
Potential Field Guide for Humanoid Multicontacts
Acyclic Motion Planning

Karim Bouyarmane
CNRS-UM2 LIRMM, France

CNRS-AIST JRL, Japan

Adrien Escande
CEA LIST, France

CNRS-AIST JRL, Japan

Florent Lamiraux
CNRS LAAS, France

CNRS-AIST JRL, Japan

Abderrahmane Kheddar
CNRS-UM2 LIRMM, France

CNRS-AIST JRL, Japan

Abstract—We present a motion planning algorithm that com-
putes rough trajectories used by a contact-points planner as a
guide to grow its search graph. We adapt collision-free motion
planning algorithms to plan a path within the guide space,
a submanifold of the configuration space included in the free
space in which the configurations are subject to static stability
constraint. We first discuss the definition of the guide space. Then
we detail the different techniques and ideas involved: relevant
C-space sampling for humanoid robot, task-driven projection
process, static stability test based on polyhedral convex cones
theory’s double description method. We finally present results
from our implementation of the algorithm.

I. I NTRODUCTION

Contact-points planning is a motion planning approach that
aims at overcoming difficulties of cyclic gaited humanoid
motion planning in unstructured and highly constrained envi-
ronments. Examples of such planners are presented in [1] [2].
In [2] Best First Planning was adapted by growing the search
tree in the space of sets of contacts. A key element of this
contacts planner is the potential field that drives the search. It
has to be carefully chosen as the planner may get trapped in
local minima, which occur for example when we choose too
simple potential fields such as the Euclidian distance to goal.
An inappropriate potential field may also lead to the planning
of complicated paths and postures. In [3], a solution is given by
building the potential field around a rough trajectory, acontact-
points guide, that gives an approximation of the intended path
in the workspace as well as an idea of the postures that the
robot has to adopt along this path. This trajectory was given
manually as an input to the planner. Our aim in this work is
to provide such a trajectory automatically, thus giving more
autonomy to the robot.

II. SOLUTION

The main idea is to adapt existing collision-free motion
planning algorithms to plan the contact-points guide.

A. General algorithm

The collision-free motion planning problem can be formal-
ized as follows (adapted from [4]):

Formulation 1 (collision-free motion planning problem).

• a world W = R
3.

• an obstacle regionO ⊂ W .

• a robot R defined inW as a kinematic tree ofm joints
J1,J2, . . . ,Jm to whichrigid bodiesB1,B2, . . . ,Bm are
attached.

• the configuration space(also calledC-space) C defined
as the set of all possible transformations that may be
applied to the robot. The image of the robotR in the
configuration q is denotedR(q). From C we derive
Cfree = {q ∈ C | R(q) ∩ O = ∅} andCobs = C \ Cfree.

• a query pair (qI , qG) ∈ C2
free of initial and goal configu-

rations.
• an algorithm must compute a continuouspathτ : [0, 1]→
Cfree such thatτ(0) = qI andτ(1) = qG.

Two classes of methods exist so far to address this prob-
lem [4]: combinatorial motion planning and sampling-based
motion planning. The difference between the two lies in that
the latter avoids explicit construction ofCobs. Instead it uses
a sampling of the C-space to grow a discrete graphG(V, E),
called aroadmap, of which every vertexv ∈ V represents a
configurationq ∈ Cfree and every edgee ∈ E represents a
continous path inCfree, that progressively coversCfree. The
search for the path is then conducted into the constructed
roadmap that supposedly represents an approximation of the
connectivity of Cfree. Different instantiations of sampling-
based motion planning as a general approach exist [5] [6].
Algorithm 1 gives the general frame of the one we take as
a starting point for our study, keeping in mind that it is
possible to choose any other instantiation modulo adequate
modifications.

Algorithm 1 sampling-based collision-free motion planning.

1: initialize G(V ← {qI , qG}, E ← ∅)
2: while no path found inG do
3: sample a random configurationqs in C
4: if qs ∈ Cfree then
5: for all qV ∈ V ∩ NEIGHBOURHOOD(qs) do
6: if the direct pathτd(qs, qV ) lies in Cfree then
7: V.add(qs) andE.add(τd(qs, qV ))
8: end if
9: end for

10: end if
11: end while

Now we would like to adapt algorithm 1 in order to plan a



qI

qG

Cfree

Cobs
Cobs

Cobs

(a) Collision-free motion planning.

qI

qG

Cguide

Cfree

Cobs
Cobs

Cobs

(b) Contacts guide planning.

qI

qG

Cfree

Cobs
Cobs

Cobs

(c) Contact-points planning.

Fig. 1. Illustration of the problem.

contact-points guide. The problem is that the path yielded by
a contact-points planner lies on theboundaryof Cobs: ∂Cobs.
Simply replacingCfree with ∂Cobs in algorithm 1 would be a
failing strategy as the measure of∂Cobs is equal to zero . This
means that the rejection rate at line 4 would be equal to 1. The
second problem with this strategy concerns the linear direct
paths in line 6, as∂Cobs is generally a non linear submanifold,
a linear edge joining two of its elements will almost always
be completely outside the submanifold.

Our solution is to consider a submanifold ofC of non-zero
measure, we label itCguide, that can be visually represented
as a layer wrapping each connected component of∂Cobs. The
idea, to some extent similar to [7], is to sample configurations
“near” the obstacles; however, work in [7] focuses on 6D
rigid robots, whereas our primary targets are polyarticulated
humanoid robots. We will now detail our definition ofCguide.

A contact situationbetween a bodyBi of the robot and the
obstacle regionO is normally defined as

∂Bi ∩ ∂O 6= ∅ and int(Bi) ∩ int(O) = ∅

One way of adding a dimension, and thus creating a “volume”,
to the submanifoldCguide could be to consider the bodyBi as
in contact withO if d(Bi,O) < εcontact, which is a positive
fixed threshold.d denotes the Euclidian distance.

Definition 1 (body-obstacle contact situation). A rigid body
B is in contact with an obstacle regionO if

0 < d(B,O) < εcontact

In this situation, we denote byAB and AO respectively the
closest points on the body and on the obstacle and byn =
−−−−→
AOAB/‖

−−−−→
AOAB‖ the normal of the contact. The robotR is in

contact in configurationq ∈ Cfree if at least one of its bodies
is in contact in configurationq.

We can now defineCguide as

Cguide = {q ∈ Cfree | R is in contact in configurationq}

and then plan a collision-free path inCguide using algorithm 1
and replacing in it all the occurrences ofCfree by Cguide. This
would produce a path that could be tricky to follow by the
contact-points planner [3] as the latter will have to compute

statically stableconfigurations along this path, and may need
to stray significantly from the given path to find these stable
configurations. So we have to refine the definition ofCguide to
take static stability into account.

Considering the laws of rigid body dynamics applied toR
and assuming that there are no limits to the torques we can
apply to the robot joints (which is only an approximation), the
static stability condition is simply written

{

∑

f∈F f + mg = 0
∑

f∈F MO(f) + MO(mg) = 0

whereF is the set of allcontact forcesapplied to the robot,
and MO is the moment of a force in a pointO ∈ R

3. m is
the mass of the robot andg the gravity vector. For simplicity
we have modeled any surface contact as a discrete set of
punctual contacts applied at chosen points distributed over the
contact surface (we intentionally do not make it explicit in
our formulas for readability’s sake). Each contact forcef ∈ F
applied on the robot at a pointA ∈ ∂R with a normaln
lies in a friction coneCA,n,θ, θ being the angle of the cone
that depends on the friction coefficient between the body and
the obstacle,A is the apex of the cone, andn defines the
revolution axis of the cone.

Definition 2 (static stability situation). The robotR placed in
a configurationq ∈ Cfree is statically stable if

∀i ∈ I(q), ∃ fi ∈ CABi
,ni,θi

,

s.t.

{

∑

i∈I(q) fi + mg = 0
∑

i∈I(q) MO(fi) + MO(mg) = 0

where

I(q) =
{

i ∈ {1, . . . , m} | 0 < d(Bi(q),O) < εcontact

}

We can now introduce our new definition ofCguide as

Cguide = {q ∈ Cfree | R is statically stable in configurationq}

and once again try to adapt algorithm 1. This is still not
enough, as the rejection rate of our sampling would still be
very high. This is the reason why we have decided to split the
sampling procedure into two distinct phases: the sampling of
a more or less uniform random configurationqs in C, followed



by a projection process ofqs to try to make it fit insideCguide.
This projection process is for now only applied on the sampled
configurations, and on some discretization points along the
linear direct path. There is no guaranty, however, that the
whole continuous direct path is insideCguide.

Finally, we get algorithm 2, which is the adaptation of
algorithm 1 taking into account the previously discussed
points.p : Cfree −→ Cguide denotes the projection function.

Algorithm 2 contact-points guide planning

1: initialize G(V ← {qI , qG}, E ← ∅)
2: while no path found inG do
3: sample a random configurationqs in C
4: if qs ∈ Cfree then
5: apply projectionqp = p(qs) ∈ Cguide

6: for all qV ∈ V ∩ NEIGHBOURHOOD(qp) do
7: if (a discretization of)τd(qp, qV ) lies in Cguide

then
8: V.add(qp) andE.add(τd(qp, qV ))
9: end if

10: end for
11: end if
12: end while

We will now get into the detail of the different steps of
execution of algorithm 2, especially the lines 3 and 5.

B. Sampling random configurations

In this section we detail line 3 of algorithm 2.
Our humanoid robotR is represented as a kinematic tree of

m joints J1, . . . ,Jm . The root jointJ1 is a six-dimensional
free flyer that evolves in the C-spaceR3 × SO(3), or, if
the translations are bounded,[xmin, xmax] × [ymin, ymax] ×
[zmin, zmax]×SO(3). The remaining joints are revolute joints
yielding the C-space

∏m
i=2[θi,min, θi,max]. The total C-space

is consequently

C = R
3 × SO(3)×

m
∏

i=2

[θi,min, θi,max]

that we can write in a more expressive way as

C = Cposition × Corientation × Cposture

A random C-space variableQ is as such a vector
of three independent random C-space variablesQ =
(Qposition, Qorientation, Qposture).

1) Position sampling:Qposition can be either a uniform
random variable if the workspaceW is bounded or a spatial
Gaussian random variable otherwise.

2) Orientation sampling: For the orientation we would
like to bias the sampling in order to favor some interesting
orientations for a humanoid robot, such as the standing-up
orientation for a walk, the laying-down orientation for a crawl,
or a slightly front-leant orientation for a climb.SO(3) being
homeomorphic to the unit quaternion sphereS

3, we need a
random variable that looks like a Gaussian distribution on the

sphereS3 around one of its pointsq0 that would represent one
of the orientations above. TheVon Mises - Fisher distribu-
tion [8] achieves this very purpose. Given ameanunit vector
q0 and aconcentration parameterκ ∈ R

+, the probability
density function of the Von Mises-Fisher distribution on the
sphereS

p−1 ⊂ R
p is

fq0,κ(q) = Cp(κ) exp
(

κqT
0 q

)

Cp(κ) is a normalization constant

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)

whereIv denotes the modified Bessel function of the first kind
and orderv. The parameterκ controls the concentration of the
distribution aroundq0. The biggerκ the more concentrated
the distribution.κ = 0 yields a uniform distribution over
the sphere. An algorithm for simulating a Von Mises-Fisher
random variable is given in [9].

3) Posture sampling:Now we want to sample the posture
spaceCposture =

∏m
i=2[θi,min, θi,max]. We could immediately

choose forQposture a uniform random variable. However, this
would produce postures that once again are not interesting
enough for a humanoid robot, especially when the dimension
m − 1 of this manifold is relatively high (m − 1 = 30 in
our humanoid platform). To solve this problem we choose
to reduce the dimensionality ofCposture by sampling in the
affine space generated by the standing-up postureqkey

0
and a

certain number ofkey posturesqkey
1
, . . . , qkeyn

. These latter
postures should be relevant for a humanoid robot and could
represent for example the sitting-down posture, the four-legged
posture, etc. To remain within the joints limits, we consider
the bounded space

Cposture =

{

qkey
0
+

n
∑

i=1

λi(qkeyi
− qkey

0
) | (λi)i ∈ (Bn

k )+

}

where (Bn
k )+ is the positive quadrant of the unit ball of

dimension n for thek-norm ‖.‖k

(Bn
k )+ =

{

(λi)i ∈ [0, 1]n |
n

∑

i=1

λk
i ≤ 1

}

that we sample uniformly.

C. Projection process

We detail now line 5 of algorithm 2. What we mean by
projectionhere is an operation that tries to bring a given con-
figuration sample inCfree insideCguide. The idea of projection
was introduced in [10] and further investigated in [11]. The
solution we choose is to use astack of taskssolver based on
generalized inverse kinematicscalled hppGik and presented
in [12]. A task is a functionf : C −→ R that we would like
to bring to zero,i.e to solvef(q) = 0, q ∈ C. Suppose we have
sampled a random configurationqs. From this configuration we
want to compute a statically stable configuration, thus we have
to create contacts with the neighboring obstacles, given that
the more contacts we create the more stable the configuration



O

ti1ti3

ti2

ti4

Bi1

Bi2Bi3

Bi4

(a) Initial configuration. (b) First iteration. (c) Second iteration. (d) Final configuration statically sta-
ble.

Fig. 2. Illustration of the projection process.

is likely to be. On the other hand, the more contacts we
create the more we deform the original posture and reduce
the mobility for the next posture, this is why we should create
the “minimum” number of contacts to ensure the stability. To
create a contact between a bodyB and the obstacle regionO
we need to bring it to a distance closer thanεcontact. Let us
define thegoal point Agoal as the point translated fromAO

by a εcontact/2 distance followingn, and thegoal planPgoal

as the plan normal ton in Agoal. The task that we want to
formalise is “bring the pointAB in the planPgoal”, i.e. bring
to 0 the corresponding task function

f(q) = (
−−−−−−−→
AgoalAB(q)|n)

where(.|.) denotes the Euclidian scalar product. To solve the
task f(q) = 0 we implent theNewton’s methodfor finding
zeros of a function (the same idea is suggested [1]). To do so
we linearizef around a start configurationq0 as

f(q) ' f(q0) +
∂f

∂q
(q0).dq

wheredq = q − q0 and then we solve the linear system

f(q0) +
∂f

∂q
(q0).dq = 0

using generalized inverse kinematics to compute the pseudo-
inverse ofJ(q0) = ∂f

∂q (q0) that we denoteJ(q0)
†.The solution

q1 of the system is thus given by

q1 = q0 − J(q0)
†f(q0)

The Newton’s method consists in iterating again starting now
from q1, meaning that we construct a sequence(qn)n∈N

recursively as

qn+1 = qn − J(qn)†f(qn)

that supposedly converges to the solution. However, in our
task of bringing the body close to the obstacle, we do not
really need to converge to the exact solution, but rather to
converge towards a static stability situation, even thoughthis
latter is far from the exact solution. This is why we have
chosen the Newton’s method, as we can stop its execution
after each single iteration to test the static stability of the
intermediate solutions, and can reach the static stabilityafter
few iterations. Now we would like to bring not only one body
B close to the obstacle regionO, but the maximum number

of bodiesB1, . . . ,Bm to O, this means that we need to solve
the system of equations:

m
⋂

i=1

fi(q) = 0

or the linearized version
m
⋂

i=1

fi(q0) +
∂fi

∂q
(q0)dq = 0

The stack of tasks solverhppGik [12] allows us to solve
such a system withpriorities, meaning that it solves the first
equation, then it tries to solve the second equation at best while
remaining in the solution space of the first equation, and so
on. The priority we choose is the distance to obstacle, as we
try to bring closer with the highest priority the closest body
to the obstacles. Leti1, . . . , im ∈ {1, . . . , m} be the indexes
of the bodies sorted in increasing order of distance toO, i.e:

d(Bi1 ,O) ≤ d(Bi2 ,O) ≤ . . . ≤ d(Bim
,O)

ThehppGiksolver solves, in the order of priority, the following
stack of tasks:

m
⋂

j=1

tj : fij
(q0) +

∂fij

∂q
(q0)dq = 0

wheretj is the task of priorityj.
Finally we give algorithm 3 of the projection process, in

which we introduce one new task per iteration in order to
deform as little as possible the posture. We also stop the
process after a maximum number of iterations, after which
we discard the current configuration and we start again the
process with a newqs according to algorithm 2.

Algorithm 3 projection process
1: sample a random configurationqs

2: setq0 ← qs

3: COUNTER← 1
4: while q0 is not statically stable andCOUNTER <

MAX ITERATIONS do
5: sort the bodiesd(Bi1 ,O) ≤ . . . ≤ d(Bim

,O)
6: q0 ← solution of the stack of tasks(t1, . . . , tCOUNTER)
7: COUNTER← COUNTER+ 1
8: end while
9: return q0



We will now get into the detail of line 4 of algorithm 3, in
which we have to test the static stability of a configuration.

D. Testing the static stability

Suppose we have the robotR in configurationq and we
want to check whether or not it is statically stable in this
configuration, according to definition 2. In order to get a linear
system, we need to consider the modeling of each friction cone
CABi

,ni,θi
as discretepolyhedral conewith a finite number of

generatorsui,1, . . . ,ui,ni

CABi
,ni,θi

= C (ui,1, . . . ,ui,ni
)

=
{

ni
∑

j=1

λjui,j / λ1, . . . , λni
∈ R

+
}

which is the set of allnon negativelinear combinations of the
generators. With this modeling, we have

fi ∈ CABi
,ni,θi

⇐⇒ ∃ (λi,j)j=1..ni
∈

(

R
+
)ni

, fi =

ni
∑

j=1

λi,jui,j

allowing us to rewrite the static stability condition as a linear
problem

∃ (λi,j) i∈I(q)
j=1..ni

∈
∏

i∈I(q)

(

R
+
)ni

,

s.t.







∑

i∈I(q)
j=1..ni

λi,jui,j + mg = 0

∑

i∈I(q)
j=1..ni

MO(λi,jui,j) + MO(mg) = 0

The system of two 3-dimensional equations can be written as
a single 6-dimensional equation, putting

ai,j =

(

ui,j

MO(ui,j)

)

and v = −

(

mg

MO(mg)

)

the static stability condition then becomes

∃ (λi,j) i∈I(q)
j=1..ni

∈
∏

i∈I(q)

(

R
+
)ni

, s.t.
∑

i∈I(q)
j=1..ni

λi,jai,j = v

which can be read as the membership ofv in the cone
generated by theai,j vectors

v ∈ C (ai,j)i,j

To solve this system, we used some results that come from
the polyhedral convex cone theorythat we detail hereafter.

Polyhedral convex cone theory:Let C (a1, . . . ,am) be the
cone generated bya1, . . . ,am in R

n

C (a1, . . . ,am) =
{

m
∑

j=1

λjaj | λ1, . . . , λm ∈ R
+
}

the dual cone(also called thepolar cone) C p is defined as

C
p(a1, . . . ,am) =

{

x ∈ R
n | ∀i ∈ {1, . . . , m} xTai ≤ 0

}

Minkowski [13] demonstrated that the polar cone is a cone
too, i.e. ∃ b1, . . . ,bk ∈ R

n such that

C
p(a1, . . . ,am) = C (b1, . . . ,bk)

The Farkas lemma[14] states that(C p)
p

= C i.e.

C (a1, . . . ,am) = C
p(b1, . . . ,bk)

this result allows us to test the membership of a vectorx ∈ R
n

in the dual of the dual cone instead of the cone itself

x ∈ C (a1, . . . ,am)⇐⇒ x ∈ C
p(b1, . . . ,bk)

or

∃(λj)j ∈ (R+)m x =

m
∑

j=1

λjaj ⇐⇒ ∀i ∈ {1, . . . , k} xT bi ≤ 0

The second member of this latter equivalence is much easier
to check than the first one, if we could compute the vectors
b1, . . . ,bk. The Motzkin’s double description algorithm[15]
achieves this. We implemented a variation of the original al-
gorithm, proposed by Padberg [16], that allows us to compute
a minimal set of generators for the dual cone.

III. R ESULTS

We implemented the ideas presented in the previous section
within the HPP framework using KineoCAM’s software Kineo
Path Planner and KineoWorks as a core collision-free motion
planning and collision detection module. The model we used
for the humanoid robot is HRP-2 [17] which has 36 degrees
of freedom (including the free-flyer). The collision-free path
planning algorithms we choose are either basic PRM [5] or
bidirectional RRT [6].

The main scenario we considered is the highly constrained
one demonstrated in [3] which consists in standing up from
a chair and going away from a table. The robot is sitting on
the chair in initial configuration and is standing by the table
at final configuration. The guide obtained is shown in figure 3
while the contacts points plan is illustrated in figure 4. Using
the distance to goal as a potential function the robot ends
up climbing the table and the contacts planning stops after
having consumed all the memory resource of the computer.
With the provided guide the contacts planner finds the solution
in approximately 3h30min on a standard Pentium IV system,
after approximately 10min of computation for the guide.

Fig. 3. Guide planning for the out-of-table-and-chair scenario.

We also tested the guide planner on other scenarios on
which we have not yet tested the contacts planner, simply to
demonstrate the ability of the guide planner of going through
different situations (Figs. 5a and 5b).



Fig. 4. Contacts planning for the out-of-table-and-chair scenario following the guide provided by the contacts guide planner.

(a) Over the sofa.

(b) Through the tunnel.

Fig. 5. Different scenarios.

Although the gain in computing time that we achieve
at the contact-points planner’s level is theoretically infinite,
computing time at the contacts-guide planner’s level remains
relatively high for scenarios such as 5a and 5b (a few hours).
The time is consumed both on distance computation and stack
of tasks solving which are solicited at each iteration of the
algorithm.

IV. CONCLUSION

Improvements of our contacts guide planner are still possi-
ble and need to be considered, especially regarding line 7 of
algorithm 2. Ensuring that the continuous direct path linking
two configurations in guide space lies in the guide space
remains an unanswered question in our work. We also still
need to work on the linking method that computes the direct
path between two guide space’s configurations, and which
is for now a linear direct path linking method. We added a
dimension and thus “volume” toCguide in order to pass the
test line 7 with higher probability; however, a better solution
would be to apply a projection to the whole linear direct path
in order to make it fit insideCguide. These are all questions
we plan to investigate in future work.

ACKNOWLEDGMENT

This work is partially supported by grants from the
ROBOT@CWE EU CEC project, Contract No. 34002 under
the 6th Research programWWW.ROBOT-AT-CWE.EU and by
grants from the ImmerSence EU CEC project, Contract No.
27141WWW.IMMERSENCE.INFO (FET-Presence) under FP6.

REFERENCES

[1] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” inIEEE-RAS International Conference on Humanoid
Robots, 2005, pp. 7–12.

[2] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on HRP-2,” inIEEE/RSJ
International Conference on Intelligent Robots and Systems, 2006, pp.
2974–2979.

[3] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning support
contact-points for acyclic motions and experiments on HRP-2,” in
International Symposium on Experimental Robotics, 2008.

[4] S. M. LaValle,Planning Algorithms. Cambridge University Press, 2006.
[5] L. E. Kavraki, P. Svetska, J. C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,”IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, June 1996.

[6] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” inIEEE International Conference on
Robotics and Automation, 2000, pp. 995–1001.

[7] N. M. Amato, O. B. Bayazit, C. L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” inWorkshop
on Algorithmic Foundations of Robotics, 1998, pp. 155–168.

[8] K. V. Mardia and P. E. Jupp,Directional Statistics. Wiley, 2000.
[9] A. T. A. Wood, “Simulation of the von mises fisher distribution,”

Communications in statistics. Simulation and computation, vol. 23,
no. 1, pp. 157–164, 1994.

[10] J. Cortes, T. Simeon, and J. P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using PRM methods,”
in IEEE International Conference on Robotics and Automation, 2002,
pp. 2141–2146.

[11] M. Stillman, “Task constrained motion planning in robot joint space,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 3074–3081.

[12] E. Yoshida, O. Kanoun, C. Esteves-Jaramillo, and J. P. Laumond,
“Task-driven support polygon reshaping for humanoids,” inIEEE-RAS
International Conference on Humanoid Robots, 2006, pp. 208–213.

[13] H. Minkowski, “Theorie der konvexen korpern, insbesonder der begrun-
dung ihres oberflchenbegriffs,”Gesammelte Abhandlungen, vol. 2, pp.
131–229, 1911.

[14] J. Farkas, “Uber der einfachen ungleichungen,”Journal fuer die Reine
und Angewandte Mathematik, vol. 124, pp. 1–27, 1902.

[15] T. S. Motzkin, H. Raiffa, G. L. Thomson, and R. M. Thrall,“The double
description method,”Contributions to theory of games, vol. 2, pp. 51–73,
1953.

[16] M. W. Padberg,Linear Optimization and Extensions, 2nd ed. Springer,
1999.

[17] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” inIEEE
International Conference on Robotics and Automation, 2004, pp. 1083–
1090.


