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Abstract— This paper deals with the motion planning of
a poly-articulated robotic system for which support contacts
are allowed to occur between any part of the body and any
part of the environment. Starting with a description of the
environment and of a target, it computes a sequence of postures
that allow our system to reach its target. We describe a very
generic architecture of this planner, highly modular, as well as
a first implementation of it. We then present our results, both
simulations and real experiments, for a simple grasping task
using the HRP-2 humanoid robot.

I. I NTRODUCTION

Nowadays, humanoids robots are able to walk on horizontal
plane, slightly sloped, sliding, or uneven terrains Some manage
to climb stairs or even run (like Honda’s Asimo). However, in
most of the cases, these robots move using only their feet, what
reduces the amount of possible motions. On the contrary, we
humans often use other parts of our body either to help a biped
motion, for example by increasing the stability, or to perform
motions that wouldn’t have been possible with a usual upright
biped posture. Some works address the issue of increasing
stability using a part of the robot: for example Harada et al.
by computing a modified ZMP allowed an HRP-2 humanoid
robot to climb a high stair while grasping a handrail [1]. But
the use of this part is not the result of a planner, it is imposed
at the beginning of the motion.

In a more general way, mobile motion planning deals
mostly with finding a free collision path to reach a given
spot [2]. Various algorithms have been developed for the
2D case, some of which have been successfully extended to
the 3D poly-articulated case [3]. Although planning for task
and navigation in the 3D space for poly-articulated robots
is not trivial, the animation of human-like figures is even
more challenging: the outcome of the planner needs not
only to find a plausible solution, but also a natural-looking
motion. For digital actors, Yamane et al. [4] proposed an
animator that combines path planning techniques with domain
knowledge data-driven. Their result generates nice animations
of virtual avatar manipulating various objects. The planner
is capable to find a motion for the manipulated object such
that the obtained poses satisfy several geometric, kinematics,
and pose constraints. However, all these actual solutions,as
sophisticated as they can be, have been developed to generate
trajectories free from any collision with the environment.

In this work, we on the contrary address the motion planning
of poly-articulated robots having contacts between any part of

their body and the environment. This means that we allow
and even explicitly seek for collisions if they can help to
enhance the motion. This problem requires a specific approach.
Indeed, it is different from the general path planning where
a path is to be find free from collisions. It is also different
from the traditional planning of contact motion on the C-
obstacles. Even if this last requires exactness comparing to the
first one, only rigid bodies have been considered [5]. We also
considered the problem as a particular case of multi-robots
cooperative manipulations planning. But this idea appears
to be not plausible because: (i) the problem of multi-robot
cooperative manipulations is continuous whereas our problem
is discreet, and (ii) most of work does not deal with the
possibility to take support on the C-space, which requires
precision in the generated path.

Since we have interdependency between a trajectory plan-
ning and the planning of adding or breaking contacts, we tried
to see if we can use the work of Simeon et al. presented in [6]:
they proposed a manipulation planning allowing grasping
and re-grasping operation where the grasps are chosen on a
continuous set. This approach could be used if we consider that
we need to plan contacts and breaks of contact for a single
part of the robot, other engaged contacts being considered as
fixed. However each time we would like to change the part
we are interested in, we would have a new instance of the
problem since the fixed contacts would change, and, by doing
so, the configuration-space of the robot changes. Moreover,
we miss a part of the planner that will chose which part of
the robot we consider to have/break a contact, and how and
when we chose another part.

Our problem has already been explored by Hauser et al.
in [7]. The overall idea is the same, namely contact-before-
motion planning: planning is made in the sets of contacts
space, and then from the chosen sequence of contacts, the
motion is computed. However we do not search the sets of
contacts space in the same way: in [7], a graph of set of
contacts is built and searched. Two adjacent nodes are two sets
of contacts whose difference is a single contact and for which
a numeric solver can find a posture of the robot, that satisfy the
contact constraints of both sets. All possible contacts (that is a
point from the environment and a point of the robot) are given
at the beginning. We, on the contrary, incrementally build a
tree, according to a potential-like function, whose new nodes
are generated from the previous one. Moreover, our posture



solver enables us to ask for rather natural-looking posture.
This paper is organized according to the following plan:

we first present the general structure of our planner as well
as the underlying notions and problems. Then we show a
first implementation of each module. This is followed by a
simulation and a manipulation with the humanoid robot HRP-
2 [8], whose results are discussed.

II. OVERVIEW OF THE CONTACT SUPPORT PLANNER

We consider a poly-articulated robot performing a desired
task in a given environment. In this environment, we prede-
fined some obstacles to be potential supports. In the most
general way, contacts are defined by a set of constraints. For
example, we ask for an arbitrary point of the surface of the
robot to correspond to an arbitrary point of the surface of an
obstacle among the predefine ones. We can also ask a point
of the robot to be part of a surface of the environment. This
last would be a sliding contact.

Definition 1 (Contact switch):is said to define either the
creation of a new contact or a break of an existing contact.
This corresponds to a new configuration of the robot.

Definition 2 (New state):In our planner, a new state corre-
sponds to the creation or the breaking of a single contact.

Our planner relies on 2 main layers: a tree builder/explorer
and a posture generator. The first one acts in the space of sets
of contacts, while the second one attempt to find a collision-
free stable posture for a given set of contacts, and optimize
this posture according to some criterions. The result of this
planner is a list of postures that are used askeysfor trajectories
generation. In this part we will describe the first layer and its
main functions.

A. The tree builder/explorer

This is the upper part of our planner that gives its overall
behaviour. It is inspired by the Best First Planning algorithm
(BFP) presented in [2]. BFP algorithm is a potential-field
based algorithm efficiently working on low-dimensional dis-
cretized configuration spaces (dimension less than 6). Roughly
speaking, it generates and evaluates, at each iteration, the
neighbour configurations of the best (according to the potential
field) non-visited configuration it built so far. This way, it
escapes local minima by filling them.

In a similar way, our algorithm creates neighbours to a given
set of contacts. Neighbours are other sets of contacts that differ
from the actual one of exactly one contact and are reachable
from the actual one. The pseudo-code of the algorithm is given
in the boxed text.

In this pseudo-code, functioninsert(leaf, list) putsleaf in
list, according to its evaluation,first(list) removes the first
element oflist and returns it, andempty(list) returns true if
list is empty, false otherwise.

The proposed planner architecture is completely generic: the
data in the node can be anything as long as we provide the
correct functionsgenerateSons, trajectoryExists, allowsToRe-
achGoalandevaluate. The functionbacktrackPath(node) just
returns the succession of nodes from the initial one to the final

Algorithm: Contact-support planner: Pseudo-code

Data: Robot models, Environment, Target
Result: List of postures
-leavesList:a sorted list, according to the evaluation of a
leaf.
-n andn

′: are nodes
-newLeaves:are a list of leaves

leavesList← ⊘
insert(init, leavesList)

ContactPointPlanner(node init)
begin

while (!empty (leavesList))do
n ← first(leavesList)
newLeaves← generateSons(n)
for each noden′

∈ newLeavesdo
if trajectoryExists(n′) then

if allowsToReachGoal(n′) then
return (backtrackPath(n′))

end
evaluate(n′)
insert(n′, leavesList)

end
end

end
return failed

end

one by going from a node to his father until the initial one is
reached and then reversing the obtained path.GenerateSonsis
the most complex function.

From a previously feasible set of contacts,GenerateSons
should return a set of new states that are feasible for the
robot, regarding the joint limits, a stability criterion, and the
collisions (self collisions [9] and collisions with obstacles).
A set of contacts is feasible if we can generate a posture
that verifies the above constraints along with the contact
constraints.

B. Target function

The target state can be defined in various (but classical)
ways. In this planner, it is implemented by defining one of
several points on given selected bodies to reach a desired
position, eventually with a predefined orientation. The target
can also be defined with a desired posture in the joint space
and placing the overall robot in 3D space. Nevertheless, notall
joints, position or orientation need to be predefined. We prior
check that there is no conflicting constraint which prohibits the
realization of the target state. We also check that the desired
target corresponds to a controllable equilibrium.

The AllowsToReachGoalfunction calls the posture genera-
tor that tries to find a posture satisfying all the constraints of
the current state (contacts, stability, etc.) as well as thetarget
constraints. If a posture is found, then the goal can be reached
from the current state. The target function is independent



from the rest of the planner; it can be rewritten and designed
differently. This is called at each new state to check whether
the goal is reached or not.

C. Metric

After defining the desired target, it is necessary to have
a metric (in the sense of a mathematic measure) which will
allow estimating how far we are from the target. This metric
must guarantee to the robot to converge toward the task by a
succession of intermediate postures corresponding to contact
switches. This metric would ideally be a criterion to engender
a motion toward the goal. Subsequently, a generated motion
that decreases an associated distance would be a plausible one.

But, we are using the metric only as a sufficient indicator,
not a necessary one. That means that in some cases the
distance may increase before decreasing again. For exampleif
we take the distance between the goal and the current gravity
centre of the robot, the distance will increase while the robot
is bypassing an obstacle between the goal and the starting
position. Theevaluate(node) function is the counterpart of the
potential field in BFP: it gives a mark to node, according to the
chosen metric, that allows inserting it correctly in the sorted
list.

D. Trajectory

The TrajectoryExistsfunction ensures that there is a path
between the two consecutive computed postures of two con-
secutives nodes. It can be made by using existing classical
planners. General motion planning between two generic con-
figurations for a high-dimensional robot as a humanoid robot
is still a difficult problem. However, some planers exist and
since we consider two consecutive postures, the path between
them is likely to be rather simple.

E. Neighbours

In our case the neighbours of a given set of contacts are
the sets of contacts that differ from it of exactly one contact
point. Generating a new surface-surface contact can be seen
as choosing a point in a subspace of a 5-dimensional space:
2 coordinates for a point of the surface of the robot, 2 for
a point of the environment and 1 parameter to specify a
relative orientation. Thus, neighbours have to be found in a
5-dimensional space, as it would be for BFP while planning
the path of a 5-DoFs robot.

III. I MPLEMENTATION

We present in this section the implementations of our mod-
ules. We underline that we took very simple implementations
in order to validate the structure of our algorithm.

A. Posture generator

This is the lower part of our planner. Its input is a set of
contacts and its output a configuration of the robot that is
stable, collision-free, and that verifies the constraints of the
contacts. This part was inspired by the work done within the
HuMAnS toolbox provided by INRIA. We used this toolbox
to generate with Maple the C-code we needed to make all

geometrical computations (mostly analytical transformation
matrices and position of the CoM). We thus perform optimized
geometrical computations for a robot, but we need to have a
different C-code for each robot.

Using this generated code, the computation of the config-
uration relies on the CFSQP library, which is the C version
of the FSQP algorithm. FSQP is a powerful numerical solver
optimizing smooth objective functions under general smooth
constraints. In our algorithm, we translate all contacts into
constraints as well as the stability criterion or the collision
checks. For example, a fixed face-to-face contact consists in
three constraints: coincidences of a point and two orthogonal
vectors of robot with a point and two orthogonal vectors of the
obstacle. Points are obviously taken on the surfaces of both
objects. A set of contacts becomes thus a set of constraints,
what allows considering very generic contacts as long as they
can be translated into smooth constraints.

Once all the constraints are generated, we call the FSQP
routines. If we do not set an objective function, and we don’t
need it, the solver just tries to find a solution that verify
all constraints. Nevertheless, objective functions may lead to
more natural-looking postures, or postures that ensure easier
further movements. For example we first tried to minimize the
distance between the joint angles and the middle of their limits,
to avoid singularities. We then chose to optimize the distance
to the average between this middle and 0, having more natural-
looking postures while still avoiding joint limits. Withinthe
HuMAnS toolbox, which also uses FSQP to generate posture,
the solver tries to minimize the torques that fight gravity.
Experiments showed that the result looks even more natural,
but the computation time is also much slower.

B. Functions implementation

TheGenerateSonsfunction lets thus appear 4 sub-modules:
generatePosture, generateCandidateForContact, stabilityCri-
terion andcheckCollisions.

• GeneratePostureis the function encapsulating the posture
generator.

• stabilityCriterion: the simplest and conservative one is
to verify the existence of a torque solution capable of
balancing external forces while being within the interval
of torque limitation and while the external contact forces
remain within their friction cone.
But as long as the contacts are on horizontal plans, we
used the CoM stability criterion (projection of CoM onto
an horizontal plane lies within the convex hull of the
projection of the contact surfaces onto the same plane).
We are aware that this criterion is only a necessary and
sufficient condition of (quasi-) static stability if all the
contact surfaces are on the same horizontal plane [10],
but in the case of horizontal contacts, it is a sufficient
condition, what fits a preliminary implementation. This
second criterion is much more simpler and gives less
constraints, what makes the posture generation a bit
faster.



• The generateCandidateForContactfunction proposes
new contacts by choosing: (i) a body (restricted in a first
implementation to feet, hands and upper part of the legs)
from which it takes a predefined point, (ii) a point on
the contact surfaces within a subset of the surfaces for
which the contact point is likely to be reachable, and (iii)
an orientation around the normal of the contact surfaces,
when contact are made by the hands or feet.
GenerateCandidateForContacttries to remove existing
contacts too, when the contact has not been generated
during the last step. For each proposed new configuration,
we then check its feasibility withgeneratePosture: we
consider that the body of the new or the removed contact
is arbitrarily closed to its desired or former position and
orientation, but not really in contact. For example, if we
want the hand to be put on the table, we compute the
posture just before the hand touches the table. Thus, we
ensure that if a posture is found, the new contact is in the
intersection of the contact space and the stability space
of the former configuration.

• checkCollisionsgives the posture generator the con-
straints of collisions. However, we didn’t implement
the self-collision checking for our first scenarios since
the objective function helps to obtain self-collision free
configuration as long as the workspace is not too complex
(narrow spaces for example).

For the implementation of theevaluate(node) function, we
chose to use the distance between the centre of mass (CoM)
of the robot and the goal, or a point representing this goal.
While it may not decrease at each step of a successful path,
this function does give an overall indication of the movement:
we normally need to bring the CoM of the robot toward the
goal to be able to reach it.

The TrajectoryExistsfunction was not implemented for the
time being: we assume that there always exist a path between
a configuration and its father: as we choose our new contact
points in the stability space of a configuration, this is likely to
be true. We can nevertheless find examples in which the two
configurations are in C-free but there is no C-free path between
them. These cases are non common. So far, we just generate
the trajectory after the planning, using the different computed
configurations derived from the output as key frames.

IV. SIMULATION WITH THE HRP-2HUMANOID

A. A grasping task instance

The skeleton of the algorithm is implemented with the
modules composing the general architecture. As an instanceof
poly-articulated robot we used the 3D model of the humanoid
robot developed by Kawada Industries. Details on technical
specifications for this humanoid can been obtained in [8].

The mission consists for the humanoid HRP-2 to bring a can
put on a table. Only a part of the mission is experimented.
Indeed, the robot is put near the table with a given initial
posture. Then it has to reach the can, grasp it and return to its
initial posture.

B. Simulation and experimental results

The snapshots in the figure 1 illustrates the outcome of our
planner. Here the table is considered altogether as an obstacle
and a potential support. That is to say, in our algorithm, the
table is considered as a support for the current robot’s partthat
is candidate to create a contact and also for the parts which
are already in contact with it. It is then considered as obstacle
for the remaining robot parts.

Starting for the configuration illustrated in snapshot 1 of
figure 1,AllowsToReachGoalfunction fails in finding a posture
that is able to reach the goal under specified constraints in
terms of stability and non collision. Then the planner will
seek for a support contact that allows the humanoid getting
closer to the target. As a first candidate, the right gripper is
chosen. The sub-algorithm which delimits the contact support
area for each body is actually simple but this part is actually
being refined in the continuation of this work. The potential
contact points are randomly projected. This is also to be
reconsidered. Nevertheless, when the point is chosen by the
generateCandidateForContactfunction the planner executes
all the steps allowing to generate this new configuration and
also the motion which realizes this new configuration under
the predefined stability criteria, see the snapshot number 4in
figure 1.

At the second level of the tree, theAllowsToReachGoal
function still returns false. This means that the optimization
program failed again in finding a plausible posture which
allows the HRP-2 to reach the target. In this case, the upper
part of the left leg is tried as candidate.

The snapshot 4 of figure 1 shows the posture in which the
leg enters in contact with the table and a new contact is made.
At the next step, theAllowsToReachGoalfunction fails. This
might be due to an over constrained configuration (since we
want to find a posture which holds existing contacts). Since
the algorithm allows also breaking contacts (we recall that
one of the conditions is that the contact to be removed should
not be the one taken in the last step), the left hand contact is
removed with a final posture which allowed the robot to reach
the target while keeping its equilibrium. This is illustrated in
snapshot 5, 6, 7 and 8. However light inter-penetration may
occur between the leg and the table. This is explained by the
fact that we constraint only one contact point on the leg and
the table, and by the unavoidable numerical errors that occurs.
The can is then grasped and the robot played the reverse path
to back to its the initial posture ! with the can being grasped.

When the simulation has been confirmed with several simi-
lar trials, we ported the obtained trajectories from the planner
on the actual robot HRP-2. The speed of the robot has been
reduced for security reasons. Motions are generated for each
contact configuration without smoothing: i.e. the posturesend
with nearly zero speed. The stabilizer of the HRP-2 is disabled
because it has not been conceived to handle multi-contact
configurations.

The figure 2 illustrates snapshots from the real experiments.
The HRP-2 executed the given trajectories; even with the



Fig. 1. Simulation results of the planner.

Fig. 2. Experimental results with HRP-2.

unavoidable light discrepancies, the HRP-2 realized perfectly
the grasping of the can in several trials.

C. Discussion

It is obvious, that the illustrations are those obtained from
a selected driven configuration and we intentionally limited
the planner to not run forward all the possible configurations.
It is easy to understand that, even for this simple example,
the combinatorial possibilities would explode if all possible
contacts and breaks are allowed to occur. Indeed the robot
would also be allowed to put its feet and climb the table
to reach the goal. This is a further implementation we are
considering with various other examples. But, all the mod-
ules and functions are undergoing updates with more refined

implementations taking into consideration additional features
(such as the context, learning process, etc.) to filter and drive
the solutions to plausible and limited case evolution.

We aim at realizing non-gaited motion through contact
switching. We also allow contacts to occur on any part of
the robot. Even though the experiments went quit well, it will
nevertheless not be possible to have similar performance in
more complex scenarios. We emphasize that a precision in
the knowledge of the environment is needed at this stage. In
order to allow actual humanoids using of contact points as
supports, it is necessary to fulfill several hardware and software
requirements.

Hardware issues consist mainly in (i) acquiring knowledge
on contacts formation or break by means of an artificial haptic



sensing functionality, and (ii) having compliance at the contact
points.

In order to be able to recover from unavoidable discrepan-
cies and uncertainties in the planned trajectories, it is important
to detect contact formation and breaking when they occur. This
detection is necessary for many reasons. First, it is important
for the robot to confirm that a contact is really made. Secondly,
detecting the contact allows recovering from discrepancies
and adapting the trajectories accordingly. Thirdly, the contact
configuration tracking is useful to reduce internal effortsthat
may be engendered when it is not possible to detect contacts.
Up-to-now, haptic sensing technology is not mature enough
to allow this functionality on humanoids. We investigated
various technologies, some of which are very promising. But,
no technology is actually ready for a quick porting in the
humanoid context. Moreover, most approaches are inspired
from artificial skin sensing whereas what is needed is a
functional aspect of haptic sensing. Therefore one may use
a given technology for bina! ry detection, another one for
localization and contact force measurement...

Compliance can be achieved in two ways: joint compliance
or cover compliance. Many researchers seem to favor joint
compliance. This is understandable because it is possible to
instrument joints to measure its compliance. It is also possi-
ble to create artificial compliance from force sensing or by
reducing controller PD gains. Of course, this is made mainly
to reduce impact forces when the contact is made. But, in our
case study, joint compliance is not enough. Indeed, what is
needed is that the robot takes supports on the environment with
any of its part. Hence, the contact should be ‘stable’. A joint
compliance will not allow contact area to spread or adapt to the
environment local form to strengthen the support. In the other
hand, this implies that the robot cover must be deformable. In
this case, the problem is even more complex since it will not
always be possible to know the exact location of contacts and
the exact kinematics and dynamics models. Yet, these are still
op! en problems in humanoid research because it concern a
more general problematic of human/humanoid interaction.

The hardest problems (among others) we are still actively
dealing with in algorithmic and software implementation are:
(i) how to optimize the choice of the contact spots on a given
part of the body and the possible supports? (ii) how to limit
the choice and prioritize some parts among others? (iii) how
to make the choice between creating a contact or breaking an
existing one? (iv) if the choice is to break a contact, then,
which one?

V. CONCLUSION AND FURTHER WORK

A contact-support and motion planner for poly-articulated
robots is presented. The originality of this planner is in
allowing contact support to occur on any parts of the body
and the environment. Although preliminary, simulation and
experimental results show that the proposed methodology
is viable. Given a target objective in terms of tasks, the
planner generates a sequence of contact-switches and states
for which an intermediary motion is generated. The objects

in the environment are considered as obstacles but also as
potential supports. There is still much work to do in refining
all the developed modules to drive the sequence generation and
lower the combinatorial tree complexity. We are also working
on formulation issues in a context of more complex scenario.
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