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Abstract— This paper presents a new method for strictly con-
vex hulls (i.e. bounding volume) generation made by assembling
patches of spheres and toruses (STP-BV). This bounding volume
allows to compute proximity distances with the guarantee of their
gradients’ continuity. This bounding volume is computed off-
line; it slightly over-covers the polyhedral convex hull of the
geometrical form. Given a pair of convex objects, having only
one of them strictly convex (i.e. STP-BV covered) is proved to
be sufficient to guarantee gradient continuity of the proximity
distance. The distance computation is based on the closest
features of the underlying polyhedral convex hull obtained with
V-Clip or any other algorithm. The suggested algorithm is
exemplified through a free-collision (including free self-collision)
optimization-based humanoid posture generation.

I. I NTRODUCTION

This work is motivated from the following problem: in [1],
a planner for humanoid acyclic motion is proposed; it is
composed mainly of two interrelated modules: (i) a stance tree
explorer and (ii) a posture generation modules. The stance for
each step of the planner is obtained from an optimization-
based posture generation using C-FSQP [2]. Optimal trajecto-
ries in robotics can be computed by solving an optimization
problem on a cost function. This function (generally involving
minimum energy consumption, speed or precision, etc.) is
defined together with a set of constraints that encompasses
joint limits, contacts and path tracking in the Cartesian space,
stability... see [3] [4] and their inside bibliography for more
details on robotics trajectory optimization and optimal control.

By using FSQP, or any other available optimization soft-
ware, collision avoidance can be integrated as a constraint
among others. Indeed, one may consider writing these con-
straints using any available proximity distance algorithm
which returns signed proximity distances separating two bod-
ies; see the recent exhaustive books [5], [6]. Not having colli-
sion between two bodies is equivalent to keep the separating
distance always positive. Consequently, using self-collision
and collision avoidance constraints in optimization software
does not appear really problematic (again not considering the
implementation issues which may reveal to be not that simple).

However, most optimization softwares require the gradients
of the criteria and the constraints to be continuous with respect
to the parameters (here robot joints and eventually trajectories’
parameters) -and even the Hessian. The proximity distance
between polyhedrons does not meet such a requirement. Yet,
there exist optimization algorithms not requiring continuous
gradients, such as the Bundle methods [7]. But they are not

as fast as methods requiring continuous gradients. Improving
their convergence properties are still open research problems.

The main motivation of this work is to guarantee that com-
puted gradients of proximity distance are continuous function
of the parameters in order to use fast optimization methods.
The problem of ensuring continuous distance’s gradient has,
to the best knowledge of the authors, never been treated before
and the proposed method is new. Continuity properties of
the distance have been merely discussed or even assumed in
previous works. For example, in [8] [9], this problem has been
addressed in a 2D case, it has been claimed that the distance
between convex objects is smooth and thus the gradient is
continuous. The latter assertion is not always valid unlessone
object is strictly convex, the former depends on the continuity
properties of both objects’ surfaces, as we will demonstrate
in section II. The flaw in the demonstration is to suppose that
witness points of the distance are smooth functions of the
parameters. Assumption about the witness points’ continuity
is always implicitly made in papers computing distance’s gra-
dient whereas the strict convexity of at least one object is not
addressed. It is only in [10] that the non differentiability(and
non-convexity) of the distance between convex bodies is well
addressed and used with non-smooth analysis in the context of
sensory-based planning. Our approach, on the contrary, draws
solution to get rid of the non-differentiability: we build off-line
strictly convex bounding volume that can be considered as a
smooth ‘rounding’ of the polyhedron convex hull. Detailed
theoretical aspects of this work are described in [?]. The
distances are computed on the basis of a proximity distance
algorithm V-Clip [11]. The distance computation needs little
additional time than the V-Clip distance computation. We
exemplified it in a collision-free (including self-collision) static
posture generator for the humanoid robot HRP-2.

II. PROXIMITY DISTANCE CONTINUITY

A. Problem definition and notations

In this section we consider the distance between two convex
objects O1 and O2. This distance will be denotedδ. The
relative position between the two objects is parameterizedby
the vectorq having 6 scalars (3 for the rotation, 3 for the
translation).δ is a function ofq.

We call witness points a pair of points ofO1×O2 that are at
the distanceδ. Under certain conditions (see theorem 2.1), this
pair is unique for a given relative position. Thus we can define
pmin(q) = (p1 min(q), p2 min(q))

T the function that associates
the position of witness points to eachq.



Additionally, the surface of each object can be described
by a function of two parameters (for example, in spherical
coordinates). Letu be the 4-dimensional vector of these two
times two parameters, andr1 and r2 these functions forO1

andO2 (we define as function from a subset ofIR4 to IR3 to
simplify the writing even though both of them are functions
from a subset ofIR2 to IR3).
Witness points being on the objects’ surfaces, we define
umin as the function ofq that returns the vectoru of these
points. Denoting byR(q) the rotation matrix parametrized by
q, and by T (q) the translation vector, we havepmin(q) =
(r1 (umin(q)) , R(q)r2 (umin(q)) + T (q))

T

Finally, we definef(q, u) = r1 (u) − R(q)r2 (u) + T (q) the
distance vector between the two points parametrized byu,

δ(q) = min
u
‖f(q, u))‖ = ‖f (q, umin(q))‖ (1)

B. Strict convexity of a body

Intuitively, a gradient discontinuity occurs when there isa
jump between witness points pairs. This is the case around
a configuration for which there is a non unique witness pair,
such as when an edge is parallel to a face. When objects are
not in collision, non uniqueness of the witness pair is directly
linked to the non strict convexity of the objects: considering
the computation of distance as a minimization problem, this
problem is not strictly convex if both objects are not strictly
convex. Global minimum may thus be reached in several
points. We thus need at least one of the objects to be strictly
convex, while the other may be only convex.

Theorem 2.1: (Unicity of witness points)There is a unique
pair of witness points if at least one of the bodies is strictly
convex.

Theorem 2.2: (Main result)The witness points of the min-
imum distance between two convex bodies are continuous
functions ofq if at least one of the bodies is strictly convex
(umin andpmin are continuous functions ofq).

Proof: First, if no body is strictly convex, witness

Fig. 1. Demonstration of the continuity ofPmin.

points are not necessarily unique thus we have no continuity.
We only need to demonstrate that strict convexity implies
continuity. The idea driving the demonstration of witness
points continuity consists in building some small volumes
that include old and new witness points of the minimum
distance, and to show that the volumes tend to points when
the infinitesimal transformation tends to zero.

Let’s consider two convex objectsO1 and O2, the latter
being strictly convex. Because of this strict convexity, spheres
exist that completely includeO2 while being tangent to it,
whatever the tangent point. LetR be the radius of one of this
spheres.
We consider the objects for a relative position described by
q0. P 1

0 and P 2
0 , respectively onO1 and O2 are the unique

witness points for this position.pmin(q0) = (P 1
0 , P 2

0 )T

Let’s move to the positionq0 + ∆q. We noteP 2
0,∆ the new

position of the pointP 2
0 andP 1

min andP 2
min the new witness

points so thatpmin(q0 + ∆q) = (P 1
min, P 2

min)T .
Sinceδ satisfy a Lipschitz condition, there is a realK such
as |δ(q0 + ∆q)− δ(q0)| ≤ K∆q, see also [10].
Let P1

1 andP2
1 be respectively the tangent planes toO1 and

O2 in P 1
min and P 2

min. P2
2 (resp.P1

2 ) is the plane parallel to
P2

1 (resp.P1
1 ) distant ofδ(q0) + K∆q to P 1

min (resp.P 2
min).

S2 is the sphere tangent toO2 in P 2
min with a radiusR. Its

centerC2 is aligned withP 1
min andP 2

min. A1 andA2 are the
points ofP1

2 andP2
2 on this alignment andB is one point on

the intersection ofP2
2 with S2 (this intersection is not void

as soon as∆q is small enough).

Let σ =
√

|δ2(q0 + ∆q)− δ2(q0)|. σ tends to 0 when
∆q do so.
We defineC1∆q (resp.C2∆q) as the cylinder of axis

(

P 1
minP 2

min

)

and radiusA2B + σ (resp.A2B) delimited byP1
1 and P1

2

(resp.P2
1 andP2

2 ). A2B +σ is the maximal distance between
P 1

min and P 1
0 , obtained for the extreme case whereP 2

0,∆ is
on the boundary ofC2∆q.
Let E∆q = C1∆q × C

2
∆q.

By construction
(

P 1
min, P 2

min

)

and
(

P 1
0 , P 2

0,∆q

)

are inE∆q.
A1P 1

min = A2P 2
min = δ(q0) + K∆q − δ(q0 + ∆q),

A2C2 = R−A2P 2
min,

andA2B =
√

(R22
−A2C22

).
Since δ is a continuous function,A2P 2

min and A1P 1
min tend

to 0 when ∆q tends to0. Thus,A2C2 tends toR and A2B

tends to0.
Both cylinders tend to a single point:E∆q tends to
{(

P 1
0 , P 2

0,∆q=0

)}

=
{(

P 1
0 , P 2

0

)}

.

We then havepmin(q0 + ∆q) =
(

P 1
min, P 2

min

)T
tends to

pmin(q0) =
(

P 1
0 , P 2

0

)

i.e. the continuity inq0.

Considering the differentiation of‖f (q, umin(q))‖ with re-
spect toq, the following result is then almost straightforward:

Theorem 2.3:The minimum distance between two convex
bodies is aC1 function of q if and only if one of the bodies
is strictly convex.

If the surfaces of these objects have additional continuity
properties, the distance will benefit of it, as shown by the
following theorems:

Theorem 2.4:If the surface of both bodies areCk, with
k ≥ 2 then the witness points areCk−1 function of q.

Proof: Let u0 be the coordinates of the witness points
at q0.

We have
(

∂f
∂u

(q0, u0)
)T

f(q0, u0) = 0 (optimality condition)



which can be rewritten∂f2

∂u
(q0, u0) = 0.

For a givenq0, f2 is the square distance between two points
of the bodies’ surfaces, and thus is a strictly convex function,
which implies ∂2f2

∂u2 6= 0.

Let’s note F (q, u) = ∂f2

∂u
(q, u). F is Ck−1, F (q0, u0) = 0

and ∂F
∂u

(q0, u0) 6= 0. Thusu is locally aCk−1 function of q
(implicit functions theorem). This yields thatumin is a Ck−1

function of q.
Considering again the differentiation of‖f (q, umin(q))‖,

the following theorem holds:
Theorem 2.5:If the surfaces of both bodies areCk, with

k ≥ 2 then the minimum distance between them isCk.

C. Penetration case

The Cn property forn > 0 cannot be reached everywhere
in the penetration case: the distance minimization problem
when penetration occurs is not convex. In some configurations
there are several pairs of witness points; jumps between
witness pairs are thus inevitable. We can however keep the
results of the above theorems for a subset of penetration
cases. But first, we need to ensure the continuity properties
between the penetration and non-penetration case: as long
as an object is not totally included in the other one, we
define the penetration distance as the opposite of the distance
between the pair of points verifying the optimality condition
(

∂f
∂u

)T

f = 0 while being at the minimal distance among the
possible pairs (which is ultimately the same definition as in
the non penetration case). Under the assumption of “slight”
penetration the previous results hold; otherwise, we may then
encounter gradient discontinuities, but it has to be pointed
out that configurations where these discontinuities occur are
repulsive: following the gradient make us going away from
them.

III. SPHERE-TORUS-PATCH BOUNDING VOLUMES

As shown in the previous section, distance discontinuities
arise when there are flat areas in both objects, which is often
the case since most of the applications deal with polyhedrons,
whose edges and faces are not strictly convex. It is thus needed
to round these parts off, while staying close to the original
object in a conservative way.
In this article, we propose a way to build a close bounding
volume on a polyhedron to make it strictly convex. To each
type of feature of the polyhedron we associate our feature:

• each vertex is paired with a small sphere of radiusr

centered on it,
• each face is covered by part of a big sphere of radiusR

that is tangent to the spheres of the 3 vertices,
• each edge is associated to a part of torus whose inner

radius isR and that connects to the 2 big spheres of the
adjacent faces in aC1 way.

We call sphere-torus-patche bounding volumethe obtained
object and denote it STP-BV.r is the minimal distance
between the polyhedron and its STP-BV, it is a security
margin.R controls the maximal curvature of the STP-BV as

Fig. 2. Sphere construction.

well as the maximal margin. It must be at least the radius of
the polyhedron but should be several order bigger for a better
approximation of the polyhedron.

A. Big spheres construction

We consider a triangular face of the polyhedron (fig. 2).
P1, P2 andP3 are its vertices given counterclockwise around
the outer normal vector.T1, T2 andT3 are the corresponding
points where the small spheres are tangent to the big one.C

is the center of the big sphere.
Because of the tangency,C, Pi andTi are aligned (i = 1, 2, 3).
The problem is reduced to the finding of a sphere of radius
R− r that goes through the three vertices of the face, and is
abovethe face (direction is given by the outer normal). There
is a unique sphere corresponding to this problem.

B. Toruses construction

We obtain the torus above one edge by rotating the sphere of
a neighbouring face around this edge and keeping the resulting
inner volume.

Theorem 3.1:The distance between the center of sphere
corresponding to a face, and the median point of one of
its edges depends only of the lengthl of the edge and is
√

(R− r)2 − l2

4

Proof: It is the direct result of the Pythagorean theorem
written for the triangle made of the center of the sphere, the
median point of the edge and one of its end points.

The centersC1 and C2 of the two spheres corresponding
to the two neighbouring faces of the edge are thus on a
same circle centered on the edge middle I and of radius
√

(R− r)2 − l2

4
.

We consider the circleC1 of center C1 and radiusR in
the plane defined byC1 and the edge. By construction, this
circle coincides with the sphere centered inC1. Similarly we
constructC2 with centerC2.
By makingC1 revolve around the edge until it coincides with
C2, we obtain the part of torus we need. It should be noticed



Fig. 3. Torus part. The black and white parts are the portion of torus we
consider, the white surface is the part used in the STP-BV

that the torus is not be seen as the usual donut since its usual
small radius is bigger than the (usual) big one. The part we
consider here is on the inner side of the whole torus as shown
in white on the fig 3.

The torus and the spheres coincide in the limit planes
and are perpendicular to those planes. The torus is therefore
tangent to both spheres and the junction between the torus
and one sphere is thenC1 and the resulting volume is strictly
convex.

C. Properties

• In the STP-BV, the toruses are tangent to the small
spheres.

• The STP-BV isC1 and strictly convex.
• STP-BVs are even piecewiseC∞ since toruses and

spheres areC∞ surfaces.
• If a is the length of the longest edge of the polyhedron,

the maximal margin between the convex hull of the

polyhedron and its STP-BV isR−
√

(R− r)
2
− a2

12

If R is notably bigger thanr and a, the expression can be
accurately approximated (Taylor expansion) simply byr.
For example, with the values we typically use in our appli-
cations (a = 10cm, r = 1cm andR = 10m), the maximal
margin is1.00417cm.

D. Voronoi region

Fig. 5. Voronoi regions around an edge.

Illustrations are given with figures 4 and 5.
An edge is the revolution axis of both its associated torus

and the spheres of its vertices. Therefore finding the voronoi

regions in a plane containing this edge is enough to determine
what the limits of these regions are in 3D. In such a plane, a
torus and an adjacent small sphere become twoC1-connected
tangent circles. The centers of these two circles and the
tangency point are on a same line that is also the boundary of
the voronoi region. With the revolution around the edge, we
obtain that the limit between the voronoi regions of a torus
and a small sphere is thus a cone.

The intersection of any planePe perpendicular to an edge
with the big sphere of one of its neighbouring faces and its
associated torus isC1-connected tangent circles. Center of the
first circle is the projection of the center of the big sphere onto
Pe, center of the other circle is the intersection of the edge with
Pe (by construction). Let us notice three particular possible
Pe: the one going through the center of the sphere and the two
others passing through each extremity of the edge. As before,
the line going through the centers of the two circles is the
limit between the voronoi regions of these circles. Therefore
the limit between the regions of a torus and a big sphere is
a plane defined by the center of the big sphere and the two
extremities of the edge.

Between a big sphere and a small one, there is a single
common point. Separation of the voronoi regions is the line
defined by the centers of both spheres. This line is also part
of all the limits between neighbouring voronoi regions.

IV. COMPUTING PROXIMITY DISTANCES AND GRADIENTS

The main idea to compute the distance between two poly-
hedral objectsO1 and O2 is to rely on a classical distance
computation algorithm from which we can retrieve the witness
features (closest pair of features of the two objects) and the
witness points. We simply add a layer on this algorithm that
associates the closest features of the STP-BVs to these witness.

A. Bounding volume construction

The construction of the bounding volume is depicted in
algorithm 1. It relies only on the vertices of the object. The
main idea is similar to thegift wrapping algorithm: we find a
first face whose associated sphere contains all the points ofthe
cloud and their associated small spheres. We then make this
sphere rotate around the edges of this face until it becomes
tangent to the small sphere of a vertex. The edge and the vertex
form a new face. Its sphere is the only one containing all the
points of the cloud and while being based on the edge, but for
the previous sphere. We then rotate around the edges of this
new face, until we reach a face already computed.

Finding the first face is made by theinit function. Since we
can only rotate around a single edge at a time, it is needed
to have the list of edge around which we haven’t yet rotated.
We select the edge around which the smallest rotation will be
required.

The functionangleMintakes such an edge structure as input
and returns the rotation angle around this edge, as well as the
vertex for which this angle is reached. The edge list, called
edgeStackin the algorithm pseudo-code, thus contains edge
structures, each of which is paired with a vertex and sorted



Fig. 4. Voronoi regions around a vertex.

Algorithm: Bounding volume construction: Pseudo-code

Data: cloud of points, value ofr andR

Result: set of faces with their spheres
-e, e1 ande2: are edges along with an additional vertex
-v,v1,v2 andv3: are a vertices
-s ands′: are spheres data
-vertices: the input set of vertices
-edgeStack:a list of edges along with two vertices,
sorted according to an angle.
-output:a list of triangles and their tangent spheres

BuildVolume()
begin

init(edgeStack, output)
while (!empty (edgeStack))do

(e, v) ← first(edgeStack)
(e1, e2) ← newEdges(e,v)
push(output, face(e,v))
if contains(edgeStack,e1) then

delete(edgeStack,e1)
else

insert(edgeStack,e1, angleMin(e1))
end
if contains(edgeStack,e2) then

delete(edgeStack,e2)
else

insert(edgeStack,e2, angleMin(e2))
end

end
return output

end
Algorithm 1 : Bounding volume construction.

according to the value of its associated angle. Updating this
list is the main task ofbuildVolume.

From an edge and a vertex, defining a face,newEdges
simply builds two new edge structures which corresponds to
the two egdes of this face, that contain the vertex. If one of
these edges is already inedgeStack, we are coming back to
an existing face, since the edge has already been created. In
this case, the two neighbouring faces of this edge have already
been found and the edge must therefore be removed from the
list. In the opposite case, it must be inserted in the list. An
edge thus appears exactly twice (once for each neighbouring

face): it is built a first time and is later used as a rotation axis
or is built again. When there is no edge left in the list to be
processed, the algorithm terminates.

spherereturns the sphere of a face described either by three
vertices or by an edge and a vertex,face returns a face along
with its sphere for the same input, andangle computes the
angle between two spheres given an edge.

The obtained hull is not the convex hull, for some points
of it may have been ignored because of the curvature of the
spheres. However, whenr tends to 0 andR becomes infinite,
this hull tends to the convex hull of the cloud of points.

B. Overall algorithm

Computing the distance for two (non necessarily convex)
polyhedraO1 andO2 is done in two steps (fig 6).

Fig. 6. Overall algorithm. The steps in the gray area are computed off-line.

First an off-line computation produces the two STP-BV
BV O1 andBV O2, as well as the underlying convex polyhe-
dron CPO1 andCPO2 and some data related to the voronoi
regions of the STP-BV. This data is aimed at precomputing all
that is possible so that the on-line distance computation isas
fast as possible. The second step is this on-line computation:
we first run a classical collision detection algorithm onCPO1

and CPO2 that returns the witness pointsP 1
min and P 2

min

as well as the closest (polyhedral) featuresPF1 and PF2.
From this output we then have to find the closest smooth
featuresSF1 and SF2 of BV O1 and BV O2. Once these
features are obtained we are able to compute the distance
δ = d(SF1, SF2), the new witness pointsSP 1

min andSP 2
min,

and nd the normal unit vector toBV1 in SP 1
min, the three



latter data being needed for gradient computation. We need
to know how to find them for three kinds of pairs of smooth
features: sphere-sphere, sphere-torus and torus-torus.

Associating smooth features to polyhedral features is based
on two heuristics:

• for a polyhedral feature the smooth feature is to be found
among its corresponding smooth features and the latters’
direct neighbours,

• the choice of the smooth featureSFi is based on the
position of P

j
min regarding the voronoi region ofSF 0

i ,
the smooth feature directly linked toPFi (i = 1 and
j = 2 or the contrary).

As shown in V-Clip [11], closest features are reached when
the witness point of each object is inside the voronoi region
of the closest feature of the other object. This property should
apply toSP 1

min, SP 2
min, SF1 andSF2. Tests with objects such

as used in the examples of section VI show that such is not the
case in 0.3% of the computation requests. In more than 99%
of these “failed” cases, the witness point is in a neighbouring
smooth feature’s voronoi region so a single test is enough to
correct the mischoice.

C. Associating a smooth feature to a vertex

The smooth voronoi region of a small sphere always lies
strictly inside the polyhedral voronoi region of the associated
vertex. If a polyhedral witness point is given to be in the
voronoi region of a vertex, it can thus be either in the smooth
voronoi region of the associated small sphere or in one of the
adjacent smooth voronoi regions (toruses or big spheres of
the edges and faces that contain the vertex). The association

Fig. 7. Intersection of a plane with the voronoi regions related to a vertex.

computation is based on the following remark: the vertex
belongs to every surrounding smooth voronoi region limits
as well as to its own voronoi cone. Therefore, this vertex can
be considered as the focal point of a projection onto a plane:
a plane is then chosen above the vertex, whose normal vector
is inside the voronoi region of the small sphere. Projection
of the smooth voronoi regions onto this plane is the same
as the intersection of the voronoi regions with the plane as
shown in fig. 7. The rightmost picture of this figure shows
the obtain 2D regions in which the witness point of the other

object is projected. The projection of this point lies inside the
the outer polygone since it is in the polygonal voronoi region
of the vertex. Finding which 2D region the projection of the
witness point lies in is strictly equivalent to finding which
smooth voronoi region the witness point is in, but it requires
less calculations.

D. Associating a smooth feature to an edge or a face

Because the smooth voronoi region of a small sphere is
always strictly inside the polyhedral voronoi region of the
corresponding vertex, the polyhedral voronoi regions of the
edges and faces never intersect with it. But smooth and
polyhedral voronoi regions of big spheres/faces can intersect
in various ways with the regions of toruses/edges, depending
on the shapes of the faces. In all cases, we only tested on
which sides of the smooth voronoi limit planes the witness
point is.

E. Computing Proximity Distances’ Gradients

Gradient computation has already been studied. We follow
the scheme exposed in [12]: with our previous notation, we
have ∂δ

∂q
(q) = nT

d

(

∂SP 1

min

∂q
(q)−

∂SP 2

min

∂q
(q)

)

. The optimality
condition then yields that the relative motion of the smooth
witness points on the boundary surfaces is orthogonal to the
normal unit vectornd so that the expression becomes simpler:

∂δ

∂q
(q) = nT

d

(

∂SP 1
min∈BV O1

∂q
(q)−

∂SP 2
min∈BV O2

∂q
(q)

)

(2)

The two last derivatives correspond to the velocities of the
points that match with the witness points atq and are fixed
to the objects. However, comparing to [12], our normal unit
vectornd is derived directly from the smooth features.

For a pointP of fixed coordinates(x, y, z) in the local frame
of an objectO at the configuration(q), the gradient has the
following expression:∂P

∂q
(q) = xJ1(q) + yJ2q(q) + zJ3(q) +

J4 obtained by derivingP (q) = R(q)(x, y, z)T + T (q) =
xC1(q)+yC2(q)+zC3(q)+T (q) whereR is a rotation matrix,
Ci its columns andT is the translation vector. TheJi are
the gradient matrices of theCi and T . These matrices can
be analytically computed beforehand and are called hereafter
pre-gradient matrices.

V. I MPLEMENTATION

We use V-Clip since it meets the requirements of returning
witness points and features. However, V-Clip does not per-
fectly handle the penetration case because it stops to the first
intersecting pairs of features. This is in most cases enough
to handle “slight” penetrations, but we added a heuristic to
handle some deeper ones.

A. Sphere-torus and torus-torus distances

Computing sphere-torus and torus-torus distances reduces
to 3D point-circle and circle-circle distance computations
respectively. The former has a simple geometrical solution,
the latter has been proved in [13] to have no analytical one.
Effective and accurate computation of circle-circle distance



has been presented in [14]. Point-circle distance can also
be found in this paper as a sub-problem of the circle-circle
computation. Since we use an inner part of the toruses, we
need to compute the maximum distance with arcs. For the
point-circle distance, the farthest point is the opposite of the
nearest one so that there are few changes we made. For the
circle-circle distance, we adapted [14] to find a maximum
instead of a minimum, but we opted for an iterative method.

B. Computation time

co
m

pu
ta

tio
n 

tim
e 

in
 µ

s

����
������
��

�� �� �� �	� �
� �	� ��� 	�� ��� �� �
	� 
���
����������������������������������

number of vertices of an object

co
m

pu
ta

tio
n 

tim
e 

in
 µ

s

����
������
��

�� �� �� �	� �
� �	� ��� 	�� ��� �� �
	� 
���
����������������������������������

number of vertices of an object

Fig. 8. Computation time for large relative movements

Computation time was recorded for several objects’ sizes
and two extents of relative movements. Distance is computed
between two identical geodesic spheres of radius 20cm cov-
ered with STP-BV whose parameters arer = 1cm andR =
10m. The size of an object is measured by the number of its
vertices. For each object size, one million calls were made to
the algorithm. Between two calls, both objects rotated around
their three axis, and the relative distance was changed, with a
total range of 40cm and so that there can be slight penetrations.
For the graph in fig. 8, angles are about 20 degrees and the
average distance change is 2cm. Angle increments are taken so
that the same configuration never appears twice. Computations
are made on a 3.4GHz Pentium Xeon with 2GB of RAM.

VI. A PPLICATION: FREE-COLLISION HUMANOID POSTURE

GENERATION

Now that the method is explained, and packaged into a
C++ code, we will demonstrate it in a humanoid context.
The posture generator proposed in the planner described
in [1] is now improved by integrating this method to obtain
optimized collision-free postures for a humanoid robot HRP-
2. This posture generator is an optimization under constraints
program: constraints are physical and geometrical, such as
stability, required body positions (robot-environment contacts
for example), and collisions. The criterion to be minimized
can be any user-defined smooth function. In the following
scenarios we use a very simple one that gives fairly human-
like postures for upright positions:

f(q) =

nj
∑

i=1

(

qi −
qmin
i + qmax

i

4

)2

(3)

wherenj is the number of joints, andqmin
i andqmax

i are the

joint limits of qi.
qmin

i +qmax

i

2
being the middle of the joint

limits, qmin

i +qmax

i

4
is the middle between this middle and 0, the

configuration with all angles to 0 being the one in figure 9.

Fig. 9. HRP-2 robot and its STP-BV

Figure 9 shows both the geometrical model of humanoid
HRP-2 and its corresponding STP-BV that is computed off-
line prior to its use in the experimental scenarios. The model
of each HRP-2 body contains between 50 to 800 vertices.
Parameters of STP-BV arer = 1cm (safe collision margin)
and R = 10m (chosen to have few difference between safe
margin and maximal margin).

Concerning auto-collision, robot pairs that need to be se-
lected for checking have been studied in [15] and recently
in [16]. In the latter, the use of look-up tables was proposed
to deal with composed joints, so that the safety margins of
bounding volumes does not restrain the movement possibilities
for this kind of joint. We also focused on that point; however,
since we needed to have and compute continuous gradients for
all constraints, such a method was not possible, and we had
to use specific analytical functions to prevent collision around
the hip, waist, neck and shoulder joints. These functions
were obtained either geometrically or by experimentationson
a real HRP-2 robot. The proximity distances between each
pair of bodies must be positive (or above a given threshold,
which is anyway already taken into account by the very
nature approximation of the STP-BV). The gradients of these
constraints are computed by the proposed method. We also
define obstacles to be avoided and describe body-obstacle pairs
to be checked in the same way we did for auto-collision.
There are 117 auto-collision constraints; 8 of them are analyt-
ical constraints, the other being computed with the STP-BVs.

Pick-can-from-fridge scenario: the robot is asked to grab a
can in a fridge. For that it is constrained to have its two feet
on the floor and its left hand around the can, as shown in the
leftmost picture in fig. 10. Collisions with the environment



Fig. 10. Pick-can-from-fridge scenario. From left to right:illustration of the target, posture obtained without collision avoidance constraints, successful
free-collision posture found (side and up views).

are checked between bodies of the robots and: the fridge
doors, the fridge left panel, the shelves, the carafe and the
clementines in front of the can. 33 pairs are involved. The
robot’s initial posture is its 0 posture, in front of the fridge
In the second picture, collisions are not checked: there are
collisions between the left knee and the lower door, the left
forearm and the carafe, the chest and the inner side of the
upper door, the arm and the upper door. The next two pictures
show the posture obtained when collisions are checked. Here,
the robot is stretched and close to many of its joint limits
because of collisions. It results in a narrow feasible space. The
computation time is thus quite big: for this scenario it is 0.469
seconds; the distance function is called 11,675 times and the
gradient 9,855 times (without collision checking, the posture
is computed in 32 milliseconds). The result is obtained in 74
iterations of FSQP. The same posture for a human character
should be obtained much faster thanks to a bigger number of
DoFs; HRP-2 lacking wrist DoF is a serious limitation here.

VII. C ONCLUSION

A new method for computing proximity distances with
continuous gradient is proposed. The main idea is to ensure
strict convexity of the bounding envelope that is computed off-
line. We suggest to use near-convex hulls built with spheres
and toruses patches. The assembly is made in such a way
as to at least guaranteeC1. For the time being, the distance
computation is based on the closest features of the underlying
polyhedral convex hull using V-Clip. The presented algorithm
has been successfully exemplified through a collision-free
(including self-collision) optimization-based humanoidpos-
ture generation for HRP-2. Future work will investigate (i)
inclusion of the method as part of the constraints in the low
level robot controller: this has been done actually, and will
be published in a forthcoming paper, (ii) V-Clip is used as
an intermediary step for computing the proximity distance
between a pair of bodies. We are now working on a new
distance algorithm which get rid of this step.
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