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Abstract— This paper presents a new method for strictly con- as fast as methods requiring continuous gradients. Impgovi
vex hulls (i.e. bounding volume) generation made by assembling their convergence properties are still open research @nuhl
patches of spheres and toruses (STP-BV). This bounding volume  The main motivation of this work is to guarantee that com-
allows to compute proximity distances with the guarantee of their . o . .
gradients’ continuity. This bounding volume is computed off- puted gradients of Prox'm'ty distance are C.on.tlnu.ous fonct
line; it slightly over-covers the polyhedral convex hull of the Of the parameters in order to use fast optimization methods.
geometrical form. Given a pair of convex objects, having only The problem of ensuring continuous distance’s gradient has
one of them strictly convex (i.e. STP-BV covered) is proved to to the best knowledge of the authors, never been treatedebefo
be sufficient to guarantee gradient continuity of the proximity 504 the proposed method is new. Continuity properties of

distance. The distance computation is based on the closestthe distance have been merelv discussed or even assumed in
features of the underlying polyhedral convex hull obtained with ! v y discu V! u :

V-Clip or any other algorithm. The suggested algorithm is Previous works. For example, in [8] [9], this problem hasrbee
exemplified through a free-collision (including free self-collision) addressed in a 2D case, it has been claimed that the distance

optimization-based humanoid posture generation. between convex objects is smooth and thus the gradient is
continuous. The latter assertion is not always valid untees
. INTRODUCTION object is strictly convex, the former depends on the coit§nu

properties of both objects’ surfaces, as we will demonstrat

This work is motivated from the following problem: in [1],in section II. The flaw in the demonstration is to suppose that
a planner for humanoid acyclic motion is proposed; it ifitness points of the distance are smooth functions of the
composed mainly of two interrelated modules: (i) a stanee trparameters. Assumption about the witness points’ corninui
explorer and (i) a posture generation modules. The stamice fs always implicitly made in papers computing distances-gr
each step of the planner is obtained from an optimizatiogiient whereas the strict convexity of at least one objecbis n
based posture generation using C-FSQP [2]. Optimal tjechddressed. It is only in [10] that the non differentiabilignd
ries in robotics can be computed by solving an optimizatiafon-convexity) of the distance between convex bodies i$ wel
problem on a cost function. This function (generally i'vbty  addressed and used with non-smooth analysis in the corftext o
minimum energy consumption, speed or precision, etc.) dénsory-based planning. Our approach, on the contranysdra
defined together with a set of constraints that encompassefition to get rid of the non-differentiability: we buildfdine
joint limits, contacts and path tracking in the Cartesiaacg) strictly convex bounding volume that can be considered as a
stability... see [3] [4] and their inside bibliography forore smooth ‘rounding’ of the polyhedron convex hull. Detailed
details on robotics trajectory optimization and optimahtol. theoretical aspects of this work are described #h [The

By using FSQP, or any other available optimization softlistances are computed on the basis of a proximity distance
ware, collision avoidance can be integrated as a constradfjjorithm V-Clip [11]. The distance computation needdditt
among others. Indeed, one may consider writing these cemiditional time than the V-Clip distance computation. We
straints using any available proximity distance algorithrexemplified it in a collision-free (including self-colln) static
which returns signed proximity distances separating twi-boposture generator for the humanoid robot HRP-2.
ies; see the recent exhaustive books [5], [6]. Not having-col
sion between two bodies is equivalent to keep the separating
distance always positive. Consequently, using selfsioli A. Problem definition and notations
and collision avoidance constraints in optimization saft®  |n this section we consider the distance between two convex
does not appear really problematic (again not considefirg tobjects O; and O,. This distance will be denoted. The
implementation issues which may reveal to be not that simpleelative position between the two objects is parameteriaed

However, most optimization softwares require the gradierthe vectorqg having 6 scalars (3 for the rotation, 3 for the
of the criteria and the constraints to be continuous witpbees translation).s is a function ofq.
to the parameters (here robot joints and eventually trajiest We call witness points a pair of points 6 x O, that are at
parameters) -and even the Hessian. The proximity distartbe distance. Under certain conditions (see theorem 2.1), this
between polyhedrons does not meet such a requirement. Yeltir is unique for a given relative position. Thus we can aefin
there exist optimization algorithms not requiring contng  pumin(¢) = (P1min(q), P2 min(q))T the function that associates
gradients, such as the Bundle methods [7]. But they are ribe position of witness points to eagh

Il. PROXIMITY DISTANCE CONTINUITY



Additionally, the surface of each object can be describéet's consider two convex object®; and O,, the latter

by a function of two parameters (for example, in sphericéieing strictly convex. Because of this strict convexityheyes
coordinates). Let, be the 4-dimensional vector of these twexist that completely includ€, while being tangent to it,
times two parameters, and andr, these functions folO; whatever the tangent point. L&t be the radius of one of this
and O, (we define as function from a subsetl&f to IR* to  spheres.

simplify the writing even though both of them are function¥Ve consider the objects for a relative position described by
from a subset olR? to IR?). qo- P3 and PZ, respectively onO; and O, are the unique
Witness points being on the objects’ surfaces, we defimétness points for this positiomy,,(q0) = (Pg, P2)T

umin as the function ofy that returns the vector of these Let's move to the positiory, + Ag. We notePOQ, A the new
points. Denoting byR(q) the rotation matrix parametrized byposition of the pointP? and PL. and P2. the new witness

¢, and by T'(q) the translation vector, we havg,i,(¢) = points so thapmin(qo + Aq) m&n mm,PE::) .
(r1 (umin(q)) , R(q)r2 (umin(q)) + T(g))" Since satisfy a Lipschitz condition, there is a reBl such

Finally, we definef(q,u) = r1 (u) — R(q)r2 (u) + T'(¢) the as|d(qo + Aq) —6(qo)| < KAgq, see also [10].
distance vector between the two points parametrized,by Let P{ andP? be respectively the tangent planes( and

. _ Os in PL. and P2, . P3 (resp.P3) is the pIane paraIIeI to
d(q) = muln £ (g, u)ll = [If (¢, umin(q))]] (1) 731 (resp. 731) distant ofd(qo) + KAq to P 1 (resp. P 2
B. Strict convexity of a body S? is the sphere tangent l(c)g in P2, with a radiusR. Its
centerC? is aligned withP., and P2, . A' and A? are the

Intuitively, a gradient discontinuity occurs when thereais =" . . . :
jump between witness points pairs. This is the case aroufignts of P; andP; on this a2l|gnment and is one point on
a configuration for which there is a non unique witness pa pe intersection ofP3 with S* (this intersection is not void
such as when an edge is parallel to a face. When objects 21? soon af\g is small enough).
not in collision, non uniqueness of the witness pair is diyec
linked to the non strictqconvexity of the object:f: considygerl Let o = /]0°(q0 + Ag) — %(qo)|- o tends to O when
the computation of distance as a minimization problem, this? do so. 1
problem is not strictly convex if both objects are not styict "v¢ 9€fineCA (resp CA,) as the cylinder of axi¢ P, mm)

nd radiusA B + o (resp. A?B) delimited by P{ and P2

convex. Global minimum may thus be reached in sever? q 42 h | di b
points. We thus need at least one of the objects to be strict§SP: Pt andP3). A*B+ o is the maximal distance between
and Py, obtained for the extreme case whefg , is

convex, while the other may be only convex. mm
Theorem 2.1: (Unicity of witness pointShere is a unique " the boun?ary of3,

pair of witness points if at least one of the bodies is s'grictl'-et Eaq = Céq x CA .

CONVeX. By cons‘tructlon(P1 PZ;,) and (Py, P ,) are in Ea,.

Theorem 2.2: (Main resultfhe witness points of the min- A2Pmln = AQPrzlm; 6(q0) + KAq — 6(qo + Ag),
imum distance between two convex bodies are continuoddC” = R — APz, )
functions ofq if at least one of the bodies is strictly convex@nd A2B = \/(R*" — A?C?").

(Umin aNd pmin are continuous functions af). Sinced is a continuous functionA?P2;  and A*PL; tend
Proof: First, if no body is strictly convex, witnessto 0 whenAgq tends to0. Thus, A°C* tends toR and A*B
tends to0.

Both cylinders tend to a single pointEa, tends to
{(Pg: P ag=0) } = {(F6, F3) }-
We then havepmin(go + Agq) = (PI}HWP;IH) tends to
«  Pmin(q) = (Pg, P3) i.e. the continuity ing. [ |
Considering the differentiation dff (¢, umin(q))|| with re-
spect tog, the following result is then almost straightforward:

Theorem 2.3:The minimum distance between two convex
bodies is aC'! function of ¢ if and only if one of the bodies
is strictly convex.

Fig. 1. Demonstration of the continuity dfy;y. If the surfaces of these objects have additional continuity
properties, the distance will benefit of it, as shown by the

points are not necessarily unique thus we have no continuifyllowing theorems:
We only need to demonstrate that strict convexity implies Thegrem 2.4:If the surface of both bodies ar@€*, with
continuity. The idea driving the demonstration of witness > 2 then the witness points a@*~! function of g.
points continuity consists in building some small volumes
that include old and new witness points of the minimum
distance, and to show that the volumes tend to points when’” T
the infinitesimal transformation tends to zero. We have(dfz (rovuo)) f(qo,u0) = 0 (optimality condition)

Proof. Let ug be the coordinates of the witness points



which can be rewritterf?aij(qo,uo) =0.
For a givengy, f2 is the square distance between two points
of the bodies’ surfaces, and thus is a strictly convex fumgti

which implies 247 + 0. B
2 i S
Let's note F(q,u) = %—(q,u). F is C*~1, F(go,ug) = 0 \

and 2E (g, ug) # 0. Thusu is locally aC*~! function of ¢
(implicit functions theorem). This yields that,;, is a C*~!
function of q. ]
Considering again the differentiation dff (g, umin(q))||,
the following theorem holds:
Theorem 2.5:If the surfaces of both bodies are*, with
k > 2 then the minimum distance between thenCis.

C. Penetration case

The C™ property forn > 0 cannot be reached everywhere
in the penetration case: the distance minimization problem
when penetration occurs is not convex. In some configuraition

there are several pairs of witness points; jumps betwegm| o5 the maximal margin. It must be at least the radius of

witness pairs are thus inevitable. We can however keep {§e. olyhedron but should be several order bigger for a bette
results of the above theorems for a subset of penetrat'&ﬁproximation of the polyhedron.

cases. But first, we need to ensure the continuity properties
between the penetration and non-penetration case: as léngBig spheres construction

as an object is not totally included in the other one, we we consider a triangular face of the polyhedron (fig. 2).
define the penetration distance as the opposite of the distap,  p, and P; are its vertices given counterclockwise around
between the pair of points verifying the optimality conoiiti the outer normal vectofl, 7, and 75 are the corresponding
%) f = 0 while being at the minimal distance among thgoints where the small spheres are tangent to the big @ne.
possible pairs (which is ultimately the same definition as i the center of the big sphere.
the non penetration case). Under the assumption of “sligf®ecause of the tangenay, P; andT; are aligned{= 1,2, 3).
penetration the previous results hold; otherwise, we map thThe problem is reduced to the finding of a sphere of radius
encounter gradient discontinuities, but it has to be pdintd? — 7 that goes through the three vertices of the face, and is
out that configurations where these discontinuities ocecar @bovethe face (direction is given by the outer normal). There
repulsive: following the gradient make us going away fror#$ @ unique sphere corresponding to this problem.
them.

Fig. 2. Sphere construction.

B. Toruses construction
I1l. SPHERE TORUS-PATCH BOUNDING VOLUMES We obtain the torus above one edge by rotating the sphere of

As shown in the previous section, distance discontinuiti@neighbouring face around this edge and keeping the negulti
arise when there are flat areas in both objects, which is oft&fer volume.
the case since most of the applications deal with polyhexjron Theorem 3.1:The distance between the center of sphere
whose edges and faces are not strictly convex. It is thuseueegorresponding to a face, and the median point of one of
to round these parts off, while staying close to the origindf_edges depends only of the lengtiof the edge and is
object in a conservative way. (R—r)2-&
In this article, we propose a way to build a close bounding Proof: It is the direct result of the Pythagorean theorem
volume on a polyhedron to make it strictly convex. To eacofritten for the triangle made of the center of the sphere, the
type of feature of the polyhedron we associate our feature:median point of the edge and one of its end points. =

o each vertex is paired with a small sphere of radius

centered on it, The centers’; and C> of the two spheres corresponding
« each face is covered by part of a big sphere of radiusto the two neighbouring faces of the edge are thus on a
that is tangent to the spheres of the 3 vertices, same circle centered on the edge middle | and of radius
« each edge is associated to a part of torus whose inngrR — )2 — £,
1 1 1 . 4 . . .
radius isR and that connects to the 2 big spheres of ﬂge consider the circle’; of center C; and radiusR in
adjacent faces in &' way. the plane defined by, and the edge. By construction, this

We call sphere-torus-patche bounding volurtiee obtained circle coincides with the sphere centeredCin. Similarly we
object and denote it STP-BW: is the minimal distance constructC, with centerCs.

between the polyhedron and its STP-BYV, it is a securi§y makingC; revolve around the edge until it coincides with
margin. R controls the maximal curvature of the STP-BV as$,, we obtain the part of torus we need. It should be noticed



regions in a plane containing this edge is enough to determin
what the limits of these regions are in 3D. In such a plane, a
torus and an adjacent small sphere become@taonnected
tangent circles. The centers of these two circles and the
tangency point are on a same line that is also the boundary of
the voronoi region. With the revolution around the edge, we
obtain that the limit between the voronoi regions of a torus
and a small sphere is thus a cone.

The intersection of any plan®, perpendicular to an edge
with the big sphere of one of its neighbouring faces and its
associated torus i§''-connected tangent circles. Center of the
first circle is the projection of the center of the big sphemtoo
Fig. 3. Torus part. The black and white parts are the portibtoaus we P., center of the cher circle is the, intersection C?f the edgh \_Ni
consider, the white surface is the part used in the STP-BV P. (by construction). Let us notice three particular possible

P.: the one going through the center of the sphere and the two

others passing through each extremity of the edge. As hefore
that the torus is not be seen as the usual donut since its ushal line going through the centers of the two circles is the
small radius is bigger than the (usual) big one. The part Mieit between the voronoi regions of these circles. Thamfo
consider here is on the inner side of the whole torus as shotie limit between the regions of a torus and a big sphere is
in white on the fig 3. a plane defined by the center of the big sphere and the two

The torus and the spheres coincide in the limit planextremities of the edge.
and are perpendicular to those planes. The torus is thereforBetween a big sphere and a small one, there is a single
tangent to both spheres and the junction between the totgsnmon point. Separation of the voronoi regions is the line
and one sphere is thef' and the resulting volume is strictly defined by the centers of both spheres. This line is also part

convex. of all the limits between neighbouring voronoi regions.
C. Properties IV. COMPUTING PROXIMITY DISTANCES AND GRADIENTS
« In the STP-BV, the toruses are tangent to the small The main idea to compute the distance between two poly-
spheres. _ _ hedral objectsD, and O, is to rely on a classical distance
« The STP-BV isC" and strictly convex. computation algorithm from which we can retrieve the wites
« STP-BVs are even piecewis€> since toruses and features (closest pair of features of the two objects) aed th
spheres ar€'> surfaces. witness points. We simply add a layer on this algorithm that

« If ais the length of the longest edge of the polyhedrossociates the closest features of the STP-BVs to thesessitn
the maximal margin between the convex hull of the

polyhedron and its STP-BV i& — /(R — r)* — % A. Bounding volume construction
The construction of the bounding volume is depicted in

If R is notably bigger thanr and a, the expression can be : g ) !
accurately approximated (Taylor expansion) simplyrby algorithm 1. It relies only on the vertices of the object. The

For example, with the values we typically use in our app|main idea is similar to thegift wrapping algorithm we find a
cations ¢ = 10cm, » = lcm andR = 10m), the maximal first face whose associated sphere contains all the poirteof

margin is1.00417cm. cloud and their associated small sphe_res. We th_er_1 make this
sphere rotate around the edges of this face until it becomes

D. Voronoi region tangent to the small sphere of a vertex. The edge and thexverte

form a new face. Its sphere is the only one containing all the

points of the cloud and while being based on the edge, but for

the previous sphere. We then rotate around the edges of this

new face, until we reach a face already computed.

Finding the first face is made by theit function. Since we

can only rotate around a single edge at a time, it is needed

to have the list of edge around which we haven't yet rotated.

We select the edge around which the smallest rotation will be

required.
Fig. 5. \Voronoi regions around an edge. The functionangleMintakes such an edge structure as input
and returns the rotation angle around this edge, as welleas th
lllustrations are given with figures 4 and 5. vertex for which this angle is reached. The edge list, called

An edge is the revolution axis of both its associated toresigeStackn the algorithm pseudo-code, thus contains edge
and the spheres of its vertices. Therefore finding the varorsiructures, each of which is paired with a vertex and sorted



Fig. 4. Voronoi regions around a vertex.

Algorithm: Bounding volume construction: Pseudo-code face): it is built a first time and is later used as a rotatiois ax
Data: cloud of points, value of and R or is built again. Wh_en there i_s no edge left in the list to be
Result set of faces with their spheres processed, the algorithm terminates. _ _

-, e; ande,: are edges along with an additional vertek spherereturns the sphere of a face described either by three
w100 andos: are a vertices vgrtpes or by an edge and a \_/ertﬁxce returns a face along

-s ands': are spheres data with its sphere for the same .lnput, amaahgle computes the
_vertices: the input set of vertices angle between two spheres given an edge.

_edgeStacka list of edges along with two vertices The obtained hull is not the convex hull, for some points
sorted according to an angle ' of it may have been ignored because of the curvature of the

-output: a list of triangles and their tangent spheres spheres. However, whentends to 0 and? becomes i_nfinite,
) this hull tends to the convex hull of the cloud of points.
BuildVolume()

begin B. Overall algorithm
init(edgeStack, output) Computing the distance for two (non necessarily convex)
while (fempty (edgeStackpo polyhedraO; and O, is done in two steps (fig 6).

(e,v) « first(edgeStack)
(e1,e2) «— newEdge@,v)
pushoutput, facge,v))

if containgedgeStacke,) then

Object O,

e

Object O,

Point cloud 1 Point cloud 2

| deletéedgeStacke;)
else
‘ dlnsert(edgestackgl , angleer(el)) ‘ Sg:/?)\: ‘ Conveé;;zl)y‘hedra Conveé;cgyzhedra Sg:/g\i ‘
en | | Gl st A |
. . Collision D ion Algorithm
if containgedgeStackes) then '—é
| deletdedgeStackes) Trees min. Prin Prin PFiin Trees
else ati
| inserfedgeStacke,, angleMines)) in SPhin[SPrin SFan ny

end
end

return output
end

Algorithm 1: Bounding volume construction.

Fig. 6. Overall algorithm. The steps in the gray area are coetpaff-line.

First an off-line computation produces the two STP-BV
BV O, and BV O,, as well as the underlying convex polyhe-
dronCPO; andCPO, and some data related to the voronoi
according to the value of its associated angle. Updating thiegions of the STP-BV. This data is aimed at precomputing all
list is the main task obuildVolume that is possible so that the on-line distance computatiasis

From an edge and a vertex, defining a faoewEdges fast as possible. The second step is this on-line computatio
simply builds two new edge structures which corresponds we first run a classical collision detection algorithm@# 0O,
the two egdes of this face, that contain the vertex. If one ahd C PO, that returns the witness point8l, and P2,
these edges is already edgeStackwe are coming back to as well as the closest (polyhedral) featu®$; and PF5.
an existing face, since the edge has already been created=dom this output we then have to find the closest smooth
this case, the two neighbouring faces of this edge havedlredeaturesSF; and SF, of BVO; and BV O,. Once these
been found and the edge must therefore be removed from thatures are obtained we are able to compute the distance

list. In the opposite case, it must be inserted in the list. Ah= d(SFy, SFy), the new witness pointSPL. and SP2, ,
edge thus appears exactly twice (once for each neighbouranyd n,; the normal unit vector taBV; in SP!. , the three



latter data being needed for gradient computation. We neealject is projected. The projection of this point lies iresithe
to know how to find them for three kinds of pairs of smootithe outer polygone since it is in the polygonal voronoi regio

features: sphere-sphere, sphere-torus and torus-torus. of the vertex. Finding which 2D region the projection of the
Associating smooth features to polyhedral features istasgitness point lies in is strictly equivalent to finding which
on two heuristics: smooth voronoi region the witness point is in, but it regsiire

. for a polyhedral feature the smooth feature is to be fou@ss calculations.

gir:]eoc':gngisgﬁggsrsspondmg smooth features and the Iattebs" Associating a smooth feature to an edge or a face
. the choice of thé smooth featur®F, is based on the Because the smooth voronoi region of a small sphere is
position of P/ regarding the voronoi region of F? always strictly inside the polyhedral voronoi region of the
the smooth %gture directly linked ®F; (i = 1 ar21d corresponding vertex, the polyhedral voronoi regions @& th
j =2 or the contrary). ) edges and faces never intersect with it. But smooth and
As shown in V-Clip [11], closest features are reached whé lyhedral voronoi regions of big spheres/faces can iaters
: . I L . . 1n various ways with the regions of toruses/edges, depgndin
the witness point of each object is inside the voronoi region

of the closest feature of the other object. This propertyukho \?vr%i;ies?:sspzsf tc;:cetr]s?nr)aciﬁs;/c!?or?gi (fiarrsnifsylxeesrttye t\?\,?ttﬁgsgn
apply toSPL. , SP2. | SFy andSF;. Tests with objects such P

~~ min» =% min? . : oint is.

as used in the examples of section VI show that such is not t?me

case in 0.3% of the computation requests. In more than 999 Computing Proximity Distances’ Gradients

of theshef fa|led, cases, the witness point "T’ Ina n.e|ghbthrr|] Gradient computation has already been studied. We follow
smooth feature’s voronol region so a single test is enough g, scheme exposed in [12]: with our previous notation, we

correct the mischoice. 1 Lo

Oq
C. Associating a smooth feature to a vertex condition then yields that the relative motion of the smooth
The smooth voronoi region of a small sphere always "é(gitness pqints on the boundary surface;s is orthogona}I to the
strictly inside the polyhedral voronoi region of the asateil normal unit vectom, so that the expression becomes simpler:

vertex. If a polyhedral withess point is given to be in theys T aspr}ﬁnerol aspiineroz
voronoi region of a vertex, it can thus be either in the smootﬁq q) ="Nq <6q( ) — aq(Q)> 2

voronoi region of the associated small sphere or in one of the o .
adjacent smooth voronoi regions (toruses or big sphereST&e two last derivatives correspond to the velocities of the

the edges and faces that contain the vertex). The associafi@iNts that match with the witness points @and are fixed
to the objects. However, comparing to [12], our normal unit

vectorng is derived directly from the smooth features.

For a pointP of fixed coordinatesz, y, z) in the local frame
of an objectO at the configuration(q), the gradient has the
following expression:%—’(;(q) =xJ1(q) + yJ2q(q) + 2J3(q) +
J, obtained by derivingP(q) = R(q)(x,y,2)" + T(q) =
xC1(q)+yC2(q)+2C5(q)+T(q) whereR is a rotation matrix,
C; its columns andl’ is the translation vector. Thd; are
the gradient matrices of th€; and 7. These matrices can
be analytically computed beforehand and are called hereaft
pre-gradient matrices

V. IMPLEMENTATION

We use V-Clip since it meets the requirements of returning

Fig. 7. Intersection of a plane with the voronoi regions teddato a vertex. witness points and features. However, V-Clip does not per-

fectly handle the penetration case because it stops to #te fir
computation is based on the following remark: the vertentersecting pairs of features. This is in most cases enough
belongs to every surrounding smooth voronoi region limit® handle “slight’ penetrations, but we added a heuristic to
as well as to its own voronoi cone. Therefore, this vertex c@andle some deeper ones.
be considered as the focal point of a projection onto a plane: ]
a plane is then chosen above the vertex, whose normal vedorSPhere-torus and torus-torus distances
is inside the voronoi region of the small sphere. Projection Computing sphere-torus and torus-torus distances reduces
of the smooth voronoi regions onto this plane is the samb@ 3D point-circle and circle-circle distance computation
as the intersection of the voronoi regions with the plane asspectively. The former has a simple geometrical solution
shown in fig. 7. The rightmost picture of this figure showthe latter has been proved in [13] to have no analytical one.
the obtain 2D regions in which the witness point of the othéiffective and accurate computation of circle-circle disg



has been presented in [14]. Point-circle distance can alsberen; is the number of joints, ang™™ and ¢*** are the
be found in this paper as a sub-problem of the circle-circlgint limits of ;. w being the middle of the joint

computation. Since we use an inner part of the toruses, H{%its g g gmax is the middle between this middle and 0. the
t 8 1 1

heed to compute the maximum distance with arcs. For nfiguration with all angles to 0 being the one in figure 9.

point-circle distance, the farthest point is the opposit¢he
nearest one so that there are few changes we made. For the
circle-circle distance, we adapted [14] to find a maximum
instead of a minimum, but we opted for an iterative method.

B. Computation time

30

m v-clip

N
[

] o distance
| |mgradient

m pre-gradient

10

computation time in ps

5292

=

=
number of vertices of an objec

Fig. 9. HRP-2 robot and its STP-BV

Fig. 8. Computation time for large relative movements

Computation time was recorded for several objects’ sizesFigure 9 shows both the geometrical model of humanoid
and two extents of relative movements. Distance is computBP-2 and its corresponding STP-BV that is computed off-
between two identical geodesic spheres of radius 20cm cd{}€ Prior to its use in the experimental scenarios. The rhode
ered with STP-BV whose parameters are- 1cm andR = of each HRP-2 body contains between 50 to 800 vertices.
10m. The size of an object is measured by the number of fi@rameters of STP-BV are = lcm (safe collision margin)
vertices. For each obiject size, one million calls were made 31d £ = 10m (chosen to have few difference between safe
the algorithm. Between two calls, both objects rotated agouMargin and maximal margin).
their three axis, and the relative distance was changeti,avit Concerning auto-collision, robot pairs that need to be se-
total range of 40cm and so that there can be slight penatgatid®cted for checking have been studied in [15] and recently
For the graph in fig. 8, angles are about 20 degrees and thd16]. In_the latter, the use of look-up tables was proposed
average distance change is 2cm. Angle increments are takef%sdeal with composed joints, so that the safety margins of
that the same configuration never appears twice. Compnsati@()und'”g volumes does not restrain the movement posgbilit

are made on a 3.4GHz Pentium Xeon with 2GB of RAM. for this kind of joint. We also focused on that point; however
since we needed to have and compute continuous gradients for

VI. APPLICATION: FREE-COLLISION HUMANOID POSTURE gl constraints, such a method was not possible, and we had
GENERATION to use specific analytical functions to prevent collisioawnd

Now that the method is explained, and packaged intotle hip, waist, neck and shoulder joints. These functions
C++ code, we will demonstrate it in a humanoid contextvere obtained either geometrically or by experimentatioms
The posture generator proposed in the planner descritiedeal HRP-2 robot. The proximity distances between each
in [1] is now improved by integrating this method to obtairpair of bodies must be positive (or above a given threshold,
optimized collision-free postures for a humanoid robot HRRvhich is anyway already taken into account by the very
2. This posture generator is an optimization under comgiai hature approximation of the STP-BV). The gradients of these
program: constraints are physical and geometrical, such caistraints are computed by the proposed method. We also
stability, required body positions (robot-environmenhizmts define obstacles to be avoided and describe body-obstécte pa
for example), and collisions. The criterion to be minimizetb be checked in the same way we did for auto-collision.
can be any user-defined smooth function. In the followinghere are 117 auto-collision constraints; 8 of them areyanal
scenarios we use a very simple one that gives fairly humaaal constraints, the other being computed with the STP-BVs

like postures for upright positions: Pick-can-from-fridge scenaridhe robot is asked to grab a
n i max 2 can in a fridge. For that it is constrained to have its two feet
f(q) = Z <Qi _ % T > (3 on the floor and its left hand around the can, as shown in the

P 4 leftmost picture in fig. 10. Collisions with the environment



Fig. 10. Pick-can-from-fridge scenario. From left to righlustration of the target, posture obtained without @itin avoidance constraints, successful
free-collision posture found (side and up views).

are checked between bodies of the robots and: the fridge International Conference on Robots and Intelligent SysteBeijing,
doors, the fridge left panel, the shelves, the carafe and tzze] China, October 2006, pp. 2974-2979.

| ti in front of th 33 . . lved. Th C. Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide fdsgp version
clementineés In iront o € can. pairs are involved. 2.5: A c code for solving (large scale) constrained nonli@animax)

robot’s initial posture is its 0 posture, in front of the fyil optimization problems, generating iterates satisfying akquality

In the second picture, collisions are not checked: there are constraints.” [Online]. Available: citeseer.ist.psw#1929.html
llisi b he left k d the | d he | 1{t3] S.-H. Lee, J. Kim, F. C. Park, M. Kim, and J. E. Bobrow, “Newitype
collisions between the le nee and the lower door, the le algorithms for dynamics-based robot movement optimizatioBEE

forearm and the carafe, the chest and the inner side of the Transactions on Roboticsol. 21, no. 4, pp. 657— 667, August 2005.

upper door, the arm and the upper door. The next two picturdd S.- Miossec, K. Yokoi, and A. Kheddar, “Development of a taaire
for motion optimization of robots— application to the kick nuoti of

show the posture obtained when collisions are _che_cked._, H_ere the HRP-2 robot,” inlEEE International Conference on Robotics and
the robot is stretched and close to many of its joint limits  Biomimetics 2006.

because of collisions. It results in a narrow feasible S‘p'ﬁbe [5] G. van den BergenCollision detection in interactive 3D environments
ser. The Morgan Kaufmann Series in Interactive 3D TechnolBgyH.

computation time is thus quite big: for this scenario it i46® Eberly, Ed. Morgan Kaufmann Publishers, 2004.
seconds; the distance function is called 11,675 times a®d tls] C. Ericson,Real-time collision detectigrser. The Morgan Kaufmann
gradient 9,855 times (without collision checking, the post Series in Interactive 3D Technology, D. H. Eberly, Ed.  Marga

; . -~ . . . Kaufmann Publishers, 2005.
is computed in 32 milliseconds). The result is obtained in 74;; ¢ ;Onnans UC.' Gilbert, C. Lemiachal, and C. A. Sagasibal, Nu-

iterations of FSQP. The same posture for a human character merical optimization- Theoretical and Practical Aspects Springer,

should be obtained much faster thanks to a bigger number PE September 2002. ) _ ,
DoEs: HRP-2 lackina wrist DoF is a serious limitation here 8] J. Y. Lee and H. Choset, “Sensor-based construction ofteact-like
OFS; g . structure for a planar rod robotlEEE Transactions on Robotics and
Automation vol. 17, no. 4, pp. 435-449, August 2001.
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. . . oo : in IEEE International Conference on Robotics and Automatiai. 4,
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