL9nI/cDhnbEezCztYQXApwYEN2mQ8guzHrchO6qm4Um5p/rj0chdCnijqJqjFjEqp5T5V0o9Ulc2ZE8fdLeWyFOfjw2+/rIjntbKsq2u/mQSTpZ3qbItK92t0wceJEHH744bjnnnsAALFYDE1NTfjZz36G6667znJsKBRCKBQyvg8Gg2hqakJLSwv69Mn+P1onn3+9Hvf89ec5ezwioqIkgG/bwwCA0Q2pJ4u2h1V8uasdLpeCvpWp3+CyEVVjCHZG4fe6sP/A9GPVE+3pjGDrnk54PS7UOGwln6vnUoXAp99onSp1VT4gRfJECGCP/toe2NjH+Ov93fBubFRbcUXVd/DTqlEpn2/itpfQ4VLwq36nY8apCxyPiwR3YvwzkyEUBf86aDLq+w9xPHZPexjPrtsCj8vaWTR05xtoFNvQFmhAdd9Blp+pC/TDT059JOW5ZisYDKK2tjaj9+/sS4PTCIfDWLNmDebOnWvc5nK5MGXKFLz99ttJxy9atAgLFjhfgFzZuff/sMy7Le/PQ0TU63zap/dD36Y/NvUf4N3jBaCPpnhHzwpkLdPzKuRzAfHXtjP5td1v09+B9tdT/viwxgZ84vehX//9Ux7nrRmA2pjAXreC13asANIsHPjqtM+fx/+Wx+d9AKAPgA6g80vL8cPbvsJPUj9kXuU8+Ni1axdUVUV9vXV4Sn19PT799NOk4+fOnYs5c+YY38vMR6419B+OaeqwnD8uEVExqvF7kgZh2dndFkZnFqPMM+VSFAyo9nWrCBQAdreHMy6EVaBlLdItMzkJdkWSlixSqQ14kzIy/Vx+/OuQkYCS+hx+vncH3o6o+Ncjzkn9JIqCq4ZeirV7P0DDiO+mPad/7mzDztYuy20+tR2Du/6J+iovXAmXoW8gH1Fn5nIefGTL7/fD709dTJMLzUNG4zcXvpT35yEiInJypP6RiTOm/Axn5PNkelHOC04HDBgAt9uN7du3W27fvn07GhocNtEhIiKispHz4MPn82H8+PFYtmyZcVssFsOyZctw5JGZxntERERUqvKy7DJnzhzMnDkThx12GCZMmIA777wT7e3tuOCCC/LxdERERLQPyUvwcfbZZ2Pnzp248cYbsW3bNhxyyCF45ZVXkopQiYiIqPzkZc5HT2TTJ0xERETFIZv3b+7tQkRERAXF4IOIiIgKisEHERERFRSDDyIiIiooBh9ERERUUAw+iIiIqKAYfBAREVFBMfggIiKigur1XW0TyZlnwWCwl8+EiIiIMiXftzOZXVp0wUdraysAoKmpqZfPhIiIiLLV2tqK2tralMcU3Xj1WCyGrVu3oqamBoqi5PSxg8EgmpqasHnzZo5u30fwmu1beL32Pbxm+55ivWZCCLS2tqKxsREuV+qqjqLLfLhcLuy33355fY4+ffoU1QWj9HjN9i28XvseXrN9TzFes3QZD4kFp0RERFRQDD6IiIiooMoq+PD7/Zg3bx78fn9vnwpliNds38Lrte/hNdv3lMI1K7qCUyIiIiptZZX5ICIiot7H4IOIiIgKisEHERERFRSDDyIiIiooBh9ERERUUGUTfNx7770YPnw4AoEAJk6ciPfee6+3T4l0ixYtwuGHH46amhoMGjQI06dPx4YNGyzHdHV1YdasWejfvz+qq6vxwx/+ENu3b++lMyaz2267DYqiYPbs2cZtvF7FZ8uWLTjvvPPQv39/VFRUYNy4cVi9erVxvxACN954IwYPHoyKigpMmTIFGzdu7MUzLm+qquKGG25Ac3MzKioqMHLkSNx0002WTdv26WsmysATTzwhfD6feOCBB8RHH30kfvKTn4i+ffuK7du39/apkRBi6tSp4sEHHxTr168X69atEz/4wQ/E0KFDRVtbm3HMpZdeKpqamsSyZcvE6tWrxRFHHCGOOuqoXjxrEkKI9957TwwfPlx897vfFVdddZVxO69Xcfn222/FsGHDxPnnny/effdd8cUXX4hXX31VfP7558Yxt912m6itrRXPPfec+OCDD8Spp54qmpubRWdnZy+eefm65ZZbRP/+/cVLL70kNm3aJJ566ilRXV0t/uu//ss4Zl++ZmURfEyYMEHMmjXL+F5VVdHY2CgWLVrUi2dFTnbs2CEAiDfeeEMIIcTevXuF1+sVTz31lHHMJ598IgCIt99+u7dOs+y1traKUaNGiddee00cd9xxRvDB61V8rr32WnH00Uc73h+LxURDQ4P47W9/a9y2d+9e4ff7xZ/+9KdCnCIlOOmkk8SFF15oue30008X5557rhBi379mJb/sEg6HsWbNGkyZMsW4zeVyYcqUKXj77bd78czISUtLCwCgrq4OALBmzRpEIhHLNRw9ejSGDh3Ka9iLZs2ahZNOOslyXQBer2L0wgsv4LDDDsOZZ56JQYMG4dBDD8X9999v3L9p0yZs27bNcs1qa2sxceJEXrNectRRR2HZsmX47LPPAAAffPAB3nrrLUybNg3Avn/Nim5X21zbtWsXVFVFfX295fb6+np8+umnvXRW5CQWi2H27NmYNGkSxo4dCwDYtm0bfD4f+vbtazm2vr4e27Zt64WzpCeeeAJr167FqlWrku7j9So+X3zxBRYvXow5c+bg+uuvx6pVq3DllVfC5/Nh5syZxnWx+3eS16x3XHfddQgGgxg9ejTcbjdUVcUtt9yCc889FwD2+WtW8sEH7VtmzZqF9evX46233urtUyEHmzdvxlVXXYXXXnsNgUCgt0+HMhCLxXDYYYfh1ltvBQAceuihWL9+PZYsWYKZM2f28tmRnT//+c94/PHHsXTpUowZMwbr1q3D7Nmz0djYWBLXrOSXXQYMGAC3251Uab99+3Y0NDT00lmRnSuuuAIvvfQSVqxYgf3228+4vaGhAeFwGHv37rUcz2vYO9asWYMdO3bgX/7lX+DxeODxePDGG2/grrvugsfjQX19Pa9XkRk8eDAOOuggy20HHnggvv76awAwrgv/nSwe11xzDa677jrMmDED48aNw49//GP8/Oc/x6JFiwDs+9es5IMPn8+H8ePHY9myZcZtsVgMy5Ytw5FHHtmLZ0aSEAJXXHEFnn32WSxfvhzNzc2W+8ePHw+v12u5hhs2bMDXX3/Na9gLTjjhBHz44YdYt26d8XHYYYfh3HPPNb7m9SoukyZNSmpf/+yzzzBs2DAAQHNzMxoaGizXLBgM4t133+U16yUdHR1wuaxv0W63G7FYDEAJXLPerngthCeeeEL4/X7x0EMPiY8//lhccsklom/fvmLbtm29fWokhLjssstEbW2tWLlypfjmm2+Mj46ODuOYSy+9VAwdOlQsX75crF69Whx55JHiyCOP7MWzJjNzt4sQvF7F5r333hMej0fccsstYuPGjeLxxx8XlZWV4rHHHjOOue2220Tfvn3F888/L/7xj3+I0047bZ9p2yxFM2fOFEOGDDFabZ955hkxYMAA8ctf/tI4Zl++ZmURfAghxN133y2GDh0qfD6fmDBhgnjnnXd6+5RIB8D248EHHzSO6ezsFJdffrno16+fqKysFP/2b/8mvvnmm947abJIDD54vYrPiy++KMaOHSv8fr8YPXq0uO+++yz3x2IxccMNN4j6+nrh9/vFCSecIDZs2NBLZ0vBYFBcddVVYujQoSIQCIgRI0aIX/3qVyIUChnH7MvXTBHCNC6NiIiIKM9KvuaDiIiIiguDDyIiIiooBh9ERERUUAw+iIiIqKAYfBAREVFBMfggIiKigmLwQURERAXF4IOIiIgKisEHERERFRSDDyIiIiooBh9ERERUUP8fz4Za7g6cq7kAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.title(\"First three cases for Covid3Month\")\n", "plt.plot(covid_train[0][0])\n", "plt.plot(covid_train[1][0])\n", "plt.plot(covid_train[2][0])" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:31.860693700Z", "start_time": "2023-08-23T19:10:31.721454600Z" } } }, { "cell_type": "code", "execution_count": 11, "outputs": [ { "data": { "text/plain": "(74, 2, 24)" }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cardano_train.shape" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:31.879699600Z", "start_time": "2023-08-23T19:10:31.860693700Z" } } }, { "cell_type": "markdown", "source": [ "The CardanoSentiment dataset was created By combining historical sentiment data for\n", "Cardano cryptocurrency, extracted from EODHistoricalData and made available on\n", "Kaggle, with historical price data for the same cryptocurrency extracted from\n", "CryptoDataDownload. The predictors are hourly close price (in USD) and traded\n", "volume during a day, resulting in 2-dimensional time series of length 24. The\n", "response variable is the normalized sentiment score on the day spanned by the timepoints." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 12, "outputs": [ { "data": { "text/plain": "[]" }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGzCAYAAAAMr0ziAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACS9klEQVR4nOzdd1zU9R/A8dcdx97IUkTcIu69N67MXWluMk1L0/y1bGiaZWWZDdMyt5WWO00tZ5pbxL0VRWQre999f398BSNAQYFjvJ+Pxz04vvcd7zvGve8z3h+NoigKQgghhBDFmNbYAQghhBBCPIokLEIIIYQo9iRhEUIIIUSxJwmLEEIIIYo9SViEEEIIUexJwiKEEEKIYk8SFiGEEEIUe5KwCCGEEKLYk4RFCCGEEMWeJCziiQUGBqLRaFi2bJmxQ8mmY8eO1K1b19hhlFkrV67E29sbU1NTHBwcjB1OkVi2bBkajYbAwEBjh1Js7d27F41Gw969e40diihBJGERj5TxDzin29tvv10o1/z444/ZuHFjnva9c+cOH3zwAQEBAYUSi3g8Fy9eZNSoUVSrVo1Fixbxww8/FMl1AwICGDZsGJ6enpibm+Pk5ISvry9Lly5Fr9cXSQzFSXx8PNOnT6du3bpYW1tTrlw5GjZsyKRJk7hz506hXvu7774rlh9k8urnn39m3rx5xg5D3KczdgCi5Jg5cyZVqlTJsq1u3bp4eXmRlJSEqalpgV3r448/5plnnqFfv36P3PfOnTvMmDGDypUr07BhwwKLQTyZvXv3YjAY+Oqrr6hevXqRXPPHH39k3LhxuLm5MXz4cGrUqEFcXBy7du1i9OjRhISE8M477xRJLMVBWloa7du35+LFi4wcOZKJEycSHx/PuXPn+Pnnn+nfvz8VKlQotOt/9913ODs7M2rUqCzb27dvT1JSEmZmZoV27YLw888/c/bsWSZPnmzsUASSsIh86NmzJ02bNs3xMQsLi0cen5CQgLW1dUGHVWiSk5MxMzNDq5WGyMcRHh4OUKBdQYmJiVhZWeX42OHDhxk3bhytWrXijz/+wNbWNvOxyZMnc/z4cc6ePfvEMRgMBlJTU/P0O29sGzdu5OTJk/z0008MGTIky2PJycmkpqYaJS6tVlsiXj9RzChCPMLSpUsVQDl27FiOj9+4cUMBlKVLl2ZuGzlypGJtba1cvXpV6dmzp2JjY6P07dtXURRFuXz5sjJgwADFzc1NMTc3Vzw8PJRBgwYp0dHRiqIoCpDtNnLkyByvvWfPnhz3z4ilQ4cOSp06dZRz584pHTt2VCwtLZUKFSoon376aY7n+eWXX5R3331XqVChgqLRaJR79+4piqIohw8fVrp3767Y2dkplpaWSvv27ZUDBw5ki+f27duKn5+f4urqqpiZmSk+Pj7K4sWL8/xar1y5UmnWrJliaWmpODg4KO3atVN27NiR+fjGjRuVp556SilfvrxiZmamVK1aVZk5c6aSnp6e5TyPeo3/fb3GjRsrFhYWiqOjozJo0CDl1q1bj3Wuf/Py8sr2M5k+fXrm4/Pnz1d8fHwUMzMzpXz58srLL7+c+VpnyPjZHT9+XGnXrp1iaWmpTJo0Kddr9ujRQ9HpdMrNmzdz3eff5syZo7Rq1UpxcnJSLCwslMaNGyu//fZbtv0A5ZVXXlFWrVql+Pj4KDqdTtmwYYOiKIpy9uxZpVOnToqFhYXi4eGhfPjhh8rixYsVQLlx40bmOfL6c8vr76uiKEpYWJjywgsvKK6uroq5ublSv359ZdmyZVn2mT17tgIogYGBeXpNLly4oAwcOFBxdHRUzM3NlSZNmiibNm3Ksk/G/4MDBw4or732muLs7KxYWVkp/fr1U8LDwzP3y+l3oEOHDoqiPPh727NnT7bnfurUKaV9+/aKpaWlUq1atcyfyd69e5XmzZsrFhYWSs2aNZW//vorW/x5+fvLuPaaNWuUWbNmKR4eHoq5ubnSuXNn5cqVK1ni+W/8Xl5eeXodReGQFhaRZzExMURGRmbZ5uzsnOv+6enpdO/enbZt2/L5559jZWVFamoq3bt3JyUlhYkTJ+Lu7k5wcDBbtmwhOjoae3t7Vq5cyYsvvkjz5s0ZO3YsANWqVcvxGrVr12bmzJlMmzaNsWPH0q5dOwBat26duc+9e/fo0aMHAwYM4LnnnmPt2rW89dZb1KtXj549e2Y534cffoiZmRmvv/46KSkpmJmZsXv3bnr27EmTJk2YPn06Wq2WpUuX0rlzZ/bv30/z5s0BCAsLo2XLlmg0GiZMmICLiwvbtm1j9OjRxMbGPrJZecaMGXzwwQe0bt2amTNnYmZmxpEjR9i9ezfdunUD1PFENjY2TJkyBRsbG3bv3s20adOIjY1lzpw5AHl6jQE++ugj3n//fZ577jlefPFFIiIi+Oabb2jfvj0nT57EwcEhz+f6r3nz5rFixQo2bNjAggULsLGxoX79+gB88MEHzJgxA19fX8aPH8+lS5dYsGABx44d459//snStRgVFUXPnj0ZPHgww4YNw83NLcfrJSYmsmvXLtq3b0+lSpUe+jpn+Oqrr+jTpw9Dhw4lNTWV1atX8+yzz7JlyxZ69eqVZd/du3fz66+/MmHCBJydnalcuTKhoaF06tSJ9PR03n77baytrfnhhx+wtLTMdq28/Nwy5OX3NSkpiY4dO3L16lUmTJhAlSpV+O233xg1ahTR0dFMmjQJAC8vLwBWrFjBe++9h0ajyfX1OHfuHG3atMHDwyPz+fz666/069ePdevW0b9//yz7T5w4EUdHR6ZPn05gYCDz5s1jwoQJrFmzBlB/ByZOnIiNjQ3vvvsuQK4/v38/96effprBgwfz7LPPsmDBAgYPHsxPP/3E5MmTGTduHEOGDGHOnDk888wzBAUFZbak5ffv75NPPkGr1fL6668TExPDZ599xtChQzly5AgA7777LjExMdy+fZsvv/wSABsbm4fGLwqZsTMmUfxlfKLK6aYoubewAMrbb7+d5VwnT55UgBw/yf6btbV1rq0q/3Xs2LFs18+Q8SlpxYoVmdtSUlIUd3d3ZeDAgZnbMj51Va1aVUlMTMzcbjAYlBo1aijdu3dXDAZD5vbExESlSpUqSteuXTO3jR49WilfvrwSGRmZJYbBgwcr9vb2Wc77X1euXFG0Wq3Sv39/Ra/XZ3nsv9f9r5deekmxsrJSkpOTFUXJ22scGBiomJiYKB999FGW7WfOnFF0Ol3m9rz+vHIyffp0BVAiIiIyt4WHhytmZmZKt27dsjzPb7/9VgGUJUuWZG7L+NktXLjwkdc6deqUAjy0Bea//vtapqamKnXr1lU6d+6cZTugaLVa5dy5c1m2T548WQGUI0eOZHl+9vb22VpY8vJzU5S8/77OmzdPAZRVq1Zlib9Vq1aKjY2NEhsbm3ndWrVqZbYOjBo1Slm8eLESFhaWLZ4uXboo9erVyxKPwWBQWrdurdSoUSNzW8b/A19f3yy/m6+99ppiYmKSpeWtTp06ma0q/5ZbCwug/Pzzz5nbLl68mPn6Hz58OHP7jh07sv3N5/XvL+PatWvXVlJSUjL3++qrrxRAOXPmTOa2Xr16SatKMSKd8yLP5s+fz19//ZXl9ijjx4/P8n3GJ/IdO3aQmJhYKHH+l42NDcOGDcv83szMjObNm3P9+vVs+44cOTLLJ+SAgACuXLnCkCFDiIqKIjIyksjISBISEujSpQt///03BoMBRVFYt24dvXv3RlGUzP0iIyPp3r07MTEx+Pv75xrjxo0bMRgMTJs2LduYmX9/Kv53bHFxcURGRtKuXTsSExO5ePEikLfXeP369RgMBp577rkssbq7u1OjRg327NmT53Plx86dO0lNTWXy5MlZnueYMWOws7Nj69atWfY3NzfHz8/vkeeNjY0FyDJu5VH+/Vreu3ePmJgY2rVrl+PPqUOHDvj4+GTZ9scff9CyZcvMFjYAFxcXhg4d+tBr5fZzy5CX39c//vgDd3d3nn/++cxtpqamvPrqq8THx7Nv377M6x45coQ33ngDUFt6Ro8eTfny5Zk4cSIpKSkA3L17l927d/Pcc89lxhcZGUlUVBTdu3fnypUrBAcHZ4lz7NixWX4327Vrh16v5+bNm9mef17Z2NgwePDgzO9r1aqFg4MDtWvXpkWLFpnbM+5nvCaP8/fn5+eXZdBvRutsTv8XRPEgXUIiz5o3b57roNuc6HQ6KlasmGVblSpVmDJlCnPnzuWnn36iXbt29OnTh2HDhuXavfCkKlasmK0p3NHRkdOnT2fb97+zoK5cuQKoiUxuYmJiSEtLIzo6mh9++CHX6bsZg1Bzcu3aNbRabbY3xf86d+4c7733Hrt37858k/53HBnP4VGv8ZUrV1AUhRo1auR4nYxumYL+eWW8mdWqVSvLdjMzM6pWrZrtzc7DwyNPM0ns7OwANRnIqy1btjBr1iwCAgIy37iBHLtN/vt7Aepz+febaIb/PjfI288tQ15+X2/evEmNGjWyJbe1a9fOfDyDvb09n332GZ999hk3b95k165dfP7553z77bfY29sza9Ysrl69iqIovP/++7z//vvZ4gf199fDwyPz+/92vTk6OgJq8ve4cnru9vb2eHp6Ztv272tFRETk+++vMOIXhUsSFlFozM3Nc5xh88UXXzBq1Cg2bdrEn3/+yauvvsrs2bM5fPhwtgSnIJiYmOS4XVGUbNv+O/7AYDAAMGfOnFynTNvY2BAVFQXAsGHDck1uMsZwPK7o6Gg6dOiAnZ0dM2fOpFq1alhYWODv789bb72VGSs8+jU2GAxoNBq2bduW4+vz7776ov55/VtO40FyUr16dXQ6HWfOnMnT/vv376dPnz60b9+e7777jvLly2NqasrSpUv5+eefHzuOnOTn5wb5+33NLy8vL1544QX69+9P1apV+emnn5g1a1ZmDK+//jrdu3fP8dj/Tk0vjDhzO+ejrpURf37+/grzdRaFQxIWYRT16tWjXr16vPfeexw8eJA2bdqwcOFCZs2aBeT8KTc3+dk3vzIG+9rZ2eHr65vrfi4uLtja2qLX6x+638OuYzAYOH/+fK6J0d69e4mKimL9+vW0b98+c/uNGzdy3P9hr3G1atVQFIUqVapQs2bNR8b3qJ9XXmUMAr106RJVq1bN3J6amsqNGzce67UDsLKyonPnzuzevZugoKBsn8j/a926dVhYWLBjxw7Mzc0zty9dujTP1/Ty8spsgfu3S5cuZfk+vz+3vF779OnTGAyGLB8KMrqXMl7n3Dg6OlKtWrXMad4ZPwtTU9PH/hnkpDD/Nv/tSf/+clNU8Yu8kTEsokjFxsaSnp6eZVu9evXQarVZmuWtra2Jjo7O0zkzarvkdf/8aNKkCdWqVePzzz8nPj4+2+MRERGA+mlt4MCBrFu3LsdaHxn75aZfv35otVpmzpyZ7RN3xie+jE+E//4EmJqaynfffZdl/7y8xgMGDMDExIQZM2Zk+0SpKEpmi1Fef1555evri5mZGV9//XWW6y5evJiYmJhss3PyY/r06SiKwvDhw3P8WZ04cYLly5cD6mup0WiyVL4NDAzMc3VlgKeeeorDhw9z9OjRzG0RERH89NNPWfbL688tP5566ilCQ0MzZ+SAOivvm2++wcbGhg4dOgBw6tSpbDP7QO0yOn/+fGb3laurKx07duT7778nJCQk2/6P+v3NTX7+jp/Ek/795cba2jpbl50wHmlhEUVq9+7dTJgwgWeffZaaNWuSnp7OypUrM//hZGjSpAk7d+5k7ty5VKhQgSpVquQ4XgDU1gkHBwcWLlyIra0t1tbWtGjRIsdxB/ml1Wr58ccf6dmzJ3Xq1MHPzw8PDw+Cg4PZs2cPdnZ2/P7774A6TXLPnj20aNGCMWPG4OPjw927d/H392fnzp3cvXs31+tUr16dd999lw8//JB27doxYMAAzM3NOXbsGBUqVGD27Nm0bt0aR0dHRo4cyauvvopGo2HlypXZEo68vMbVqlVj1qxZTJ06lcDAQPr164etrS03btxgw4YNjB07ltdffz3PP6+8cnFxYerUqcyYMYMePXrQp08fLl26xHfffUezZs2yDDbNr9atWzN//nxefvllvL29s1S63bt3L5s3b85sEerVqxdz586lR48eDBkyhPDwcObPn0/16tVzHNuUkzfffJOVK1fSo0cPJk2alDmtOaP1499x5eXnlh9jx47l+++/Z9SoUZw4cYLKlSuzdu1a/vnnH+bNm5c5+Pivv/5i+vTp9OnTh5YtW2JjY8P169dZsmQJKSkpfPDBB5nnnD9/Pm3btqVevXqMGTOGqlWrEhYWxqFDh7h9+zanTp3Kd5xNmjRhwYIFzJo1i+rVq+Pq6krnzp0f+3k/zJP8/eWmSZMmrFmzhilTptCsWTNsbGzo3bt3IUQv8qRI5ySJEulJCsf91/Xr15UXXnhBqVatmmJhYaE4OTkpnTp1Unbu3Jllv4sXL2YWj+IhheMybNq0KbOo179jyShG9V8jR47MMl0xY6pjbtN3T548qQwYMEApV66cYm5urnh5eSnPPfecsmvXriz7hYWFKa+88ori6empmJqaKu7u7kqXLl2UH3744aHxZ1iyZInSqFEjxdzcXHF0dFQ6dOiQpUDWP//8o7Rs2TKzoNibb76ZOcUzY4poXl9jRVGUdevWKW3btlWsra0Va2trxdvbW3nllVeUS5cu5ftc/5XTtOYM3377reLt7a2Ympoqbm5uyvjx43MtHJdfJ06cUIYMGaJUqFBBMTU1VRwdHZUuXbooy5cvzzKVevHixUqNGjUUc3NzxdvbW1m6dGlmzP/G/cJxOTl9+rTSoUOHRxaOy8vP7WHP+b+/r4qi/q75+fkpzs7OipmZmVKvXr1sU/uvX7+uTJs2TWnZsqXi6uqq6HQ6xcXFRenVq5eye/fubNe5du2aMmLECMXd3V0xNTVVPDw8lKefflpZu3Zt5j65/T/IaapyaGio0qtXL8XW1jbPheP+y8vLS+nVq1e27Tn9XPLy95fb33pO/8fi4+OVIUOGKA4ODlI4rhjQKIqMMBJCCCFE8SZjWIQQQghR7EnCIoQQQohiTxIWIYQQQhR7krAIIYQQotiThEUIIYQQxZ4kLEIIIYQo9kpF4TiDwcCdO3ewtbWVUspCCCFECaEoCnFxcVSoUCHHtef+rVQkLHfu3Hnk2iFCCCGEKJ6CgoIeuZhqqUhYMspQBwUFZS4zL4QQQojiLTY2Fk9Pz8z38YcpFQlLRjeQnZ2dJCxCCCFECZOX4Rwy6FYIIYQQxZ4kLEIIIYQo9iRhEUIIIUSxJwmLEEIIIYo9SViEEEIIUexJwiKEEEKIYk8SFiGEEEIUe5KwCCGEEKLYk4RFCCGEEMWeJCxCCCGEKPYkYRFCCCFEsScJixBCCCGKPUlYHiI2OY0f91/n7XWnjR2KEEIIUaZJwvIQ8cnpfPzHBVYfC+J6RLyxwxFCCCHKLElYHqKCgyUda7kCsPpYkJGjEUIIIcouSVge4fnmlQBYe+I2Kel6I0cjhBBClE2SsDxCp1ouuNmZczchlb/Ohxk7HCGEEKJMkoTlEXQmWp5r6gnAL0dvGTkaIYQQomyShCUPnmvqiUYD/1yN4mZUgrHDEUIIIcocSVjywNPJinY1XAAZfCuEEEIYgyQseTSkudot9Nvx26TpDUaORgghhChbJGHJoy613XC2MScyPoVdF2TwrRBCCFGUJGHJI1MTLc82rQjAz0elW0gIIYQoSpKw5MPgZmq30P4rEQTdTTRyNEIIIUTZIQlLPniVs6ZN9XIoCvx6XFpZhBBCiKIiCUs+ZVS+/fV4EOky+FYIIYQoEpKw5FNXHzecrM0Ii01hz6UIY4cjhBBClAmSsOSTuc6EZ5qog29XS+VbIYQQokg8VsIyf/58KleujIWFBS1atODo0aO57rts2TI0Gk2Wm4WFRZZ9FEVh2rRplC9fHktLS3x9fbly5crjhFYkBt0ffLvnUjh3opOMHI0QQghR+uU7YVmzZg1Tpkxh+vTp+Pv706BBA7p37054eHiux9jZ2RESEpJ5u3nzZpbHP/vsM77++msWLlzIkSNHsLa2pnv37iQnJ+f/GRWBai42tKjihEEG3wohhBBFIt8Jy9y5cxkzZgx+fn74+PiwcOFCrKysWLJkSa7HaDQa3N3dM29ubm6ZjymKwrx583jvvffo27cv9evXZ8WKFdy5c4eNGzc+1pMqCpmDb48FoTcoRo5GCCGEKN3ylbCkpqZy4sQJfH19H5xAq8XX15dDhw7lelx8fDxeXl54enrSt29fzp07l/nYjRs3CA0NzXJOe3t7WrRokes5U1JSiI2NzXIraj3qumNvacqdmGT+viyDb4UQQojClK+EJTIyEr1en6WFBMDNzY3Q0NAcj6lVqxZLlixh06ZNrFq1CoPBQOvWrbl9+zZA5nH5Oefs2bOxt7fPvHl6eubnaRQIC1MTBjT2AOAXGXwrhBBCFKpCnyXUqlUrRowYQcOGDenQoQPr16/HxcWF77///rHPOXXqVGJiYjJvQUHGGUeS0S2062I44bHFc7yNEEIIURrkK2FxdnbGxMSEsLCsi/+FhYXh7u6ep3OYmprSqFEjrl69CpB5XH7OaW5ujp2dXZabMdR0s6WplyN6g8JvJ24bJQYhhBCiLMhXwmJmZkaTJk3YtWtX5jaDwcCuXbto1apVns6h1+s5c+YM5cuXB6BKlSq4u7tnOWdsbCxHjhzJ8zmNafD9VpbVx25hkMG3QgghRKHId5fQlClTWLRoEcuXL+fChQuMHz+ehIQE/Pz8ABgxYgRTp07N3H/mzJn8+eefXL9+HX9/f4YNG8bNmzd58cUXAXUG0eTJk5k1axabN2/mzJkzjBgxggoVKtCvX7+CeZaFqFe98tha6Ai6m8Q/1yKNHY4QQghRKunye8CgQYOIiIhg2rRphIaG0rBhQ7Zv3545aPbWrVtotQ/yoHv37jFmzBhCQ0NxdHSkSZMmHDx4EB8fn8x93nzzTRISEhg7dizR0dG0bduW7du3ZyswVxxZmpnQv5EHKw7d5Jejt2hXw8XYIQkhhBCljkZRlBLfjxEbG4u9vT0xMTFGGc9y/k4sT329H51Ww6GpXXCxNS/yGIQQQoiSJj/v37KWUAHwqWBHA08H0g0K6/xl8K0QQghR0CRhKSBDmqu1YFYfvUUpaLQSQgghihVJWArI0/UrYGOuIzAqkUPXo4wdjhBCCFGqSMJSQKzNdfRpWAGAX47KgohCCCFEQZKEpQANuV+TZcfZUO4mpBo5GiGEEKL0kISlANX1sKeuhx2pegPrZfCtEEIIUWAkYSlgGesL/SyDb4UQQogCIwlLAevToAKWpiZcj0jgWOA9Y4cjhBBClAqSsBQwWwtT+jTIGHx7y8jRCCGEEKWDJCyFYPD9mixbz4QQnSiDb4UQQognJQlLIWjo6YC3uy2p6QY2nAw2djhCCCFEiScJSyHQaDQMaaEOvl19NEgG3wohhBBPSBKWQtK3oQcWplouhcXhfyva2OEIIYQQJZokLIXE3tKUXvVk8K0QQghRECRhKUTP3x98u+X0HWKT04wcjRBCCFFyScJSiJp4OVLD1YbkNAObytDg26j4FLafDWXB3mvsPB9GZHyKsUMSQghRwumMHUBpptFoGNy8Eh9uOc/PR4MY1tILjUZj7LAKlKIo3IxK5FjgXY4H3uPYzbtcj0jItp+nkyUNPR1p6OlAo0oO+JS3w8LUxAgRCyGEKIkkYSlkAxp58On2i1wIieX07RgaeDoYO6Qnkq43cCEkTk1Qbt7lWOA9IuKyt6DUcrOluqsNl8PiuBoRT9DdJILuJvH7qTsAmJpo8ClvR6NKahLT0NMBr3JWpS6hE0IIUTAkYSlkjtZmPFXXnY0Bd1h97FaJS1gSU9MJuBXNscB7HAu8i/+teySm6rPsY2aipX5Fe5pWdqJZZUeaeDniYGWW+Xhschqng2IICLrHyVvRBARFE5WQyqnbMZy6HZO5n6OV6f3kxZFGlRxo4OmAvaVpkT1XIYQQxZdGKQVFQmJjY7G3tycmJgY7Oztjh5PN4etRDP7hMFZmJhx91xcb8+KbJ0bGp6hdO4F3OR54l7N3YtEbsv6K2FroaOrlSNPKTjSv4kQ9D/t8de8oisLte0mcDIrm5K17BARFcy44llS9Idu+VV2saeTpSMNKDnSs6YKnk9UTP0chhBDFQ37evyVhKQKKotDli31cj0zg4/71MovKFRdxyWmsO3GbX44GcSksLtvj5e0taFbZiWZV1BaUmq62aLUF23WTkq7nQkgcAfcTmJNB0dyMSsyyj425jiPvdMG6GCd8Qggh8i4/79/yn78IqINvPfn4j4usPnar2CQsl8PiWHEokA3+wST8q5unlpstzao40qyyE00rO+HhYFnosZjrTDLHsmS4m5DKqfvJy9J/bhCXnM6FkFiaVnYq9HiEEEIUL5KwFJGBjSsyZ8clTt+O4WxwDHU97I0SR7rewF/nw1hx6CaHrkdlbq/uasPIVl70blAhy/gTY3KyNqOTtyudvF05czuaPZciuBAaJwmLEEKUQZKwFJFyNuZ0q+PO1tMhDFl0mHY1XOhQ04X2NV1wt7co9OtHxKWw5tgtfjpyi5CYZAC0Gujm486I1l60qlquWM/Q8S5vx55LEVwMiTV2KEIIIYxAEpYiNKlLDY7duEt4XApbz4Sw9UwIAN7utrSvqSYwTSs7Yq4rmPokiqLgfyualYcC2XomhDS9OlypnLUZg5t7MqSFV5F09xQEb3dbAC6GZh9jI4QQovSThKUI1XSz5eDbnTl1O4Z9lyPYdzmC07ejuRgax8XQOH74+zqWpia0qlaODvcTmMrO1vm+TnKans2n7rDiUCBngx+0SDSq5MCIVl48Va98gSVFRaV2eXUw1qXQOAwGpcAH/QohhCjeJGEpYjoTLU281FolU7rW5G5CKgeuRrLvUgR/X4kgIi6F3RfD2X0xHACvclZq11ENF1pVK/fQGTJBdxNZdfgma44HEZ2orl1kptPSp0EFRrTyon5Fh6J4ioWiirM1ZiZa4lPSCY5OkunNQghRxkjCYmRO1mb0aVCBPg0qoCgKF0Li7re+hHM88B43oxJZcegmKw7dxNREQ7PKTmrrSy0XarnZoiiw/2okKw4GsvtSOBmT1D0cLBneyovnmnriZF08BtE+CVMTLdVdbTgfEsuFkFhJWIQQooyROizFWHxKOoeuRbHvcjh7L0Vw+15Slsfd7MyxMDXJUq+kXQ1nRraqTCdvV0xKWbfJ/349xTr/20zpWpNXu9QwdjhCCCGekNRhKSVszHV09XGjq48biqJwIzKBfZcj+PtyBIeuRxEWq67hY2uu45mmFRne0ouqLjZGjrrw1C6fMfBWZgoJIURZIwlLCaHRaKjqYkNVFxv82lQhOU3PscC7xCSl0amWa5mo/urtrmbfF0NkppAQQpQ1pf9drpSyMDWhXQ0XY4dRpLzvt7DciEogMTUdKzP59RVCiLJCa+wAhMgrZxtznG3MURS4HBZv7HCEEEIUIUlYRImSOY5FKt4KIUSZIgmLKFGk4q0QQpRNkrCIEiVj4O0FaWERQogy5bESlvnz51O5cmUsLCxo0aIFR48ezdNxq1evRqPR0K9fvyzbw8LCGDVqFBUqVMDKyooePXpw5cqVxwlNlHLe5R+0sJSCEkJCCCHyKN8Jy5o1a5gyZQrTp0/H39+fBg0a0L17d8LDwx96XGBgIK+//jrt2rXLsl1RFPr168f169fZtGkTJ0+exMvLC19fXxISEvIbnijlqrvaoNNqiElKIzQ22djhCCGEKCL5Tljmzp3LmDFj8PPzw8fHh4ULF2JlZcWSJUtyPUav1zN06FBmzJhB1apVszx25coVDh8+zIIFC2jWrBm1atViwYIFJCUl8csvv+T/GYlSzVxnQrX7xfGkHosQQpQd+UpYUlNTOXHiBL6+vg9OoNXi6+vLoUOHcj1u5syZuLq6Mnr06GyPpaSo1VotLCyynNPc3JwDBw7keL6UlBRiY2Oz3ETZkdEtdEEq3gohRJmRr4QlMjISvV6Pm5tblu1ubm6EhobmeMyBAwdYvHgxixYtyvFxb29vKlWqxNSpU7l37x6pqal8+umn3L59m5CQkByPmT17Nvb29pk3T0/P/DwNUcI9GHgrLSxCCFFWFOosobi4OIYPH86iRYtwdnbOcR9TU1PWr1/P5cuXcXJywsrKij179tCzZ0+02pzDmzp1KjExMZm3oKCgwnwaopjxllosQghR5uSrtrmzszMmJiaEhYVl2R4WFoa7u3u2/a9du0ZgYCC9e/fO3GYwGNQL63RcunSJatWq0aRJEwICAoiJiSE1NRUXFxdatGhB06ZNc4zD3Nwcc3Pz/IQuSpHa91tYrkcmkJymx8LUxMgRCSGEKGz5amExMzOjSZMm7Nq1K3ObwWBg165dtGrVKtv+3t7enDlzhoCAgMxbnz596NSpEwEBAdm6cuzt7XFxceHKlSscP36cvn37PubTEqWZm505Dlam6A0KV8OlRL8QQpQF+V49bsqUKYwcOZKmTZvSvHlz5s2bR0JCAn5+fgCMGDECDw8PZs+ejYWFBXXr1s1yvIODA0CW7b/99hsuLi5UqlSJM2fOMGnSJPr160e3bt2e4KmJ0kqj0eDtbsvh63e5GBpHXQ97Y4ckhBCikOU7YRk0aBARERFMmzaN0NBQGjZsyPbt2zMH4t66dSvXsSe5CQkJYcqUKYSFhVG+fHlGjBjB+++/n9/QRBni7W6nJiwyjkUIIcoEjVIKyoXGxsZib29PTEwMdnZ2xg5HFIE1x27x1roztK3uzKoXWxg7HCGEEI8hP+/fspaQKJFql1d/sS9KLRYhhCgTJGERJVINV1u0GoiMTyUiLsXY4QghhChkkrCIEsnSzITKztaArNwshBBlgSQsosTKqMci3UJCCFH6ScIiSixv94yKt1KiXwghSjtJWESJ5X1/4O2FUElYhBCitJOERZRYGS0sV8PjSNMbjByNEEKIwiQJiyixKjpaYmOuI02vcD0iwdjhCCGEKESSsIgSK6NEP8jAWyGEKO0kYRElmnd5NWG5IANvhRCiVJOERZRoUvFWCCHKBklYRInmnVGLRVpYhBCiVJOERZRote6PYQmNTeZeQqqRoxFCCFFYJGERJZqNuY5KTlYAXJBuISGEKLUkYRElnlS8FUKI0k8SFlHiecvAWyGEKPUkYRElXu3MWizSwiKEEKWVJCyixMtoYbkUGofeoBg5GiGEEIVBEhZR4lVyssLS1ISUdAOBUVKiXwghSiNJWESJZ6LVZE5vloG3QghROknCIkqF2uVlTSEhhCjNJGERpUJGxdsLIZKwCCFEaSQJiygVMmqxyCKIQghROknCIkqFjBaW4OgkYpPTjByNEEKIgiYJiygV7K1MqWBvAajTm4UQQpQukrCIUiOz4q2MYxFCiFJHEhZRamSOY5EWFiGEKHUkYRGlhrSwCCFE6SUJiyg1fO7XYrkUGodBSvQLIUSpIgmLKDUql7PGTKclIVXP7XtJxg5HCCFEAZKERZQaOhMtNd1sADgv3UJCCFGqSMIiSpWMeixSol8IIUoXSVhEqeItiyAKIUSpJAmLKFVqlzdCC0t6CsTcLrrrCSFEGSQJiyhVMlpYbt5NJCElvfAvGHwC5reAL+vA5omQdK/wrymEEGXQYyUs8+fPp3LlylhYWNCiRQuOHj2ap+NWr16NRqOhX79+WbbHx8czYcIEKlasiKWlJT4+PixcuPBxQhNlXDkbc1xszVEUuBxWiN1CBgMcmAeLu8G9G+o2/xVq8nJuIygyrVoIIQpSvhOWNWvWMGXKFKZPn46/vz8NGjSge/fuhIeHP/S4wMBAXn/9ddq1a5ftsSlTprB9+3ZWrVrFhQsXmDx5MhMmTGDz5s35DU+IB+NYCqvibVworOoPO6eDIR18+sHQtVCuBsSHwW8jYfVQiL1TONcXQogyKN8Jy9y5cxkzZgx+fn6ZLSFWVlYsWbIk12P0ej1Dhw5lxowZVK1aNdvjBw8eZOTIkXTs2JHKlSszduxYGjRokOeWGyH+rXZhVry9/CcsaA3X94KpFfT5Bp5dBjW6wrgD0P5N0JrCpa1qa8uxH9XWGCGEEE8kXwlLamoqJ06cwNfX98EJtFp8fX05dOhQrsfNnDkTV1dXRo8enePjrVu3ZvPmzQQHB6MoCnv27OHy5ct069Ytx/1TUlKIjY3NchMiQ+3yhbCmUHoKbHsbfn4WEqPArR6M3QeNR4BGo+5jagGd34WX/gaPppASC1v/B0t7QsSlgotFCCHKoHwlLJGRkej1etzc3LJsd3NzIzQ0NMdjDhw4wOLFi1m0aFGu5/3mm2/w8fGhYsWKmJmZ0aNHD+bPn0/79u1z3H/27NnY29tn3jw9PfPzNEQpl1GL5UJILEpBjCWJuAyLusCRBer3LcbDizvBpWbO+7v5wOg/oednYGYDQYdhYVvY+ymkpz55PEIIUQYV6iyhuLg4hg8fzqJFi3B2ds51v2+++YbDhw+zefNmTpw4wRdffMErr7zCzp07c9x/6tSpxMTEZN6CgoIK6ymIEqiaiw06rYa45HTuxCQ//okURR1I+0MHCDsDVuVgyK/Q8xO1NeVhtCbQ4iV4+TDU6Ab6VNj7MXzfHoKkq1MIIfJLl5+dnZ2dMTExISwsLMv2sLAw3N3ds+1/7do1AgMD6d27d+Y2w/3+fJ1Ox6VLl6hQoQLvvPMOGzZsoFevXgDUr1+fgIAAPv/88yzdTxnMzc0xNzfPT+iiDDHTaanuasPF0DguhsTi4WCZ/5MkRcPvk+D8RvX7qh2h//dgm/33/KEcPNUk5+w62PYWRFxQZxY1HwNdpoG5bf5jE0KIMihfLSxmZmY0adKEXbt2ZW4zGAzs2rWLVq1aZdvf29ubM2fOEBAQkHnr06cPnTp1IiAgAE9PT9LS0khLS0OrzRqKiYlJZnIjRH490UyhW4dhYTs1WdHqwHcGDNuQ/2Qlg0YD9Z6BCceg4VBAgaM/qINyL21/vHMKIUQZk68WFlCnII8cOZKmTZvSvHlz5s2bR0JCAn5+fgCMGDECDw8PZs+ejYWFBXXr1s1yvIODA0DmdjMzMzp06MAbb7yBpaUlXl5e7Nu3jxUrVjB37twnfHqirPIubwcBd7iQn5lCBj3s/wL2zgbFAI5VYOBiqNikYIKycoJ+30G9Z9XWm+ib8MsgqDMAen4KNq4Fcx0hhCiF8p2wDBo0iIiICKZNm0ZoaCgNGzZk+/btmQNxb926la215FFWr17N1KlTGTp0KHfv3sXLy4uPPvqIcePG5Tc8IYDHaGGJuQ3rx8LNf9Tv6w+GXp8XTpdNtU7q2Ja9s+HQt3BuPVzbDd0/UltgMmYdCSGEyKRRCmQahXHFxsZib29PTEwMdnZ2xg5HFANhscm0+HgXWg2cn9kDC1OT3He+8DtsmgDJ0eqsnl5zocGgogn0ToBa0j/0tPp9lfbQ+ytwyl6vSAghSpv8vH/LWkKiVHK1NcfRyhSDAlfD43PeKTURfp8Ma4apyUqFxmoNlaJKVgAqNIQxe6DrTNBZwI2/4btW8M/XUnBOCCH+RRIWUSppNJrMirc5jmMJOweLOsGJper3bSbDCzugXLWiCzKDiQ7aTIKXD0GVDpCeDH+9Dyv7Qkxw0ccjhBDFkCQsotTKKCCXbRxLsD/80AkiLoKNGwzfCF1ngM6s6IP8N6eqMGKT2iVkaqW2tixoDec3GTcuIYQoBiRhEaWWd0aJ/v+2sByaD/oU8GoL4w+qg2CLC40GmoyCl/ZD+YZqV9WvI2DTK5CSS9eWEEKUAZKwiFKrdk4l+pPuqYNsAbp9CNa5V2A2KufqMPovaDsF0MDJVWp5/9vHjR2ZEEIYhSQsotSq4WaDVgP3EtOIiEtRN55dp7auuNaBCo2MG+Cj6MzAdzqM2gJ2FeHeDbVK7r45as0YIYQoQyRhEaWWhakJVZytgX+t3HzyJ/VroxJU76RyWxh/QC0wp+hhzyxY1gvu3TR2ZEIIUWQkYRGlmvf9mUIXQ2LVmUF3/NVy+/WLcOpyQbB0hGeWqOsZmdnCrUNqF9Hp34wdmRBCFAlJWESpVvvfFW8zWldq9ii+Y1ceRqOBBoNh3H6o2BxSYmH9i7DuRUiOMXZ0QghRqCRhEaVaxtTmK3ei4PQadWOj4UaMqAA4VQG/bdBxKmhM4MxvsKAt3Dxk7MiEEKLQSMIiSrWMqc2Vog5AYqRad6W6r5GjKgAmOuj4NrywHRy8IOYWLHsKds8CfZqxoxNCiAInCYso1TwcLLG10NFfs1fd0GCw+mZfWng2h3EHoMEQdYXpv+fAku4Qdc3YkQkhRIGShEWUahqNhlYuaXTSBqgbGg4zajyFwsIO+i9QB+Va2EPwCVjYTq3dUvLXNhVCCEASFlEGPGP6DzqNgds29cClprHDKTx1B8K4f9QKvmkJanXc30ZC4l1jRyaEEE9MEhZRuikKLWK2AbDDrBSMXXkUB08YuRm6TFenb5/fBAvaQOhZY0cmhBBPRBIWUbrdPoZ9wg0SFXNWxTY2djRFQ2sC7abAizuhXHWIuwO/DoeUuEcfK4QQxZQkLEVEURS2B25n5LaRbLiywdjhlB0nVwGwzdCcG/EmRMWnGDmgIlShkboekV1FuHsdtkyRMS1CiBKrFE2XKL4CYwL56MhHHA45DIB/uD9RyVG8WO9FI0eW1eV7lwmOCzZ2GLmq6lAVLzuvvB+QmgBn1wOwz7o7RMOl0DhaVzcvnACLIysneGYxLH0KzvyqrkzdcIixoxJCiHyThKUQJaUn8eOZH1l6dilphjTMtGa0qtCKfbf38ZX/V8SlxjG58WQ0Rl7TRlEUFp5ayHenvjNqHI9iqbNkx8AdOFo45u2A85shNQ4cK5Pi2BKiw7kQGkfr6iWwyu2TqNQSOk1Va7Rs/R9UbAbONYwdlRBC5IskLIVkX9A+Zh+dTXC82mLRxqMN7zZ/F087T5aeXcrcE3NZcnYJ8anxvNvyXbQa4/TOpepT+eDgB/x+/XcAajvVxtTE1CixPExgTCCxqbHsvLWTZ2s+m7eDAu6X4m84DO9Ue3acD1fXFCqL2k6B6/sgcD+s9YPRO8HUwthRCSFEnknCUsDuxN/hk6OfsCdoDwBuVm683fxtulTqktmS4lfXDxszGz489CG/Xv6V+LR4ZrWdham2aBOFmJQYJu+ZzPGw45hoTHiv5Xs8U/OZIo0hrxafWcw8/3nsCNyRt4Tl7g31zRkNNHye2kHqr/rF0DI68FRrAgMWwcI2EHoG/poGT31m7KiEECLPZNBtAUnTp/HjmR/pu7Eve4L2oNPo8Kvrx+Z+m/H18s3W7fNszWf5tP2n6DQ6/rjxB1P2TCFFX3QDQoNigxj2xzCOhx3H2tSa77p8V2yTFYBulbsBcCz0GJFJkY8+IOBn9Wu1TmBfkdr3S/RfCosjXW8orDCLN7vy0G+hev/o93Bxq3HjKa4ir8C2t+GzauoaTVf+MnZEhSoiLoVXfvZn+9kQY4cixENJwlIAjoQcYeDvA/nK/yuS9ck0dWvK2j5rmdJkClamVrke17NKT77q/BXmJubsvb2Xl3e+TEJaQqHHGxAewNA/hhIYG0h56/Ks7LmS1h6tC/26T8LT1pO65epiUAzsurnr4Tsb9A8SlkZqZVtPRyuszExITTcQGFX4r3GxVbMbtJqg3t/0CsTcNm48xYU+XR3ztLwPfNsUjixQ154KOwM/PQMrB0D4BWNHWShmbjnP1tMhTF4TwLWIeGOHI0SuJGF5AhGJEbz595u8+OeL3Ii5QTmLcsxuN5sl3ZdQzaFans7RvmJ7FvguwNrUmqOhR3lxx4tEJ0cXWszbb2xn9I7R3Eu5h085H3566idqOJaMAZjdK3cHYHvg9ofveH0vxN5Wy9TX6gWAVquhlrvaynIhpIx2C2XoMl2d8px0D9aNUd+sy6rYENj7Ccyrq9aqubEP0EDNnvD8ajW505rCtV2woDVseQ0S8tDCV0IcvBbJ76fuAJCcZmDKmgDSymoLpCj2JGF5DOmGdFadX0Xvjb3ZdmMbWo2W572fZ3P/zTxd9el8z/pp5t6Mxd0W42DuwNmos/jt8CMiMaJAY1YUhUWnF/HG32+Qakilk2cnlnZfiouVS4FepzBlJCwnwk4Qnhie+44Zg23rPZdlYKm3ux0AF0PL6MDbDDozdd0hM1u4dRD+LmNjWRQFbvwNv46AL+vA3tkQFwJWzurg5EmnYMhqqNUTun8ErxwB76fVxSWPL4GvG8E/X0F6ya7pk6Y3MH3TOQB61S+PnYWOU7djmL/nqpEjEyJnkrDkU0B4AIO3DObTY5+SkJZAPed6/NLrF95p8Q52ZnaPfd46znVY1mMZLpYuXI2+yohtI7gdVzDN9WmGNKYfnM7XJ78GYITPCL7s+OVDu6uKo/I25Wng0gAFhb9u5jKuIOkeXNii3m+UdaHDjHEsF8t6CwuAU1XoPU+9v+8zuLHfqOEUiaRoOLwQ5jeH5b3VZQsUPVRqBQMXw5Tz4DsdHP9T66dcNRj8E4zcAu71ISVWHbT8bTM4t7HEFuNbfjCQK+HxOFmb8XG/enzYry4A3+y+yqmgaOMGJ0QOJGHJo3vJ95h+cDrDtw3n0r1L2JnZMa3VNFY9tQqfcj4Fco1qDtVY3nM5FW0qcjv+NiO3jeRa9LUnOmdsaizjd45nw9UNaDVa3m3xLm80ewMTrUmBxFzUMlpZdgTuyHmHM2tBnwJudaF8gywPPWhhkYQFgHrP3E/qFFg/BhKijB1R4Qg5DZtfhbm1YftbEHkZzGyg6QvqYpEvbFdfC90jCgpWaQdj90Hf78DGHaJvqotLLn0Kgv2L5rkUkPDYZObtvALAWz1qYW9lSp8GFehVvzx6g8JrvwaQlKo3cpRCZCUJyyMYFANrL6+l98berL+iVk3tX70/v/f/nWdrPlvg9VM8bT1Z3nM51R2qE54UzqjtozgXde6xzhUcH8zwP4ZzJOQIVjorvun8DYO9BxdovEWtm5c6W+hk+ElCE0Kz73C/FD+NhsF/uuYyxrAERycRk5RWqHGWGD0/A+eaapfIxvEltrUgm7RkOLUGfuwK37cD/+WQlgguteGpz2HKBXj6S3Cvm7/zarXQaChMPAEd3gKdpdqttqgTbBgHMcW3UvS/zd52kfiUdBp4OvBsE08ANBoNH/Wri6utOdcjEvh0+0UjRylEVpKwPERQXBDD/xjOjEMziEmJoaZjTVb0XMHMNjNxsnAqtOu6WrmytPtS6parS3RKNKN3jOZ46PF8neNMxBmGbB3C9ZjruFq5srznctpXbF9IERcdN2s3Gruqixj+Gfhn1gdDz0JIgDpIst5z2Y61tzTFw8ESUEv0C8DMGp5ZCibmcGUHHF5g7IiezL1Atbtmbm3YMBZuH1VXra47EEb9AS8fguZjwOLxu28BMLeBTu/AxONQf5C67dQv8E0T2DNbXRaimDp64y4bTgaj0cCHfeug1T5I7B2szPjsmfoALDsYyP4rBTuWTognIQnLQ9iZ2XE7/jZWOivebPYma55eQyPXRkVybQcLB37s/iPN3JuRkJbAuJ3j+Pv233k69q+bf+G3w4+7yXfxdvLm56d+xtvJu5AjLjqZ3UI3/9MtlDHYtlZPsC6X47He91tZyvzA239zr6sOLgX1zf7OSePG87j2fgJfNVQHxCbdVRd97PwevHZeHWRcuU22VrcnZl8RBvwAY3aDZ0tIT4J9n6iJS8AvYCheM27S9QambToLwOBmlahf0SHbPh1ruTKsZSUA3vjtNDGJ0hopigdJWB7C3tyezzt8zuZ+mxnuMxydtmgLA2cUdOtQsQMp+hQm7Z7E9hu5T+lVFIVlZ5fxv73/I0WfQvuK7VnWYxlu1m5FGHXh6+rVFQ0aTkec5k68OiWT9FQ4vUa932h4rsfWLq9+si6Iqc33ElLZcvoOb609zbiVJ9hzMRylpHapNHtRnQljSIO1L0BKCWuBunlQne2DAtU6w+Cf1dk+7d8A2yL4/fdooo6FeXYZOFS638U2Tu0qunmw8K+fRz8ducXF0DgcrEx5o3utXPd756naVHG2JjQ2mWmbzxZhhELkThKWR2jm3syob/gWOgu+7PQlPav0JF1J582/32Tt5bXZ9ks3pPPh4Q/54sQXKCg87/08X3X6CmtTayNEXbhcrFxo6t4U+Fe30OXtkBilDoas1jnXY73LZ9RiyX8LS2q6gcPXo5iz4yJ9vj1A41l/MeHnk6w5HsT2c6H4LTvG098cYPvZEAyGEpa4aDTQ91uw94S712HLlJIzniUtGTZPVO83Gg7DN4B3LzAp4pVHNBqo0x9eOQa+M9Rp4yEBsLQnqauH8veFX0kzGK+1IjI+hc//vATA691q4WRtluu+VmY6vniuAVoNbAq4w5bTd4oqTCFyJQlLCWCqNWV229k8V/M5FBRmHJrBsrPLMh+PT41nwq4J/Hb5NzRoeKvZW7zT4p0ibxEqSt29/lNELmOwbcPnH/pGlTFT6FJo3COTCkVRuBYRz7J/bjB62TEazvyTwT8cZv6ea5y+HYOiQC03W15sW4XRbatgZWbCuTuxjFvlT4+v/mZTQHDJWgbA0hEG/ggaEzjzqzomoyTY9ylEXVWT1W6zjB2NWvun7WR49SQ08QONlq/CD/DK0Q+Zs2uK0cL6dNtF4pLTqethx/PNKz1y/8aVHHmlU3UA3t1wlrDY5MIOUYiH0igltg37gdjYWOzt7YmJicHO7gkH0xVjiqIwz38eS84uAWBs/bE8U+MZXtn9ClfuXcFSZ8kn7T6hc6XcWxhKi6ikKDr/1hmDYuCPbsvx/KGLWthrwglwrp7rcel6A3Wm7yAl3cDe1ztS2TlrC1R0Yir/XI1i/5UI9l+JJDg6Kcvj5azNaFvDmXY1XGhXwxk3uweF6e4mpLL0nxss+yeQuBS1emzlcla83LE6/Rt7YGpSQj4f/D0Hds8CU2t4aR84F+NKyCGn4IdOaj2VQT9B7aeNHVE2yXcC6PznCOI0CibAhn6bqWJfpUhj8L91jwHfqV1T68a3pomXY56OS9Mb6P/dP5wNjqV9TReW+zXLd2FMIR4mP+/fkrCUQD+e+ZGv/L8CwFJnSVJ6Es6Wznzb5VvqlKtj5OiKzpg/x3A45DCTnJrw4okN6qDH0bnUZ/mX3t8c4ExwDAuHNaaztxsnb91j/5VI9l+J4HRwTJaeEDMTLc2qOGYmKLXd7bLMqshJTFIaKw4GsvifG0TfH7Do4WDJuI7VeLZJRSxMi3kNHIMeVvZTq8G614PRO0kzMeGf4H/4/drvmGhNeL/l+9ia2Ro3Tn2aOkYk9Az49IPnlhs3nlz8fu133jnwTub3nT0781Xnr4rs+nqDQt/5BzgbHMuzTSoy59kGjz7oX66ExdHrmwOkphv4sF9dhrf0evRBQuSRJCxlwJqLa/joyEcoKNRwrMH8zvMpb1Pe2GEVqbWX1zLj0Ay89Rp+u3UT+nwLjXMfcJvhjd9O8duJ21RysiIqPoWE/xTIqulmk5mgtKhSDkuzx0swElLS+enITX74+waR8WoZd1dbc8a2r8qQFpWwMivGXXaxIbCwLVfTYthYozVblFiikh8UlqvtVJvvu36Po0XePqkXiv1zYdcMsHCACcfAxtV4sTzEqO2jOBF2gl7xCWy3tkKv0bCsxzKauDUpkuuvOnyT9zaexdZCx57XO+Js84gCeTlYfOAGH245j6WpCX9MakcV59I3Nk4YR37evx+rjXr+/PlUrlwZCwsLWrRowdGjR/N03OrVq9FoNPTr1y/Ldo1Gk+Ntzpw5jxNemTDIexDfdvmWMfXGsKLHijKXrAD4VvLFRKPloolCoKUN1OmXp+N8Kqh/FLfuJpKQqsfJ2ow+DSow55n6HJ7ahT9f68D7T/vQsZbrYycrANbmOsa2r8aBtzoxo08dyttbEB6XwqytF2j76R7m77lKXHLxmzIakxLD6jv7eL5aLfpXLM/ypBtEJUfhZOHE897P42ThxIW7F/Db7kdYQphxgoy8ok5jBujxSbFNVm7E3OBE2Am0Gi2v6W0ZEKeuhvzF8S+KZEbZvYTUzIG2/+ta87GSFQC/1pVpXa0cSWl6pvwaULLGZolSI98tLGvWrGHEiBEsXLiQFi1aMG/ePH777TcuXbqEq2vu/zQCAwNp27YtVatWxcnJiY0bN2Y+FhqatWLptm3bGD16NFevXqVq1aqPjKkstrAI1bif2vNP+j0mmHvx0uAteTomISWdz/+8hIutOe1ruOBT/tHdPAUhNd3Aev/bfLf3GrfuJgJgZ6FjVJsqvNCmMg5Wuc/aKGx6g55DIYfYdHUTu2/tJtWQCoAODe0TEuiXCm1H7sLUsTLXY64z5s8xhCeG42HjwaJui/C09Sy6YA0GWPYU3DoE1brAsHUFX1+lgMw9Ppel55bSoWIHvr2XROSF9TzlVZkkJZ057efQo0qPQr3+1PVn+OXoLbzdbdkysS26JxhHFRydRI8v/yYuJZ3Xu9VkQudiPLZJlBiF2iXUokULmjVrxrfffguAwWDA09OTiRMn8vbbb+d4jF6vp3379rzwwgvs37+f6OjoLAnLf/Xr14+4uDh27dqVp5gkYSmjUhPY8F1dpjnaUMPag/XP5F6jpjhJ1xv4/fQdvt19lWsRakVUazMThrXy4sW2VXGxfbxPwY8jMCaQTdc2sfna5iwrYNdwrEG/av3o5dWNcj8PVovJVWoNI38HEx3B8cGM+XMMQXFBuFq68kO3H6jmUK1ogj66CP54XV0P6OVDat2TYihNn4bvWl/uJt/l605f0yn4AuyYysLqTZmvV5O9zf02Y2ZSOInq6dvR9J3/D4oCv77UiuZVnrw693r/20z59RQ6rYaNr7Shrod9AUQqAA6HHGb1xdV0qNiB/jX6GzucIlNoXUKpqamcOHECX1/fByfQavH19eXQoUO5Hjdz5kxcXV0ZPXr0I68RFhbG1q1bH7pvSkoKsbGxWW6iDDq/ic6x99ApcCUhmOvR140dUZ7oTLT0b1SRP1/rwHdDG1O7vB0JqXq+33edtp/u5oPN5zh64y6XQuMIjUkmOa1gF6GLT41n3eV1DP9jOL039ubHMz8SnhiOvbk9z3s/z5qn17Cu9zpG1BlBORt3tUqsma26Zs7fnwHgYePB8h4Fs+ZVvkQHwc4P1Pu+HxTbZAVgT9Ae7ibfxcXShXYV26nF5YARIbdwsXQhOD6Y1RdXF8q1DQaF9zedQ1GgfyOPAklWQD1Xz7rupBsUXlsTUOC/m2XR6YjTvLjjRcb8OYZdt3Yx7eA0vvb/uuQWoSxE+Rr1FxkZiV6vx80tayE1Nzc3Ll7MeaGsAwcOsHjxYgICAvJ0jeXLl2Nra8uAAQNy3Wf27NnMmDEjz3GLUurkKuwNCq2tKvJ30m12BO5gfMPxxo4qz0y0Gp6qV56edd3ZdSGcb/Zc5VRQNMsOBrLsYGCWfc10WuwtTXO82eWyPeNmYapFQeFY6DE2Xd3EXzf/Ilmv1tTQarS0qdCGftX70dGzY86f9p2qQu95sG60OuW5cjuo0g4XKxeWdl/KuJ3jOBd1jhd3vMi3Xb4tvMGkigJbXoPUeHVGWNNHfwAypnVX1gHQr3o/tSZS+fqgMcEqIZwJtd5mesA8vj/9PX2r98XevGBbKn47EcSpoGhszHVM7Vlwy3JoNBo+6l+PY4H3uBIez5wdl3j/6YJZrb6suXLvCt+c/IY9QXsAtd5Wqwqt+Pv23yw6s4jwxHCmt56OqdbUyJEWH4U6TSEuLo7hw4ezaNEinJ2d83TMkiVLGDp0KBYWFrnuM3XqVKZMeVCAKTY2Fk/PIuxDF8YXdQ1u/gMaLd1rD+Zv/8/ZHridcQ3Glbg6ERqNBl8fN7rUduXA1Ui+PPAHdxJukpRqIClNj6KAAkQD0alAKhCT9/ObmMaisz+JxvTeg42prmjim6FJbMqRm/YcPaxBq/kbrUaDRkOWr1oNaDXOvGHqS8+0ncT8NBLdC39gXcFbXfOq249M2D2BE2EnGPfXOOZ1mkcbjzYF+hoBcPpXuPqXulBj32/VlZOLqeD4YA7dUVudM5v3TS3BrQ6EnqavzomVDtW5Gn2VRacX8Xqz1wvs2jGJaXy6XR1oO9m3Bq52uf8vfRxO1mZ89kw9Xlh2nMUHbtCltiutq+Xt/7uAoNggvjv1HVuvb0VBQavR0rdaX8Y1GEcFmwqsv7KemYdmsunaJqKSo/iiwxdYmVoZO+xiIV8Ji7OzMyYmJoSFZZ0ZEBYWhru7e7b9r127RmBgIL17987cZri/GJhOp+PSpUtUq/ag33v//v1cunSJNWvWPDQOc3NzzM2Lrp9fFEMBP6tfq3WmU60BmAZ8xfWY61yNvkoNx5I7GPB0wq9c0S6E+yVOCvK3XNGbkxbbkLToJhiSPYGMxC41T8dPYQhVzC7hnR5EzI/dSB61CYtKjbAxs2Gh70Km7J3C/uD9TNg9gc/af0ZXr64FF3x8BGx/S73f8a3iXcwO2HBlAwoKLcu3zDog2aMJhJ7G5M5JpjSZwsu7Xubniz8z2HswFW0rFsi1v/jrEncTUqnhasPI1pUL5Jz/1dnbjeebV+KXo7d4/ddTbH+tPXYW0hLwMOGJ4Xx/6nvWX1lPuqIWluzm1Y1XGr1CVfsHk0sG1BhAOYtyvL7vdQ4EH+DFP9WWSyeLgunWK8nylbCYmZnRpEkTdu3alTk12WAwsGvXLiZMmJBtf29vb86cOZNl23vvvUdcXBxfffVVtlaRxYsX06RJExo0yF9hI1HGGPQPEpaGQ7E1s6WtR1v2BO1he+D2EpmwKIrC1ye/5sczPwLQ1qMtljrLJz6n3qAAOpq5tqGVewfMtBYYFOX+DUD9alAUDAb1q9qi82C7cn9fg0Eh+O4aDL8Pxcdwg8SlT5E6fC1mVdtgobPgq05f8fb+t/nz5p+8vu91ZraeSd/qfZ/4tQFg25uQdE8tZNf61YI5ZyFJN6Sz4eoGAAbWGJj1QY8mcGIpBPvT1ncGLcu35HDIYb4++TWftf/sia997k4Mqw7fBGBG3zqFWl35vV61+edqJLfuJvLB5nPMfa5hoV2rJItOjmbJ2SX8fPFnUvRqPaY2Hm2Y2GhiroU+O3h24MfuP/LKrlc4E3mGEdtGsNB3YYEltSVVvruEpkyZwsiRI2natCnNmzdn3rx5JCQk4OfnB8CIESPw8PBg9uzZWFhYULdu3SzHOzg4AGTbHhsby2+//cYXX3zxmE9FlBnX90DcHXXtG+9eAHSv3J09QXv4M/BPJjScUKK6hRRFYe6JuSw7twyAN5u9yXCfRxfAM4qq5Thpt5FjPw2mGRdIXdmf9MGr0NXqhqmJKZ+1/wzrQ9ZsuLqB9/55j4S0BIbUHvJk17y4Fc6tV9c46vMtmBTvT/IH7xwkPDEcB3OH7Mtk3B94y52TaBQD/2v6P577/Tm23djGCJ8R1HWum/2EeaQoCtM2ncOgwNP1yxd6N421uY65zzXgue8Psd4/mG4+bvSoW/bqQeUmIS2BledXsvzccuLT1Po7jVwb8WqjVzMXb32YBi4NWNFzBeP/Gs/N2JsM3zac77p8R+1ytQs79GIr3+n3oEGD+Pzzz5k2bRoNGzYkICCA7du3Zw7EvXXrFiEhIfkOZPXq1SiKwvPPP5/vY0UZk7HQYb3nQKd2mnT07Ii5iTmBsYFcunfJiMHlj6IofHbss8xk5Z0W7xTfZOW+RjUrk/78WvYYGmGmpMAvz2M4ow4wNdGa8EHrDxhWexgAs4/OZtHpRY8/4yEpWl05GqDNq1Ch4ZM/gUKWsZp6n2p9sg9idqmlrtGUGg+Rl/F28qZ3NbXL/PPjnz/RzJD1/sGcuHkPKzMT3u1VNG9qTSs78VIHtVt/6vozhMfJAokp+hRWnl/JU+ufYn7AfOLT4qnlWIv5XeazvMfyPCUrGaraV2XlUyup6ViTyKRI/Hb4cTjkcCFGX7xJaX5RsiTehS9qgT4VXvobyj/oPnxtz2vsvLWT0XVHM7nJZOPFmEcGxcDHRz5mzSV1zNa0VtN4tuazRo4q7/acv0386jH01h7EgAaenoe26ShATcQWnFrAglMLAPCr68drjV/Lf8vX5ongvwLKVYdxB9SBq8VYRGIEXdd2Ra/o2dR3E1Udcih8ubQX3DwAfedDo2GEJoTy9IanSdGnqPVaKnXK93Vjk9Po/Pk+IuNTeKuHN+M7FlFNHNSCiH3n/8OFkFg6e7uyeGTTEtXCWVDSDelsvraZBacWEJqgFkP1svNiQsMJdKvcDa3m8bvn4lLjmLRnEsdCj6HT6viozUc8VfWpggrdqAq9NL8QRnNmrZqsuNfLkqwAdK/SHYAdgTuKfQ0Dg2Jg5qGZrLm0Bg0aZraeWaKSFYBOPhUxeWYRP+m7oEVBu2USyoF5gDrz6eWGL/N6U3X2y9KzS5l1eBYGJR8l3a/vVZMVgD7fFPtkBWDTtU3oFT2NXBvlnKwAeDRWvwafAMDd2j2zVe1L/y9JN6Tn+7rz/rpCZHwKVZ2tGd22aFeCNtNpmTeoIWYmWnZfDGf1saAivb6xGRQD229sp/+m/kw/OJ3QhFDcrNz4oNUHbOi7gR5VejxRsgJga2bLQt+FdPPqRrohnbf2v8WKcysK6BmUHJKwiJLl5Er1a8Nh2R5q79EeS50lt+Nvcz7qfBEHlnd6g55p/0xj3ZV1aDVaPmr7UYmtbPlU/YpY9f+K+el9ANDsnI7y1wdkLHk9ss5IpreajgYNv17+lan7p5JmyMP6SakJ8Psk9X6zF8GrdSE9g4JjUAysu6x2jWUbbPtvGeNY7icsAC/UfQFHc0duxNxg/ZX1+bruxdBYlh8KBOCDPnUw0xX9v/Va7ra83r0mAB9uOc/NqIQij8EYDgYfZNCWQbzx9xsExgbiaO7IG03fYOuArQysObBAa6iYmZgxp8MchnirY8LmHJ/DF8e/yN+HgBJOEhZRcoSchtDTYGIG9Z/L9rCVqRXtK7YH1FaW4ijdkM67/7zLpmubMNGY8Em7TzLHMJRU/Rt74tj7I2anqePPNP98CVunqLO5gGdqPsOn7T9Fp9Hxx40/mLJ3SuZsiVzt+RjuBYJdRegyvZCfQcE4GnqU2/G3sTG1oVvlbrnvmJGwhJ2DtCRA/QQ9rsE4AOYHzCchLW9v+IqiMH3TOfQGhR513Glf0+WJnsOTGN22Ks2rOJGYqud/v54iNb30vpGGJYQxZe8UXtr5EhfvXsTa1JqXG77MtoHbGFFnBOYmhVN2Q6vR8nbzt5nceDIAy84t450D75CmL36LqBYGSVhEyRHwk/q11lNglXNNgu6Vi2+3UJohjan7p7L1+lZ0Gh2ftf+MnlV6GjusAjGkRSVce77F1LTRGBQNHF8C68fA/X+kPav0ZF6neZhpzdgbtJdXdr1CYlpizie7fRwOf6fef/pLsCgZ49IyWld6Ve318Cnp9hXB2hUM6RD6oOzDs7WexcvOi7vJd1lydkmerrn51B2O3LiLhamW95427uwRE62GL55tgI25juM37+E7dx9bT4cUu7/DJ5FuSGfFuRX02diHv27+hYnGhGG1h7FtwDbGNxiPtal1oceg0WgYXW80s9rMwkRjwtbrW3ll1yt5TnJLMklYRMmQnqJWOgVolL07KEM7j3ZY6ay4k3CHM5Fnct2vqKXp03hz35tsD9yOTqvji45fPPxTeAk0um0VKvq+zKtpE0hVTODsOlg9BFLVxKSDZwcW+C7ASmfFkZAjjP1rLDEp/ynZm54KmyaAYoD6g6BmyXiN7iXfY9ctdbHWh3YHgbqydA7dQqZaU15r/BoAK86tICwhLKejM8WnpPPxHxcAeKVjdSo6Gr8aqqeTFd8MaYSLrTm37ibyys/+DFxwkBM37xo7tCcWEB7A4C2DmXN8DonpiTRwacCap9fwVvO3cLRwLPJ4+lbvyzedv8FSZ8mhkEP4bfcjMimyyOMoSpKwiJLh0jZIugu2FaBa51x3s9BZ0NGzIwDbA4vH6s2p+lSm7JvCzls7MdWa8lWnr7LX5yglXulUncodhjMm7XWSFDO48iesGgjJamLSvHxzFnVbhJ2ZHaciTjF6x+is/2QPzIWIC2DlDN1n5+vaiqKQrjdON8Tv134nzZCGTzmfvNXJyCFhAehcqTONXBuRrE9mfsD8h57im11XCItNwaucFWPa5zLA1wg61XJl7+sdmdSlBpamJvjfimbggkOMX3WCwMiS1woQkxLDBwc/YPi24Vy6dwk7Mzumt5rOip4rqOVUy6ixtavYjsXdFuNo7siFuxcY/sdwbsXeMmpMhUmmNQtVWjIc/QGibxo7kpwFHoCIi9B2Cvg+fEzD7lu7mbRnEm5Wbvz5zJ9PPEL/SaToU5i8ZzIHgg9gbmLOV52+Kpx1dooRRVH4cMsFTh/cxlKzOdhqktQZXcPWg7VazOzyvcuM/XMsUclRVLKtxPddv6diYix83x4MaeoK0XUf0VJxX1KqnnX+t1ly4AaBUQm0r+nCgMYV6ebjhoWpSWE+VUB9vv029eN6zHXeb/k+z9XKPr4qm6u7YNUAcKwCkwKyPHQq4hTD/hiGBg2/9f4txzfFq+Fx9Ji3n3SDwpJRTens7ZZtn+IgLDaZL/+6zK/HgzAoYGqiYVhLL17tXANH6xwW2ixGFEVh07VNzD0+l3sp6jpcfav1ZUrTKcWuTP7N2Ju89NdLBMcH42ThxHddvqOOc85VdIub/Lx/S8IiIPYOrBmW7dNe8aOBCcfBufpD90rRp9BxTUfi0+JZ0XMFjVwbFVF8WSWlJzFp9yQOhRzCwsSCb7p8Q8vyLY0SS1FTFIV3N57l1NG/WWH2CeU0sVCuBozYqI7hQP0nO/bPsdxJuIOzpTMLY/XUun1KHaM0+Ge16+QhwmKTWXEokJ+O3CI6MfugQ1tzHb3ql2dA44o0q+xYaLVBAsIDGL5tOJY6S3Y/uxsbM5tHH5R4Fz67P/34zRvZxmT9b+//+PPmn7Sp0IYvO8znemQ81yMSuBahfj0eeJc7Mcn41nblx5HNCuFZFayLobHM/uMi+y5HAGBroWNCp+qMbF25SJLK/Lpy7wqzDs/CP9wfgOoO1Xmv5XuFtxJ5AYhMiuTlnS9z4e4FLHWWfNnxyxLx4UgSFpF3Nw/BryMgIRwsHKDZaNAW6iLej698g8xS/I/yzv53+P367wytPZS3m79dyIFll5iWyMTdEzkaehRLnSXzu8ynmXvxf2MpSAaDwuu/nSIg4BirzGZTQRMF9p4wfGNm0hmeGM64neO4cu8KNgYDX99NoNmYg2BXIdfznrsTw+IDN/j91B3S9Oq/L08nS/xaV6Fl1XJsOxvCev9ggqOTMo/xdLJkQKOKDGjsgVe5gh0Y+d6B99h0bRP9qvfjwzYf5v3ArxvD3WswdB1K9S6ExiZnJiWnQ6/xZ8z/UDR6Em+NRp+QfX0sBytTNr3SpsCfT2HafyWCj/+4yIWQWAA8HCx5s0ctetevgFZr/GJziWmJLDy1kJXnV5KupGOps2R8g/EM8xlWoFOUC0t8ajyT907mSMgRdBodM9vMLPazECVhEY+mKHB8MWx7S52t4FoHBq8Cp+LTF/4k/r79N6/segUXSxf+euYvTLRF9ykuIS2Bl3e+jH+4P9am1izwXWC0Vh5jS9cbeHX1SQLOnOUn89lU0YSAtYvaPVS+PgCxYWeYuPEZ/C3MMNOY8GmHz/H18s1yHoNBYc+lcBYfuMHBa1GZ25t6OfJiuyp09XHH5F9veAaDwtHAu6z3v80fZ0KJT0nPcsyAxhXpVb889pZP9iYUlxpH5187k6xPZmXPlTR0bfjQ/ZPT9FyPSOB6ZDzV90/BO2IbqyyHMjuhDwmp+iz7mrv+jlm5f9Anl8c0bArVXeyo5mJNVRcbqrnY0LiSA+VsSt6q9XqDwoaTwXy+4xKhsWop//oV7Xnnqdq0rFrOKDEpisLuoN18cvSTzCq1nT0783bztylvU7LWR0rTp/HuP++y7cY2AFqWb4lfHT9aVWhVLCsQS8IiHi49Bbb+70ERtjr91TLhZiXnk9qjpOnT6PBrB+JS41jSfUmRtW7EpcYxfud4TkWcwsbUhoVdF9LApWyvPp6abmDcqhOcuniFVeafUlsTCOb2MPRX8GwBK/qQHLift7xqsluThFaj5d0W7/JcredIStWz1v82Sw/c4Pr9AZsmWg1P1SvP6LZVaOjp8MjrJ6Xq+fN8KOv8gzlwJeL+KtVqhdauPm4MbOxBuxouj7Wy8ZqLa5h1ZBbV7Kuxoe8GNBoNBoOS2Vry366cOzFJGTX1GGWynQ9MV7BL34jRaW9gotXg5WRFVRdrqrnY4O6oZ8G1MSTp45nVZlbBrXxdTCSl6ll84DoL9l7LTNZ8a7vxdk9vqrvmoVutgATHBzP7yGz23d4HgIeNB1ObT6WDZ4cii6GgGRQDX/l/xbJzyzILy9VyrMXIOiPpUaVHsWotkoRF5C72DqwZDsHHAY06gLXN5EeOFyiJ3v/nfTZe3cigWoN4r+V7hX692NRYxv01jjORZ7A1s2VR10UlZuBbYUtO0/Pi8uOcunqL5Raf05iLoLOEBoPgxDLQWZL+0t/MuvIz666o9Uwa2DzHmXPNiUlUW0dszXU836ISI1tXxsPh8cr0h8Ums/FkMOv8b3M5LD5zu7ONGX0bejCgsQc+5e3y9Ek0PiWd57cOIjDuMs3t/LBM6sj1iARuRCaQlKbP9Tg7Cx3VXG3oZH2LV2+MI8XciaAXTlOpnHW2KrVLzy5l7om5uFq5sqX/lofXdymhIuJS+GrXZX45GoTeoGCi1TCkeSUm+dbA+QlakBJT0wmJSSY0Jvn+1yRCYpJJ1yv4ta1MNRdLlp1bxg+nfyBZn4xOq2NUnVGMrT+21LzOwfHBrDy/kvVX1pOUrnaRulm5MdxnOANrDMzbeKtCJglLQUqOAQv7gj2nsdw6rI5XiQ9Tn9MzS6C676OPK6EOBB9g/M7xOFk4sevZXegKcWxOTEoMY/4cw4W7F3Awd+CHrj+U6WXgc5KYms7IJUc5ExjKjxZf05aTDx7sNgtaT+RscDTv7P2CG+kbAUi92xKXtEGMblONZ5t6YmNeMD9DRVE4dyeW9f7BbAoIJiohNfMxb3dbBjT2oF9DD8rZmHP7XuKDVpLIBK7fby2JTLuOdZVvUAwmxF99B/QPWih1Wg2V7reWVHWxoarz/a8u1pSzNlMTorRkmF1RnRU16TQ4emWLM0WfQp8NfbiTcIdXG73KmPpjCuT5F0dXw+P4ZNtFdl4IB8DGXMf4jtUY3bZKloG5iqIQl5KeLRF58H0yITFJxCbnviaTveNNylf7g+AEdVZkM/dmvNfivdzXfyrhYlJiWHNpDT9f+JmoZLVL1dbUlmdqPcOw2sNwtXI1WmySsBQURYEFrdXBqG0mQY1uoC2BpWsURa08uu0t9Z+jqw8M/qnUjFfJTZohjc6/diY6JZofu/1Ii/ItCuU6d5PvMvbPsVy6dwknCyd+6PqD0eszFFdxyWkM+/EI529HMd/ye7op/6BUaMKeNitZ9E8Qh66r/0xNHQ9i4fY7aBR8K3Xlk/azC63ceZrewN+XI1jvH8xf58NIvV/LRasBnVab+f1/mbtvwMzxCLbpzWhnP/lBcuJiTSUnq7x1Mf3QEe6chGeWQt0BOe6y9fpW3t7/Ntam1mztv5VylsYZ51FUDl2L4uM/LnAmWK3dU97eglbVyhEem0JITBKhMcnZxvs8YABtChptKhptCpbmaTjZgoONATtLPdYWek5HBZBgegwAezNH3mr+Bk9XfbpYju8oaCn6FLZc28Kyc8sIjA0EQKfV0atKL0bVGUV1x4fPwCwMkrAUlLDzD+pCADjXgtYT1XVsdCVksFt6Cvzx+oNVb336qeNVzI3fFFgUPjj4AeuurOOZms8wvVXBr0lzIeoC/9v3P4LigihnUY7F3RdTzaFagV+nNIlOTGXwD4e5HBpDD9sbBJrV4HyUmhT8e3xKqP4w7+x/hzRDGs3cm/FVp6+wNbMt1NhiEtPYeiaEdf63OXFTrb1hptNSpZz1/YTEmqrONng4aZl8cCAJ6fFPlgxv/R8c+xFaTYDuH+W4i0Ex8PzW5zkfdZ7BtQbzbst3H/fplRgGg8LmU3eYs+MSoeknMLG8jUabcj8ZURMSnS4VU10qGpNU0KagJxm9kvrokwMoGlKjW+CU3IffXupSLKoEFyWDYmBf0D6WnVuWOXUboK1HW/zq+NHMvVmRJXCSsBToye/AkYVwfCmkqFPxsHGHluOgiR9YOhTs9QpSbAj8OhxuH6O0j1fJzaE7hxj711gczB3Y89yeAusWUhSF3y7/xqdHPyXVkEoF6wos6LqAqvalu9WqoETGp/Dc94e4HqEOpLW10DGkuTo+pcK/xqccCTnCpD2TSEhLwNvJmwW+C3C2dC6SGO9EJ6E3KFRwsMwyAwlg49WNvP/P+3jaerKl/5bHL04Y8DNsHA+VWsML23Ld7VjoMV7Y8QI6jY71fddTxb7K412vhFkQ8APfnfom38fpNDqsTK2wNrXGSnf/6/3v7c3t8a3Yh+m/xXE9IoHK5az49aVWuNpZFMIzKP5ORZxi+bnl7Ly5EwU1HfAp54NfHT98vXwLtSsdJGEpnIskx6qDAw8vgLg76jYzW2gyElq+DPYehXPdx3XriJqsZIxXGbgEapTe8Sq5STek0+W3LtxNvsv3vt/T2qP1E58zMS2RmYdnsvX6VgA6VuzIrLazsDcvJWOdikhoTDLzdl7G292WZx4yPuV81HnG7xzP3eS7VLSpyPddv6eSXaUijjar4X8MJyAigEmNJ/FivRcf/0QRl2B+czC1greDwCT3N4cJuyaw7/Y+Ont25qvOXz3+NUuIny/8zOyj6vIMPav0pIJ1hVyTkP9+b6Y1e2QLQWhMMs9+f5Cgu0nUcLVhzUutcCrm1XcL063YW6w4v4KNVzdmrqbuYePBcJ/h9K/eHyvTwmmFkoSlMKWnqou6Hfwaws+r27Q6qPes2l3kVgxmhRxfAn+8+WC8yqBVUK7sdlN8eOhDfr38KwNqDGBG6xlPdK5r0deYsncK12OuY6IxYVLjSYyqM6pM9H8b063YW7z010vcjr+Nk4UTC3wX4FPOxyixXIu+Rr9N/TDRmPDXM3/hYuXy+CczGOCTSpAaB+P+Afe6ue56Pfo6AzYPQK/oWdZjWbGuuvqkNl3dxHv/qDP7xjUYxysNXymU6wTdTeTZhYcIjU2mTgU7fh7T8olr85R0d5PvsubiGn65+EvmkgR2ZnYMqjWIIbWHFHgLZ37ev0vgCFIj05lBw+dh/EEYuhYqt1MLr536RR2gu2og3PgbjJEHpqfA5ldhy2tqsuLTF0b/VaaTFYAeVXoAsPPmTtL02Uu459Xv137n+a3Pcz3mOq6Wrizuvhi/un6SrBSBSnaVWPnUSrydvLmbfBe/7X4cDjlslFgypl13qNjhyZIVUAfxe9wvKviIpTGqOlRlQA11YO7c43MpBZ81c/TXzb+YdnAaAMNqD+PlBi8X2rU8naxY9WILylmbce5OLH5Lj5KQkvvsorLAycKJ8Q3Hs+OZHbzX4j08bT2JTY1l0ZlFdF/bneD4YKPFJgnL49JooEZXGLUFxuxWB7NqtHB1JyzvrY7+P7sO9EX0yx8bAsueBv/lgAa6TIdnl5eZwbUP09i1Mc6WzsSmxj7Wm1yKPoUZh2bwzoF3SEpPomX5lvza+9dS/Qm3OHK2dGZp96U0d29OYnoiL+98uchX5E7Vp/L7td8BGFgzb4szPlIuKzfn5OWGL2Ops+R05Gl23NxRMNcvRg4EH+DNv9/EoBgYUGMAbzZ7s9A/EFR3tWHViy2wtzTF/1Y0Ly4/TvJD6uiUFZY6SwZ5D+L3fr8zt+Nc6jvXp45zHTxsjDf8QRKWguDRBJ5bDhNPQLMxakGskABY+wJ80xiO/ACphbisetBR+KED3D6qjlcZ+hu0m1KmBtc+jInWhK5eXQHy/QYXFBvEsD+GsfbyWjRoGN9gPAt9F5b6qaXFlY2ZDd/5fkdXr66kGdJ4c9+b/HLxlyK7/q5bu4hOicbNyo02FQpoYbnMhMX/4fuhJm1+df0AmHdiHhGJEQUTQzFwPPQ4k/dMJt2QTvfK3ZnWclqRtV7WLm/H8heaY21mwqHrUYxfdYLU9Jyns5c1Gf8/Vz21ivld5hs1FklYCpJTVej1Obx2DjpOBUsniL4J296AL+vAno8hIbJgr3l8KSx9Sh1c61IbxuxRW35EFt0rdwdgz609pOrzNvVx582dPLflOS7evYijuSMLfRfycsOXi3RdIpGduYk5c9rPYVCtQSgofHzkY745+U2RdJFkdAf1r9G/4H4PMhKW8PN5+mAz0mckblZuBMcHM3jLYM5Gni2YOIzobORZJuyeQIo+hfYV2zO77ewi/ztr6OnAklHNsDDVsudSBJPXnCQ9lxo8ZZFGoyn0sgKPjEEG3Rai1EQI+AkOfQv3AtVtJubq4m8FQTE8mLHk0xf6fiddQLkwKAa6ru1KeGI433T+ho6eHXPdN02fxtwTc1l1YRUAjVwbMaf9HNys3YooWpEXiqKw8PRCvgv4DoCBNQbyXsv3Cm0aZlBsEE9teAoNGrYP3E4Fm9xXlM63L7whLgT8toNXq0fufiv2Fq/ufpVrMdcw05oxo80Mnq76dMHFU4Su3LuC3w4/YlJiaO7enPld5mOhM94U432XIxiz/DipegMDGnvw+TMNisVK0qWVDLotLsysoPkYmOgPzy6DCo1BnwKxtwvmFncHdbzKNBmv8ghajZZuXt2Ah3cLhcSHMGrHqMxkxa+OH4u7L5ZkpRjSaNQuuvdbvo9Wo2XdlXVM2TuFmJSYQrne+qvrAWhdoXXBJiuQr3EsoA5CXvXUKjpW7EiqIZWp+6cy9/hc9IaSNfbiVuwtxv41lpiUGOo71+frzl8bNVkB6FDThW+GNMJEq2G9fzDvbzpbagc4lzTSwlKUFAUir0BaAY5nsXEDuwL+51lKBYQHMHzbcKx0VuwbtC/bP8b9t/cz9cBUYlJisDWz5aM2H9GpUicjRSvyY+fNnbz595ukGdKwM7Pjpfov8bz385iaFMwU1XRDOl3XdiUyKZK5HedmjokqMPu/gF0zoc4AeHZpng8zKAa+Pfkti84sAtRKpZ+2/xQ7s2L8f/C+0IRQRm4byZ2EO9R0rMmS7kuKVS2jTQHBTF4TgKLAmHZVeOep2jIjsBBIHRYhcqAoCt3XdSckIYR5HefRxasLoL4ZfRfwXeY/fZ9yPnzR4Qsq2lY0ZrginwLCA5h5eCZX7l0BoJJtJV5r8hpdKnV54jea3bd2M2nPJJwsnNj5zM4CS4QyXd8LK/qCgxdMPp3vw7ff2M77/7xPsj6ZynaV+abzN1S2r1ywMRagyKRI/Lb7ERgbiJedF8t6LCuyCsb5sfroLd5efwaAyb41mOxb08gRlT7SJSREDjQaTWa30I5AdUpoZFIkY/8am5msDKo1iJU9V0qyUgI1dG3Ib0//xgetPqCcRTluxd3itb2vMWr7KM5Fnnuic2cMtu1brW/BJysAFe7XYom++VgD83tU6cHynstxt3YnMDaQIVuHcCD4QAEHWTBiUmJ46a+XCIwNpLx1eRZ1XVQskxWAwc0rMe1ptUDhvJ1X+OHva0aOqGyThEWUKRlF5Pbe3svft//mmc3PcCz0GJY6Sz5r/xnvtXwPM5OyW567pDPRmjCw5kC2DtjK2PpjMTcxxz/cn8FbBzN1/1RCE0Lzfc7QhNDMN/+Mwm0FzsIenO9/es/D9Oac+JTz4Zdev9DItRFxaXG8susVlp1dVqzGXySkJfDyzpe5fO8y5SzKsajbIsrblDd2WA/1QtsqvNFdXX394z8usvJQoHEDKsMkYRFlSp1yauGjpPQkXtn1ClHJUVR3qM7qp1fTs0pPY4cnCoi1qTUTG01kS/8t9K7aG4At17fw9Ian+dr/axLyMY5s49WNGBQDTd2aFm43Sz4H3ubE2dKZH7v9yMAaAzEoBr448QXvHHgnc20YY0rRp/Dq7lc5HXkaOzM7fuj2A152XsYOK09e6VSdlzuqFcPf33SOtSduGzmiskkSFlGmaDSazJosAH2q9eHnXj/LKsullLu1Ox+3+5jVvVbTxK0JKfoUFp1ZRK/1vVh7ee0jZ9UYFAMbrmwACrF1JUMBJCwAZiZmTG81nanNp2KiMWHL9S34bfcjPDG8AIJ8PGmGNP63938cDT2Klc6Khb4LqelYssaDvNG9FqNaVwbgzbWn2Ho6xLgBlUGSsIgyZ1jtYXSp1IVZbWbxUduPsNRZGjskUcjqONdhafelzOs0j0q2lYhKjmLGoRk8u+VZDgYfzPW4Q3cOcSfhDrZmtgU/M+i/PBqrX4NPPPFaZBqNhiG1h/B91++xN7fnTOQZBm8ZzOmI/A/ofVJ6g55397/Lvtv7MDcx59su31LPpV6Rx/GkNBoN0572YVBTTwwKTFp9kt0Xw4wdVpkiCYsoc1ysXJjXaR59q/c1diiiCGk0GrpU6sLGvht5s9mb2JnZceXeFV7a+RLjd47n6r2r2Y7JGGzbu2rvwq8P4lYXTMwg6S7cu1Egp2xRvgW/9PqF6g7ViUiKwG+7H5uvbS6Qc+eFoih8ePhDtgVuQ6fV8WXHL2nm3qzIrl/QtFoNHw+oR58GFUg3KIxb5c8/Vwu4ernIlSQsQogyxdTElOE+w/ljwB8Mqz0MnUbHgeADDPx9IB8e+pCopCgAopKi2BO0ByiC7iAAnTm43295eMyBtznxtPVk1VOr6OTZiVRDKu8eeJc5x+aQbijchVkVReGzY5+x7so6tBotn7T7hHYV2xXqNYuCiVbDF881oKuPG6npBsauOE5EnPHHCJUFkrAIIcoke3N73mr+Fhv7baRLpS4YFAO/Xv6VXht68eOZH/nt8m+kG9Kp51yPWk61iiaoAhrH8l/WptbM6zSPl+q/BMCK8yt4ZdcrhVYVGGDBqQWZFaM/aPVBlrFjJZ2piZZvhzTCp7wdCal6Np4MNnZIZYIkLEKIMs3Lzot5neaxtPtSfMr5kJCWwFf+XzE/QF2ZdmCNgUUXTCElLKAuTzGh0QQ+7/A5ljpLDt45yNA/hnI9+nqBX2v5ueUsOLUAgLebv03/Gv0L/BrGZq4zYUiLSgCs879drKaPl1ZS6VYIIe4zKAa2Xt/KV/5fEZYYhrWpNbuf3Y2VqVXRBBB5Bb5tCjoLmHobCqNIHXDx7kVe3f0qIQkh2Jja8Gn7T2lfsX3m4wbFQFJ6EolpiSSmJ5KYlkhCWoJ6Pz2RpLQkEtPvb/vXPonpicSlxnE45DAAExtNZGz9sYXyHIqDmMQ0mn28k9R0A1smtqWuR/FZWqCkyM/792Mtazp//nzmzJlDaGgoDRo04JtvvqF58+aPPG716tU8//zz9O3bl40bN2Z57MKFC7z11lvs27eP9PR0fHx8WLduHZUqVXqcEIUQIt+0Gi29q/XG18uXP67/QVWHqkWXrAA4VVOLyCXHQPh5KN+gUC7j7eTNL71+YcreKfiH+zNh1wQq2lbMTDqS0pOe+Bp+df0YU29MAURbfNlbmdK1thtbz4Swzv+2JCyFLN8Jy5o1a5gyZQoLFy6kRYsWzJs3j+7du3Pp0iVcXV1zPS4wMJDXX3+ddu2yD7q6du0abdu2ZfTo0cyYMQM7OzvOnTuHhYVxV+0UQpRNljpLBtYswq6gDFqtuqr79T1qt1AhJSwA5SzL8WO3H/n46MesvbyWoLig7OFotFjprNSbqRWWOkusTa2xMn2wzUqXfXtF24o0dm1cJhYLHNjEg61nQtgccId3nqqNqYmMtCgs+e4SatGiBc2aNePbb78FwGAw4OnpycSJE3n77bdzPEav19O+fXteeOEF9u/fT3R0dJYWlsGDB2NqasrKlSvzFENKSgopKQ9GZcfGxuLp6SldQkKIkm/Xh7D/c2g0DPrOL5JLXr53mcS0RCx1llmSEQsTizKRdDyJdL2BlrN3ExmfwqIRTenq42bskEqUQlv8MDU1lRMnTuDr6/vgBFotvr6+HDp0KNfjZs6ciaurK6NHj872mMFgYOvWrdSsWZPu3bvj6upKixYtsnUZ/dvs2bOxt7fPvHl6eubnaQghRPGVOfC24KY2P0pNx5o0dG1ILadaeNp6Us6yHJY6S0lW8kBnoqVfwwoArJOS/YUqXwlLZGQker0eN7esGaSbmxuhoTkvKnbgwAEWL17MokWLcnw8PDyc+Ph4PvnkE3r06MGff/5J//79GTBgAPv27cvxmKlTpxITE5N5CwrK3pQphBAlUkbF2/ALkBJn3FhEngxsoq7uvutiGNGJqUaOpvQq1M62uLg4hg8fzqJFi3B2znn5cIPBAEDfvn157bXXaNiwIW+//TZPP/00CxcuzPEYc3Nz7OzsstyEEKJUsHUHu4qAAiGnjB2NyIPa5e3wKW9Hml7h91N3jB1OqZWvhMXZ2RkTExPCwrKunxAWFoa7u3u2/a9du0ZgYCC9e/dGp9Oh0+lYsWIFmzdvRqfTce3aNZydndHpdPj4+GQ5tnbt2ty6desxnpIQQpRw/15XSJQIGa0sa/2liFxhyVfCYmZmRpMmTdi1a1fmNoPBwK5du2jVqlW2/b29vTlz5gwBAQGZtz59+tCpUycCAgLw9PTEzMyMZs2acenSpSzHXr58GS+vkrH0uBBCFKhCLCAnCkffhhXQaTWcCormani8scMplfI9rXnKlCmMHDmSpk2b0rx5c+bNm0dCQgJ+fn4AjBgxAg8PD2bPno2FhQV169bNcryDgwNAlu1vvPEGgwYNon379nTq1Int27fz+++/s3fv3sd/ZkIIUVIZYeCteDLONuZ0rOXCzgvhrPO/zVs9vI0dUqmT74Rl0KBBREREMG3aNEJDQ2nYsCHbt2/PHIh769YttNr8DY3p378/CxcuZPbs2bz66qvUqlWLdevW0bZt2/yGJ4QQJV+FhoAGYoIgLgxsZapsSTCgcUV2Xghng38wr3erhYlWZlkVJCnNL4QQxdH8lhBxAZ5fDbV6GjsakQcp6Xqaf7SLmKQ0Vo5uTrsaLsYOqdgrtDosQgghioiMYylxzHUm9G5QHpCaLIVBEhYhhCiOZKZQiTSwsTpbaPu5UOKS04wcTekiCYsQQhRH/25hKfk992VGQ08HqrpYk5xmYNuZnAuqiscjCYsQQhRHbnXAxFxdufnudWNHI/JIo9FktrKs9ZduoYIkCYsQQhRHJqYPVmuWbqESZUBjDzQaOHrjLkF3E40dTqkhCYsQQhRXMvC2RCpvb0mbaupyNOuklaXASMIihBDFlSQsJdbAJh4ArPcPphRUDykWJGERQojiKmOmUMhpSJdVgEuS7nXcsTYz4dbdRI7fvGfscEoFSViEEKK4cqoKFg6gT4Gws8aORuSDlZmOp+pJTZaCJAmLEEIUVxqNdAuVYBkrOG89HUJymt7I0ZR8krAIIURxJgshlljNKztR0dGSuJR0dpyTmixPShIWIYQozqSFpcTSajUMuF+TZZ1/sJGjKfkkYRFCiOIsY+Bt5GW1iJwoUQY2VmcLHbgSQVhsspGjKdkkYRFCiOLMxhXsKwEK3AkwdjQin7zKWdOssiMGBTaclFaWJyEJixBCFHcVpVuoJMso1b/uxG2pyfIEJGERQojiTsaxlGhP1S+PuU7LlfB4zgRLt97jkoRFCCGKO5kpVKLZWZjSvY47IDVZnoQkLEIIUdyVbwAaLcTdgdg7xo5GPIaMmiybT90hNd1g5GhKJklYhBCiuDOzBlcf9b60spRIbas742przr3ENHZfDDd2OCWSJCxCCFESZExvlnEsJZKJVkP/RuoUZ1nB+fFIwiKEECWBDLwt8TK6hfZcDCcqPqVQr3U88C6fbLvIjciEQr1OUZKERQghSoKMhOXOSTDIGIiSqKabLfU87Ek3KGw+VXhjkTacvM3ziw6zcN81us7dx7sbzpSKonWSsAghREngUht0lpASC1FXjR2NeEwZlW/XF0KpfkVRmL/nKq+tOUWaXqFyOSvSDQo/HblFhzl7+HT7RWKS0gr8ukVFEhYhhCgJTHRQoaF6X7qFSqw+DT0wNdFwJjiGy2FxBXZevUHh/U1nmbPjEgAvta/K7v915NeXWtHEy5HkNAML9l6j/Wd7WLjvGkmpJW/1aElYhBCipJBxLCWek7UZnWq5AgVXkyUpVc9LK0+w6vAtNBr4oLcPU5+qjVaroXkVJ9aOa8WPI5pSy82WmKQ0Ptl2kY6f7+HnI7dI05ec7kVJWIQQoqSQmUKlQsbg2w0ng0l/woQhKj6F5xcdZueFMMx1WhYMbcyoNlWy7KPRaPD1ceOPSe2Y+1wDPBwsCYtN4Z0NZ+j25d9sOX0Hg6H4LxkgCYsQQpQUGS0soWcgvXBnmYjC06mWK45WpoTHpXDgauRjnycwMoGBCw4SEBSNg5UpP73Ygh51y+e6v4lWw4DGFdn9egem9/ahnLUZNyITmPDzSfrO/4f9VyKK9VpHkrAIIURJ4eAFVuXAkAahZ40djXhMZjotfRtm1GR5vMG3AUHRDFxwkMCoRCo6WrJufGuaVnbK07HmOhP82lRh35udmOxbA2szE84ExzB88VGG/niEgKDox4qpsEnCIoQQJYVGI+NYSomMFZz/PBdKbHL+Zu7sPB/G4B8OEZWQSl0PO9a/3JpqLjb5jsHGXMdk35r8/WYnXmhTBTMTLQevRdFv/j+MW3mCq+Hx+T5nYZKERQghShJJWEqFuh521HSzISXdwNbTIXk+7qcjNxm78jjJaQY61HRhzdhWuNpaPFEs5WzMmdbbh13/68DAxhXRaGD7uVC6fbmPt9ae5k500hOdv6BIwiKEECWJJCylgkajyWxlyctsIUVRmLPjIu9uOItBgeeaVuTHkU2xNtcVWEyeTlZ88VwDtk9qT1cfNwwKrDkeRMfP9/LR1vPcS0gtsGs9DklYhBCiJKlwf6ZQ1BW4d9O4sYgn0r+RB1oNHL95j8CHlNBPTTfwv99OMX/PNQAm+9bg04H1MTUpnLfwWu62LBrRlHXjW9G8shOp6QYW7b9B+8/2cDPKeKX+JWERQoiSxLoceLVR768fA/qSW7m0rHO1s6BdDRcA1ueyIGJcchovLDvGev9gTLQaPhtYn8m+NdFoNIUeXxMvJ9a81JKlfs2oXd6OWu62VHKyKvTr5kYSFiGEKGn6zgdzOwg6Ans+NnY04glk1GRZ5x+crRZKWGwyzy48xIGrkViZmbB4ZFOea+ZZpPFpNBo61XJl68S2LBzepEgSpdxIwiKEECWNUxXo87V6/8CXcG23ceMRj62bjxu2FjqCo5M4cuNu5vbLYXH0n/8PF0PjcLYxZ83YVnS8XyHXGLRaDc425ka7PjxmwjJ//nwqV66MhYUFLVq04OjRo3k6bvXq1Wg0Gvr165dl+6hRo9BoNFluPXr0eJzQhBCibKjTH5qMAhRY/xLEhxs7IvEYLExNeLq+Wuxt3f1uocPXo3hmwUHuxCRT1cWaDS+3pl5Fe2OGWSzkO2FZs2YNU6ZMYfr06fj7+9OgQQO6d+9OePjD/1gCAwN5/fXXadeuXY6P9+jRg5CQkMzbL7/8kt/QhBCibOnxCbj6QEI4rB8LhpKzLox4IGO20LYzIfx6PIgRi48Sm5xOEy9H1o1rjacRx40UJ/lOWObOncuYMWPw8/PDx8eHhQsXYmVlxZIlS3I9Rq/XM3ToUGbMmEHVqlVz3Mfc3Bx3d/fMm6OjY35DE0KIssXUEp5ZCjpLuL4H/vnS2BGJx9DEyxGvclYkpOp5c+1pUvUGetRx56cXW+BobWbs8IqNfCUsqampnDhxAl9f3wcn0Grx9fXl0KFDuR43c+ZMXF1dGT16dK777N27F1dXV2rVqsX48eOJiorKdd+UlBRiY2Oz3IQQokxy9YanPlPv7/4Ibh0xbjwi3zQaDQMaVcz8flTryswf2hgLUxMjRlX85CthiYyMRK/X4+bmlmW7m5sboaGhOR5z4MABFi9ezKJFi3I9b48ePVixYgW7du3i008/Zd++ffTs2RO9Xp/j/rNnz8be3j7z5ulZtKOmhRCiWGk0HOo+A4oe1o2GxLuPPkYUK8NbeeFb25UP+9Zhem8fTLTGm41TXBVcibwcxMXFMXz4cBYtWoSzs3Ou+w0ePDjzfr169ahfvz7VqlVj7969dOnSJdv+U6dOZcqUKZnfx8bGStIihCi7NBp4+ku1+u29G7B5IgxapW4XJYKTtRk/jmxm7DCKtXwlLM7OzpiYmBAWFpZle1hYGO7u7tn2v3btGoGBgfTu3Ttzm+H+oDCdTselS5eoVq1atuOqVq2Ks7MzV69ezTFhMTc3x9zcuNOrhBCiWLGwg2eXwo9d4eIWOPYjNB9j7KiEKDD56hIyMzOjSZMm7Nq1K3ObwWBg165dtGrVKtv+3t7enDlzhoCAgMxbnz596NSpEwEBAbm2ity+fZuoqCjKly+fz6cjhBBlWIVG0HWmen/HOxBy2rjxCFGA8t0lNGXKFEaOHEnTpk1p3rw58+bNIyEhAT8/PwBGjBiBh4cHs2fPxsLCgrp162Y53sHBASBze3x8PDNmzGDgwIG4u7tz7do13nzzTapXr0737t2f8OkJIUQZ03I83PgbLm+DtX4wdh+Y2xg7KiGeWL4TlkGDBhEREcG0adMIDQ2lYcOGbN++PXMg7q1bt9Bq895wY2JiwunTp1m+fDnR0dFUqFCBbt268eGHH0q3jxBC5JdGA/2+g4VtIeoqbP0fDPje2FEJ8cQ0iqIoj96teIuNjcXe3p6YmBjs7OyMHY4QQhjfzYOwrBcoBui3EBo+b+yIhMgmP+/fspaQEEKURl6toeNU9f7W/0HkFePGI8QTkoRFCCFKq3b/gyrtIS0BfhsFacnGjkiIxyYJixBClFZaExiwCKycIews/PmusSMS4rFJwiKEEKWZrTv0vz/o9tiPcH6zceMR4jFJwiKEEKVdDV9o/ap6f/MEuHfTuPEI8RgkYRFCiLKgyzTwaArJMep6Q/o0Y0ckRL5IwiKEEGWBiSk8sxjM7eH2MdjzkbEjEiJfJGERQoiywrEy9PlavX/gS7i666G7C1GcSMIihBBlSZ1+0PQF9f6GlyAu7KG7C1FcSMIihBBlTfePwa0uJETA+jFg0Bs7IiEeSRIWIYQoa0wt4ZklYGoFN/ap3UNCFHOSsAghRFnkUguemqPe3/MxBB4wbjxCPIIkLEIIUVY1HAr1ngNFDyv7w+GFUPLXwxWllCQsQghRVmk08PSXULMn6FNh+1vw8yBIiDR2ZEJkIwmLEEKUZeY28Pwv0HMOmJjDlR2woA1c22PsyITIQqMoJb/9LzY2Fnt7e2JiYrCzszN2OEIIUTKFnoW1L0DkJUADbSZB5/fUonOiYCmKOksr4iJEXFK/3r0BDQZD/eeMHV2Ryc/7tyQsQgghHkhNhB1T4cQy9fsKjdUKuU5VjRpWiaUoEBeSNTHJ+Jp0L/v+Wh2M2gqVWhZ9rEYgCYsQQognc34TbJ6orj1kZgtPzzXOJ/+oa5AYBea2D25mNqA1KfpYHsZggJigB8lI5KX79y9BSmwuB2nU6sMu3uqsrfDzcOVPsHGHcfvBxrUon4FRSMIihBDiyUUHwfqxcOug+n39wdDrczVpKExpyWrCdHwJBB3OeR8zm6xJTObN7uHbzKzVQnmGdPWmTwNDGujT739N+9f29Ic8dv9+/P1uncjLkJaYc6waE7WFyqXW/eTkfoLiXEOtiZMhJR4WdVaTncrtYPhGMNEV+MtbnEjCIoQQomDo02H/57DvU1AM6hvvwB/Bo0nBXyvqGpxYCid/gqS76jaNCdhXhNR4SI5VE4XiSmuqJiEutcC51oMEpVw10Jnn7RwRl2FRJ/X5tn4Vun1YuDEbmSQsQgghCtbNQ7DuRYi9rY6z6DINWk0E7RNONtWnwcWtamvKjX0Pttt7QpOR0Gg42Lo/2J6eoiYuKbGQEvefW07b/rM9NUHtTtLq1MHEWlO1FUOru3/fNIfH/rX9v49Z2D9oNXGsXDADlM9thN9GqvefWwk+fZ78nMWUJCxCCCEKXtI9+H2S2l0DULUT9F+YNaHIq+hbcGI5nFwJ8RkLMGqgRjd1ccYaXYvfOJWitONdOPStOn5o7B615aYUkoRFCCFE4VAU8F8B296C9CSwcoZ+C6Bmt0cfa9DDlb/U1pQrfwL3336sXaHxCLVFxaFSoYZfYujTYHkfdfyQS20Ys0sdf1PKSMIihBCicEVcUmu2hJ1Vv2/5Mvh+kPNYjbhQ8F8J/svVmTQZqnRQW1O8e0mtl5zEhcL37dUWqHrPwoBFanXiUkQSFiGEEIUvLRl2TocjC9Xv3evBwCXgUlOd5ntjn9qacukPdUYNgKWjuoZREz9wrm682EuKmwdh2dPqek8950CLscaOqEBJwiKEEKLoXNoOm15W66WYWkHjkWqJ/7vXH+zj2VJtTfHpC6YWxou1JDr4Lfz5rjrQ1+8P8Gxu7IgKjCQsQgghilZsCGx4KetMHzNbtdR8Uz9wq2O82Eo6RVFnDZ3fBLYV4KW/wcbF2FEVCElYhBBCFD2DAQ7Ph6u7oE5/qDtQXVxRPLmUuPtF5S6XqqJykrAIIYQQpU3EJfihE6QlQNvX1EHOJVx+3r+fsOKPEEIIIYqESy3o+616/8CXasG9MkQSFiGEEKKkqDtAnUIOsGGcupxBGSEJixBCCFGSdJ2pzrpKiYU1w9XlBsoASViEEEKIksTEFJ5dplYIDj8HW15TZxKVcpKwCCGEECWNXXl4dqm6mvXpNXB8sbEjKnSSsAghhBAlUeW2D2YKbXsbbh83ajiFTRIWIYQQoqRqPRFq9wFDGvw6AhIijR1RoXmshGX+/PlUrlwZCwsLWrRowdGjR/N03OrVq9FoNPTr1y/XfcaNG4dGo2HevHmPE5oQQghRdmg00Hc+lKsBscGwbrS6KnYplO+EZc2aNUyZMoXp06fj7+9PgwYN6N69O+Hh4Q89LjAwkNdff5127drlus+GDRs4fPgwFSpUyG9YQgghRNlkYQeDVqrrOF3fC3s+NnZEhSLfCcvcuXMZM2YMfn5++Pj4sHDhQqysrFiyZEmux+j1eoYOHcqMGTOoWrVqjvsEBwczceJEfvrpJ0xNZZlxIYQQIs9ca0Ofb9T7+z+HS9uMG08hyFfCkpqayokTJ/D19X1wAq0WX19fDh06lOtxM2fOxNXVldGjR+f4uMFgYPjw4bzxxhvUqfPoBbJSUlKIjY3NchNCCCHKtHrPQPOX1PvrX8q6WnYpkK+EJTIyEr1ej5ubW5btbm5uhIaG5njMgQMHWLx4MYsWLcr1vJ9++ik6nY5XX301T3HMnv3/9u4+qKkz3wP4N7wkWIQgpBCCvCkqW6m4y0vkeu1ehyzgzkJpnZZ2ukiR6R8tOmtT21vujEC77WRt/yi2Mu2UcUp7d2qtf2hvvffSxVQprIgzuEzpTGWVgYEWE8A7vKVV3OTcPzLEZnkzin0OJ9/PzJk5HJ4k3/jwTH6enPxigVar9Wzx8fG3/ySIiIiUKu81YHU2cGMcOLYLuPmj6ERL5p5+SmhychKlpaVoaGiATqebc0xnZycOHTqExsZGqFSq27rfqqoqjI+Pe7bBwcGljE1ERLQ8BamBxz8EQu8H7N1AW53oREvGp++m1ul0CAwMhN1u9zput9uh1+tnje/t7UV/fz8KCws9x1wul/uBg4LQ09OD1tZWDA8PIyEhwTPG6XTihRdeQF1dHfr7+2fdr0ajgUaj8SU6ERGRfwg3AL99Ezj+NHDuHSBzNxAWs+jN5M6nMyxqtRoZGRmwWq2eYy6XC1arFTk5ObPGp6amoru7G11dXZ6tqKgI27dvR1dXF+Lj41FaWoqvv/7aa4zBYMCLL76IL7744u6fIRERkb95oBiIywBuOoCWg6LTLAmfzrAAgNlsRllZGTIzM5GdnY26ujo4HA6Ul5cDAHbt2oW4uDhYLBaEhIQgLS3N6/YREREA4DkeFRWFqKgorzHBwcHQ6/XYsGHDnTwnIiIi/6ZSAb/5I9D4W6CzEdjyLKBbJzrVXfG5YCkpKcHIyAiqq6ths9mwefNmNDU1eS7EHRgYQEAAG+gSEREJlbQVWL8D+Pv/AtZXgJI/i050V1SStPy/4nFiYgJarRbj4+MIDw8XHYeIiEgehi8B7+YAkgvY/RcgwSg6kRdfXr95KoSIiEipolOBX/7evd98AFjG5yhYsBARESnZv/0HELQCGOwALv236DR3jAULERGRkoXHAjmV7v3TtYDzH0Lj3CkWLEREREq39Q/AfVHAtcvA3z4SneaOsGAhIiJSupBw4Nf/7t4/YwFuTInNcwdYsBAREfmDjHJgVTLgGAba60Wn8RkLFiIiIn8QpAZyq937fz0ETA2LzeMjFixERET+YuMjgOFX7pb9Z/8kOo1PWLAQERH5C5UKyPuje7+zERi9LDSOL1iwEBER+ZOkfwXWFwCS092yf5lgwUJERORvTLWAKgD49nNg8ILoNLeFBQsREZG/if4FsPkp9/5flkfLfhYsRERE/mj7TMv+80DP/4hOsygWLERERP4o3ADkPOfeb66Rfct+FixERET+ahm17GfBQkRE5K9CtLda9p/9k6xb9rNgISIi8mczLfun7LJu2c+ChYiIyJ/9tGX/ubdl27KfBQsREZG/m2nZPz0FtBwUnWZOLFiIiIj8nUoF/OZV935nIzB6RWicubBgISIiIiB5G7AuH3D9Q5Yt+1mwEBERkZunZf9/ya5lPwsWIiIicot54FbL/uZqWbXsZ8FCREREt8y07B9ol1XLfhYsREREdMtPW/afrpVNy34WLERERORt6x+AFZHA6N+Bv/2n6DQAWLAQERHRP/Nq2W8Bph1i84AFCxEREc0lczewKkk2LftZsBAREdFsP23Z/9dDwNSI0DgsWIiIiGhuD8inZT8LFiIiIppbQMBPWvZ/APxfn7AoQcIemYiIiOQveZv7epaEfwEiEoXFYMFCREREC/vdW6IT8C0hIiIikj8WLERERCR7d1Sw1NfXIykpCSEhITAajbhw4fa+0fGTTz6BSqVCcXGx1/Ha2lqkpqYiNDQUq1atgslkQkdHx51EIyIiIgXyuWA5duwYzGYzampqcPHiRaSnpyM/Px/Dw8ML3q6/vx/79+/Htm3bZv1u/fr1OHz4MLq7u9HW1oakpCTk5eVhZETsZ76JiIhIHlSS5Nt3RxuNRmRlZeHw4cMAAJfLhfj4eOzduxcvv/zynLdxOp146KGHsHv3brS2tmJsbAwnT56c9zEmJiag1Wpx+vRp5ObmLpppZvz4+DjCw8N9eTpEREQkiC+v3z6dYZmenkZnZydMJtOtOwgIgMlkQnt7+7y3e/XVVxEdHY2Kiorbeoz3338fWq0W6enpc465ceMGJiYmvDYiIiJSLp8KltHRUTidTsTExHgdj4mJgc1mm/M2bW1tOHLkCBoaGha871OnTmHlypUICQnBW2+9hebmZuh0ujnHWiwWaLVazxYfH+/L0yAiIqJl5p5+SmhychKlpaVoaGiYt/iYsX37dnR1deHcuXMoKCjA448/Pu91MVVVVRgfH/dsg4OD9yI+ERERyYRPjeN0Oh0CAwNht9u9jtvtduj1+lnje3t70d/fj8LCQs8xl8vlfuCgIPT09GDt2rUAgNDQUKSkpCAlJQVbtmzBunXrcOTIEVRVVc26X41GA41G40t0IiIiWsZ8OsOiVquRkZEBq9XqOeZyuWC1WpGTkzNrfGpqKrq7u9HV1eXZioqKPGdTFnorx+Vy4caNG77EIyIiIoXyuTW/2WxGWVkZMjMzkZ2djbq6OjgcDpSXlwMAdu3ahbi4OFgsFoSEhCAtLc3r9hEREQDgOe5wOPD666+jqKgIsbGxGB0dRX19Pb7//ns89thjd/n0iIiISAl8LlhKSkowMjKC6upq2Gw2bN68GU1NTZ4LcQcGBhAQcPsnbgIDA3Hp0iV8+OGHGB0dRVRUFLKystDa2oqNGzf6Go+IiIgUyOc+LHLEPixERETLjy+v34r4tuaZmov9WIiIiJaPmdft2zl3ooiCZXJyEgDYj4WIiGgZmpychFarXXCMIt4ScrlcGBoaQlhYGFQq1ZLe98TEBOLj4zE4OMi3mwTiPMgD50EeOA/ywHm4e5IkYXJyEgaDYdHrXxVxhiUgIACrV6++p48RHh7OP0gZ4DzIA+dBHjgP8sB5uDuLnVmZcU873RIREREtBRYsREREJHssWBah0WhQU1PDrwIQjPMgD5wHeeA8yAPn4eeliItuiYiISNl4hoWIiIhkjwULERERyR4LFiIiIpI9FixEREQkeyxYiIiISPZYsCyivr4eSUlJCAkJgdFoxIULF0RH8iu1tbVQqVReW2pqquhYivfVV1+hsLAQBoMBKpUKJ0+e9Pq9JEmorq5GbGwsVqxYAZPJhMuXL4sJq2CLzcPTTz89a30UFBSICatQFosFWVlZCAsLQ3R0NIqLi9HT0+M15vr166isrERUVBRWrlyJnTt3wm63C0qsXCxYFnDs2DGYzWbU1NTg4sWLSE9PR35+PoaHh0VH8ysbN27E1atXPVtbW5voSIrncDiQnp6O+vr6OX//xhtv4O2338Z7772Hjo4OhIaGIj8/H9evX/+ZkyrbYvMAAAUFBV7r4+jRoz9jQuVraWlBZWUlzp8/j+bmZty8eRN5eXlwOByeMc8//zw+//xzHD9+HC0tLRgaGsKjjz4qMLVCSTSv7OxsqbKy0vOz0+mUDAaDZLFYBKbyLzU1NVJ6erroGH4NgHTixAnPzy6XS9Lr9dKbb77pOTY2NiZpNBrp6NGjAhL6h3+eB0mSpLKyMunhhx8WksdfDQ8PSwCklpYWSZLcf/vBwcHS8ePHPWO+/fZbCYDU3t4uKqYi8QzLPKanp9HZ2QmTyeQ5FhAQAJPJhPb2doHJ/M/ly5dhMBiwZs0aPPXUUxgYGBAdya/19fXBZrN5rQ2tVguj0ci1IcDZs2cRHR2NDRs24Nlnn8W1a9dER1K08fFxAEBkZCQAoLOzEzdv3vRaD6mpqUhISOB6WGIsWOYxOjoKp9OJmJgYr+MxMTGw2WyCUvkfo9GIxsZGNDU14d1330VfXx+2bduGyclJ0dH81szfP9eGeAUFBfjoo49gtVpx8OBBtLS0YMeOHXA6naKjKZLL5cK+ffuwdetWpKWlAXCvB7VajYiICK+xXA9LL0h0AKKF7Nixw7O/adMmGI1GJCYm4tNPP0VFRYXAZETiPfHEE579Bx98EJs2bcLatWtx9uxZ5ObmCkymTJWVlfjmm294HZ0gPMMyD51Oh8DAwFlXetvtduj1ekGpKCIiAuvXr8eVK1dER/FbM3//XBvys2bNGuh0Oq6Pe2DPnj04deoUzpw5g9WrV3uO6/V6TE9PY2xszGs818PSY8EyD7VajYyMDFitVs8xl8sFq9WKnJwcgcn829TUFHp7exEbGys6it9KTk6GXq/3WhsTExPo6Ojg2hDsu+++w7Vr17g+lpAkSdizZw9OnDiBL7/8EsnJyV6/z8jIQHBwsNd66OnpwcDAANfDEuNbQgswm80oKytDZmYmsrOzUVdXB4fDgfLyctHR/Mb+/ftRWFiIxMREDA0NoaamBoGBgXjyySdFR1O0qakpr/+l9/X1oaurC5GRkUhISMC+ffvw2muvYd26dUhOTsaBAwdgMBhQXFwsLrQCLTQPkZGReOWVV7Bz507o9Xr09vbipZdeQkpKCvLz8wWmVpbKykp8/PHH+OyzzxAWFua5LkWr1WLFihXQarWoqKiA2WxGZGQkwsPDsXfvXuTk5GDLli2C0yuM6I8pyd0777wjJSQkSGq1WsrOzpbOnz8vOpJfKSkpkWJjYyW1Wi3FxcVJJSUl0pUrV0THUrwzZ85IAGZtZWVlkiS5P9p84MABKSYmRtJoNFJubq7U09MjNrQCLTQPP/zwg5SXlyfdf//9UnBwsJSYmCg988wzks1mEx1bUeb69wcgffDBB54xP/74o/Tcc89Jq1atku677z7pkUceka5evSoutEKpJEmSfv4yiYiIiOj28RoWIiIikj0WLERERCR7LFiIiIhI9liwEBERkeyxYCEiIiLZY8FCREREsseChYiIiGSPBQsRERHJHgsWIiIikj0WLERERCR7LFiIiIhI9v4fO+6hiLqdSbUAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.title(\"First three cases for CardanoSentiment\")\n", "plt.plot(cardano_train[0][0])\n", "plt.plot(cardano_train[1][0])\n", "plt.plot(cardano_train[2][0])" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:32.017935500Z", "start_time": "2023-08-23T19:10:31.868671600Z" } } }, { "cell_type": "markdown", "source": [], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "# Time Series Regressors in aeon\n", "\n", "All regressors inherit from the `BaseRegressor` class. Like classification and\n", "clustering, regressors have methods `fit` and `predict` to train and use the model.\n", "The list of regressors available can be found with `all_estimators`." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 13, "outputs": [ { "data": { "text/plain": " name \\\n0 CNNRegressor \n1 CanonicalIntervalForestRegressor \n2 Catch22Regressor \n3 DrCIFRegressor \n4 DummyRegressor \n5 FCNRegressor \n6 FreshPRINCERegressor \n7 InceptionTimeRegressor \n8 IndividualInceptionRegressor \n9 IntervalForestRegressor \n10 KNeighborsTimeSeriesRegressor \n11 RandomIntervalRegressor \n12 RandomIntervalSpectralEnsembleRegressor \n13 RegressorPipeline \n14 ResNetRegressor \n15 RocketRegressor \n16 SklearnRegressorPipeline \n17 TapNetRegressor \n18 TimeSeriesForestRegressor \n\n estimator \n0 \n5 \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
nameestimator
0CNNRegressor<class 'aeon.regression.deep_learning.cnn.CNNR...
1CanonicalIntervalForestRegressor<class 'aeon.regression.interval_based._cif.Ca...
2Catch22Regressor<class 'aeon.regression.feature_based._catch22...
3DrCIFRegressor<class 'aeon.regression.interval_based._drcif....
4DummyRegressor<class 'aeon.regression._dummy.DummyRegressor'>
5FCNRegressor<class 'aeon.regression.deep_learning.fcn.FCNR...
6FreshPRINCERegressor<class 'aeon.regression.feature_based._fresh_p...
7InceptionTimeRegressor<class 'aeon.regression.deep_learning.inceptio...
8IndividualInceptionRegressor<class 'aeon.regression.deep_learning.inceptio...
9IntervalForestRegressor<class 'aeon.regression.interval_based._interv...
10KNeighborsTimeSeriesRegressor<class 'aeon.regression.distance_based._time_s...
11RandomIntervalRegressor<class 'aeon.regression.interval_based._interv...
12RandomIntervalSpectralEnsembleRegressor<class 'aeon.regression.interval_based._rise.R...
13RegressorPipeline<class 'aeon.regression.compose._pipeline.Regr...
14ResNetRegressor<class 'aeon.regression.deep_learning.resnet.R...
15RocketRegressor<class 'aeon.regression.convolution_based._roc...
16SklearnRegressorPipeline<class 'aeon.regression.compose._pipeline.Skle...
17TapNetRegressor<class 'aeon.regression.deep_learning.tapnet.T...
18TimeSeriesForestRegressor<class 'aeon.regression.interval_based._tsf.Ti...
\n" }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from aeon.utils.discovery import all_estimators\n", "\n", "all_estimators(\"regressor\")" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:32.074782800Z", "start_time": "2023-08-23T19:10:32.015968700Z" } } }, { "cell_type": "markdown", "source": [ "Currently we have 18 regressors, including deep learning, feature based, convolution\n", "based, interval based and distance based regressors, in addition to the utility\n", "regressors such as Dummy and Pipeline." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 14, "outputs": [ { "data": { "text/plain": "0.17823940618016532" }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from aeon.regression.distance_based import KNeighborsTimeSeriesRegressor\n", "\n", "knn = KNeighborsTimeSeriesRegressor()\n", "knn.fit(covid_train, covid_train_y)\n", "p = knn.predict(covid_test)\n", "sse = np.sum((covid_test_y - p) * (covid_test_y - p))\n", "sse" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:32.387392900Z", "start_time": "2023-08-23T19:10:32.075780800Z" } } }, { "cell_type": "markdown", "source": [ "## Multivariate Regression\n", "Nearly all of the regressors can handle multivariate data" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 15, "outputs": [ { "data": { "text/plain": " name \\\n0 CNNRegressor \n1 CanonicalIntervalForestRegressor \n2 Catch22Regressor \n3 DrCIFRegressor \n4 DummyRegressor \n5 FCNRegressor \n6 FreshPRINCERegressor \n7 InceptionTimeRegressor \n8 IndividualInceptionRegressor \n9 IntervalForestRegressor \n10 KNeighborsTimeSeriesRegressor \n11 RandomIntervalRegressor \n12 RandomIntervalSpectralEnsembleRegressor \n13 ResNetRegressor \n14 RocketRegressor \n15 TapNetRegressor \n16 TimeSeriesForestRegressor \n\n estimator \n0 \n5 \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
nameestimator
0CNNRegressor<class 'aeon.regression.deep_learning.cnn.CNNR...
1CanonicalIntervalForestRegressor<class 'aeon.regression.interval_based._cif.Ca...
2Catch22Regressor<class 'aeon.regression.feature_based._catch22...
3DrCIFRegressor<class 'aeon.regression.interval_based._drcif....
4DummyRegressor<class 'aeon.regression._dummy.DummyRegressor'>
5FCNRegressor<class 'aeon.regression.deep_learning.fcn.FCNR...
6FreshPRINCERegressor<class 'aeon.regression.feature_based._fresh_p...
7InceptionTimeRegressor<class 'aeon.regression.deep_learning.inceptio...
8IndividualInceptionRegressor<class 'aeon.regression.deep_learning.inceptio...
9IntervalForestRegressor<class 'aeon.regression.interval_based._interv...
10KNeighborsTimeSeriesRegressor<class 'aeon.regression.distance_based._time_s...
11RandomIntervalRegressor<class 'aeon.regression.interval_based._interv...
12RandomIntervalSpectralEnsembleRegressor<class 'aeon.regression.interval_based._rise.R...
13ResNetRegressor<class 'aeon.regression.deep_learning.resnet.R...
14RocketRegressor<class 'aeon.regression.convolution_based._roc...
15TapNetRegressor<class 'aeon.regression.deep_learning.tapnet.T...
16TimeSeriesForestRegressor<class 'aeon.regression.interval_based._tsf.Ti...
\n" }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_estimators(\"regressor\", tag_filter={\"capability:multivariate\": True})" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:32.443244300Z", "start_time": "2023-08-23T19:10:32.387392900Z" } } }, { "cell_type": "code", "execution_count": 16, "outputs": [ { "data": { "text/plain": "[]" }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGzCAYAAADnmPfhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxIUlEQVR4nOydd5xcdbn/32f69t7SKymkEkhIaAECoQhiRUGBXEVBuVflXq9iATsW5HqvoijdHyogIqJgKJFOIJAQICG9t+3ZvtPP74/v+Z6Z2Z3Znb67M9/367WvnT1z5sx3d3bmPOd5Ps/z0XRd11EoFAqFQqEYI1hGegEKhUKhUCgUiaCCF4VCoVAoFGMKFbwoFAqFQqEYU6jgRaFQKBQKxZhCBS8KhUKhUCjGFCp4USgUCoVCMaZQwYtCoVAoFIoxhQpeFAqFQqFQjClU8KJQKBQKhWJMoYIXhUKRk1xzzTVMmTJl2P3279+Ppmncf//9GV3PlClTuOaaazL6HApFvqCCF4Uix7j//vvRNM38stlsjB8/nmuuuYYjR46M9PIUCoUiZWwjvQCFQpEZvve97zF16lTcbjevv/46999/P6+88gpbtmzB5XKN9PIyzl133UUwGBzpZSgUigyggheFIke58MILOfnkkwH47Gc/S3V1NT/5yU944okn+PjHPz7Cq4vE7XbjcDiwWNKXDLbb7Wk7lkKhGF2ospFCkSecccYZAOzZs8fc5vV6ufnmm1myZAllZWUUFRVxxhln8Pzzz0c89qSTTuLDH/5wxLb58+ejaRrvvvuuue3hhx9G0zS2bdsWcx0vvPACmqbx0EMP8a1vfYvx48dTWFhIV1cXAG+88QYXXHABZWVlFBYWctZZZ/Hqq69GHKO7u5svf/nLTJkyBafTSW1tLeeddx6bNm0y94mmeeno6OCaa66hrKyM8vJyrr76ajo6OgatceXKlaxcuXLQ9mjHvO2221ixYgVVVVUUFBSwZMkSHn300Zi/v8Tn8/Hd736XmTNn4nK5qKqq4vTTT+fZZ58d9rEKRb6jMi8KRZ6wf/9+ACoqKsxtXV1d3H333Xzyk5/k2muvpbu7m3vuuYfVq1ezYcMGFi1aBIjA509/+pP5uPb2drZu3YrFYuHll19mwYIFALz88svU1NQwZ86cYdfz/e9/H4fDwX/913/h8XhwOBz861//4sILL2TJkiXccsstWCwW7rvvPs455xxefvllli5dCsB1113Ho48+yg033MDcuXNpa2vjlVdeYdu2bZx00klRn0/XdT74wQ/yyiuvcN111zFnzhz++te/cvXVVyfz5zT53//9Xy699FKuvPJKvF4vDz30EB/72Mf4xz/+wcUXXxzzcd/5zne49dZb+exnP8vSpUvp6urirbfeYtOmTZx33nkprUmhyHl0hUKRU9x33306oD/33HN6S0uLfujQIf3RRx/Va2pqdKfTqR86dMjc1+/36x6PJ+Lxx48f1+vq6vR/+7d/M7f9+c9/1gH9/fff13Vd15944gnd6XTql156qX755Zeb+y1YsED/0Ic+NOT6nn/+eR3Qp02bpvf19Znbg8GgPnPmTH316tV6MBg0t/f19elTp07VzzvvPHNbWVmZ/sUvfnHI57n66qv1yZMnmz8//vjjOqD/9Kc/jfj9zzjjDB3Q77vvPnP7WWedpZ911lnDHlOuLxyv16vPmzdPP+eccyK2T548Wb/66qvNnxcuXKhffPHFQ/4OCoUiOqpspFDkKKtWraKmpoaJEyfy0Y9+lKKiIp544gkmTJhg7mO1WnE4HAAEg0Ha29vx+/2cfPLJESUYWXJ66aWXAJFhOeWUUzjvvPN4+eWXAVGS2bJli7nvcFx99dUUFBSYP2/evJldu3ZxxRVX0NbWRmtrK62trfT29nLuuefy0ksvmQLc8vJy3njjDY4ePRr33+Opp57CZrNx/fXXR/z+//7v/x73MaIR/jscP36czs5OzjjjjIi/XzTKy8vZunUru3btSun5FYp8RAUvCkWOcscdd/Dss8/y6KOPctFFF9Ha2orT6Ry03wMPPMCCBQtM3UVNTQ1PPvkknZ2d5j51dXXMnDnTDFRefvllzjjjDM4880yOHj3K3r17efXVVwkGg3EHL1OnTo34WZ7Er776ampqaiK+7r77bjwej7mmn/70p2zZsoWJEyeydOlSvvOd77B3794hn+/AgQM0NDRQXFwcsX3WrFlxrTcW//jHPzj11FNxuVxUVlZSU1PDb37zm4i/XzS+973v0dHRwQknnMD8+fP56le/GqEfUigUsVHBi0KRoyxdupRVq1bxkY98hCeeeIJ58+ZxxRVX0NPTY+7z4IMPcs011zB9+nTuuece1q5dy7PPPss555wzqM349NNP5+WXX6a/v5+NGzdyxhlnMG/ePMrLy3n55Zd5+eWXKS4uZvHixXGtLzxjAZjP97Of/Yxnn3026pcMPD7+8Y+zd+9efvnLXzJu3Dh+9rOfceKJJ/LPf/4zlT+ZiaZpUbcHAoGIn19++WUuvfRSXC4Xv/71r3nqqad49tlnueKKK9B1fcjnOPPMM9mzZw/33nsv8+bN4+677+akk07i7rvvTsvvoFDkMkqwq1DkAVarlVtvvZWzzz6bX/3qV3z9618H4NFHH2XatGk89thjESfsW265ZdAxzjjjDO677z4eeughAoEAK1aswGKxmEHNtm3bWLFiBVarNak1Tp8+HYDS0lJWrVo17P4NDQ184Qtf4Atf+ALNzc2cdNJJ/PCHP+TCCy+Muv/kyZNZt24dPT09EdmXHTt2DNq3oqIiaibnwIEDET//5S9/weVy8fTTT0dkte67775h1w9QWVnJmjVrWLNmDT09PZx55pl85zvf4bOf/Wxcj1co8hWVeVEo8oSVK1eydOlSfvGLX+B2uwHMQCM8S/DGG2+wfv36QY+X5aCf/OQnLFiwgLKyMnP7unXreOutt+IuGUVjyZIlTJ8+ndtuuy0iOyRpaWkBRPZjYEmmtraWcePG4fF4Yh7/oosuwu/385vf/MbcFggE+OUvfzlo3+nTp7N9+3bzOQHeeeedQS3bVqsVTdMiMjL79+/n8ccfH/qXBdra2iJ+Li4uZsaMGUP+DgqFQqAyLwpFHvHVr36Vj33sY9x///1cd911fOADH+Cxxx7jQx/6EBdffDH79u3jzjvvZO7cuYMCiBkzZlBfX8+OHTsiRK5nnnkmX/va1wBSCl4sFgt33303F154ISeeeCJr1qxh/PjxHDlyhOeff57S0lL+/ve/093dzYQJE/joRz/KwoULKS4u5rnnnuPNN9/k5z//eczjX3LJJZx22ml8/etfZ//+/cydO5fHHnssqjbl3/7t37j99ttZvXo1n/nMZ2hububOO+/kxBNPNOfRAFx88cXcfvvtXHDBBVxxxRU0Nzdzxx13MGPGjGH1K3PnzmXlypUsWbKEyspK3nrrLbP9W6FQDMNItzspFIr0Ilul33zzzUH3BQIBffr06fr06dN1v9+vB4NB/Uc/+pE+efJk3el06osXL9b/8Y9/RG0J1nVd/9jHPqYD+sMPP2xu83q9emFhoe5wOPT+/v5h1ydbpf/85z9Hvf/tt9/WP/zhD+tVVVW60+nUJ0+erH/84x/X161bp+u6rns8Hv2rX/2qvnDhQr2kpEQvKirSFy5cqP/617+OOE6036GtrU3/9Kc/rZeWluplZWX6pz/9af3tt98e1Cqt67r+4IMP6tOmTdMdDoe+aNEi/emnn456zHvuuUefOXOm7nQ69dmzZ+v33Xeffsstt+gDP14Htkr/4Ac/0JcuXaqXl5frBQUF+uzZs/Uf/vCHutfrHfZvqFDkO5quD6MqUygUCoVCoRhFKM2LQqFQKBSKMYUKXhQKhUKhUIwpVPCiUCgUCoViTKGCF4VCoVAoFGMKFbwoFAqFQqEYU6jgRaFQKBQKxZgi54bUBYNBjh49SklJSUx/EoVCoVAoFKMLXdfp7u5m3LhxWCxD51ZyLng5evQoEydOHOllKBQKhUKhSIJDhw4xYcKEIffJueClpKQEEL98aWnpCK9GoVAoFApFPHR1dTFx4kTzPD4UORe8yFJRaWmpCl4UCoVCoRhjxCP5UIJdhUKhUCgUYwoVvCgUCoVCoRhTqOBFoVAoFArFmEIFLwqFQqFQKMYUKnhRKBQKhUIxplDBi0KhUCgUijGFCl4UCoVCoVCMKVTwolAoFAqFYkyhgheFQqFQKBRjChW8KBQKhUKhGFOo4EWhUCgUCsWYQgUvCoVCoVAoxhQqeFGMGDubuvnti3tw+wIjvRSFQqFQjCFyzlVaMXa4+W9beH1vOxMrC7lofsNIL0ehUCgUYwSVeVGMCL5AkM2HOgBo6nKP7GIUCoVCMabIaPDy0ksvcckllzBu3Dg0TePxxx8f9jEvvPACJ510Ek6nkxkzZnD//fdncomKEWJHYzduXxCAjj7fCK9GoVAoFGOJjAYvvb29LFy4kDvuuCOu/fft28fFF1/M2WefzebNm/nyl7/MZz/7WZ5++ulMLlMxArxtZF0AOvq8I7cQhUKhUIw5Mqp5ufDCC7nwwgvj3v/OO+9k6tSp/PznPwdgzpw5vPLKK/zP//wPq1evztQyFSPA5oMd5u2OfpV5USgUCkX8jCrNy/r161m1alXEttWrV7N+/fqYj/F4PHR1dUV8KUY/mw8dN2+rspFCoVAoEmFUBS+NjY3U1dVFbKurq6Orq4v+/v6oj7n11lspKyszvyZOnJiNpSpSoLPfx56WXvNnVTZSKBQKRSKMquAlGW666SY6OzvNr0OHDo30khTD8E6Y3gVU2UihUCgUiTGqgpf6+nqampoitjU1NVFaWkpBQUHUxzidTkpLSyO+FKMb2SJ94jjxWqmykUKRGv3eALc/u5P3j6qyuSI/GFXBy/Lly1m3bl3EtmeffZbly5eP0IoUmUAGL2fPqgWgy+0jENRHcEUKxdjmmfcb+b91u7j92R0jvRSFIitkNHjp6elh8+bNbN68GRCt0Js3b+bgwYOAKPlcddVV5v7XXXcde/fu5b//+7/Zvn07v/71r3nkkUf4yle+ksllKrKIrutm8HLWrBpjG3Sp0pFCkTTNXR4AWnuUfkyRH2Q0eHnrrbdYvHgxixcvBuDGG29k8eLF3HzzzQAcO3bMDGQApk6dypNPPsmzzz7LwoUL+fnPf87dd9+t2qRziIPtfbT3enFYLSyYUEaJU3TrH1eiXYUiaTr6xfuny60uAhT5QUbnvKxcuRJdj10OiDY9d+XKlbz99tsZXJViJJFZlznjSnHarJQV2un2+JVoV6FIgeOGbqzb7R/hlSgU2WFUaV4Uuc/bxnC6xRPLAagodADQqUS7CkXSdJrBi3ofKfIDFbwosorMvCwygpfyQjugykYKRSrI94/bF8TrD47wahSKzKOCF0XW8PgDZiunDF7KCkTwotqlFYrkCX//qOyLIh9QwYsia7x/tAtvIEhFoZ3JVYVAqGykpuwqFMkT/v5RuhdFPqCCF0XWCC8ZaZoGhMpGSrCrUCRP+PtHdRwp8gEVvCiyRih4qTC3lZuZF/WBq1Akg8cfoM8bMH9WmRdFPqCCF0XWMIOXSeXmtvICJdhVKFJhYKee0rwo8gEVvCiyQnuvlwNtfQAsmlBubpdlo05VNlIokuL4gOClq19lXhS5jwpeFFlh86HjAEyrKaLMCFhAlY0UilQZKHZXmpf8YldTN1966G12N/eM9FKyigpeFFlhszGcTrZIS9ScF4UiNQZmXpTmJb946M1D/G3zUR5569BILyWrqOBFkRXeNvQuiwcGL4bmpdvtxx9Qw7UUikTp7FeZl3xGZq3be/PrAlAFL4qMEwzqvBOl0whCQ+pA6V4UimRQmZf8Rgq08630roIXRcbZ19ZLl9uP02ZhdkNJxH02q4USl/AHVbNeFIrEkSctl118nHep91Fe0eMRwWq+ve4qeFFkHGnGOH98GXbr4H+5CiXaVSiSRpaNJlaIqdUq85JfyNe7o1+VjRSKtCI7jQaKdSXmlF0l2lUoEuZ4rwj6J1UawYtHXQTkE6pspFBkiGjD6cJR5owKRfLIK+6JRvCi5rzkFzLzkm+aQRW8KDKK2xdg+7FuIHbmxSwb5dmbT6FIBzLol8GLmrCbX8jgxeMP4vYFhtk7d1DBiyKjbDnSiT+oU1PiZHx5QdR9VNlIoUgeGbyYZSO3H13XR3JJiizh9gXwho2YyKfstQpeFBnl7bDhdNJJeiDlqmykUCSNHPAogxd/UKc/j67A85mB4ux8Kh2p4EWRUUJO0uUx95EWAWrKrkKRGG5fAI9fXHk3lLuwWsQFguo4yg9km7Qkn7LXKnhRZJTNMSbrhqPMGRWK5JABv82iUeK0mTOTlO4lPxj4OufTZ6gKXhQZo7nbzZGOfjQNFgwRvKg5LwpFcsj3THmhHU3TzOClU3Uc5QUDM2z51PSgghdFxpBmjCfUllDstMXcr0yZMyoUSSHfM3LcQKlLeoXlz0ksnxmUecmjC0AVvCgyxttx6F0gJNjNpzeeQpEO5HtGZi9DZSOVeckHupRgV6FIPzLzEms4nUR+8HZ7/PiUs7RCETfHw8pGEMq8KGfp/GBw2Sh/stcqeFFkhEBQ593DHcDwmZdS5SytUCSFPFmVFcjMiywbqcxLPtAzKPOSP6+7Cl4UGWF3cw+93gCFDisn1JUMua/VolEqnaVV6UihiJsOs2wkghZZNso3h+F8RWpeqoudgGqVVihSRpoxLphQZs6eGIqKItlxlD9vPoUiVeT7Zbz1ONx7Aaf0PA+ozEu+IF/niZVienk+Za5V8KLICKHJuhVx7a+m7CoUiSM1L7N7N8DB9ZzU/Biguo3yBekgPqFCTFdWwYtCkSLxTNYNp1yZMyoUCSO7jcroAaDQLzKeA7tQFLmJmXmpEJmXfLr4U8GLIu30evzsbBJO0ouH6TSSKHNGhSJx5JyXEnoBKPC2Ayrzki/IIFVmXrrcPoLB/DDlVMGLIu28e7iToA7jylzUlbrieowqGykUiSMzlYUBkXlxeDuwElCalzxBBqkTjMyLrueP3kkFL4q0Y5aM4sy6QHjZSGVeFIp40HXdzFQWBLrN7ZV0q26jPEG2SlcWOSiwW4H8+QzNePByxx13MGXKFFwuF8uWLWPDhg1D7v+LX/yCWbNmUVBQwMSJE/nKV76C2+3O9DIVaeTtg6LuHq/eBUJlo+Mq86JQxEWfN4AvIEoEDn8oeKnSuvLm6jvfka9zqcuedwa3GQ1eHn74YW688UZuueUWNm3axMKFC1m9ejXNzc1R9//jH//I17/+dW655Ra2bdvGPffcw8MPP8w3vvGNTC5TkUZ0XQ8T68bXaQRhztIqeFEo4kKWjBxWC1ZPp7m9Wuukx+vPG+1DvuILBOn3BQAx36csz0rvGQ1ebr/9dq699lrWrFnD3LlzufPOOyksLOTee++Nuv9rr73GaaedxhVXXMGUKVM4//zz+eQnPzlstkYxejjW6aa524PVojF/fFncj5NlI2XOqFDEx/FeY7puoR3NHQpequgU2gePyr7kMuHTdYvDgxeVeUkNr9fLxo0bWbVqVejJLBZWrVrF+vXroz5mxYoVbNy40QxW9u7dy1NPPcVFF10U83k8Hg9dXV0RX4qRQ2ZdZteXUOCwxv04JdhVKBJDlgcqCu3g7jC311lFCUl1HOU2smRUYLdit1ryrmxky9SBW1tbCQQC1NXVRWyvq6tj+/btUR9zxRVX0Nrayumnn46u6/j9fq677rohy0a33nor3/3ud9O6dkXyJDrfRSLNGfPljadQpIrMUpa77NAayrw02HrAlz9dJ/mKNN+UlhAy89KZJ9nrUdVt9MILL/CjH/2IX//612zatInHHnuMJ598ku9///sxH3PTTTfR2dlpfh06dCiLK1YAEAyCW2S8khHrQkjz0uPx4/UrZ2mFYjhklrK2IAiB0AlLZl5Ux1FuI4PTYiN4MTs28yR7nbHMS3V1NVarlaampojtTU1N1NfXR33Mt7/9bT796U/z2c9+FoD58+fT29vL5z73Ob75zW9isQyOtZxOJ06nM/2/gCJ+HrsWtv0d3/Vv8N4RcQW4eFL8Yl0QbriaJuYUdPb7qClRr6lCMRSyTbreGdmNWW0RFxIq85Lb9BiaJukkbmZe8iRozVjmxeFwsGTJEtatW2duCwaDrFu3juXLl0d9TF9f36AAxWoVugldV8r5UcuBVyHgoem9dbh9QUpcNqZVFyV0CKtFC3vz5UfaU6FIBXmFXWf3RGyvQlxASN8bRW4iNU2lA8pG+SLYzVjmBeDGG2/k6quv5uSTT2bp0qX84he/oLe3lzVr1gBw1VVXMX78eG699VYALrnkEm6//XYWL17MsmXL2L17N9/+9re55JJLzCBGMcoI+KC7EYCOg1uBBhZNLMcSh5P0QMoL7HT0+dSsF4UiDuT7pMrWF7G9PNgBQFe/yrzkMjKzVmKWjfIr85LR4OXyyy+npaWFm2++mcbGRhYtWsTatWtNEe/BgwcjMi3f+ta30DSNb33rWxw5coSamhouueQSfvjDH2ZymYpU6G4EjKxYyw5gVcJ6F0lZoQPa+vKmZqtQpILMUFZZjbJRQSX0t1MS6AB01W2U48jXt8QpgpbyAqPpIU8+PzMavADccMMN3HDDDVHve+GFFyIXY7Nxyy23cMstt2R6WYp00XXUvFnWuw9IXKwrqTCn7KqykUIxHDLzUq4JU0aqZsDhDTh0D4V4lLN0jjMw8xIqG+XH5+eo6jZSjEG6jpg3G4KN2PEnHbyUF6gpuwpFvEjBbqnhKE3pOLAJg74qrVNlXnKcLnekYDffykYqeFGkRljmxaYFWV7eQVVxcp1CypxRoYgfWV4tlsFLQTkU1QBQTZfKvOQ4MjiVrdKlxsWf2xfEbdgG5DIqeFGkRljmBWBlZXvSh1LmjApFfOi6bnaVFEpHaVc5FFUDwpxRzXnJbUKt0iJ4KXHakH0S+ZB9UcGLIjWM4CVo/CstdLUkfShVNlIo4qPb4ydgGC86ZfASlnlRztK5T8hRWgQvlohxE7n/GaqCF0VqGGWjrUwDYCqHkz5URZEqGykU8SADfJfdgs1j+Lm5yqBYlo2U5iXXMbuNDM0LkFfO0ip4UaSGEbw8758HQHnfvqQPJd94x3tz/42nUKSC6WtU4ADpKO0qD2letE6leclxBnYbgTFuApV5USiGJuCH7mMAvBKYD4CldZfwOkqC8jx64ykUqSCvrMvDHaVdZQPKRup9lMt0D+g2glDpvSMPxk2o4EWRPD1NoAcJYOVtfSZ+zQ7+fuhKrnSk5rwoFPFhZl4K7dDfITaGa17owu0LKpPTHCUQ1AcJdiG//I1U8KJIHqNk1G6pxIeNvuLJYnvLzqQOJydE9nkDePy53+qnUCSLPDkNLhuFuo0AlX3JUWTgAlDsDAUv+TTrRQUviuQxMiyHg1Xi5+pZ4nvrjqQOV+LKr1Y/hSJZpC6sqlADb3irtMi81GjKWTqXkcGLw2rBZQ/5/inBrkIRD0bm5XCgHABnw2yxvSW54CW81S8f3nwKRbLIjrwae9j7JEzzUq51YyGogpccJdRpFOnwk0/O0ip4USSPEbwc06soL7TjrJ8jtrfuSvqQ5pRdFbwoFDGRrdJ1dsNR2lEMVhsUirKRlSDl9NClykY5SbROI8ivpgcVvCiSxxhQ16hXMrGiEGpOENuTLBtBqGabD2p5hSJZpGC32tYvNrjKxXerTbhLI9qlleYlN4k24wXCBLt58PmpghdF8nSK4OWoXsWEigKomim297VBb1tShyxXZSOFYlhkWaDCKoOXstCdYe3SXf2qbJSLxM68KMGuQjE8RtmoUa9kYmUhOAqhbJK4L8nsizJnVCiGRwb3ZeGmjJKi0JRdVTbKTbpiBS9K86JQDEMwYA6oO6ZXMrGiQGw3S0dJtksrc0aFYlhkWbVUM4IXWTaCiHZpJdjNTUxHaWeMslG/j6DhfZWrqOBFkRw9zaAHCGChhXImVBaK7bJdOsVZL6pspFBEJxjUzbJAUaBHbIxVNlKZl5ykJ0bmpdQIXnRdmHfmMip4USSHIdZt1isIYhGCXUhZtBuq2aqykUIRjW63H3lR7QoawUuUslEVnSrzkqMMdJSWuOxWXHZxWu/M8QtAFbwokqNLinVFZ8MEWTaqNoKXZDMvsmykzBkViqjITqNChxWbR07XDcu8SGdp5W+Us8TqNoKw7HWOXwCq4EWRHOaMl0pqSpyhKY+ybNR5ELx9CR82JNhVH7oKRTTMTqNCR5gpY3loh3BnadVtlJPE6jaC/Ok4UsGLIjk6hTXAMb0qJNYFKKqCQsMuoC3xYXXSnDEf5hQoFMkgMy9lBfYwX6Momhe66Pbk9gksXxnkKB02mqI0T8ZNqOBFkRwD26TDSUG0K1OeqttIoYiO1DJUFA1wlJaECXaV5iU36Qq3B9j0e/jZNHj7QSDULq0yLwpFNMLKRqZYV1JtDKtLQrRbZmRe+n0B3D7lLK1QDERmXgY5SkuMVulizY23ryfLq1NkAxmUFrtscPhNsfHIRkCVjRSKoYnIvBRE3lcj3aUTz7yUumxYDWvpXH/zKRTJIMsB5YX2MM1LWNnIWYpuFRlMu6cdXc/teR/5iHSVLnXZoLdVbOwTpaOQuW1ul95V8KJInGAAukXwclSvipJ5Sb5spGnKWVqhGIoOM/NiC2VewstGmoZuGDSW6524fcEsr1CRSXRdN4OXEpc9LHhpB/LHnFEFL4rE6W2BoJ+ArokBdQODFznrpW03BBKvuZfnyZWDQpEMstuoxhmAoPH+Cs+8AFpxLaAG1eUifd4AAWPQT4nLJj6Pwcy8KMGuQhELOaCOCnTNSkO5K/L+0glgL4SgDzoOJHx4ZRGgUMRGvi+qbcYoAotdvN/C0MLapdWsl9xC6l2sFo0Cu9UMWuT3fPE3UsGLInHC9C4NZQXYrQP+jSwWqJohbrckLtoNpT1V5kWhGIgcI1BldYsNBeWgaZE7meaMXXSqWS85RXdYp5EW8IKnS9zR1wa6bl78dangRaEYQGdouu4gsa7EFO0mE7zkR9pToUgGmXmpsEhTxrLBO5nmjCrzkmtEOEpLvQuIEqKnK280gyp4USSOUTZqjCbWlahZLwpFRgg5SveLDeFt0hI16yVniXCUlnoXSV+b+fmpBLsKxUDCZ7wMHFAnMWe9JBG8KHNGhSIq/kAwdOWtd4uNUTMvoSm7SrCbW4Q6jWzQ1xp5Z1973szKUsGLInHCNC8TKoYrG+0U/uwJUKHMGRWKqHSFZVEKozlKS0zBrsq85BoRjtK9A4OXNkqcNlMClcu6FxW8KBKnS/gaHdWrYmdeKqeBZhVisu7GhA5fVpgfrqgKRaLIklGJ04ZVCjWjZV6KZdlIaV5yjQhH6SjBi8USmpWVy6WjjAcvd9xxB1OmTMHlcrFs2TI2bNgw5P4dHR188YtfpKGhAafTyQknnMBTTz2V6WUq4iUYRO86BhjTdWNpXmxOqJgibico2i3PE8GZQpEoUgdWXmSP7igtCTdnVPOScooIR+komhcIm7KrgpfkePjhh7nxxhu55ZZb2LRpEwsXLmT16tU0NzdH3d/r9XLeeeexf/9+Hn30UXbs2MFdd93F+PHjM7lMRSL0taIFfQR1jQ5bJbUlztj7mqWjxNylK2TmRQUvCkUEUgcW4WsUrWxkTNi1aUH8xuRVRW4QEbwM0rwMmPWSw5+hGQ1ebr/9dq699lrWrFnD3LlzufPOOyksLOTee++Nuv+9995Le3s7jz/+OKeddhpTpkzhrLPOYuHChZlcpiIROkXJqJly6stLsFi02PtWG5N2E5z1YrZKq7KRQhGB1IGVF4Y5SkcrG9kceG0lAFgGlhYUY5quiG4j47UtmyS+Gz+X5YFFQMaCF6/Xy8aNG1m1alXoySwWVq1axfr166M+5oknnmD58uV88YtfpK6ujnnz5vGjH/2IQCC2Ytrj8dDV1RXxpcgg4WLdWHoXSZKzXmTw4vYFc1otr1AkiiwDlBfGcJQOw+uqAsDqVsFLLtEdbc6LtGQxsmz5YM6YseCltbWVQCBAXV1dxPa6ujoaG6MLOPfu3cujjz5KIBDgqaee4tvf/jY///nP+cEPfhDzeW699VbKysrMr4kTJ6b191AMIKxNOmankcTMvCTWLl3sDDlL53LaU6FIlJApYwxH6TACBaJ05HCrslEu0RNN81IzW3wfUDZS3UZZIhgMUltby+9+9zuWLFnC5Zdfzje/+U3uvPPOmI+56aab6OzsNL8OHTqUxRXnIeaAuiHEuhI566WnMXSVGAeapoX5c+TulYNCkSgymK8ILxtF07wAujFl1+VVwUsu0e0R/wOlLnvI10heKMrgpTD3Bbu2TB24uroaq9VKU1NTxPampibq6+ujPqahoQG73Y7VajW3zZkzh8bGRrxeLw6HY9BjnE4nTucQolFFeumS1gBVLIxlDSBxlUFJA3QfE6LdCSfH/TTlhXbaer1q1otCEcZxI/NSFlE2ip55kc7Shb7jWVmbIjuYc15sfvAas34GZF7ywSIgY5kXh8PBkiVLWLdunbktGAyybt06li9fHvUxp512Grt37yYYDJrbdu7cSUNDQ9TARTEChGlehs28QAqiXWXOqFAMRAowK12AT3oblUfd114igpeS4HGCwcQGRSpGLzJ4KdcNfafVARWTxe3+4xAMqDkvqXLjjTdy11138cADD7Bt2zauv/56ent7WbNmDQBXXXUVN910k7n/9ddfT3t7O1/60pfYuXMnTz75JD/60Y/44he/mMllKhIgaJgyDmkNEI4MXtSsF4UiZWTmpdrmDm2MkXmxlwm9YTVddHvUlN1cQNd1c0hdadDIqBXVQGGV3AP6O/JizkvGykYAl19+OS0tLdx88800NjayaNEi1q5da4p4Dx48iMUSip8mTpzI008/zVe+8hUWLFjA+PHj+dKXvsTXvva1TC5TES+6jmZkXjrtNeYY/yFJctaLzLwoc0ZFOO8f7eKdwx184pSJaNoQbfo5igzmK619YoOzFCzWqPvKzIucsitPaIqxi8cfxBcQWbQif4fYWFgFVjs4y8DTKcwZjTk/nTncbZTR4AXghhtu4IYbboh63wsvvDBo2/Lly3n99dczvCpFUvS2ogW9BHUNR/n4+E4eataLIo3c9Ni7vHO4kxm1xZwypXKkl5N1ZPBSztAlIyByyq7yN8oJ5IwXTQsTYhuvM4WVYcFLA6DKRgqFwBDrtlJGQ1VpfI+RmZfj+8DvifupZNmoU2VeFGEcOt4PwMG2vhFeSfbxBYKmo3CpZvz+MUpGQIQ5Yy63zOYTsk262GHDIjuNjK4ys3TU1xaheclVvZMKXhTxEzHjJQ69C0BxnUht60Fo2xP3U5UXybKRyrwoBL5AkPZe8f/Q1O0eZu/cQ2ZdNA2KhnKUlhgntVKtj57e/Av2cpGovkZm5mVw8BLUocebm1k3Fbwo4id8xks8Yl0Qn7SmaDf+YXVKsKsYiAxcAJq74s/i5Qqy867UZcfiGbpNGoCCCvwIPYy3uyn2fooxQyh4CZvxIoOWsODFZbfisovTe65mr1XwooifsBkvE4ebrhuOKdqNP3hR5oyKgbR0hwKWpq78y7yYjtKFwzhKSzSNHqu439/VEns/xZhBdhpFz7wYGrA8mfWighdF/ITPeIk38wJJiXaVYFcxkJae/A5eTLFu+IC6ocpGQK9dnND0HpV5yQWi+hoN0rwIIW95QW6bM6rgRRE3/o7QjJdhfY3CSWLWS65fNSgSJzLzkn9lo+PhvkZDOUqH4XaI4EU5S+cGpqO0K8xROormBaAsxy8AVfCiiJtgh/CN6nbWiZprvJhlo90QNj15KCoMwa7HH6Tfq5ylFdAalnlp7naj67nZRRGLznBfo3jKRoDPZQQv/Sp4yQVkt1lE2UgGLTIDo8pGCkUYuo615xgA1rLxiT22fLIYYe3vh874jDOLHFZs0lk6R68cFIkRnnnxBfQIAW8+IN8H5XH4Gkn8LsNZ2qPMGXMBWTaqtPvE5ynEzLyU57hFgApeFPHR1441KD48C6sSDF6sNqiaIW7HKdrVNM3UvShzRgVAa09ksJJvpaMIwe4wjtIS5SydW0jBbq2lW2ywucBRJG4P0Lzkur+RCl4U8WF0GrXopTRUlSf++OqZ4ntCol2j40hlXhRAy4DZLvk260WWjcoL7GGZl/IhHyOdpQtU8JITyMxLlWaYMhbViHEUEApePJ0Q8JkXf6pVWpHfdEmxbhUTEuk0klQn3i6tpuwqwpGZlwK7mF3SnGcdR1KwW1HkCNO8DF02skpn6UBHBlemyBZm2QgjeDUNGRH/C5pxSu9royzHL/5U8KKIj/ABdYl0GkmSmPWizBkV4UjNy5yGEiD/ykZSeFnmssXdKu0oE8FLmXQgVoxpQo7SYZkXicUKBRXidtiUXSXYVeQ1emcS1gDhJFU2yu1WP0X8ePwBs3Y/b7zINuTbrJcOI/NSZfcKuw0YNvNSUF4PQIXeCXnWnZWLmHNeAkYwKjuMJGGiXSXYVSgAb7voEmrUqxKb8SKpmglo0N8OvW1xPUSVjRSSNqNkZLNozKzL08yLcRKqsBg+RVYn2Id+LxYZwYtDC+Dt7cjk8hRZoNtolS70d4gNQwUvhSp4USjwHhfBS4+rDpehOUgIRyGUTxS34xxWV6HMGRUGsmRUXeykodQFiFkv+YLHH6DPmHdUJoOXYUpGAMUlJXTrIsDpbT+WqeUpsoQsG5kC7MLYwYsqGykUgNYtykaUjkv+IFK0G2fpKNfffIr4kQPqqksc1JeJ4CWfykYy+2jRoChgtMkOUzICsFo0jlMKgLujMWPrU2QeXyCI2yfKhebcnnDNC4T5G7Wb9gD9vgAef+4N+lTBi2J4dB1nn/BGcVRMSP44CbpLm5oXFbzkPTLzUlPspLbUaW4LBPNDxyFF62UFdiweQ6w5TJu0pMMi9vN2NmdgZYpsIfUuALZ+o/Q+RNmoxGUzu6hzsXSkghfF8PQfxx4UV7kltZOSP05NYsFLRY63+inix8y8FDupKnJitWgEdWjryQ/dixTrVhTG3yYt6baKDhR/twpexjKyZFTosKL1DR+8WCwapYaNS5cKXhR5idEm3ZrsgDqJWTaKL3hRZSOFxMy8lIjApaZYZF/yRbRrZl4SmK4r6bWL4CWonKXHNGankdMa5msUO3iB3M5eq+BFMTxdQu8iZrwk0SYtkbNeOg+Ct3fY3aVgt6PPl3cmfIpI5IC6aiNoqTNKR415onvp7A/PvMTnaySRztKacpYe00hH6RqnDwJG0D5E5gVy+wJQBS+KYQl2yum6lUxMZrqupLAy9OZq3TXs7rJV2hsI0u/LPcGZIn7CMy8AtaX5Jdo9HmEN0CE2xql58TrFe045S49teozMywSH0W1mLwz5GknyyN9IBS+KYelrOQBAI1U0GJ0eSWPaBAwfvBQ6rNithrN0Dl45KOInXPMCocxLvlgEdJimjI64p+tK/C5xQnO445uvpBidyLJRva1HbBiYdYGwbiNZNpK6wdz7/FTBi2JY3G1ixkuvsw6bNcV/GVO0O3y7tHCWVrNeFIMzL3UlMvOSH5oXKdiNcJSOs2wknaWdypxxTCMFu/VWo1V+oN4FQpkXXx94+ygrsAHQmYOfnyp4UQyLLBsFihtSP1iCs17UlF2F2xcwJ4vWmJkXI3jJk0F1MvNSURi/o7SJ4Sxd6FP+RmMZmXmpthjBy8AZLwDOUrCIz0z6Q7NeVNlIkZfYesVkTmv5+NQPluSsF2XOmL/IrIvDaqHUuJKUs17yJfMiM49lSbRKS2fpokAXBNT7aKwiA/gq6SgdrWykadGn7KrgRZF36DrFbtFiWVA9OfXjybJR2x4I+Ifel/Cabe6lPRXxIfUuNSVONGPqlsy85IvmRV45VyTRKu0sqSKgG9PK+pTuZawiy0blSEfpKMELRAYvOexvpIIXxdC4O3Do4gRRXp/CgDpJ6QShkg/64Pj+YXcvz+FWP0V8hHyNHOY2Gby09Xrx+oMjsq5sIjMv5QWJt0qXFjhpNywC6FGD6sYqXaajdIfYEE3zAgMsAnL381MFL4qhMWa8tOvFjK+uTP14FgtUzxS34xDthma9qMxLviJnvEixLogMhOxEa8mDKbtmt5EjCP5+sTFOzUuJy0arbgQvcriZYswhW6WLZfASTfMCUctGKvOiyDsChpt0o16V2oyXcKTuJQ7Rbi4PWVLER7ijtETTNGpL8mPWi9sXwGNklyqsxowPNCHOjIPSAjttZvCiZr2MVUx7ACm8Hq5s1Ntqlt1V8KLIOzqbQzNeasJOHimRwKwXc7x1Dr75FPERrnkJR7pL57ruRZaMbBaNoqAx48NVKrKYcVDistGGKDHpvapsNFaR3UZOb5zBS19bmD2Al2COmZiq4EUxJL0tBwHocdRisWjpOWgCs15Mc0ZVNspbIjIv7zwEf74Guo6ag+pyveMoNKDOjpZomzRQ4rLTqovgxd+tykZjFRG86NjlsMGYmpfBZaOgDj3e4RskxhIqeFEMie/4YQA8RfXpO2i4QeMwnkW5LDhTxEdLeOblue/A1r/CPauZbRcn4lz3NzLFukn4GgEUOaymYNffpcwZxyrdbh8l9GMJGp+FcWReXHYrTps4zefarCwVvCiGxNItBLuUpmHGi6RyGmhW8HZD97Ehdy1Tc17yHlk2arB0hP5fOg/y2V3XM1fbn/Oal85wX6ME26RB6IN6bdJZWmVexiKBoE6vN0CVZgSvjmKwF0TfOazbCHLX30gFL4ohcfU3AuCsmpi+g9ocUDlV3B5mWF2FKTjzKmfpPEWWjcb1bRMbKqZC/QIKfe085Pg+FS1vjeDqMs/xCF+jDrExgbIRQL/hLK26jcYmstOoEjldN0bWBQY5S5fn6KyXrAQvd9xxB1OmTMHlcrFs2TI2bNgQ1+MeeughNE3jsssuy+wCFdHRdcp8QuBXWpOGAXXhhJeOhkC+8XwBnT6vcpbON3o9fvN1Lz++RWycfBpc8w86a5dSqvXz3y03wc6nR3CVmUUOaCwvtCc8XVcinaWtfarbaCzS7TF8jWxD+BpJwoMXXTctAnKt9J7x4OXhhx/mxhtv5JZbbmHTpk0sXLiQ1atX09w8tOp9//79/Nd//RdnnHFGppeoiIWniwJjQF3V+KnpPXacs14K7FYcRs1WmTPmH7Jk5LJbcDRtFhvHLwZXGa2X/YHnAotx4oU/fRLefWTkFppBovoaJVA2AvAZztJ2d9uwOjPF6EN2Go2zS0fpGDNeIBS8BH3g6abUtAjIrc/PjAcvt99+O9deey1r1qxh7ty53HnnnRQWFnLvvffGfEwgEODKK6/ku9/9LtOmTcv0EhUx8LSJTqPjejHja6rSe/Ca+AwaNU1Tot08RgYv1UUOtKObxMZxiwGoqazgOt9XeCxwOugBeOxaeOO3I7XUjNERLthN0FFaIp2lrUEPeHvSuTxFFpDBS71NBi9DfB47CsFm6GHC2qVV2SgBvF4vGzduZNWqVaEntFhYtWoV69evj/m4733ve9TW1vKZz3xm2OfweDx0dXVFfCnSQ9ux/QA0Uymu+tJJErNecu3NpxgeqXeZV3Qc+o8Lx9y6eQCUOG3Y7U7+03cdXQuNz4p//je88OOcyi4cD2uVTlbz4iwsoVc35uQo3cuYQw6oq7XEkXmBsNJRyCJAdRslQGtrK4FAgLq6uojtdXV1NDY2Rn3MK6+8wj333MNdd90V13PceuutlJWVmV8TJ6ZRWJrndBkD6jrttaYhXtqQZaOexlAqPAZySqQqG+UfLYY1wEnWfWJD/TywiZOwpmnUlTrRsbB94Tfh7G+KfV64Ff75NQjmhudRqNsovFW6PKFjlLrUlN2xjMy8VMtuo6E0LxDWcdSWs1PKR1W3UXd3N5/+9Ke56667qK4e5sUxuOmmm+js7DS/Dh06lOFV5g+ybNRfUDfMnkngKoWSBnF7ONFujr75FMMjMy9z9N1iw7iTIu6vNQwam7o9cNZ/w0W3ARps+C389fMQGPv/MzJoT8ZRWlIaNmVXZV7GHoMdpePNvORu2ciWyYNXV1djtVppaoocjNTU1ER9/eChZ3v27GH//v1ccskl5ragcfVks9nYsWMH06dPj3iM0+nE6UzT2HpFJJ1ixkugZFxmjl87R8zt2PcCTDwl5m7hI64V+YXUvEzxGAHu+MjgRbpLm7Nell4LBRUicHnvEZGp+PgDsWdijAGkNUZZuGA3wcyLmLKrnKXHKtJRujxovP5DaV4g1Erd10ZpoRLsJozD4WDJkiWsW7fO3BYMBlm3bh3Lly8ftP/s2bN577332Lx5s/l16aWXcvbZZ7N582ZVEsoy9j4xEMxWPiEzTzD/4+L7m/cOeYUcsgjIrSsHxfC0dHuwEKS+d7vYMCDzUmf4HTV3h1kEzP8ofOJPQrS462n4fx8OZSzGGLqum0F7RcScl8QEuyUumyobjWF6PCJ4KTGDl0QyL3JWlrIHSIgbb7yRu+66iwceeIBt27Zx/fXX09vby5o1awC46qqruOmmmwBwuVzMmzcv4qu8vJySkhLmzZuHw+HI9HIVYRR7xBVaUc2kzDzBvA9DUS10H4VtT8TcrUyZM2YcfyA4Ko3bWns8TNOOYg/0gb0o1KVmIM0ZB03ZPeF8+PRfwVkGB1+DBz4wJjMOfd4AvoB4XcoLrOA2ygaJlo0K7LQhgxdVNhpriLKRTqHfMGUcVvMSFryYgl2VeUmIyy+/nNtuu42bb76ZRYsWsXnzZtauXWuKeA8ePMixY0OPiFeMDJUB8SFXXp/mGS8SmxNO/jdx+/U7Y+4WGrKUW2++0YLHH2DV7S/y4d+8NuqmGLd0e1io7RU/NCwEizXifql5aeyMYhEweTmseVIEyI3vwb2robct00tOK1Lv4rBaKAj2Asbrk1TmRWlexirdbj+l9GLVjUGdQ03YheiC3Ry7+Muo5kVyww03cMMNN0S974UXXhjysffff3/6F6QYlu7OdkroB6BuQoaCFxDBy8s/h8Mb4MhGGL9k0C4VhUqwm0m2H+tmf1sftPXR2uMVBoijAF3Xae3xsMCyR2ww5ruEE7VsFE79fPi3tfD7y6B9L2x+EE77UoZWnH6iOkrbCsyOq3gJd5ZWwcvYo9vtp1ozsm7O0uFf//BWaePzs88bwOsPmkM/xzq58Vso0k7TYXG120URxSXlmXuikjqY9xFxO0b2RZWNMsu2Y6HZSLubR88Asx6PH7cvyEKLkXkZINaFSMFuzKxR1XRYYVw87Xo2E0vNGB0RM14Sd5SWlLpstKI0L2OVbrePSrPTKI5O3LCyUYnLjpx0kUsdRyp4Ga0Eg/C3L8Lab4zI03c07geg3Rpfy3pKnHqd+L71r9A9eP5PSLCrykaZYHtjt3l7T8voCV5auj3Y8TNXE/OGomVeakvFFWifN2CKGqMy83zx/eD6YecKjSZCvkaOpNukQWRepGBXV5mXMUe320+VzLwMp3eBsOClFatFo8QpiiydOdRxpIKX0UrTe/D2g/D6HdC8LetP398qZrz0Oge3tKedcYth4qnCi+PNewbdXR5WNhptmoxcYLRmXlp7vJygHcKh+UVrcOVgq5BCh40Sl/hgbuqKUToC4WJeNROCftjzfIZWnH7M6boFybdJwwDNS18bBHKr8yTXEcGLdJQeptMIQsFL/3EIBsI6jlTmRZFpDoU5b7/356w/vb/jMADeoiwELwDLPi++v3Uv+CNPQlKw6w/qQ19dKxJG1/WI4GW0ZV7MktG4xRBjyrMsHTUP7DgayAmrxfddz6RriRmnMw1t0gAuu5VeWylBXUNDh/72NK5SkWm63T6qiHPGC0CBIdjVg+DuzMkpuyp4Ga0ceiN0+70/Z92rxdotBtRpZeOz84RzLoHS8dDXClv+EnFXgcOK0xCZ5dKbbzRwrNNtDsCC0ZZ58bBAM8S6UfQukjqjdNTUPUzwMvM88X3Xs2PGOiBC85JC2QigyOXkOMXiB1U6GjPourhoq0wk82JzCGEv5OyUXRW8jFbCg5eOg5GZmCxQ4BZTkV2VGRpQNxCrHU75rLj9+m8GBWu5+OYbDWxvFFmXBmNeyrFO96jJbkVmXoYIXkqkaHeIshHApBXgKIHeZji2OU2rzCwhU0ZHSoJdGOhvpIKXsUKvN0BQT8DXSJLj/kYqeBmNdB0TAYtmgdkfENuyWDrSdZ1ynxjoVZqpGS/RWHKNaANtfFcIK8OQpSNlzpheth0TV3PLplZSXSz+xntHSemos6uTmZooX0YT60pqB1oExMLmgOkrxe0x0nXUaQp2k3eUlpS4bGHt0qrjaKwgfY3MVul4Mi8Q0XGUi7NeVPAyGjlsZFnqToSTxSRitj6WNZO59l4vdYiaeFXDlKw8JyCuFBYYlgGv/ybirnI16yUjSL3L7IZSpteIksJoKR0Vtm3FpgXpd1ZDaWx/LVk2ah4u8wKhrqNdT6djiRlHZl4qwlulkywblbjUlN2xiOkobZFlozg0LxDVnLFLBS+KjCJLRBOXwdSVItLua8tal8TRphZKtT4AnJVZ9pNaZrRNb/+HyD4ZlKtZLxlBtknPaShlRu3oCl5qurcC0FO1IKZYF6KYMw7FDEP3cmQT9Iz+E7gcD1BWENYqnWzZqMCmBtWNQWTmpSpeR2lJhEVA7o2bUMHLaETqXSYuA6sNTvyw+DlLpaO2Y/sA6NUKwVmSlec0qZsLU88SKvk37zY3m7NeenPnzTfSuH0Bs0Q0p77EDF5GS8fRxP4dAPjqFw25X9yCXYDSBqhfAOiw+7kUV5h5ZKaxoii1VmmAEmeY5mUM+jzlK11uPxpByjAyL3FrXlTZSJFNfG44ulncnrhUfJ//MfF9+5Pg7c34ErqbRcajy16b8eeKyqnXi+8bHzB/XzVlN/3sauohqENlkYOaEueoKhvpus7MwC4A7BMHW0aEE8q8eOKbA2S2TI/u0pGu6+b/e3lBaq3SYMx6UVN2xxw9bj/l9GDF6JArjLdsJAW77ebnZy41PKjgZbRxbLMY1lZcB+WTxbYJJ0PFVPD1wo5/ZnwJnuOHAHAXZmnGy0Bmng8VU8SH9bsPA0qwmwm2GZ1Gs+tL0DTNzLwcaOvDFxjZVuKu421M04Rha8m0pUPuK72YvP5gfJqomUbwsvtfo3pYW7fHT8Bw+k5Hq3Rpgeo2Got0u8PapF3lQngeD1EyL505pBlUwctoQ5aMJpwSqvNrWij78u4jmV9D5xEA9JLYIsmMYrHCUmNo3Ru/BV03zRlz6c030mw/FtK7gGiXLnJY8Qd1DrRlPsM3FD373wTgMLW4yobOADptViqLxAd6XKWj8SeJD3ZPZ+RIglGG/F932S247NaUW6Uju41U8DJW6Hb7qE7E10giy0tqzosiK4SLdcORwcueddDbltEluPqEv5CtIsti3XAWXwmOYmjZDnufV4LdDLA9LPMCoGka00eJaNd/aCMAu2wz49q/1si+DDvrBURwPGOVuD2KS0fHw6fr+vohYPxuSbdK22lFtUqPNUTmJUGxLkQX7PbnjsWKCl5GE7oeKdYNp+YEaFgovFne/2vGlhAM6pR4hZivuGZSxp5nWFxlsOhKcfv1O0W3BapslC7CbQFk5gVgRo0U7Y5s5sXRtBmAwwWz49o/oY4jCGuZHn7eS+8IDe2TJbCycF8jzZK0iL7UZQuVjXy9WdHPKVKn2+0LM2WMU+8Svm9Y2SiQQxYrKngZTRzfJ9K5VocIVAYisy/vPZqxJTR3e6hFZHbK6iZn7HniYtnnAQ12PU2tTwwrU2Wj9NDc7eF4nw+rJaR1AUZN5qWkfQsAbaXz4to/NOslzuBl+jkiEGh+HzoOxdztzhf3MP87T/PizuyXWSIyL+Ft0kO0jQ9FictOLy48GJoJlX0ZE3S7/Ym3SUMoeHF34rIEcBgWK7lSOlLBy2hClowaFoHdNfj+eR8BNDF9NmwGSlqXcLyPBk0MqLOWZ8kaIBZV080r5PrtvwdyK+05ksisy7TqIqGnMBgVHUc9LRS7jxHUNfqq4w1e4rQIkBRWhrKbQxg1Pvd+E0Ed3tyXfSNDeZJJx3RdwHDf1mhXHUdjii63P5R5SUTzUlAOiEBXc3cIZ3JyZ9CnCl5GE2bJKEZ3Rek4mHK6uJ2hmS9Hm1sp14x0cmmWTBmH4lQxtK7w/Ycopo9AUKc7R9KeI4m0BZgdVjICIma9BIMjFCQe3STWoI+jtKwirofEbREQjmnUGD14CQZ1c4hfYyLHTRPHe9PnawSYpYNWs+NIzXoZC/R4fMlpXixWKDDeP+EdRyrzokg7scS64cjx+RkqHXU0HgDAbSkEV+kwe2eBaWdD9Sw0bw+fdLwEqNJROhgo1pVMrirEZtHo8wZG5IQNiOm3wLv6NLMNejjqpGC3O87MC4Rapve+KASxAzh8vN/UByQUFKWJjnBfoxTbpEFmXqAlqNqlxxLdbn/I1ygRzUv4/jnYcaSCl9GCuwuaxDj0mJkXgDmXCk1M8/vQuCXty+hvE/X/Pmdd2o+dFJpmaF/gKsszWAgq0W4akG3ScwdkXuxWC5OrCoERLB0ZmZd3gtOoLo4zeDEyL3FrXkB4h5WOB38/7H910N3vG6U1gMbOEQheovkapVA2KnaK4EXNehlbdLv9VCajeYFQ8NLbmnPO0ip4GS0ceQvQxWC6kiGGwxWUhzolMlA6ChriRX9xQ9qPnTQLPwGuMibSyNmWt3PmzTdSePwB0wJgdsPgzpUR9TjS9VDmJTg9/syLDF66PfGXuzQtrHQ0uGV6W3jwMhKZFyNIT8d0XQCb1UKRw6rapccYEd1GiWheYEDHkRBqq8yLIr3EUzKShJeOgumdhGrrFTNeLCMt1g3HUQQnXQ3AGutaNeslRXY39+AP6pQV2KkvHSwMN4OXkfA46jwEfa34dCvb9ElxBy/VxQ40TbSCtiXifyVLR7ueEYFTGOHBS7fbT583u1or6ShdngZHaUmJyx6meVGZl9GOruv0ur1UYLwXE868hCwCQrOyciNzrYKX0cJwYt1wZq4GZyl0HYZDr6dtCb5AkGJPEwCuqhEcUBeNpdcSxMLp1q3oze+P9GrGNKHJusIWYCCmaHckMi9H3wZghz4RDw6qiuILXmxWi1liSkifMvVMUYY9vh9ad0XcJe0TJHF3MqWJULdR6o7SkhKXjTY1ZXfM4PYFKQl2YdGMwLqgMrED5LBFgApeRgPBABx+S9yOJ/NidwntC6TVLuBYh5s6REtoYfUIDqiLRvkktpadAcC0PQ+O8GLGNiGxbnRB9vSaUMdR1jFLRtMoL7SbsyniwXSXTiR4cRaHOvjCSkfdbh+H2oWIt8qwHsi27iU05yU9rdJg+BupVukxQ7fHZ/oa6QWVYLUldgAl2FVklJbt4OkS4/Br58b3mPkfFd/ffxz86UkDHjrexzhNDKizlI2CNukBvDPukwDMbnoK+rI/dyNX2BaWeYmGDF5ae7ym7iJrSLGuPj1usa6kPtFZLxJz2m6oZXqH0SJdX+rihLoS47jZC16CQd08yZRFCHbTkXkxgpce1So92hGdRuK11xLVu0DUzEuuaAZV8DIakCWj8Uvij6ynngnF9dB/XPgdpWMZ7X3UGwPqRsWMlwH01p3CluAU7LoHNj0w0ssZswyXeSly2hhXJgKBrIp2g0E4uhkQmZeaBIOXpGa9QCh4OfCa6PqDMOuEEuqNv0U2Rbvdbr8pwSkvcKSlVRqg1GUPmTP2taZdM6dIL6LTyHCUTlTvAtGDF5V5UaSNQ8JBN66SkcRiNSbukrbS0bHWdio042RVOkKO0kNQXuTg/oAhsNxwNwTUsLpEaen20NrjxaJhZhSiMb12BEpH7XvA04Xf4mKnPoHqOMW6kroS2XGUYJBRNR2qZgjfsL0vAPB+mOO27GTKZtlIloyKHFZROjMzL/EN7YtFictGO8brrgfFxY9i1CI6jYzXPtEZL+GP6WsX2imgSwUvirQRy4xxOGTpaMc/wdOd8jJ6W0WbtM9akHJ6OhOUFTj4e2A5nVqZECvveHKklzTmkBmFKdVFFDisMfcbEZsAQ+/SWDiTANaEMy8hzUsSwlqzdCR0L+GmlUlpaVKkI1ysC2lplQbRbeTHRp9VdRyNBbrdfqq0VDIvstsovGykuo0U6aC3VVxxAkw4ObHHjlssrhj9/bA99RO5t134JXkKG5I2f8skFYV2PDj4u82YzbH5jyO7oDGILBnNiVEykozIrBdD77LXMQuA6hJHQg9P2Fk6nDCX6UAgYGpe5jSUmlqabJaNZOalvNAuBP0eo/Mp1bJRgShLd1uN46jgZVTT7fZRhZF5SUXz4uul3CYy1b3eAL7A2C8XquBlpJHzXWrmJP7BpGlhTtOpDawLBHWCnUcB0EtGX8kIQlehjwVE1xG7n1MdEwmyfRixrmREZr0YbdLva9MBktC8pJB5mbwC7EXQ08SxHRvo9wVw2S1MrS6iztC8NGWxbNQZbcYLpCXzAtBpKRcbVPAyqul2+81uo6QyL64ysIiAtZRQdj4XOo5U8DLSJDLfJRoyeNnzPPQk/0G06eBxSr2i+2DUtUkbyFa/zf016OMWC43Clr+M8KrGFtuMjEIssa5EBi+Hj/fj9gUyvi4Cfjj2LgBv+aYCJK55MTIkbb2exK8sbU6YfjYAve89BcCsuhKsFs3MvCQ0vTdFQpmXsOm69iKw2lM6bqnhb3RcTdkdE3SHO0ono3nRNPNx1v52098qFzqOVPAy0iQyWTcaVdNh3EmgB2DrX5Nexj/fa6TB6DSylo++TiMIueIGdXDPMYK2dx4awRWNLbz+ILubpZv00JmXqiIH5YV2dB32tvRmfnEt20T501nKu33iwzbRzEtloQObRUPXobUnGd2LKEeWHPoXIEpGADUlTjQN/EGd1t7sDKqTJ5fygvS1SYPoNgJoGSln6YAfXvkf9b6Nk263n6pkfY0kOTrrRQUvI4nfa9b5kw5eIMwuILmuI13XeXprIw3GjJfR2CYN4LJbKbALkWnblEtAs4q/34DJqIro7G3twRfQKXHZGF9eMOS+mqaFRLvZKB0ZYl29YRGtveKDNV5rAInFolFbkrpot75nK5V0mY7b9vDpvZ3ZCl7kgLr0tUlDyFm6OWgEr9ksG7m74I8fh+e+A49/QXU6xUFKvkaS8ODF9Dca+6LdrAQvd9xxB1OmTMHlcrFs2TI2bNgQc9+77rqLM844g4qKCioqKli1atWQ+49pGt8Dv1uMfK6anvxxTvwwaBY4/Ca070v44VuOdHG0o5fJFuODbJQGL2BMGwUxJXTGKrFRXcXFhal3qS+NagswkBnZ7Dgygvj+moUEdZHtrixKTLALKcx6ATEeoH4+FnTOsrxjZl6ArIt2Q91G6XGUlkjNS6NfBi9ZKht1HoZ7LwjNpNIDUZ28FZH09ntC4yuSzryE/I1yaVBdxoOXhx9+mBtvvJFbbrmFTZs2sXDhQlavXk1zc/R05QsvvMAnP/lJnn/+edavX8/EiRM5//zzOXLkSKaXmn3C9S6pdPeU1MHUs8Tt9x5N7LG6zvZXHuMfjm8yUzsstpWPTs0LQJkh2u3o98HCy8XG9x5Rw7biQLb/DlcykmTV48jIvLSXzwNExsFuTfzjSbY1NycZZLiniID4bOtmZocFL3VZDl5CpozpcZSWyG6jw17x2mYl83J0M9x1LjRvhaJauhpOE9v3vZj55x7r9IvgUkeDgiRn/IQPqktH2ej4AVH62zuyr1/Gg5fbb7+da6+9ljVr1jB37lzuvPNOCgsLuffee6Pu/4c//IEvfOELLFq0iNmzZ3P33XcTDAZZty49U2RHFamKdcMJLx3pcYoKD72J/sAH+Nj2L3Oi5QA+WzGc9z2omZX6ejJEefisglkXCYPKjoNpNajMVeIV60pmZGtQnc8NhtnmkcI5QOJ6F0mqQcbu8hUArLS+S5kjdEFRX5ZaUJQonVKwW2BPc9lIvH+yVjbasRbuuwh6GqFmDgc//He+dlB83ukjfPIbC1j7hQ7R56wQg0mTIc0WAcEDr4nS3wu3Jn2MdJDR4MXr9bJx40ZWrVoVekKLhVWrVrF+/fq4jtHX14fP56OyMrqbpsfjoaurK+JrTKDryQ+ni8bsD4DNBa07ofHdofdt2QEPXQn3rELb/woe3c49gYtxf3ETnPalUTnjRVJRFPbmsxfAXMOgUpWOhmV72Mj7eJCal72tvQQy2WXTtEV0jhVWcyQo3ueJ6l0kdcn6Gxm85Z/Gcb2YUnpFGdagPstTdmXmpaIovYLdIocViwZt2eg2euO38NAnwdcL086GzzzNA9uCvBaYQ1DX0Fp3QNexzD1/DuBwCx2i35VEp5EkQvOSeualZbfIkr7UVZf8mtJARoOX1tZWAoEAdXWRv2RdXR2NjY1xHeNrX/sa48aNiwiAwrn11lspKyszvyZOnJjyurNC52HoPiZEp+NOirrLrqZuDrTF2enhKoUTLhC3Y9kFdB6Gv30Rfn0qbP8HaBber7uEsz0/59XpX6GkYmT/GeOhzBCcmVcOCz4hvm99XFzBK6LS1uOhuduDNowtQDjjKwpw2ix4/UEOtfdlbnFGyYjxJ9HSIzIO1cWJ610gxUF1wPuNvbwYXCB+CHOZznbZSAp2ywocaXOUBiHELnHZQ+aMnq70v2+CAfjn1+Cf/y0sCE66Cq78M25rMY9uPEwnxWzVJ4t9972U3ufOMZxeIWrWC5MU60JY8NKalm6jvoObATjinJH8mtLAqO42+vGPf8xDDz3EX//6V1wuV9R9brrpJjo7O82vQ4cOZXmVSSKzLg0LwFE46O7WHg+X/upVLrvjVXo8cXr4yJkvW/4iPkAkfe3w9Dfh/06Ctx8UHyizPwDXr+ervs9zlGouOLE+xV8oO8g3n5yDweTToHQCeDph59oRXNnoZrtRMppcWUiRMz7zT6tFY1o2RLuy427cSWaLc/KZF1neSS7zsu1YN/8KLBY/7Ay5TEtzxmxYBPgDQbrc4j1fES7YTUPZCETHUReFBC3GzJh0lo68vfDwp+CNO8XP594Cl/wfWO38/Z2j5knz1aDQNqngZWgKfaJslJSjtHmQaILd5LqNdF2nrGsHABPnpEHukAIZDV6qq6uxWq00NTVFbG9qaqK+fuiT5W233caPf/xjnnnmGRYsWBBzP6fTSWlpacTXmGCY+S4v72qh3xfgeJ+Pv22OU6w88zyRWu4+BgdeFR8kL/0M/nchrP8VBDww+XT4zHPwiT9w0DqJrUe7sFo0Vs0d/VkXCHUbmVcOFgssMIK2dx8eoVWNfkyxbpx6F0lWdC/hmZduEXRUp6h5aUrUnBERNOxo6ual4AJ0zSIEpp1CxJ7NspEMXMCYbSQ1L2nyGxO6Fw2f0zippSt46W6E+y6EHU+B1QkfvQ/OuNEsQz/4xkFz19eCJ4ob+16MX6OXZ3j9QUp1EbhaS2qTP1CE5kW2SieXedm1dw+VdBLUNRafvDz5NaWBjAYvDoeDJUuWRIhtpfh2+fLYv/hPf/pTvv/977N27VpOPjlBv5+xwjBi3Zd3hmrRf3zjIHo8b3CbE+Z+UNx+9hb430Xwrx+I1HDdfLjyUbjmHzDxFACe3ipKd8umVibVljoSlJtlo7ArB1k62vUM9LaNwKpGP9vDvHoSYXpNEZDBzIunW+i0wMi8iNc16cyL4Szd0edLeDLw/rZevP4gXkc5jBfvEXaJ7Iu0COhy++n3ZnbisMwqlrhs2KyWtLZKQ2jKrtshg5c06F6atoqOomPviJPl1X+HeR82795ypJN3DnVgt2qsmF7Fm8FZBDQbdB6C9r2pP38O0u32UW0MqLOXJtkmDQM0L8aE3SSDl/c2vgZAs2M8RcUjmyjIeNnoxhtv5K677uKBBx5g27ZtXH/99fT29rJmzRoArrrqKm666SZz/5/85Cd8+9vf5t5772XKlCk0NjbS2NhIT08WPVYyjbdXzHiBqJmXYFDnpV2hD5StR7t453DnoP2iMt/oOjq6SUzPrJgCH74bPv+SyMyEiXHXGsHLBfPGRskIwstGYW++2tnQsFCIPrc+NkIrG90k2iYtybjH0dHNgA5lE6G4JuXMS2mBDadNfKzJY8XL+8YcnFn1JWgnGOafu54FoMRpo9Bw4c607qUj3NcI0toqDaGOo157mjIvu5+De1YLp/eqmfDZ52BS5OfaH944AMAF8xqYVV9CPy6OFM8Xd6qW6aiE+xpZitMQvAS8VNhEYNyZZLdR+16RJfVXn5j8etJExoOXyy+/nNtuu42bb76ZRYsWsXnzZtauXWuKeA8ePMixYyHF+W9+8xu8Xi8f/ehHaWhoML9uu+22TC81exzZJIY0lY6HsgmD7t7e2E1rj4dCh5WLFzQA8IfXD8R37MmnGTqQ8XDRbfDFN0VZxRL5Ujd3udl4QIjBzp87loKXGGlPmX1RpaNB+ANBdjWJ4GM4N+mBhLtLx5X9SxRT7yJ0JqlqXjRNS1q0u83sxiqFmavFxr0vgM+NpmlZKx1FTNeFtLZKQyjz0m0z5oakEry8dR/84ePg7TZK0s9A5bSIXbrcPh5/W5i+fmrZJDMwfd9laItUy3RUhK+RcdGaimDXXig6UYEKY1pvZ78v4ffz3pYeqntFlrR6xpLk15Mm4lPupcgNN9zADTfcEPW+F154IeLn/fv3Z35BI80wJaOXdokPk1OnVbFmxRSefPcYf3/3KN/6wFxTcBUTiwXWPDXsEmTJ6KRJ5aYYcSwwSLArmf9ReOZbor21bU9qE4tzjH2tvXgDQYqdNiZURLEFCPhEF1pxLZz/g4i7plQVYdHEB2lLj4fakjT/rxhO0ow/CX8gSHuf7DZKLngBIdo92N6XcLt0RPBSPwlKGgz92CswYxW1pU72tvZmXLQrMy9lBXahB0ljqzRAqWyX1WS7dBLBi66LWR+v/kL8vOATcOn/idL1AP666Qj9vgAn1BWzdGolB9pE59pb2nwuACHaDQYHXWDlO91uH3XSCTrZ6boQMmfsOkJpUPyP+4M6vd4AxXGK9wGe3trE2ZrQLbkmLEx+PWlC/beMBHGIdQHOnFnNkskVzKorwe0L8tdNh9O2hLFYMgIiWv0iHH6La2H6OeK2yr5EIIfTzaovwWKJMsNnw13ib/baL0VnWhguu5WJlaIbLiO6lyOhzEt7rxddB0uS1gCSZC0CZPAyt6FEfODPjCwdZcsi4Hh45sXXB0Ejy5gmzYv0NzquJTnrJRiEv38pFLisvAk+dGfUwEXXdR40ssZXLpuMpmlmVm2Dd4pwyu5vF7N+FBF0e/xUy8xLKt1GYHYcOb0dOIzJ1YmKdp/bcojpmsigUT8vtfWkARW8ZJtgEA7L4GVw5qXP6+fNfaKcc8YJNWiaxpWninH9f9wQp3B3GI73enl9rzhJXXBiQ8rHyyYy86TrIhsQwQLDLuDdh1UHQxihTqMoepfeNnjxx6Gfo5xEpMdR2m0CetugwyiHNiyi2dCoVBY5sUYLsuJEinYT6Thq7/WamZpZsrQmS0c7nwZdN0W7mS4bdUbzNbLYwFGUluNLZ+lW01k6gcxLwA+PXw+bHhB+ah+8A1Z+PeZgyw372tnV3EOB3cqHThKeaTKr1tgbhMliorHSvQymp6+PMs2Yr5RK5gVM3YvW325aBCTSLn20o5/+I1uxawGCzrJR4X+ngpds07ZbuKnaCqB+cAv4G/va8QaCjC8vYFq1+LC6bPF4CuxWdjb18NaB1J1Yn93WRCCoM7ehlElVg2fMjGacNqspnBxUOpp9MTiK4fj+UGlOYU7WnR2t0+j5H4ZOkBASkocRrntJK7JkVDUDCspT1rtIkpn1IgO8yVWFoVT6tLPAYofj+6Btj5l5yVbZqDzcUdpVlrbJ16azdEAGL9F95gbh98Jf/g3efUgM1/zI3bD4U0M+5A9Ge/QHF40zg6bqEpFVa+v1Epx6pthRzXsZhK9LBJUBLKln3aRmJswiIBHR7tNbG5ljlIws9fNHxRR2FbxkG3lSHX8SWAfrV17aaZSMTqg2nX9LXXYuXTgOSEC4OwRPbxmbJSNJRbg5YziOQpij7AIGItuk5w7sNGraChvvE7enrRTfowQv0zPVcRQ2nA4I6zRKrW2/Lglhral3CRc0O0tgimEiuOPJrJeNygvS6ygtMZ2lAwk4S/vc8MhV8P7fwOqAy/8fzPvIkA9p7fHwzy2iGeNTp042t1cVieAyENTpajAyLwdeE9orhUmwR7wufbby1PVAKVoErN3SyByLce4ZBSUjUMFL9hluvovRIn3mzMg04RXLROnoqS2NtPcmNx0RoMfjN59jrAYvQ06JlE7TW/8K/uSmrOYSHX1ejhkn8QhbAF2HtTeJactzLoWlnxfbh8i87GmO06oiXsKG0wEpz3iR1BqZl0TKRtuOxZiDI4PhLX8xy0ZNWSobCV+jDrExTWJdCDlLH/GFOUsPVWb19sGfPgE7/ym6Vj7xJ5HlHIZH3jqEL6CzcGI588aH1u+wWUztWlPBTHFi9fbAkY3J/1K5iFHO67cn6SYdTnjwIstGcQYvrT0e3tzfbmZeqFPBS34yhFj3aEc/u5t7sGiwYnqkQGvBhDLmjS/F6w/yl43JC3ef396MNxBkWnURM42T0ljDfPNFS3tOOQNKxokP/Z1PD74/z5An5YmVBeYVNyCmoO57UUxCPf/7UG/M3GjZPijokwaNjV1uut1pujrW9ZiZl9TLRiLISKZsNMi0cu5lQm9y7B0m+IX1SHO3J1IsnmZCmRdH2tukIZR5OewxNDRBfyhIGoinG/7wMdj7vBDXXvEIzIzuMxdOIKjzR6Nk9CnjwiscqXtp7fWJ9yyolukBaP1i4KZHDhNMBdMioM3sNovXWfrZ95sI6jrzbYb1jsq85CF97dAqfCGYMDjzIruMFk0sN0VVEk3TuHKZSL2mItxdG1Yy0kZB3TIZZNko6hAyi1XZBYSxvTFKOcTvEV5XAMu/KAYZlk0QpYmgH5q3RRyjrMBuBhR7WtKUfek+Bj1NQjthBE4tUvOSQps0hIKXHo8/Ll8wXyBo6nkGZV6KqmD6uQBU7fs7mibaTNtSyH4OR8SQuoyUjUTmpc0NOIfoOOrvgP/3IdEq7iyFTz8mdEBx8NLOFg4f76eswM4lRsk7HFkabO3xhI6pRLsR2I3gxedKR/AiMy/t5pTyeMtGa7c0UksHpXqXEGnXzE59PWlABS/ZRKZFq2aID8UBvGRYApwxM7qy/NKF4yh22tjX2sv6PYmPwXf7Ajy/Q4jzxmrJCDBT0HIeziDkwLqdTw9q/c03thuZlwix7ht3ChFqcZ3wngEhwGswBOTRSkfpNmiUJaPaOaYxaWuaMi/FTpspum2OQ5+yp6UHbyBISaw5OIbhqXXro1QbLdyZFO1GCHYzUTYyMi89Xj+6bMEd2HHU1w6/v1TMTXKVw1V/g0mnxv0csj36o0sm4LJbB91fY3SEtXR7YKoRvBzaIKaPKwBweMVnfCCVAXWSKGWjzv7hA/DOfh+v7WllrtS7VM0Ee5T3yAiggpdsYupdBpeMAkGdV3YbepcTov+zFjltXLbYEO6GmZzFy8u7WunzBhhX5mL++PR9GGab1SeK6czr97RFv3qomyu8nII+oX3JY7aZmRejHNLTDC/+TNw+9xYhSpXUDxG8pNugccBkXQhlXlIZUCcxdS9xlI7CrROiZiNnXSimlLbv5YwikTrPVLu0LxA0s0URgt20lo1EYKfrYSfG8OClpxnuv9jwKaoWfmiGLikeDh/v41/GRdIVUUpGEMq8tPR4xETe0gni/XpwfRK/UW5S4DU6SwsHX+gmTIQ5Y/yC3X9tb8IX0Dm9RGTsR0vJCFTwkl2GEOu+d6STzn4fJS4bCyeUxzzEFUtF6ejprY0Je7fIktHqMVwyAphWU8yM2mL8QZ0XdsRo81wYNvMlTwkEdXY0Dsi8/Ov7YpT7uMWw8JORD5C6l2gdR+k2aBwg1oXUrQHCkbNemuMQ7cYU60qcxTDrIgAu1F8BMtdxJLMummZMwk2zozSIwYNyUJnpLN1jvI86jwhn6Ob3obheTOuW/xdx8tCGQ+g6rJheZeqlBmJqXrq94pc1S0eqZVpS5BfBS0q+RpKIspHIhMWjeZHnDDN4GSViXVDBS/YI+OGwUTaKknmRLdKnTa8WTrIxmDuulMWTyvEHdR5561DcT+8LBHluWxMAF84bW4PpoiGzL89sbYq+w/yPifrsoTfy1rV2f1svHn+QAruVyZWF4kp60/8Td17w48Htl+HBSzAYcdeMWpGhScugumAwNOPFEOt6/UHzwzQdmZc6M/MST/ASZgsQC6N0dGrfC1gIZqxsJFP5pS67GNRnlo3K0/o8suPI7TBOar2tcPyACFzadgujzDVPQc2shI7r9Qd56E3xuRTeHj0QGaDKbJtZOlKiXZPigMi62UtqUz+YFOzqASpt4n93uOClz+vnReO8NMVvfIYmGMhmEhW8ZIvmreDrFQK56sEfCKYlwAnDR9lSuPunDQfj7np4fa8osVQXO1gyOQ2tdyOMNJN8YUczbl9g8A4l9aHZJe8+kr2FjSLkSXlWfQkWDVj7DUAX8zmi6ReqTxAzPLzdocm3BrJsdKC9D68/OPixidC+R5yUbQVQJ9xp23rFScxm0cw5FKkQMmeMv2w0ZPAy/RwoqKDE38aplvczVjaSbukVpqN0en2NJLLjqE92shx+E+67SLzuFVNE4JKEP9gz7zfS2uOhtsTJeXPrYu5XY2ZeZPBiDKs79k7e69Qk5cEOABxlaQhebE5wiAuQKkLmjEPx0s4W3L4g0yusODuN4KVu5N2kJSp4yRayRXrCyYOueLvcPjYd7ADgjJnDi7M+sKCBUpeNw8f7Y4tWByDTf+fNrU9p9PpoYcGEMupLXfR6A7y2J8aQLSncfeehvLQL2G6WQ0pg2xOia8RWAKu+G/0BVrsQ0MKg0lFdqZNip41AUOdAW4qiysNviu/jFpmDGmUJtKrYEd1/KUHi9Tdq6fbQ2uPFosGsupLYO9ocom0a+KDltYyXjcoy5CgtkbqXbotx3D3roOuwCGDX/BPKo2tVhkMKdT9xykTsQ2SQzbKRzLyUNhgXdTrsfyWp584l/IEg5UaQ4SyLHQQmhJF9KTfMHocLXv5pnDOumNqHpgehoFKYlY4SVPCSLYYQ667f00YgqDOtusg0wRsKl93KR5ZMAOIT7gaCOk9vlSWjsdtlFI6maZxvlI6e3hKjdDTnA2I2xfF9oRNmHiHbpE+sdQrHbYDT/gPKJ8Z+UAzdi6Zp6dO9HH5LfJ9wsrkpnXoXiN8iQGZdplQXUeAY3BUTgVE6utC6gfbOrtQXGYWQKePAzEt5Wp9Hdhx1WsOOW3siXPMklA5ubY6H3c3dvL63HYsGn1g6dPAjX+e2Xm8oe6xapk16ensp1foBKKpIU8Bg6F5KDGfpHo8fXyB6FtXjD/CvbUIHdW6FcYFcP29U2AJIVPCSLYYQ60q9SzxZF8mVhop/3bYmjnX2D7nvpoPHae3xUOqyceq0NCjXRwmrTxSB2HOGV9MgHEUw5xJxOw/tAqQQ9az2P0PHQTG877QvDf2gITqOpqfL40gGkhNOMTeFrAHSFbzEZ84YV8lIMmk5vqIGSrU+TujKTFeMnJ5tls4y0CoNoczLkYJZolQ4fonoKipOvkTx4OviQurcOXWMKx+6nbbK6DYKBPWQR5ksHSndC33HxQWZT7fiKE5Tmd8IXgr9HeamrhjZl9f2tNHt8VNb4mSyb4/YWDd69C6ggpfs0HVMnDw0i/iQGIBpCRCH3kUyo7aEpVMrCerw8JtDC3dlyWjVnDocttx5yZdOraSswE5br5eNsQwrF3xcfN/6mDCWyxM6+30c6einhuNMeO/XYuN53x3emXiIjqMZ6fA48vYKTyWICF5Ma4B0BS8lIX+joQY6yuBlbjzBi8VC8ETh53Ne4GX6vVG0VikiS3KTKguFyN9r/K0L0qtTk8HLUa0OvroHPvNcSNSZBP3eAH/ZJCZ/XxmjPTocuzVkESBfe6acLj4j23ZB19Gk15ILuDtF8NKhlaYv22EEL9b+dvP1j2URsPY9ozP1xHo0+X4dRW3SoIKX7HDY0LvUngiuyA/J/a29HGzvw27VEs6KyA+JhzYcwh8j/afrekSLdC5ht1o4d7a4Unxma2P0naatFC2f/cdh97PZW9wII1ukv1P0FzRfrwgUjLLHkEhBXtfhQcJJOagupVkvRzeDHhBZoLDyhJl5SVPZSM558fiDdPXHnrIrs1Oz64fQu4ThWCyC4XMtb9PUEqcbcwJI/6jptcWRbt/OOIKrBJBlo263X3wmpWj89/d3jtLt9jOpsnCQL1ssBuleCiqgYaG4nefZF2+n+N/qsqQx4xbnrBd/IMizRmfqBSfWQdMWcccoEuuCCl6yg+lnFNsSYMnkCoqMqaDxcsG8eiqLHDR2uXl+R3Th7tajXRzp6KfAbuWsBDI7YwVT9/J+Y/QrbIsV5n9U3M6j0tH2xi7ma3u5OPAvseGCn8R3BecqE90mAI3vRtw1PcygMWlvnyOD9S6QPmsAictuNT+gY5WOPP6AGYjFVTYCtPoF7Ncm4NR8+Lc+kZa1hrO3VaxnWnVxqGTkKAFrYp8NwyG7jbrcw9snxMODbwih7hXLJsUtuJavdcS8qqlq3guAv1sEL93hmqRUMf2N2kNTdqO0S7+5/zjtvV7KC+0sq+oX/4cW26ixBZCo4CUbDCHWfXEYS4ChcNqsfMwU7h6Iuo+0pD97dk3UMd1jnTNPqMFps3CovZ/tRrZhEAulXcBakYHJA7Yd7eRm++/FDws+ARMGlytjEkP3MrmyELtVo98X4OgwOquYRNG7QPozLzD8rJddTT34gzplBXYaDMfoYdE03ig+B4DSXY+nY5kmnX0+s4QyraYoY3oXCM156UqD0ea7hzt493AnDqvF/DyKB/lam5kXiBTt5mGHoEQ3Jh732dJYLoySeemIYhHwtJHFPm9OHbaW98XG6hNEu/UoQgUvmcbnFqlyGJR58QWCrDfafJPNinzSUPW/uLOFQ+19g+43S0Yn5lbJSFLosJmB39OxSkf180XJLuCFrY9nb3EjSNX+JznFshO/tQBW3ZLYg2MELzarhSlVKXQc6Tocih68tKY58wLDz3oJd5JOZOL0zprVAFS3vA7dMTrdkmCPkXVpKHOJLGyG2qQhlHnpTkPmRbZHXzS/nqoEXr8IiwDJxFOFgLjrCLTtSXltYxWtT5wX+h1pDF6kj1VfW8iccUDmJRjUI8x7aTI+A0bRZF2JCl4yzc5/Cs+O4vpQOt5g04Hj9HoDVBU54hMMRmFKdRGnz6hG1+GhNyPbpnc3d7OnpReH1cI5s9Mw6GiUMuy0Xcgru4Cgp5cruu4GoPPkGxJvfY1DtJuUu3TXEehpFE7SUttg0JImU8Zw6oaZ9TKsLUAMbDXTeTs4AwvBtHpnyenF04yW9Ey1SUNIsBur2yReOvt8PPGOENcONVE3GvK1bu0Ou/p3FIYy1PteSGltYxlLv9CbeZ3Ji6gHEZ55KZSZl8jX/53DHTR2uSl22jhtRjU0GnqXUSbWBRW8ZBZdh1f/T9xecvUgzYHsMjp9ZnVKg7mkcPfhNw9H9O3/01CMnz6z2rzSykXOnVOHRYP3j3VFzT4BhlhVE8Zvx/dnc3lZp3Pd7YzT2jisV1N+zo2JH0AGLy07ROYwjBmptEvLklH9PNNJGoTbucwApDfzIme9RA9e5BycRIOX+lIXfwusED+89+fkFziAva2GWFf6AWWybGRmXlILXh57+zBuX5BZdSUJT+6Wgt2IzAsoqwDA4RaO0n5XGhylJdHKRgMyL2uN7PXZs2uFzEB2Go0ysS6o4CWzHHhVuOfaXLD0c4PultNxk9G7hLNqbh01JU5aezw8+34o+yD/ES/I0ZKRpLLIwdKp4grlmfdjZF9Kx4XmSKTxhDPq6DxCycY7APhD6WexOocfejiI0nFimqYegJZtEXfJE2tSHkfmcLroJSOH1WJqMdLBUGUjXdcTa5MOo77UxZOBUwlgEQLkNHlnmZmXaiPzktGykTFhN4Wyka7r5pDMT506KWGz10EWARL5Pt3/8iCPrXzB4RWZFz0djtISeSx3BxVO8VqFZ950XefpLWHnDG+fsPKAUTfjBVTwklle/V/xfdGVoXqjQXuvl/eOiLTwmQkMp4uG3Wrh8pPF1FQp3D3U3sfWo11YLRqrhvAYyRWk11FM3QsITx+A7U9mYUUjxHPfwRbo543gbNomXZjcMTQtZukopVkvMYKX0IA6R1rdzmtLYg+qa+rycLzPh9Wimb9TvNSVuWihnI0W42/03l9SXiuEWtBlV1emfI0glHlJRbD7+t52djf3UOiwctni8Qk/flCrtGT8SeAoFuL6AR1v+UKhz2gsKEpj5sVVDoj3V61dZKjDy0bbG7vZ39aH02Zh5awaaN4GehCKaqBk9J1DVPCSKZq3wa5nAA2Wf3HQ3a/sbkXXxXwJ6cOSCp9YOhFNg1d3t7Gvtdc8iS+bWkllkSPl4492ZMv0W/vbaRv4YSiZdSGgCUfjXByC1bYH3nuEIBrf832aOeNSOOnFCF6kHqO912tOg40LvxeObRa3x0e2SZsD6tKod4GhLQJk1mV6TVHCXXj1xvv1Ue9yseG9R1LujPEFghw0Sp7TBpWNylM6djRMV2lfMOaI+OGQ7dGXLR6fVFk6qkUACL+ryaeJ23naMl1kTMG1pcNRWmK1mVm8KosIlMPnvEih7pkn1AjB+CgW64IKXjLHa78U3+dcEtWd9eWd8btIx8OEikJWGsf604aDpqnWBTk2mC4WEyoKOXFcKUEd1m2LMTysuDZ01b/jn9lbXLY4KEbWv2eZzVZ9KrPrUxhsFqPjqNBhY7wx+j2hYXVNW8DvFifiAe+HdFsDSGTZqLnbPWguzftG8JLM36imxImmwT/9J6NbndC6M6q4OREOtffhC+gU2K00yIsZmXnJQNmoOGymVDKlo6Yut1li+NSyxIS6kqgWAZJ89jny9VOgi1EE9tI0N1oYpaMKxHu3I+zv/vRAmcEonawrUcFLJug6Cu8+Im5H8ZLRdT1M75K+tOCVxofInzYcZNNBkXaU5ZR8QLaDP/P+EKWjWUYpZcdTWVhRljHKMq97pwGGm3SymJmXLYN0B0l5HB3ZKL5POGWQcD3dpowSeTxfYPDJMSFPowHYrRaqi510U0jXJDHzJVUd1V6je2tqdVFIvC81LxkoG9msFgoNI8pkOo7ufHEP/qDOKVMqmDsuuSA5qkWARIp2D7yWV7YeAPSKRg6vbsVVXJ7eYxvBS5ku/v9l5mVfay/bG7uxWTRWzTFKRLLTSGVe8ojXfyPaoyefNmiSKMCu5h6aujw4bRZOmZK+VriVs2poKHPR7faj67B4Ujn18Q7fygFk6eilXa30emJcTc6+WHzf9xJ4Ygy1G6sY02s3B2fQUOaivDCFcmH1TLA6wdstXLnDkDYBCQUvMYbTQeYyLyLIEH+DxgEdR+EzXpJBlo72N1wkNmz5S0ri0kF6F8hoqzQMsAhIgOYuN380hLr/ce7MlNZQE0v3UjsXCqvB1xeaypwvGAPq2iijpCDNJX/TWVr8b3X2+yIsZJZPrxJt1Loe1mmkgpf8wN0JG+8Xt1f8R9RdpIv0smlVaZ16a7Na+MQpIVO0C/OkZCSZVVfC5KpCvP6g+TceRPUJUDlNDKzbvS67C8wk3l5oEtMw3w7OiNurJyZWO9TOEbdjiXaTCl4GT/rNVOYFQqLdcN2L2xdgn9GWnOx8JVmS2lp0qvAd6jpilu2SQWZepssZL5DRVmkI7zhKLPPy25f24vEHOWlSOafPSC1zXB3NIgCE11K+ukz3iTbpdr3EfI3ShmERIJ2lfQGdPm8g1JkqzxkdB8HTCRa7+MwchajgJd1svB88XcIHYub5UXd5SbpIp7FkJLn8lInYLBqalrtTdWOhaRrnG51VMbuONA1mGVfLuaR7MQwPu2zVNFLF7CRPyhE0RNe9hAbVxRm89LaF2omjuKpnKvMC0S0CdjZ1E9ShqsiRdMBUXyYed6xXhzmXio0plI7k39IU60JGW6UhbFBdAsFLS7fH7Gj80qoTUu4Oi2oRIJHBS57pXoI9QrPXppdmIHgRmRe7ux27Vbx22xu7eOdQB5oG58nOVGnGWDMbbKOz4UMFL+nE7xUlI4AV/x7VqdXtC/DGXhFZp0usG059mYt7rzmF335qCZOrioZ/QI4hA7Z125tjd1HI0tGupyGQHmO6EcdIrb9vFVdJKWdeIKZoV2YHjnT00+8NxLE2Q+9SfYJwDh5AJjMv0Wa9hOtdkj35yrJRY6c7ZPz5/uNJ6zNCA+qM96yuZ7RVGqC0IHFzxt+9tAe3L8iiieVpufiKahEgkaLdw2+CJwUn8zGGt8sIXig1S3tpwwhetP52yoyS1MNvHgLg5MkVZqZytIt1QQUv6eW9P0P3MShpMCa6DubN/e14/EHqS13MTHC+RLyceUIN5+dZ1kWyeFIF1cUOut1+XjeCxEFMWCqGsPUfTynVP6owxLqvuacAyZdDIojRLl1V7KSi0I6ux5l9GULvApFzXtKNHEMQPuslZAuQfIAnj9vY5RYZgqJa8f+0518JHyu87XyqHFDn7RFDAiFjmpdE/Y1aezz8v9dl1mVmWmbyyIB1UNkIoGIqlE2CoD933qdx4DeCl+OU4bSl+RQdNmVXiqX/8a4w771gXkNoP/meH4WTdSUqeEkXuh5qj152XUwHTmkJcMbM6rQO5FIIrGFq+ZheR1YbnHCBuJ0rpSMju7HBNw2H1RI6CaaC/ODqPmp2QEgSKh3J4CVKyajP66fXyN5kJvMy2CLg/RQ6jST14b5JFmtoAGISpaO9xt9wfHkBhQ6jTCCzLlYH2AuSXudQJOpvdNdLe3H7giycUGaOZUiV0KC6KBkrTYNpqZeOHnhtP//5yDuDTAhHK4Ee8V7rtZWn/xwRxSKgz3j/SY84IFQ2GqViXchS8HLHHXcwZcoUXC4Xy5YtY8OGDUPu/+c//5nZs2fjcrmYP38+Tz01Btpadz0rRqk7SuDkNTF3k0LSMzJQMlIIwlumB873MDFbpp9MecDYiNN1DLqOEMTCu8FpzJ9Qhs2ahre2s0SImyG27mU40W4wGNkmPQBpyueyWyJmj6SL+gFlo3BbgJSCl7KwshGEMq07nkq4xCHFutPCxbrhbdIZushJpNuorcfD79enN+sCQ1gESKauFN+TFO3qus7Pnt7BXzYd5pN3vR57gOUoQje6jfrsaXSUloRnXgpCJan548uYUGFYiXh6oN3oMKwffbYAkowHLw8//DA33ngjt9xyC5s2bWLhwoWsXr2a5ubog8Ree+01PvnJT/KZz3yGt99+m8suu4zLLruMLVu2ZHqpqSGtAE6+JmaNurnLzfbGbjSNlFX6itgsn15FkcNKU5eHdw0LhkFMP0e0Ah/fDy3bs7q+tGPoXY46ptCHi7PSGRjHKB1Jj6NhbQLadgkBu71QtL8OQGodqoudGclEDnSWPtLRT7fbj92qhQwQUzhul9svdD/jTxJlDl9fwtk8s026Jntt0pBYt9FdL++j3xdgwYQyzp6VvsFpNUMJdiEk2m18D/raEz5+R5+PHmNswvvHurj8d6/HdBkfLViMbiOPI42O0hIzeGk3My8wYJhp8/uADsX16bUnSDMZD15uv/12rr32WtasWcPcuXO58847KSws5N577426///+7/9ywQUX8NWvfpU5c+bw/e9/n5NOOolf/epXmV5q8hzeCAdeAYsNll0fczfZZTR/fFlejOwfKVx2Kytniw/YmF1HzmKYtlLcHuteR0ZZ5nXPVCDNQvBYwUu87dKyZDTuJFGuG4DUOmSiZARQWxo6OfoDQVPvMr2mGEcKeoJSl40CY8xBU5dbZEdk9iXB0tGeaJmXDLdJg/gdYPhuo/ZeL79fvx+A/zgnfVkXCJWNBlkESErqoGYOoCdlFXD4uJhUW+Ky0VDmYndzDx+7c31s9/lRgM1tDKlzZSJ4MY7p7aHSFWpoiAheZMloFIt1IcPBi9frZePGjaxatSr0hBYLq1atYv366AKs9evXR+wPsHr16pj7ezweurq6Ir6yzmtG1mX+x6AstkHZy8ZU3TNTdJFWDI9smX5mKKNGs3Q0xnUvhw29i38a5YV25o9P4wkvRseRHFS3r7UX/1DeOEPMd4HQFXcm2qQBqoqcWC0aQV2cIJN1kh6Ipmmh0pG8kpddR3vWifbwONkbLfOS4TZpCHUbDVc2uvvlvfR5A8wbX8q5c9I7rn5IiwBJClYBh4+LIGVGbTGPfH45kyoLOdjex+W/XW/+3UcbDo/IMAULMpD1cJWDJoLuepsI7GbWFkf+75mTdUevWBcyHLy0trYSCASoq4t0pKyrq6OxMfpJpbGxMaH9b731VsrKysyviRMnpmfx8dK+F7b9Xdxe8e8xdwsG9QixriKznD27FrtVY09Lb+zsgAxejrwF3UMEOaOZYEAYTSIm654xswarJY3lF5l5ad0Jvn5z8/jyAgrsVnwBnUPH+2M8mJhO0pJMZ16sFs3UVTR1udnemLreRTJohkzNLBHsBf2ibToOwg0Zo5eNMpd5iWfOy/FeLw+8th9If9YFxBTkilgWAZIUhtXJzMuEikImVhbyyOeXM72miKOdbj7+29fZ0TjKpmx7e7EFxP+TXpiB84SmmaWjsyYIm4svnj0jch9TrDt69S6QA91GN910E52dnebXoUOHsruA9XcI2/AZ5w0Zqb5/rIv2Xi9FDisnTc6AEEsRQanLzvLp4s0f0+uopD7UATNWsy/N28DXS59WwG59fPoHH5Y0iA87PWDUwgUWi2aWOWIGh56e0GMGOElLWjKceYHwIMMT1iadevASMetFYpaOHo3rGAfa+vAHdYocVnOdQEYdpSXxCHbveWUfvd4AcxtKQwPM0kzMKbuSyaeBZoH2PdB5OKFjy8zLhArRsVVf5uLhzy9nTkMprT0eLv/det47HEMXNxIYXX1u3Y6zMA3jDqJhBC8zSzy89a1VXLY4rFoQDI6JGS+Q4eCluroaq9VKU1Nky2pTUxP19dHnkNTX1ye0v9PppLS0NOIra/S2wtsPittRDBjDedHoMlo+vRp7OjpBFMMiW/+ejtUyDWN/2q4h1n07MI0glvSKdUFcqQ0n2o0VvBx9WwT2ZROhtCHqLq0ZzrxAaCbL/tZe9rcJfUlKppUGdQPLRmC0TGtw8DXoGP5Cam/YZN2IrEYGHaUlw8156ejzcr+RdUlnh9FAqmP5G0kKymHcYnE7Qd3LkQ6ZeQm1m1cXO3no2lNZNLGcjj4fV9z1Om/tT1wMnBGM4KWNUorTPaBOEtZxNIiO/WLGkNUJVan5VmWajJ5FHQ4HS5YsYd26kIdMMBhk3bp1LF++POpjli9fHrE/wLPPPhtz/xFlw13gd4s31pTTh9xV6l3OOkGVjLLFeXPq0DR451BH5NVxOHLa7t4XxuYUz8PSjHE6s+tLzBN1WomlexlOtDvEfBeJzLzUZGBAnURmNF7a1YKuQ22Jk6o0ZHrqB3QyAULzNvk0cXvLX4Y9RlSxLmTUUVoSPudFjzIu4J5X9tHj8TOnodTUkGWCIS0CJNJlOsHSkSwbjS+PnJVTVmjnwc8uY+nUSro9fj59zwZe3d0a7RDZpc8IXjJhDSCRot1o3Vsy61I7O6rAfjSR8RTAjTfeyF133cUDDzzAtm3buP766+nt7WXNGjEL5aqrruKmm24y9//Sl77E2rVr+fnPf8727dv5zne+w1tvvcUNN9yQ6aUmhrcPNvxO3F7xH0POYuj1+Nl44DgAZyixbtaoLXWxeGI5AM/GKh3VzIaKKRDwwN7ns7a2tGEGLzM4a1aG/reGC15iCR+H0btAZq0BJHXGyPM39ooP63SUjCBG2QhCwt04SkdR26QhO2UjQ7DrD+q4fZGi684+H/e/uh+AL507I6MDNWuGKxtBpGg3zrlMuq5HaF4GUuy08cCapZwxs5p+X4A197/Jv7YPkaXNBsaMl3a91MyMpZ2hMi+mWHd0l4wgC8HL5Zdfzm233cbNN9/MokWL2Lx5M2vXrjVFuQcPHuTYsWPm/itWrOCPf/wjv/vd71i4cCGPPvoojz/+OPPmjbI/5uY/QH+7OPFJY7YYvL63DV9AZ1JlIVPSMflUETfnmwPrYnwoaRrMMrIv29M8DFE32juTmE8RF+4udGNGzebgDM7KVGBslo22iJq4gQxe9jb3DL5y1/VhbQF0Xc+oKaNEzmTxGl1R6QpeZNko3DcJgLkfFG68Te8JTdIQhMpGAz4XsiDYLXJYkdrugbNe7nl1H90eP7PrSzh/bmatRqpLhvA3kkxcBvYiYb/y7sNxHbezPzTjJbxsFE6Bw8rdV5/MeXPr8PqDfO73G3ny3WNR980KYWWjzGVehghexsBkXUlWxBc33HADBw4cwOPx8MYbb7Bs2TLzvhdeeIH7778/Yv+Pfexj7NixA4/Hw5YtW7jooouyscz4CfhhvTF3ZvkNw6bXzKm6qsso68hpu+v3tMUeDy67jnauFd076eLNu+GBS+CJ2F1oKXH0bTR0DuvV9NirWDIlQ0Lwqhlgc4GvF47vMzdPrirEYbPQ7fGb/igmnYegt1mcxKU79QB6vQHzij+TwUttaeSx06F3gciyUcSMksJKmGGMe3jrvpiP13XdLBsNyrxkoVVa0zRzqnF4x1Fnv4/7XhWv83+cOxNLOrvXojCkRYDEXgBn/qe4/fQ347ogkFmX6mInLmMmTzScNiu/vvIkLl04Dn9Q59//tIm/bExMGJw2jMxLZstGQ2VejOzqKBfrQg50G40I254Qk1kLKmHRlcPuLlukM+EirRiaqdVFzKwtxh/UeX5H9KnOTFou3I772+HQG+l54v7j8PyPxO1dz2RGT3MkVDJaMb0Kpy32B3RKWG2h6biN75qbnTYr150p7AO+9fiWyPKJzLrUz4vpzSOzLoUOK0UZsAaQ1A3QAaUr81JT4kTTRNmlrXfAiXfZ58T3t+6B1t1RH9/e66Wz34emMdiLKgsTdiG6s/R9r+6j2+1nVl0JF2TB4NWcsjtU2Qhg+b+LgXV9rfDcLcMed2Cn0VDYrRb+5/JFXH7yRII6/Oef3zFNKLOKEVC0jUTZyN0FHcbvrDIvOYiuh6wAln4OHINrqeEcaOtlb2svVovG8ulVWVigYiAy+xJz2q7VBjNXi9vpmrb70m0iGAIIeDOjpzGG070dnJ75wDhGx9G/nzuT+ePL6Oz38d9/eTdUPholeheIDF4cNgvT0lS6tVstZtZg0Mj56eeI8QlBPzx7c9THy6zL+PKCwZmBLEzYhcEdR11uH/e+IrIu/37ujIxnXSBM8zKc75DNAZf8Qtze9Hs4MLTTdEjvEp+xpdWiceuH53PNiikAfPvxLdz10t64Hps2pOaFEnMCctqJFbzIsQal40Oi3lGMCl4SZf/LcGyzSKMvvXbY3R9+U7RLrpheZc5VUGSX842W6Rd3tuD2xSgLmdN2n0rdqLFtD7zxW3G7YZFx3DS3Yus6wXCx7ggFL/KK1Wmz8NLOFh6UV6vD6F0gbEBdBktGABWFdhzGeIIT6orTY1ppEFO0C3D+D8Q00x1PRm3xjTpZF8DvFR5JkNGyEQx2lr7/1f10uf3MrC3monnR29vTjQwA22NZBIQz6VQ46Spx+x9fEX+rGAwl1o2FxaJxyyVz+cLK6QD88KltrN8T/7TkVNENzUurXkZxtruN5Ht7lE/WlajgJVFe/T/xffGnhjWt8gWCPPKWqJ1euWxSplemiMH88WU0lLno8wZ4ZVeMdsgZ54LVISYmt+5M7QmfuwWCPqF7OP/7Ylu69TSdh7D0NuHTrXSWz828EDxGxxEI4e7XL5wNiA/7vY1tcMwoL02IPpwOMm8NINE0zdS9zKlP7xwo2YbdGM3sr3Z2yGH+6W8Mev33DCfWBXBmdm5V+KC6brePe8ysS+a1LpK4LALCWfVdKKyGlm2w/pcxd0s08yLRNI3/vmA2H1syAYB7X903zCPSh252G5VkvmzU2xp5oTaGxLqggpfEaNoKu58V0x6Xf3HY3Z97v4nWHg81JU7OnZO5OQmKodE0LeR1FKtl2lkSGkO+I4Wuo/2vCrsIzSKuvCctF6n/vrZQNiIdGFmX7fpETp0V208rbdTNBTTR7dHTMujuq5dP4bQZVbh9QX790N9E63lhlXBajkGmrQHCkaWjdOldBh43plPxypvAWSaCvnf+FHHX3lhiXVkycpaBJUM6JoPSMGfpB17bT2e/j+k1RVw8PztZF4i0CBi2dAQic7D6h+L2iz+F9ujBhdS8jE8weJF8/iyh53puW1N2jBx1Hc3wxGqnjCJHhl57GbwEPODtDW2XbdJjQKwLKnhJjNeMKH/OJVA5bdjd/7jhIAAfP3mCmqo7wkjdy3PbmmMbCcppu8m2TAeD4gobYMk1UDsHrHahfYD0lo6OSL3LTM46Ib1meVFxloT+58NEuxKLReNnH11IictGcYvwWmL8yUPOP8pW5gXgiqWTWDihjAvnp1eAOmTZCER29sz/ErfXfT9CuD1s5iXDehcIlY2Odbq5+5VQh1Fa/bHiwOw46o4j8wKw4HJxseF3w1P/NajUq+s6R4zMy8Qkg5cZtSWcMbMaXcd01c4o3h40w9fI66zI3GwdR5GYoAsh3UswzP5jlHsaSdQZNV46j4Ss7oexAgAh1H15VyuaBp84RZWMRppTplZSVmCnvddrDgwchNS9HH4TemJ0Jg3Fe48IPZSjBFZ+Y/Bx0xi8uPeLrqh3mZE9IXgM3YtkXHkB3//gPBZbRHdNY+nQV3DZzLx8ZMkE/nbD6TSUJXcii4U562WoTplln4fyydDTaIr9Pf6Aacg4I2abdOaDF9lt9Mhbh+jo8zGtpogPLBiX8ecdyLAWAQPRNLj4f0Spd/dzsPWvEXd39fvpNma8jC+PX/MykDWnTQHgoTcP0esZ2n07ZQy9S5/uxOZKTzt/VMLMGc3g5fh+obOyuaBqeuaeO42o4CVedj8nOgcmnz7kuHPJnzYIoe6ZM2uYWJn8m0eRHuxWC+fOERmK57bFGFhXOs7wUNGFRiURvH3w3HfF7TP/E4rDBLQzVoHFBq07hJg3VQI+bE0i+xEYd5I5qyPjNMTWvUg+uGgcK1z7Afj5+6WxBdJAizHXozqD1gCZxpz1EivzAmBzwnnfE7df+yV0HuZgWx9BXUx5HRS8ZWG6rkRmXvq84nX6j3Oyn3WBsHbpeIMXgOoZcIYx+2Xt1yO0QoeMklF1sYOCFMovK0+oZXJVId1uP399+0jSx4kLI3hppyRzM14kZvBiiHble7p2TsZLlelCBS/xsuRquH59qNY6BF5/kEc3iuDlCiXUHTXIjpxXdg/RPZDstN31v4Luo1A2CZZdH3lfQTlMXiFuJxoURaNpK7agh069kJlzFqV+vHgZQrQr0XpbqfEdJYjG2uPj+fE/t8fcNxumjJmmPpo5YzTmflDon/z9sO77YbYARYPLA1lqkwYiRKHTqou4ZGH2sy4Qh7N0LE7/ihii2NME675nbjY9jRLoNIqGxaJx9fIpANz/2v6oHlBpwxDrtuqlme9MNTuOjM/CMSbWBRW8JEbdXBi3aNjdnn2/idYeL7UlTs6ZnQU9giIuVkwX3WHbjnXRFusKT5Z49j4vsinx0HUMXvkfcfu874A9ijliGt2r/Qc3APBOcDpnzcqiEFyWjdp2xf7bGIPz+kun000h97+2P2qHl67rpjgzG5qXTCEFu539viGzTGha6MLn3Yfo3iNew2kDS0aQlem6kvCT5A3nzBiRrAvEaREQDZsTPmC89968x5x9FM1NOlk+evIEihxWdjf38OpQFz6pYpgytuulmWuTlshOWRm8mGLdsaF3ARW8ZIQ/bhCzLi4/ZaIS6o4iakqczKoTteT1e2N8CNWdCOWThBAw3sFyz/9A1IsnnAInfjj6PidcIL4feE1M302B9p2vAbDDNivtrb9DUlwHRTWgB2N79hgdVUXTT+VTp4qs43/9+Z1B1gxdbj9evxBOj+XMS6nLRoExYC6maFcyfgks+AQAS7b/DNCZPlCsC1mbrgvC4gGEaPjSEcq6QGjWz5AWAbGYeqbxd9XhH1+CgD+h6brDUeqy81Gjbfr+1zLYNp0NawDJQM2LdJNWmZf8ZX9rL6/ubkPTRPCiGF2cNkNcccS8gtK0sCxJHKWjY+/C238Qt1ffGru7pnKqGLGvB2DXcwmuOhLr0U3ixoRTsjaLAxC/mynaHdxxBERM1v3GRXOYWl1EY5ebm5/YErGbLA+UOG1D+s6MdjRNi790BHDuzWArYFr/e1xgeXNwmzRkVfMyb3wZD35mGX+69tS0Du9LlOqSJMtGktU/FBYfje/BG3eGZryUp0egfZUxdXfd9mYOtPUOvXOyGG3SGTVllIQHL/0d0Ck6Y8fKgDpQwUva+ZPRHr3yhJqEJjsqssNpM8Sb9tXdMYbVQVjwMsxgOV2HZ74J6DDvIzAx9jRZIJR9SWWOTP9xqtwiszdh3unJHydZhuo4CgbgSCiwKnTY+PnHF2LR4G+bj/KPd4+au2bLGiAbyEF1MWe9hFM2Hn2FMOq8yfZHpldG0TbIzEsWykYAp8+sHuT/lG1qEu02GkhRdUgU/fyP8LQZ75E0fQZPrynmrBNqjLbpDHgeeXthzzoAWvTyzA2ok4QHLzLrUjYxa/9z6UAFL2nE4w/wZ8ON9JNLlVB3NLJ0aiVWi8bB9r7Yg6cmrzAGy7UOPVhu51ox9t3qhHOHN4ozg6Ldzw051nwoOnaJFun9eh1LT5yZ1DFSYijRbssO8HaDoxhqxMTdkyZVcMPZMwD45l+3mCd4eYU9lvUukmFnvQygdeF1NOnlTLY0M3Xvg4N3kJqXLAh2RwsJWQTEYtGnhCja18uazl8D6SkbSa4x2qYfSXfbtK4L5/mW7XTZKnkisCILmZcwi4AxKNYFFbyklWe2NtHe66W+1KWEuqOUEpedhRPESeG1PTGyL1Y7zDxf3I6VJQn44JlvidvLvwAVk4d/8vFLhGbE0wUHXk1w5YIjW4VHzn7XHKpG4sQvMy9NWwZnpWSgN25xRLtluHnjVx8V5o05lXlJpGwE7OmE2/wfB8D+ys/NFlmTLGpeRgsJWwREw2KBD/wPusXG2bzF+ZY3k56uG42zZtYwtbqIbo+fxzYdTttxef3XsOUvYLHx29pv00KWMy/yQmSMTNaVqOAljfzxDWOi7ikTR7R+rBia04fTvcDw03bfuhfadguPldNvjO+JLRY4wXCvTrZl2uimCDQMP2soI1TNAFuBECi3D3DcjWHGKMwbF4bMG984GJZ5GbszXiT1w1kEDGBPSw+PBs7kgGOGCGRfuDVyhyy2So8WErYIiEXtHFoXfB6A7zl+T6Hen47lAbJtWlyk3P/a/uQzROHsexme+ba4vfpHvK3NBcico7QkWtlIZV7yk70tPazf24ZFg08ooe6oZoURvLy2pzX23IYZq8BiF23Brbsi7+s/HjrhnPNNcCXQ8RMuBk5wZkQgEGRcr/igqZ87AnoXEBmVOvEBO0i0a1gWRHOSnlFbwtcuMMwbn3yft4wpx7mQeUm0bLS3pRcdCy9O+YrY8NZ90Bw2DyeLrdKjiYQtAmLwztRrORisoZ42eP7W4R+QAB9ZMoFip409Lb28MpRuLh46j8CfrxEi/gWXw9LP0e0W5aiMD54MD15k5+AYapMGFbykDSnUPXtWLePSpHBXZIbFk8px2S209njZ0dQdfSdXKUw9Q9weWDp66TYRwNTMgcVXJfbk01aKEdwdB0NeInGyc/t7VNCNV7dxwsLliT1vOokm2nV3hT4EYzhJX7MiZN64YZ+Y7JkLwYtpEdAVX8ZADqizTT8TZn9AnLxkCTIYFNkYyKvMCyQ5ZTcKB7vh2/5/Ez+88Rs49k6qSzMpiWib3p/8gfweeOTTQldXPx8+8AvQNLrdPvN5MkqBoXnRA2Jwor0QKqZk9jnTjApe0oDbF+BRJdQdMzhtVpZOlV1HcZSOwgfLte2BN34rbq/+AVgTvEJyFMHUswYfNw4Oviv0LoddM7E7RzBAjibaPboJ0MWMnOLoeq9w80ZJLgl2m7rccZUSpJv0tJoi0SFjsQu3+t3PCcGzbhiH5pHmBVKYsjuAw8f7eTG4kPcrV4m/5d+/PHTXYIJcvWIKmgb/2t7MvtYk26af+qrIVLrK4fIHwSG6onoMIXDGBbt2lxDWS2rnjhlbAIkKXtLA01sbOd7no6HMxcpZNcM/QDHinGaYGb42ZMu0MW330BshUeVzt0DQJ8pKM1Yl9+RJGjX6DwpNia/+pOSeN11EC15i6F0GIs0bJbmQeakpcaJp4A/qtPUOXfJw+wKm7870mmJhgrf0c+LOp78VGhpmc0Wf1JzDJGzOGAM5oG7rgq+Ds1QE1m/ek/L6JFOrizh7lgjQk3Kb3ng/bHoA0OCj90RkPLrcWQpeINRxBGNOrAsqeEkLUqh7uRLqjhnksLrX97bhCwSj71Q2ARoWiqu3nWth/6uw7e+gWeD8HyT/5HLey5G3oDuGSeQAutw+xveKlsbq2SuSf+50UDcX0ISfjFz/4dh6l4F8cNE4vnj2dC6aX8/chixOCM4QdquFqqL4Zr0caOtD14Ug0xQrn/VVMWCtZZswboS8KxlBChYBA5AD6qrqJ4mhgCB8j7obUzpuONcYQ+v+/NZhM1sS3+I2iqwLwDnfirgA8vgD5tTpjJeNIKR7gTEn1gUVvKTM7uYe3tjXjkVN1B1TzG0opbzQTq83wLuHO2LvaHYdPQlPf0PcXnKNcF9NltIGw72auLuO1u84yhxNDMeqmnVa8s+dDhxFousIoOk9ITyWmZfx0fUu4WiaxldXz+bXVy7JmWC/viy+4EXqXabVFIcMGQsq4Kyvi9tv3Su+51nJCFK0CAgjZA1QCCf/G4w7SZTj1n0/5TVKzphZzfSaIno8fv6yMc626Z4WoXMJeIXWaUCXohTrQhYEuxAZvIwxsS6o4CVlpFD3nNl1NJQpoe5YwWLRWDE9Ed3LU3BsMzhKYOU3Ul+APG6cwcue917DqfnptZWPDmFduGj3+H4hPLQ6oGHBiC5rpDA7joYLXpqlm/QAW4BTPhMKCCFPMy+pa1663D6z9DK+vEDoOC78qbhz84OhjrgU0TTNzL48EE/bdMAPj66BriNQNRMu+40YnRBGeKdRVgwyw4OX2rmZf740o4KXFHD7AvzFGFZ0xTKVdRlrSJfpIa0C6ueLsdmSM/8TitOga5K6lz3Du1fruo5nv8hs9Ncuiu2flE3CgxfpZ1S/QLj85iFyvH7TMO3Se1vDxLrhWO2Rpcg8a5OGNFgEAEeMklFlkYMimb2YeIppiMk/v57wiIJYfPikCZQ4bext7eWlXS1D7/zcLbD/ZSGS/cQfoo5XkJ1GWcm6QCh4KZ+c2LiHUYIKXlJg7ZZGOvp8jC8v4KwT1ETdsYbUvWw6eJw+b4y6taaFAo2ySbDs+vQ8ed08ERT5+2Hfi0Puuqelh6ke0YZcNmMEW6TDCRftHgmZMeYrcWdeWmJkXkBooWQnWkHl4PtzHCnebu/1EkhyAJxpyDhwsu6qW8BeBIc3wHuPprROSZHTxscNqcCQbdPvPQrrfyVuX/YbqJkVdbfubIp1QfhBwZgsGYEKXlIiXKiblTSfIq1MqSpkXJkLX0Dnzf3HY+942pdg7gfhI3enrwNE08KMGofuOnpxZyuLtD0A2CeNkgBBfuC17oK9RvAVY75LPhCyCIidNdB13WyTnj4w8wLif+LS/4P5H4Nln8vIOkczlUWpWwSE9C4DgpfScXCGoTF59mZhhJgGrlo+GU2DF3a0sNcITCNo2ip8iwBO/wrMvTTmsbIevMz/GJz4ITjty9l5vjSjgpck2dXUzYb97VgtmhLqjlE0TTOzL0O2TJdNgI//HiYtS+8CZEZn51oxnCwGb2/bxRSL0dUzfoRsAQZSUgdFtYAuumQgr4OX+jjKRs3dHno8fqwWjUlVMdyOK6aIIHm0vM5ZJNwiINnSkcy8jI82KHT5DWIOUfdReOUXyS4zgslVRZw7W7ZND3Cb7u+Ah64UVhrTVsI53x7yWFkbUCcpnwQfu1+U1cYgKnhJkj8aQt1zZ9eOuJ28Inlk8JLyqO9kmHK6EAD3NMHRt6Pu4vYF8BrzXTzlM0aXFiI83VxUI2rneUp9HOaMsmQ0saIAp21sDQTLFuaU3SQtAiI6jQZid8H5PxS3X/s/OH5g8D5JcM2KqQD8+a1DZgBCMAiPfQ6O7xPl5o/eN+wQuKxnXsY4KnhJArcvYLbHfXKZmqg7lpEdR+8f6+L4MAPG0o7NCTPOEbdjuFdv2NfOibrwVnJMHmVXSOHBy4RTRoeQeISQFzCd/T7cvujTXPeYJaMoehcFkPqgupiaF8mcS2DKGeB3i/JRGjhtRhUzaovp9YYmrfPST2HX02LY4OX/L3IgXAxCwUuWMi9jHBW8JMGT7x6jy+1nfHkBZ85UE3XHMrWlLmbWFqPrsH7vEC3TmWKYlukXd7awWNsNgDbayjLhbdF5WOYIp9Rlo8AurqxjGTRKTcT0WhW8xCJVi4BQ8BKjLKdpcMGPxaDJ9x8XgydTZFDb9LanQsatH/gfGLcoruPIrE3GHaVzBBW8JIGc7fLJpUqomwvI0tGQLdOZYub54oO0aUvUNPbLO5pYaBFi3XgGwGWV+rDgJY87jUCcwIYrHcnMy7TqKGJdBZBa5qXb7aOzXwQA42NlXkCMwl+yRtxe+7W0+B59+KTxlLhs1LRvQn/UOPYp18KiK4Z9bFOXmwdfP8C/tjcDWWyVHuOo4CVBdjZ189aB41gtGh8/WQl1c4ERDV4KK2HiqeL2gOzL0Y5+/K27KdP60G0uqDsx++sbisppUDkdiuvzPvMCUFc69JRdc0CdyrzERGpekrEIONIhsi4VhfbhA4CzvykGATa+B2//v4SfayCFDhtfntvHPY6fYQ24YcZ5sPpHMfff09LDb17Yw4d+/SrLfrSObz2+hb2tvWgazJ+QfwMKk0GFeAki26NXzamlVgl1c4Jl0yqxaLC/rY8jHf3ROxUyyawL4eBromV62efNzS+Fl4zGLRaDzEYTFitc+y/h/eRUJ2Rz1kuUslG/N8DRTnFyVZmX2Ei/p2TKRofbhykZhVNUJSZlr/2asA2Ye1lqYviWHVyz90asWj9vBGdTffZvmG5zmHcHgzrvHunkma2NPPN+E7ubI9uqF00sZ/WJ9aw+sY5pShMVFxnLvLS3t3PllVdSWlpKeXk5n/nMZ+jpidIHH7b/v//7vzNr1iwKCgqYNGkS//Ef/0FnZ2emlpgw/d7wibr521mRa5S67CycWA6MUPZF6l72vwLu0P/7S7taWGQRwcuozWwUlMclRswH6oYoG+1r7UXXobzQbs4zUQxGWgQk428kO43ivvg45TNQPUtYW7z0s4Sfz+T4fvj9B7G629nvnMVnvP/FA2814QsEeXlXC99+fAsrfvwvLrvjVX79wh52N/dgt2qceUINP7hsHm9841we/+JpXL9yugpcEiBjmZcrr7ySY8eO8eyzz+Lz+VizZg2f+9zn+OMf/xh1/6NHj3L06FFuu+025s6dy4EDB7juuus4evQojz6anomIqfKPd4/S7fYzsbKAM4xSgyI3OG16NW8f7OC13a3ZLwdWzxB+J227YPc6mPdh/IEgL+9q5XoZvIw2sa5iEOaslyjBy95Ww5CxuihkyKgYRCoWAcN2Gg3EaocLfgQPfgTeuFMYrlbPTOxJu47B7z8I3cegZjbNKx+k5//t5KE3D/H420dMnyWAIoeVlbNrOX9uHStn1VJWMMoyqWOMjAQv27ZtY+3atbz55pucfLL40P3lL3/JRRddxG233ca4ceMGPWbevHn85S9/MX+ePn06P/zhD/nUpz6F3+/HZhv5CpcU6n7ilElYlFA3p1gxo4pfPb+bV/e0oet69k8wsy6A13YJ3cu8D/PO4Q687j5muw6J+0ebWFcxCNPfKMqU3T3Nqk06HqTmpa3HQyCoJ9QQkXDwAjBjlZh0vXOtcI2/8s/xP7avHf7fh0TmpWIKfPpxTimpZ1bdMXY0deP1B6kudrBqTh2rT6xn+fQqXHY13yddZCQiWL9+PeXl5WbgArBq1SosFgtvvPEGH/rQh+I6TmdnJ6WlpUMGLh6PB48n9GHR1dWV/MKHYHtjF5sOdmCzaHzs5AkZeQ7FyHHSpAqcNgst3R52NfdwQl1Jdhcw6yJ47Zew82kI+HlxZyvztH3YCUBxnZjyqxjV1A2heTEzLyp4GRJZUgvqcLzPa3YfxcPhjiEG1A3F+T8UGc9dz8DOZ+CE84d/jLsLHvywmC5d0gBX/Q1KG9CAO65czNNbm1g2tZLFkypUR2qGyIjmpbGxkdraSKNCm81GZWUljY2NcR2jtbWV73//+3zuc0N7fNx6662UlZWZXxMnZiblv6+ll1KXjfPm1lFbooS6uYbLbmXpVKHdGBHdy4SlwozP3QGHXufFnWF6lzwfADdWkK3Szd1uggOMBUOGjEqsOxSpWARIR+kJlQkK7qtnwKnXidtPfwP8w+htfP3wp0+IqdgFlfDpx0XmxWBGbQlfPHsGJ0+pVIFLBkkoePn617+OpmlDfm3fvj3lRXV1dXHxxRczd+5cvvOd7wy570033URnZ6f5dejQoZSfPxoXzm9gwzdX8Z1LR1m7qiJtrJguW6ZHYFid1SZmvgD9W/7Bu4c7WDzaxbqKCGpLnGga+AI67WHGghGGjKpNeliSsQjo8fg53mfMeEmmW/DMrwqLi7Zd8OZdsffze+GRq+DAq+AshU8/BrWzE38+RcokVDb6z//8T6655poh95k2bRr19fU0NzdHbPf7/bS3t1NfXz/k47u7u7ngggsoKSnhr3/9K3b70KImp9OJ0xl/ajEVXHarqlnmMKfNEFYBb+xtwx8IYrNmeQzSrAvh3YfoePtv6PrpLLXvhSBKrDtGsFstVBU5ae3x0NjpNksejV1u+rwBbBaNSZUJljTykOpiJzubemjpie0TNRCZdSkvtCc3Xt9VBufeLBygX/gJzP84FA+Ynh4MwF8/J8pLtgK44mEYtzjx51KkhYSCl5qaGmpqhh+Hv3z5cjo6Oti4cSNLloirxn/9618Eg0GWLYvtzNvV1cXq1atxOp088cQTuFyqPKPIHieOK6PUZaPL7efdI52cNKkiq8/vmbISC3YaAkc527mT2mALoKkPyDFEfZkIXpq63MwbL4aNSbHupKpC7NkOiMcg5pTdBDIvIUPGFGY0LboS3rwbjr0Dz/8ALvnf0H26Dv/4Mmz9K1jscPmDMHlF8s+lSJmMvJPmzJnDBRdcwLXXXsuGDRt49dVXueGGG/jEJz5hdhodOXKE2bNns2HDBkAELueffz69vb3cc889dHV10djYSGNjI4FA6uObFYrhsFo0s3T0WpZ1L75AkBv+spv1AZGC/r+6f4g7aueAM8viYUXSmIPqwtqlQ23SqmQUD2bZKAHNi+w0SmnApMUKF/xE3N74ABx7V9zWdXjmW7Dp98LK4yN3w8xVyT+PIi1k7DLgD3/4A7Nnz+bcc8/loosu4vTTT+d3v/udeb/P52PHjh309YmIedOmTbzxxhu89957zJgxg4aGBvMrUzoWhWIgsnSUTd2LPxDkyw9v5tn3m3geUSIqad4o7lR6lzGF2S4d1nEUsgVQYt14SMacMZR5SbEsN3k5zPsIoMPar4vA5cWfwvpfifsv/SWceFlqz6FICxkbnlJZWRlzIB3AlClT0PWQIn/lypURPysUI8EKY/jgxgPH6fcGKHBkVuMUDOr896Pv8uS7x7BbNc7/0DXwxH2hHfLc8HCsET3zYoh1VeYlLkyLgCQyLymVjSSrvgvbnxKi3Ec+Ddv+LrZf8GNY/KnUj69IC6oAq1CEMa26iPpSF95AkLcOtGf0uXRd55uPv8djbx/BatH41RUnsfykRVA/P7STEuuOKUIWAaETr8q8JEZNEhYB0pQx5cwLQPlEOP3L4rYMXFZ+A069PvVjK9KGCl4UijA0TQtzmc5c6UjXdb779/f504ZDWDT4xeWLWH2i0Yl3woXiu6MYalQb5liifkDZqM/r56hxW2le4qM6CYuAtGZeAFb8B5QZM8OW3wBn/Xd6jqtIGyp4USgGENK9ZEa0q+s6P167nftf24+mwc8+upBLFoZZZiy4XAQucz8oRISKMUP9AHNGOd+lsshBhTJkjIuBFgHD0evx094rsjTj0xW8OArhs8/Bp/4C5/9ADYkchYy8YZBCMcqQmZctRzvp6PNSXpjek84vntvFb1/cC8APL5vPR5YMGP1fPQO+uges6mQ31pCC3c5+H25fIKR3UZN14yZRiwBZMiorsFOazIyXWJTUiy/FqERlXhSKAdSVupheU4Suw+t701s6+vULu/nfdbsAuOWSuVyxbFL0He0usKi351ij1GWjwBhk2djpNvUuqmQUP3arxQxg4ikdyU6jlNqkFWMO9emoUETh9AzoXu55ZR8/XbsDgK9dMJs1p01N27EVowNN0yJKR6ankRLrJoTZcRRHu3Ta9S6KMYEKXhSKKKwwg5f06F7+8MYBvv+P9wH40rkzuX7l9LQcVzH6qCsVZY6mLrepeVGZl8RIRLQbCl6U9UI+oYIXhSIKp06rwqKJGR3HOvtTOtajGw/zzb9uAeC6s6bz5VUz07FExShF6l4aO93mdF1lyJgYiZgzHlGZl7xEBS8KRRTKCuzMn1AOpFY6euKdo/z3o+8AcM2KKXztglloqnMhp5Ht0m8f7MDtC2K3akxUJ9aESCzzkgZfI8WYQwUvCkUMTpsuWqaT8Tlq7nJzy9+28JWHNxPU4ZNLJ3HLJXNV4JIHyMzLekPsPbmqKPsO5WOcRCwCVNkoP1Gt0gpFDE6bUc2vX9jDK7tb0XU9rsCjrcfDnS/u4ffrD+DxBwH4+MkT+OFl81TgkidIwW5nvw8QU5sViRGvRUCf109bume8KMYEKnhRKGKwZHIFDpuF5m4Pe1p6mFEb2925o8/L717ay/2v7afPGzAf/5/nnWCKfxX5gcy8SJTeJXHitQiQepcSl42ygjTOeFGMelTwolDEwGW3csqUCl7d3caru9uiBi9dbh/3vrKPe17eR7fHD8CCCWXceN4JnHVCjcq25CEy8yKZXqOCl0SJt2ykSkb5iwpeFIohWDG92gheWrl6xRRze6/HzwPr9/PbF/ea5YHZ9SXceN4JnDe3TgUteUxtiRNNA92YbD9NTddNGJl5ae8VFgFWS/T3kxLr5i8qeFEohuC0GdX87OkdrN/bhj8QxB/UefD1A/zmhT1mrX16TRFfOe8ELprXgCXGh6wif7BbLVQVOc1OmelqxkvCVBY50LThLQIOd6g26XxFBS8KxRDMH19GictGt9vPrf/czt/fOUqzkcqeXFXIl1fN5NKF42NeGSryk/oyEbxUFzsoK1RajESxWy1UFDpo7/Uaf8cYwYsqG+Utqn9PoRgCq0Vj+TTRMn3PK/to7vYwvryAn3xkPs/deBYfWjxBBS6KQchZL9OU3iVp4rEIUNYA+YvKvCgUw/CBheN45v0m6kqd3HD2DD5+ykScNutIL0sxipEdR8pNOnmqi53sbOoZclDdEaV5yVtU8KJQDMOlC8dx4rhSxpcX4LKroEUxPB9aPJ4tRzr56JIJI72UMctwFgH93oDZSq3KRvmHCl4UijhQ7a6KRDh5SiV/u+H0kV7GmMZsl46ReTnSIbIuJU414yUfUZoXhUKhUIw6TH+jGJqXQ4beRU3WzU9U8KJQKBSKUYcsG8XMvKhOo7xGBS8KhUKhGHUM122kOo3yGxW8KBQKhWLUYZaNYvgbqem6+Y0KXhQKhUIx6qgdYBEwEDWgLr9RwYtCoVAoRh0DLQIGospG+Y0KXhSK/9/e/cdEXf9xAH8eyF3+AE7i4Dj5IWhBJbBFcbtKax1TcHOU/qGT7YvLYBpsZdbCtqL6B2e/LMdyfdtybaZlCy23WiaCqyEFwUhTJoyFKcjSASfID7nX9w+7+3J4/LC6+3w+fJ6P7Tb43Ofg5WvvzSfvz+f9eROR6sz5a4sA4Nb7XoZGx7wPr2N40SeGFyIiUiXPTbsTn7LrmXVZwGe86BbDCxERqZL3KbsTwsvFcbtJGwzcW0yPGF6IiEiVvE/ZdU2ceeFKI71jeCEiIlWabLk0VxoRwwsREanS/zdn9H/PC2de9IvhhYiIVGmyzRl52YgYXoiISJUm2yLAM/OyyMzLRnoVsPBy9epVFBQUICIiAmazGZs3b8a1a9dm9FkRQV5eHgwGAw4fPhyoEomISMX83fMyNDrmDTOcedGvgIWXgoICnDlzBseOHcPRo0dx8uRJFBcXz+izu3fv5vI3IiKd87dFwKW/lknPN4bCPI/PeNGrOYH4oWfPnsW3336Ln3/+GQ888AAAYM+ePVi9ejXeeust2Gy2ST/b3NyMt99+Gw0NDYiLi5v2dw0PD2N4+P9Tiv39/f/8H0BERIobv0XA1YERWMJNPiuN+EeufgVk5qWurg5ms9kbXAAgJycHISEhqK+vn/Rzg4OD2LhxIyorK2G1Wmf0uyoqKhAZGel9JSQk/OP6iYhIeeO3CPA8qI4rjQgIUHjp7u5GTEyMz7E5c+YgKioK3d3dk35u27ZteOihh5Cfnz/j37Vjxw709fV5XxcuXPjbdRMRkbpYFvg+ZZcrjQi4zfBSVlYGg8Ew5evcuXN/q5CvvvoK1dXV2L179219zmQyISIiwudFRESzQ3T4ZDMvXGmkZ7d1z8v27duxadOmKc9JSUmB1WpFT0+Pz/EbN27g6tWrk14Oqq6uRnt7O8xms8/xdevWYfny5aipqbmdUomIaBaYuEUAZ14IuM3wYrFYYLFYpj3P4XCgt7cXjY2NyMrKAnAznLjdbtjtdr+fKSsrw9NPP+1zLD09He+++y7WrFlzO2USEdEsYZmwXNr7jBeGF10LyGqje+65B7m5uSgqKsLevXsxOjqK0tJSbNiwwbvS6OLFi3A6nfjkk0+QnZ0Nq9Xqd1YmMTERycnJgSiTiIhULnrcFgHDN8bQ433GCy8b6VnAnvOyf/9+pKWlwel0YvXq1XjkkUfw4Ycfet8fHR1Fa2srBgcHA1UCERFp3PgtAi71DgEA5hlDsZDPeNG1gMy8AEBUVBQ+/fTTSd9fvHgxRGTKnzHd+0RENLuN3yJg/P0ufMaLvnFvIyIiUi3vztLXRrjSiLwYXoiISLU8N+xeHRjG71e40ohuYnghIiLVGr9FwK8XewEwvBDDCxERqdic0BBE/bVFQMuFPgDAIjMvG+kdwwsREamaZ8WRa/gGAM68EMMLERGpnGeLAA+GF2J4ISIiVfPMvADA3LBQRM03TnE26QHDCxERqZplXHjhM14IYHghIiKV82wRAPCSEd3E8EJERKoW7TPzwpVGxPBCREQqZxk388LdpAlgeCEiIpXz7G8E8LIR3cTwQkREqmbhZSOagOGFiIhULWq+EXPDQhEaYkBSFMMLAXOULoCIiGgqc0JD8N//PIDBkRtYyGe8EBheiIhIAx65K1rpEkhFeNmIiIiINIXhhYiIiDSF4YWIiIg0heGFiIiINIXhhYiIiDSF4YWIiIg0heGFiIiINIXhhYiIiDSF4YWIiIg0heGFiIiINIXhhYiIiDSF4YWIiIg0heGFiIiINGXW7SotIgCA/v5+hSshIiKimfL8v+35f3wqsy68uFwuAEBCQoLClRAREdHtcrlciIyMnPIcg8wk4miI2+3GpUuXEB4eDoPB8K/+7P7+fiQkJODChQuIiIj4V3+2lrEvk2Nv/GNfJsfe+Me++Deb+iIicLlcsNlsCAmZ+q6WWTfzEhISgvj4+ID+joiICM0PkkBgXybH3vjHvkyOvfGPffFvtvRluhkXD96wS0RERJrC8EJERESawvByG0wmE8rLy2EymZQuRVXYl8mxN/6xL5Njb/xjX/zTa19m3Q27RERENLtx5oWIiIg0heGFiIiINIXhhYiIiDSF4YWIiIg0heGFiIiINIXhZYYqKyuxePFi3HHHHbDb7fjpp5+ULklxr732GgwGg88rLS1N6bKC7uTJk1izZg1sNhsMBgMOHz7s876I4NVXX0VcXBzmzp2LnJwcnD9/Xplig2y63mzatOmWMZSbm6tMsUFUUVGBBx98EOHh4YiJicETTzyB1tZWn3OGhoZQUlKCO++8EwsWLMC6detw+fJlhSoOjpn05bHHHrtlzGzZskWhioPngw8+QEZGhvdJug6HA9988433fb2NF4aXGfjss8/w/PPPo7y8HL/88gsyMzOxatUq9PT0KF2a4u677z50dXV5Xz/88IPSJQXdwMAAMjMzUVlZ6ff9Xbt24f3338fevXtRX1+P+fPnY9WqVRgaGgpypcE3XW8AIDc312cMHThwIIgVKqO2thYlJSU4deoUjh07htHRUaxcuRIDAwPec7Zt24avv/4ahw4dQm1tLS5duoS1a9cqWHXgzaQvAFBUVOQzZnbt2qVQxcETHx+PnTt3orGxEQ0NDXj88ceRn5+PM2fOANDheBGaVnZ2tpSUlHi/HxsbE5vNJhUVFQpWpbzy8nLJzMxUugxVASBVVVXe791ut1itVnnzzTe9x3p7e8VkMsmBAwcUqFA5E3sjIlJYWCj5+fmK1KMmPT09AkBqa2tF5OYYCQsLk0OHDnnPOXv2rACQuro6pcoMuol9ERF59NFH5dlnn1WuKBVZuHChfPTRR7ocL5x5mcbIyAgaGxuRk5PjPRYSEoKcnBzU1dUpWJk6nD9/HjabDSkpKSgoKEBnZ6fSJalKR0cHuru7fcZPZGQk7HY7x89fampqEBMTg9TUVGzduhVXrlxRuqSg6+vrAwBERUUBABobGzE6OuozbtLS0pCYmKircTOxLx779+9HdHQ0li1bhh07dmBwcFCJ8hQzNjaGgwcPYmBgAA6HQ5fjZdbtKv1v+/PPPzE2NobY2Fif47GxsTh37pxCVamD3W7Hvn37kJqaiq6uLrz++utYvnw5Tp8+jfDwcKXLU4Xu7m4A8Dt+PO/pWW5uLtauXYvk5GS0t7fj5ZdfRl5eHurq6hAaGqp0eUHhdrvx3HPP4eGHH8ayZcsA3Bw3RqMRZrPZ51w9jRt/fQGAjRs3IikpCTabDS0tLXjppZfQ2tqKL7/8UsFqg+PXX3+Fw+HA0NAQFixYgKqqKtx7771obm7W3XhheKG/LS8vz/t1RkYG7HY7kpKS8Pnnn2Pz5s0KVkZasWHDBu/X6enpyMjIwJIlS1BTUwOn06lgZcFTUlKC06dP6/J+salM1pfi4mLv1+np6YiLi4PT6UR7ezuWLFkS7DKDKjU1Fc3Nzejr68MXX3yBwsJC1NbWKl2WInjZaBrR0dEIDQ295a7ty5cvw2q1KlSVOpnNZtx9991oa2tTuhTV8IwRjp+ZSUlJQXR0tG7GUGlpKY4ePYoTJ04gPj7ee9xqtWJkZAS9vb0+5+tl3EzWF3/sdjsA6GLMGI1GLF26FFlZWaioqEBmZibee+89XY4XhpdpGI1GZGVl4fjx495jbrcbx48fh8PhULAy9bl27Rra29sRFxendCmqkZycDKvV6jN++vv7UV9fz/Hjxx9//IErV67M+jEkIigtLUVVVRWqq6uRnJzs835WVhbCwsJ8xk1rays6Oztn9biZri/+NDc3A8CsHzP+uN1uDA8P63O8KH3HsBYcPHhQTCaT7Nu3T3777TcpLi4Ws9ks3d3dSpemqO3bt0tNTY10dHTIjz/+KDk5ORIdHS09PT1KlxZULpdLmpqapKmpSQDIO++8I01NTfL777+LiMjOnTvFbDbLkSNHpKWlRfLz8yU5OVmuX7+ucOWBN1VvXC6XvPDCC1JXVycdHR3y/fffy/333y933XWXDA0NKV16QG3dulUiIyOlpqZGurq6vK/BwUHvOVu2bJHExESprq6WhoYGcTgc4nA4FKw68KbrS1tbm7zxxhvS0NAgHR0dcuTIEUlJSZEVK1YoXHnglZWVSW1trXR0dEhLS4uUlZWJwWCQ7777TkT0N14YXmZoz549kpiYKEajUbKzs+XUqVNKl6S49evXS1xcnBiNRlm0aJGsX79e2tralC4r6E6cOCEAbnkVFhaKyM3l0q+88orExsaKyWQSp9Mpra2tyhYdJFP1ZnBwUFauXCkWi0XCwsIkKSlJioqKdPFHgb+eAJCPP/7Ye87169flmWeekYULF8q8efPkySeflK6uLuWKDoLp+tLZ2SkrVqyQqKgoMZlMsnTpUnnxxRelr69P2cKD4KmnnpKkpCQxGo1isVjE6XR6g4uI/saLQUQkePM8RERERP8M73khIiIiTWF4ISIiIk1heCEiIiJNYXghIiIiTWF4ISIiIk1heCEiIiJNYXghIiIiTWF4ISIiIk1heCEiIiJNYXghIiIiTWF4ISIiIk35H2UypHSao/JVAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from aeon.regression import DummyRegressor\n", "\n", "fp = KNeighborsTimeSeriesRegressor()\n", "dummy = DummyRegressor()\n", "dummy.fit(cardano_train, cardano_train_y)\n", "knn.fit(cardano_train, cardano_train_y)\n", "pred = knn.predict(cardano_test)\n", "res_knn = cardano_test_y - pred\n", "res_dummy = cardano_test_y - dummy.predict(cardano_test)\n", "plt.title(\"Raw residuals\")\n", "plt.plot(res_knn)\n", "plt.plot(res_dummy)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2023-08-23T19:10:32.623088500Z", "start_time": "2023-08-23T19:10:32.445212600Z" } } }, { "cell_type": "markdown", "source": [ "## References\n", "\n", "[1] Tan et al. \"Time series extrinsic regression\", Data Mining and Knowledge\n", "Discovery, 35(3), 2021\n", "[2] Guijo-Rubio et al. \"Unsupervised Feature Based Algorithms for Time Series\n", "Extrinsic Regression\", ArXiv, 2023" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }