
A Hierarchical Framework for Realizing Dynamically-stable
Motions of Humanoid Robot in Obstacle-cluttered Environments

Zhaopeng QIU, Adrien ESCANDE, Alain MICAELLI and Thomas ROBERT

Abstract—We address in this paper a hierarchical framework
for planning and simulating dynamic motions of humanoid
robots in cluttered environments. The robot is aimed to realize
a dynamic multi-step motion via a series of support (contact
or grasp) configurations. In this framework, a global CoM
(Center of Mass) trajectory is firstly generated which ensures
the balance during the motion; the whole-body collision-free
motion planning is then carried out locally for each transition
phase between support configurations; finally the generated tra-
jectories (CoM, end-effectors, joints) serve as control references
for realizing the dynamic motion. This framework has been
tested in a car-ingress scenario.

I. INTRODUCTION

A. Context

The high dimension of degrees of freedom (DoF) of
humanoid robots endues them good flexibility to adapt
their movements to various environments. However, the
high-dimensional DoFs make the motion planning a quite
challenging task: as one can imagine, when a humanoid
robot realizes a human-like motion in cluttered environments
like factories, offices or inside vehicles, it must be able to
autonomously self-navigate, maintain dynamic balance, build
and remove supports, avoid collisions with obstacles and
accomplish manipulations. Unlike simple motions such as
standing or walking on even ground, the motions in cluttered
environments are usually much more complex: they may be
acyclic, dynamic, and associated with various supports.

Realization of a humanoid’s dynamic motions in a clut-
tered environment involves multiple problematics including
motion planning, balance maintenance, collision avoidance,
motion control, inverse kinematics (IK), etc. Recent progress
in researches on these problematics brings more and more
exciting achievements, but up to now, there is not yet
an universal and efficient approach for realizing humanoid
motions in rather cluttered environments. Our study aims to
explore an efficient approach to this problem.

This paper is organized as follows: In section II we
present the related works on humanoid robot motion planning
and whole-body posture computing; In sections III-VI, we
present the hierarchical framework as well as the associated
approaches and algorithms at each level; The implementation
of this framework in a practical scenario and the results
are presented in section VII; Finally the conclusion and
perspectives concerning this study are given in section VIII.

Zhaopeng QIU and Thomas ROBERT are with the IFSTTAR - Uni-
versité Lyon 1, LBMC UMR T9406, France; Zhaopeng QIU and Alain
MICAELLI are with CEA LIST, Interactive Simulation Laboratory, France;
Adrien ESCANDE is with the CNRS-AIST JRL (Joint Robotics Laboratory)
UMI3218/CRT, AIST, Tsukuba, Japan.

II. RELATED WORK

In recent years, many researchers have contributed their
efforts in motion planning for humanoid robots. Numerous
methods have been proposed and successfully implemented
in digital or real humanoid robots.

Escande presents in [4] an algorithm for planning hu-
manoid robot’s contacts in very constrained environments
based on inverse kinematics, optimization and graph search-
ing techniques. In this algorithm, a sequence of optimal
contacts (between any part of the body and any feasible
environment surface) are automatically generated which can
navigate the robot to realize its quasi-static collision-free
motion in very complex scenarios. Zhang presents in [21] an
approach for planning whole-body motion by decomposing
the whole-body planning problem into a sequence of low-
dimensional problems. A constrained coordination sampling-
based planning approach is adopted for solving each sub-
problem incrementally under the constraints of collision-
freeness and statical balance. Hauser presents in [7] a non-
gaited locomotion planner for generating multi-step motions
of humanoid robots over uneven and sloped terrains. Numer-
ical IK method is used to satisfy the closed chain kinematics
constraint. A PRM (Probabilistic Roadmap) planner is used
to plan the transition for each step between two contact
configurations. In [7], only static equilibrium is considered,
namely limiting the position of the CoM of robot.

The above-mentioned methods have shown good results
for planning quasi-static movements, however, they would be
no longer valid when dynamic motions are desired as in most
situations in the real life. The timing consideration required
in the dynamic case brings more difficult balance constraints
and higher computational complexity to the planning task.

Kuffner and his colleagues have obtained excellent
achievements on a series of topics ([11], [12], [13]) from
footstep planning to dynamic motion generation. In [12],
they present a planning framework in which the RRT
(Rapidly-exploring Random Tree) method is for the first
time implemented in humanoid robot motion planning. A
collision-free statically-stable motion is firstly generated and
it is furthermore converted into a dynamic motion by being
zoomed in time. The dynamic balance is guaranteed by
filtering the output path via a dynamic filter “AutoBalancer”
[9] based on ZMP (Zero-moment point) criterion. Yoshida et
al. have presented their planning method [18], [19], [20] for
planning the motions of the robot HRP-2. The randomized
planning method can adjust the state dimension, namely the
controlled DoFs in the RRT algorithm. The dynamic balance

is guaranteed by confining the ZMP inside the support
polygon of the robot’s feet. The idea of tuning the number
of controlled states has inspired our work, but a general
method for adjusting the controlled state dimension is not
presented in their work. Harada presents in [6] a walking
pattern generator based planning method for humanoid robot.
Collision avoidance is firstly excluded in the motion gener-
ation. Then a PRM method is carried out for each period in
which collisions occur.

Despite the numerous works, planning dynamically-stable
motion in obstacle-cluttered environments is still an open
issue.

III. OVERVIEW OF THE WHOLE FRAMEWORK

The scheme of the hierarchical framework in our study
is shown in Fig. 1. It generates and realizes the humanoid’s
motion in a cluttered environment via three steps:

1) At the global level, by pre-defining a sequence of
support configurations, a global robust CoM trajectory with
timing information is firstly generated by an optimization-
based method. The humanoid robot maintains its dynamic
balance during the motion by tracking this trajectory.

2) At the local level, the whole-body collision-free mo-
tion that tracks the imposed CoM trajectory is generated
piecewisely for all the transition phases between stances. A
local sampling-based method is associated with a flying end-
effector (a hand or a foot) for planning locally its trajectory.

3) At the control level, the generated trajectories (CoM,
end-effector, joints) serve as control references so that the
humanoid can realize the motion by virtue of dynamic
controller.

Fig. 1. The hierarchical framework for realizing humanoid’s whole-body
dynamic motion in cluttered environments.

When applying this framework to realize motions in a
desired scenario, we should firstly supply the structured
environment including geometric primitives of all the objects
in it. A sequence of pre-defined support configurations as
well as some kinematic constraints for the motion are also
required.

Detailed methodologies at each level of the framework will
be presented in the following sections.

IV. GLOBAL ROBUST COM TRAJECTORY

At the first level, we compute a 3D CoM trajectory that
will ensure the humanoid’s dynamic balance during its mo-
tion. A method based on NURBS (Non-uniform rational B-
spline) and optimization technique is explored. The balance
criterion adopted in this method has been presented in [15],
[8], [1]. It is formulated in our study based on a simplified
humanoid model (see Fig. 2).

A. Balance constraint

Fig. 2. A mass-point model representing a humanoid robot with all its
mass at its CoM: p = [xcom, ycom, zcom]t. A contact force is limited
by the frictional cone. An upper bound is imposed on the magnitude of a
grasping force.

The CoM trajectory is expressed as:

p(t) = [x(t), y(t), z(t)]t, t ∈ [0, tf] (1)

The balance constraint is expressed as (we denote p(t) as
p for short):

Aiwp = Ai

[
m(p̈− g)
mp̂(p̈− g)

]
≤ bi (2)

where
• Ai and bi are constant which depend only on the i-th

support configuration;
• wp is named as “pseudo wrench” or “generalized

wrench” which describes dynamics of the model;
• p̂ is the 3×3 skew-symmetric matrix of vector p;
• g is the gravity vector.
Equation (2) defines a polytope [5] that is the admissible

space for wp. Suppose that Ai and bi are normalized H-
reprentation of this polytope, then the stability margin ([16],
[1]) is the smallest distance from point wp to facets of this
polytope:

ξ = min(bi −Aiwp) (3)

B. Spline trajectory representation

Suppose that the humanoid realizes its motion via nt
support configurations. We denote a timing vector for its
motion:

Tdist = [t0 = 0, t1, t2, · · · , tnt
= tf] (4)

which includes the entering time for each of the nt support
configurations and the total motion duration tf .

The trajectory is represented by a clamped 3D NURBS of
k-th degree with a knot vector (defined from 0 to 1):

T = [0, · · · , 0︸ ︷︷ ︸
k+1

,
t1
tf
, · · · , tnt−1

tf
, 1, · · · , 1︸ ︷︷ ︸

k+1

] (5)

and control points (of the same weight):

a = [ax,ay,az]t (6)

Both the timing vector and the control points are chosen as
variables that will be solved by optimization. The B-spline
as well as its derivatives can be expressed as functions of
the knots vector and the control points:

p(d)
s (t̄) = f(d)(T,a, t̄), d = 0, 1, · · · , k, t̄ ∈ [0, 1] (7)

By scaling in time, the real trajectory in Equation (1)
and its derivatives are mapped with the spline trajectories
in Equation (7) as:

p(d)(t) = [x(d)(t), y(d)(t), z(d)(t)]t =
1

tdf
p(d)
s (t̄), t = t̄ ∗ tf

(8)

C. Optimization problem statement

We compute the spline using optimization techniques. The
CoM trajectory is expected to be stable and robust, thus we
choose to maximize the lower bound of its stability margins.
Meanwhile, this trajectory should be realist and dynamic,
thus we add objectives of minimizing the jerk and the total
motion duration. The optimization problem is formulated as
follows:

V ariable : u = [ax,ay,az, t1, · · · , tnt , ξmin]t

Objective : max(lb), min(
...
p) and min(tnt)

Subject to :
ξmin > 0
for (ti−1 ≤ t < ti, i ∈ [1, 2, · · · , nt]) :

(bi −Aiwp(t)) ≥ ξmin

Aequ = beq,Anequ ≤ bneq,
fnl(u) ≤ 0

where
• ξmin is the lower bound for stability margins throughout

the motion;
• Aeq,beq,Aneq and bneq are linear constraint matrices

or vectors for imposing initial or final conditions and
lower bounds for time durations;

• function fnl(u) defines some non-linear constraints in
this problem such as the geometric constraints (e.g. leg
length).

Optimization solver calculates the optimal trade-offs
among multiple objectives mentioned above. Once the opti-
mization problem is successfully solved, we obtain the CoM
trajectory and time durations of all the transition phases
between stances.

V. LOCAL MOTION PLANNING

At the second level of our framework, we aim to plan
locally the humanoid’s whole-body collision-free motion.
The trajectories of end-effectors and joints generated at this
level will finally be used at the third level for realizing the
planned dynamic motion on a humanoid.

A. Problem statement

We have obtained at the first level the CoM trajectory
and the time distribution among the support configurations.
Thereafter, we plan the humanoid’s whole-body motion by
taking into account the CoM constraint, kinematic constraints
of supports and collision avoidance constraints. These con-
straints vary as the humanoid moves, thus we carry out the
planning work locally (for a transition phase instead of the
entire motion). The problem at this level can be formulated
as:

For : t ∈ [ti−1, ti], i = 1, 2, . . . , nt

Find : [pe(t), θθθe(t)] and qw(t)
s.t. : supports kinematics, CoM position and colli−

sion-freeness constraints
where
• qw(t) is a whole-body collision-free posture;
• [pe(t), θθθe(t)] is posture (position-orientation) vector of

a controlled end-effector.

B. Collision-free posture generator

A posture generator [3] is used in this work (see Fig. 3).
By imposing configurations of one or more bodies as well
as the CoM position, the posture generator can compute a
whole-body configuration that is collision-free (if it exists)
using optimization technique. A SQP (Sequential Quadratic
Programming) optimization solver is associated in posture
generator for solving the non-linearly constrained problem.

Fig. 3. Posture generator for computing whole-body posture with multiple
constraints such as CoM position, body configuration, collision avoidance,
etc.

Collision avoidance is integrated in the posture generator
as a series of inequality constraints. In order to save the com-
puting time, we adopt a sphere-sphere model for collision
checking. A series of bounding spheres are sampled for some
body segments of the humanoid robot and for the obstacles
in the environment (see Fig. 4). To avoid collisions between
a body segment and an obstacle, the distance between each
pair of their sampled spheres must be greater than zero. Self-
collision avoidance for a pair of body segments are defined
in the same manner.

Fig. 4. Collision avoidance: some body segments of the humanoid robot and
the obstacles are represented by a series of spheres for collision checking.

C. Flying end-effectors

We supply two options for solving the IK problem with
open chains of flying end-effectors: interpolating method and
sampling-based motion planning method.

We recall that the initial and final configurations of a flying
end-effector in each of its flight phases are already given
in the pre-defined support configuration sequence (see Fig.
5). Meanwhile, timing of each flight phase has also been
generated at the first level.

An option for solving the open chain IK problem is to
interpolate the flying end-effector’s trajectory using poly-
nomial functions. This trajectory then is inputted into the
posture generator for computing the whole-body collision-
free motion in this flight phase. This method is rapid but can
only be used in rather simple cases, such as a small step in
a local environment without nearby obstacles.

The second option is to use sampling-based motion plan-
ning method. Since the initial and final configurations as
well as the timing are known, we choose Bi-RRT (Bi-
directional Rapidly-exploring Random Trees) method for
motion planning in this case. Instead of exploring in hu-
manoid robot’s whole-body C-space (configuration space),
our Bi-RRT method is implemented in the flying end-
effector’s configuration-time space (C-t space) which is a
low-dimension (7D) space (see Fig. 6). The time dimen-
sion in this method makes it possible to impose the kine-
matic/kinodynamic constraints. The metric distance in the

Fig. 5. Illustrating the local planning for a flying foot associated with the
imposed CoM trajectory represented by the dashed curve.

Fig. 6. Bi-RRT in the configuration-time space of an end-effector. The new
random point (red) is rejected since the average velocity of the new path
segment surpasses the limit value. The C-obstacle sweeps the time interval
and results in a hyper-obstacle in the configuration-time space.

sampling space is computed by balancing position, orienta-
tion and time dimensions (see Appendix). An upper bound is
imposed on the average velocity of the end-effector in order
to avoid unrealism in term of brutal changes of whole-body
posture. Of course, the two trees must expand in an unique
direction along the time axis (time-increasing for the first
tree and time-decreasing for the second one).

Algorithm 1 addresses the Bi-RRT method. The two trees
are built by initializing their first node with respectively the
given configuration as well as its corresponding time. Since
the first node in each tree serves as the root, we impose its
parent to be null. The two trees then generate random sam-
pling nodes and try to connect with each other within at most
nit iterations. Function RANDOM-POINT() serves to gener-
ate the random sampling point prand within a user-defined
sampling space. Then function EXPAND() (see Algorithm
2) tries to generate a new node towards the sampling point
prand. Function NEAREST-NODE() returns the node pnear

of a tree that is nearest to prand. CHECK-VELOCITY()
checks whether the line connecting pnear and prand violates
the velocity limit; if not, LIMIT-METRIC() generates a new

point (candidate node) pnew lying on the line connecting
pnear and prand within a limited metric distance with
pnear. Then function CHECK-PG() verifies feasibility of the
candidate path segment (pnew to pnear): npg interpolating
points at the path segment is inputted one by one into posture
generator for imposing the flying end-effector’s configura-
tion. If no feasible posture is found, function EXPAND()
stops and the candidate node pnew is rejected. If function
CHECK-PG() returns the confirmative signal, pnew is then
added into the tree and its parent is labeled as the index of
the node pnear. Function GET-INDEX() returns the index of
a node in the node array of the tree.

Algorithm 1 GENERATE-RRT(qini, tini,qfin, tfin)
1: Tree1.p = (qini, tini), T ree2.p = (qfin, tfin)
2: Tree1.parent = 0, T ree2.parent = 0
3: for i = 1 to nit do
4: prand = [qrand, trand]← RANDOM-POINT()
5: EXPAND(Tree1, prand)
6: if IS-CONNECTED(Tree1, Tree2) then
7: break
8: end if
9: EXPAND(Tree2, prand)

10: if IS-CONNECTED(Tree1, Tree2) then
11: break
12: end if
13: end for

Algorithm 2 EXPAND(Tree, prand)
1: pnear ← NEAREST-NODE(Tree, prand)
2: if CHECK-VELOCITY(pnear,pnew) = TRUE then
3: pnew ← LIMIT-METRIC(pnear,prand, dlim)
4: for i = 1 to npg do
5: e← CHECK-PG(Tree.pnear,pnew)
6: if e = FALSE then
7: Break
8: end if
9: end for

10: Tree.p.PUSHBACK(pnew)
11: Tree.parent.PUSHBACK(GET-INDEX(pnear))
12: end if

The two trees connect to each other when the function
IS-CONNECTED() returns a confirmative signal. This func-
tion examines the nearest nodes pair between two trees.
When their distance is smaller than a threshold value, it
verifies the velocity constraint and the feasibility of the path
segment connecting this pair of nodes. If valid, the algorithm
connects the two trees, stops the iterations and returns the
solution path.

A smoothing algorithm is carried out for the generated
path in a iterative way. It samples randomly two points
lying on two different segments of the path and tests the
new segment connecting the two sampling points using

functions CHECK-VELOCITY() and CHECK-PG(). The path
is updated by replacing all portions between the two points
with a new valid segment. This smoothing operation is
carried out for a desired number of iteration. The smoothed
trajectory as well as the accordingly generated whole-body
posture are then exported to motion control level.

VI. DYNAMIC SIMULATION: EXECUTION OF THE
GENERATED MOTION

Once the work of the first two levels has been successfully
carried out, one should have obtained a set of trajectories
of the CoM, the controlled end-effectors and the joints.
All these data are thereafter used as motion references
for executing the generated movement on a humanoid via
dynamic controllers. Control strategies and techniques in this
context have been broadly presented in many studies ([10],
[17], [14], [2]). Multiple tasks should be defined for the
controller in the dynamic simulation. These tasks result in
multiple objectives for optimization solver of the controller
which are weighted according to their priorities. In our work,
several main tasks are defined including (in order of their
priorities):

Center of mass: the dynamic balance is ensured by the
global CoM trajectory. Thus, the CoM of the humanoid
should track precisely its pre-defined robust trajectory, in-
cluding the position, velocity and acceleration references;

End-effector: the posture of a flying end-effector should
track its trajectory generated by local planners, including the
position, orientation, translational and angular velocities, and
accelerations;

Supports: a contact or a grasp should be activated or
deactivated during the movement according to the motion
strategy. The wrenches applied at a contact or grasp are taken
into account in the motion control strategy;

Posture: the joints are also controlled and the reference
posture is exported to control the dynamic motion at the third
level of our framework.

VII. CASE STUDY: APPLICATION AND RESULTS

This section presents the implementation of our framework
in a complex car-ingress scenario.

An example motion of this scenario is shown in Fig.
7 which is a reconstructed motion based on real human
motion data recorded in Motion Capture experiments. In this
implementation, we aim to realize the car-ingress motion
in the same environment via the same sequence of support
configurations as in this example. The geometric features
of objects in this structured environment are listed in Table
I. The sampled spheres of obstacles (see Fig. 10) in this
environment are automatically generated beforehand. The
sequence and placements of supports in this motion are listed
in Table II and Table III.

A. Global CoM trajectory

After its buttock touches the seat, the humanoid will
be very safe from losing balance. Thus at the first level,

Fig. 7. A reconstructed car-ingress motion using Motion Capture data.
One can see the motion strategy in car-ingress scenario.

Environmental element Geometric primitives
H point [0, 0, 0]
Ground z = -485mm
Floor z = -231mm
Sill y = -402mm, z = -230mm
Roof y = -193mm, z = 933mm
Steering wheel d = 360mm, c = [-402, -10, 409]

(mm), θincli = 55.0◦

Rear pillar x = 236mm, θincli = 80.7◦

Front pillar x = -941mm
Seat A set of vertices

TABLE I
ENVIRONMENT PRIMITIVES SPECIFICATION IN THE CAR-INGRESS

EXAMPLE

Left foot 1 - 1 1 1 1 1 - - - 1 1
Right foot 1 1 1 - - 1 1 1 1 1 1 1
Left hand - - - - - - - - - - - 1
Right hand - - - - 1 1 1 1 - 1 1 1
Buttock - - - - - - 1 1 1 1 1 1

TABLE II
SEQUENCE OF SUPPORT CONFIGURATIONS: “1” INDICATES A VALID

SUPPORT

we generate the CoM trajectory for the period from the
beginning of the motion to the instant when the buttock
touches the seat. Accordingly, the first 6 support configura-
tions (gray columns in Table II) are used for computing the
balance constraints (polytopes) for the 6 transition phases
(nt = 6). A geometric constraint is imposed which limits the
distance from CoM to a foot contact center within 1.08m.
The minimum time durations for transitions phases are set
to be [0.15, 0.4, 0.1, 0.5, 0.6, 0.6](s). The above-mentioned
limits are determined according to experimental data.

The CoM trajectory generation is carried out in Matlab. A
5-th order B-spline which has 17 knots and 11 control points
is used to represent the CoM trajectory. The global CoM
trajectory (see Fig. 8) has been successfully generated within
3 minutes (on a workstation with Xeon 3.4GHz and 8GB of

RAM, same for following levels). The results are given in
Tabel IV. This trajectory has a lower bound of 19.4N · m
for stability margins throughout the movement.

Support Position (m) Orientation
(Euler angles
x-y-z)

Left foot [0.1912, -1.0636, -0.4852] [0, 0, 50◦]
[-0.2397, -0.7371, -0.4852] [0, 0, 90◦]
[-0.6512, -0.1054, -0.2317] [0, 0, 90◦]

Right foot [0.2834, -0.9368, -0.4852] [0, 0, 50◦]
[-0.6235, -0.0119, -0.2317] [0, 0, 90◦]

Right hand pini:[0.3720, -0.8323, 0.2697] −
pgrasp:[-0.4600, -0.0555, 0.5688] −

TABLE III
SUPPORT PLACEMENTS

Fig. 8. Generated CoM trajectory illustrated in the structured environment.

Variable Value
ax(m) [0.2350, 0.2350, 0.2492, 0.2763, 0.1825, -0.3005,

-0.2687, -0.2684, -0.3894, -0.1642, -0.0454]
ay(m) [-1.0112, -1.0112, -0.9860, -0.9350, -0.8688, -0.6894,

-0.7915, -0.5306, -0.5296, -0.2661, -0.1463]
az(m) [0.4659, 0.4659, 0.4635, 0.4505, 0.4260, 0.3694,

0.3299, 0.2706, 0.2336, 0.2153, 0.2104]
knots [0, 0, 0, 0, 0, 0, 0.1574, 0.2451, 0.4536, 0.5632,

0.8684, 1, 1, 1, 1, 1, 1]
Tdist (s) [0, 0.7176, 1.1176, 2.0679, 2.5679, 3.9592, 4.5592]
ξmin 19.4N ·m

TABLE IV
RESULTS OF THE GENERATED COM TRAJECTORY

B. Local planning

The right hand is supposed to move along a straight line
between its initial position and the grasp position at the
steering wheel. Thus its trajectory is generated by interpo-
lating between the two position which is then a 2nd-order
polynomial function of time. The first step of the left foot is
generated by interpolation with trigonometric functions.

Bi-RRT method is applied for two step phases in which
the humanoid steps both feet into the car. During the left
foot step phase, the buttock is always in contact with the
seat, thus the CoM constraint is not taken into account in the

Fig. 9. Feet trajectories generated at the second level for foot flight
phases. The body frame of a foot is chosen at its ankle joint. Generated
feet orientations are not shown in the figure.

posture generator. In several trials, the Bi-RRT can always
successfully find feasible paths in about 3-10 minutes for
both the two step phases. An example of exported smoothed
trajectories for the two feet is shown in Fig. 9. All the
trajectories (CoM, feet, right hand, joints) as well as the
velocities and accelerations are saved at a sampling time of
0.001s.

The planning time seems rather long for only an one-step
transition. Two reasons can be argued for this problem: 1)
collision avoidance adds hundreds of non-linear inequality
constraints in SQP solver in the posture generator, which
increases significantly the computing complexity; 2) the
feasible zone is narrow regarding the sampling space in Bi-
RRT method (it needs more than 100 iterations for generating
a path with less than 10 nodes), thus most of the planning
time is consumed for verifying non-feasible path segments
with posture generator.

C. Motion simulation

The motion execution at the control level is realized using
XDE R© software developed by CEA-LIST. The structured
virtual environment as well as the humanoid in this scenario
is shown in Fig. 10. The humanoid consists of 19 body
segments and it has 45 degrees of freedom. An impedance
controller is associated with the humanoid to actuate its
movement. Trajectories generated at the first two levels are
imported for defining a series of tracking tasks. The time step
of simulation is chosen as 5ms. Some clips of the motion
simulation are shown in Fig. 11. The virtual humanoid robot
realizes successfully the car-ingress motion, which validates
the methods in our framework.

VIII. CONCLUSION

In this paper, we present a hierarchical framework for
planning dynamic collision-free motions for humanoid robots
moving in a cluttered environment. In order to avoid the time-
consuming planning task in high-dimensional configuration
space of the robot, we decompose and carry out the motion
planning task in two steps (first two levels of the framework):
at the global level, based on a simplified model, a robust
dynamically stable CoM trajectory is generated beforehand
which will be used for ensuring the dynamic balance during

Fig. 10. Structured virtual environment and the humanoid for motion
simulation in a car-ingress scenario under XDE R©. The humanoid is in its
initial stance for realizing the planned car-ingress motion.

the movement; then at the local level, whole-body collision-
free movement that tracks the global robust CoM trajectory
is generated locally. The CoM trajectory, the end-effector
trajectories and the whole-body postures are used as tracking
references at the third level of the framework for motion
simulation. A humanoid robot can realize the generated
dynamic motion with help of dynamic controller. We have
successfully applied this framework for simulating a car-
ingress motion.

This framework shows advantage in the following aspects:
1) General support types: In this framework, dynamic

balance can be guaranteed for various kinds of supports:
planar contact, non-planar contact, grasp. Accordingly, this
framework can be applied for realizing humanoid’s motions
in more complex environments and more general scenarii.

2) Planning efficiency: Instead of carrying out time-
consuming planning in a global scope, we generate the
motion with local planning. In this way, the computational
complexity of the planning task can be significantly de-
creased since it can be executed in a lower dimensional space
(for one end-effector instead of the whole body).

In the future, we should improve this work in the following
aspects:
• Generation of the sequence of support configurations;
• Whole-body considerations in the generation of the

CoM trajectory;
• Improve the naturalness of the final whole-body motion.

IX. ACKNOWLEDGMENTS

This study is part of a PhD thesis co-funded by two
institutes: CEA and IFSTTAR.

APPENDIX

METRIC DISTANCE IN BI-RRT METHOD

In Bi-RRT method, each sampled point in an end-effector’s
C-t space is a 7D vector:

p = [g, θθθ, t] = [x, y, z, α, β, γ, t] (9)

which consists of its position, its orientation and the time.

Fig. 11. Clips of the dynamic motion of humanoid in simulation of a car-ingress scenario

Relying on Rodrigues′ rotation formula, we define the
metric distance between two points p1 and p2 in the C-t
space as:

d(p1,p2) =√
‖g1 − g2‖2 + λ1 ‖log(R(θθθ1, θθθ2))‖2 + λ2(t1 − t2)2

(10)
where:

• λ1 and λ2 are scalars for balancing the relative weights
among translation, rotation and time metrics.

In order to limit the translational and rotational velocity,
we need to compute the change rate of the configuration (can
be regarded as the slope regarding the time axis):

v(p1,p2) =
‖g1 − g2‖
|t1 − t2|

(11)

ω(p1,p2) =
‖log(R(θθθ1, θθθ2))‖
|t1 − t2|

(12)

REFERENCES

[1] S. Barthélemy and P. Bidaud. Stability measure of postural dynamic
equilibrium based on residual radius. Advances in Robot Kinematics:
Analysis and Design, pages 399–407, 2008.

[2] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle. Dynamic balance
control of humanoids for multiple grasps and non coplanar frictional
contacts. In Humanoid Robots, 2007 7th IEEE-RAS International
Conference on, pages 81–88. IEEE, 2007.

[3] A. Escande, A. Kheddar, and S. Miossec. Planning support contact-
points for humanoid robots and experiments on hrp-2. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on,
pages 2974–2979. IEEE, 2006.

[4] A. Escande, A. Kheddar, S. Miossec, and S. Garsault. Planning
support contact-points for acyclic motions and experiments on hrp-
2. In Experimental Robotics, pages 293–302. Springer, 2009.

[5] B. Grunbaum and GC Shephard. Convex polytopes. 1967.
[6] K. Harada, S. Hattori, H. Hirukawa, M. Morisawa, S. Kajita, and

E. Yoshida. Motion planning for walking pattern generation of
humanoid. In Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pages 4227–4233. IEEE, 2007.

[7] K. Hauser, T. Bretl, and J.C. Latombe. Non-gaited humanoid locomo-
tion planning. In Humanoid Robots, 2005 5th IEEE-RAS International
Conference on, pages 7–12. IEEE, 2005.

[8] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa. A universal stability criterion of the
foot contact of legged robots-adios zmp. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pages 1976–1983. IEEE, 2006.

[9] S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, and H. Inoue. Autobal-
ancer: An online dynamic balance compensation scheme for humanoid
robots. In Proc. Int. Workshop Alg. Found. Robot.(WAFR), 2000.

[10] O. Khatib, L. Sentis, J. Park, and J. Warren. Whole body dynamic
behavior and control of human-like robots. International Journal of
Humanoid Robotics, 1(1):29–43, 2004.

[11] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Online
footstep planning for humanoid robots. In Robotics and Automation,
2003. Proceedings. ICRA’03. IEEE International Conference on, vol-
ume 1, pages 932–937. IEEE, 2003.

[12] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion
planning for humanoid robots under obstacle and dynamic balance
constraints. In Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, volume 1, pages 692–698.
IEEE, 2001.

[13] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.
Dynamically-stable motion planning for humanoid robots. Au-
tonomous Robots, 12(1):105–118, 2002.

[14] J. Park and O. Khatib. Contact consistent control framework for
humanoid robots. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 1963–
1969. IEEE, 2006.

[15] Z. Qiu, A. Escande, A. Micaelli, and T. Robert. Human motions
analysis and simulation based on a general criterion of stability. In
First International Symposium on Digital Human Modeling. IEA,
2011.

[16] T. Robert, Z. Qiu, J. Causse, A. Escande, and A. Micaelli. A dynamic
stability analysis of the sit-to-stand transfer. In ISB 2011. ISB, 2011.

[17] L. Sentis and O. Khatib. Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives. International Journal of
Humanoid Robotics, 2(4):505–518, 2005.

[18] E. Yoshida. Humanoid motion planning using multi-level dof exploita-
tion based on randomized method. In Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages
3378–3383. IEEE, 2005.

[19] E. Yoshida, I. Belousov, C. Esteves, and J.P. Laumond. Humanoid
motion planning for dynamic tasks. In Humanoid Robots, 2005 5th
IEEE-RAS International Conference on, pages 1–6. IEEE, 2005.

[20] E. Yoshida, C. Esteves, T. Sakaguchi, J.P. Laumond, and K. Yokoi.
Smooth collision avoidance: Practical issues in dynamic humanoid mo-
tion. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 827–832. IEEE, 2006.

[21] L. Zhang, J. Pan, and D. Manocha. Motion planning of human-like
robots using constrained coordination. In Humanoid Robots, 2009.
Humanoids 2009. 9th IEEE-RAS International Conference on, pages
188–195. IEEE, 2009.

