
IMA Journal of Numerical Analysis (2015) Page 1 of 13
doi:10.1093/imanum/drnxxx

Fast closest logarithm algorithm in the special orthogonal group

ADRIEN ESCANDE†
CNRS-AIST JRL (JOINT ROBOTICS LABORATORY), UMI3218/RL

AIST CENTRAL 2, 1-1-1 UMEZONO, TSUKUBA, IBARAKI 305-8568 JAPAN

[Received on 11 May 2015]

For interpolating between elements of SO(n), it is attractive to work in so(n), passing from one space
to the other via the exponential map. However, the logarithm is a multi-valued map and the choice of
a particular image affects the quality of the interpolation. In this paper, we propose a fast and accurate
algorithm to compute the image that seems the most appropriate for interpolation: given Q ∈ SO(n) and
A ∈ so(n), our algorithm returns the logarithm of Q which is the closest to A, under minimal conditions
on Q. We carefully study the mathematical properties of our problem to establish the algorithm, discuss
its implementation and demonstrate its efficiency.

Keywords: Interpolation, special orthogonal group, logarithm

1. Introduction

Given real numbers t1 < t2 < · · ·< tp and a sequence (Q1,Q2, . . . ,Qp) of elements of SO(n) (n> 2), the
special orthogonal group of dimension n, let us consider the following interpolation problem, which has
applications in many engineering fields:

find Q : [t1, tp]−→ SO(n)
such that Q(ti) = Qi i = 1..p (1.1)

with Q being continuous and derivable up to a given level.
This is a not trivial problem since SO(n) is a non-Euclidean space. A classical way to solve it is to

make use of the exponential map and work in so(n), the Lie algebra associated to SO(n). Indeed, so(n)
is a vector space that can be seen as a subspace of Mn(R), the space of n×n matrix over R. Thus, having
found matrices Ai ∈ so(n) such that eAi = Qi for i = 1..p, we can interpolate component by component
with usual algorithms to get an interpolation function A : [t1, tp]−→ so(n) satisfying A(ti) = Ai. Then

Q(t) = eA(t) (1.2)

is a solution to the problem (1.1). The smoothness properties of Q derive from those of A thanks to the
exponential function.

The difficulty of this approach comes from the fact that the logarithm map is multi-valued: there are
infinitely many matrices Ai (we enumerate them later) such that eAi =Qi. A reasonable choice is to select
the Ai to minimize the variations of the interpolating function. These Ai do not however necessarily

†Corresponding author. Email: adrien[dot]escande[at]gmail[dot]com.
This work was partially funded by a grant from the Japan Society for Promotion of Science (JSPS; Grant-in-Aid for JSPS Fellows
P13786) and the FP7-ICT-2013-10/611909 KOROIBOT Project.

c© The author 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

2 of 13 A. ESCANDE

1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Re(Q)

Im(Q)

Im(Qk)

Re(Qk)

1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Re(Q)

Im(Q)

Im(Qk)

Re(Qk)

FIG. 1. Two possible interpolations for the key points given in eq. (1.3). The interpolating function Q(t) is depicted by its real
(plain blue curve) and imaginary (dashed orange curve) parts. In the left picture, Q is obtained by interpolating between the
principal logarithms of (Q1, . . . ,Q6). For the right picture, a more adequate choice of logarithms was made. Red and indigo
markers show the real and imaginary parts of the key points.

correspond to the principal branch of the logarithm as we illustrate with the simple following example
in SO(2), that we identify with the unit circle in the complex plane: let us interpolate the sequence

(Q1, . . . ,Q6) =

(√
3

2
+

1
2

i, i,−
√

3
2

+
1
2

i,−
√

3
2
− 1

2
i,−i,

√
3

2
− 1

2
i

)
(1.3)

for ti = 1..6, where i is the imaginary unit.
The principal logarithms are (iπ/6, iπ/2,5iπ/6,−5iπ/6,−iπ/2,−iπ/6), but the expected interpolation
is obtained with (for example) (iπ/6, iπ/2,5iπ/6,7iπ/6,3iπ/2,11iπ/6), as show in Fig. 1.

The choice of the appropriate logarithm is rather obvious in this example (and more generally in
SO(2)): for Q1, any choice is valid, in particular the principal logarithm. Then given a choice Ai for Qi,
we chose among the possible Ai+1 the one which is the closest to Ai, so that the distance between two
consecutive Ai is at most π .

In this paper, we want to extend this approach to SO(n). To do so, we focus on the following
problem: for Q ∈ SO(n) and A ∈ so(n), compute X = logA(Q) defined as the (if unique) element of
so(n) the closest to A which is a logarithm of Q:

min.
X∈so(n)

1
2 ‖X−A‖2

F

s.t. eX = Q
(1.4)

where ‖.‖F denotes the Frobenius norm.
The problem of computing the adequate logarithm was already addressed in Shingel (2009), in

which the author proposes an iterative Newton-like algorithm to approximate the closest logarithm
with quadratic convergence. Each iteration requires to build a so-called reduced commutator matrix
(see. Bloch & Iserles (2005)) of dimension m = n(n−1)/2, compute a function of it using Padé approx-
imation, then solve a m×m linear system. Each iteration has thus a complexity of O(n6), so that the
algorithm can only be applied for small values of n. Furthermore, the algorithm converges only when
Qk+1 is close enough of Qk. This proved to be a serious limitation when we wanted to use random Qk.

FAST CLOSEST LOGARITHM ALGORITHM 3 of 13

We propose here an algorithm in O(n3) valid almost everywhere on SO(n). This algorithm is based
on two steps. We first give an expression of all the logarithms of an element of SO(n). Except in
particular cases, there are countable many possibilities, so that we can rewrite problem (1.4) as an
optimization problem on Zr (for some r defined later), known as the Closest Lattice Vector Problem
(CVP) (see Agrell et al. (2002); Hanrot et al. (2011)). We then show that, despite this problem being
NP-hard in the general case, we can compute an exact solution very easily, thanks to a particularity of
our case.

The paper is organized as follows: in section 2, we give the definitions and theorems necessary to
establish our algorithm. The algorithm itself is written in section 3 along with implementation consid-
erations, while the proofs of the theorems are delayed to section 4. We then present some experimental
results and validations (section 5) and conclude the paper (section 6). Some of the longer proofs are
given in the appendices.

In the rest of the paper, we adopt the following notations: Mn(K) denotes the set of n-by-n matrices
over the field K, and 0n and In are its zero and identity elements. 〈., .〉 is the Frobenius inner product
and, with vec(M) the vectorization of the matrix M, i.e. its representation as a vector of its elements,
〈M1,M2〉= vec(M1)

T vec(M2). M∗ is the conjugate transpose of M. b.c denotes the floor function, and
round(.) the rounding to the nearest integer.

2. Main results

Problem (1.4) is a constrained least-square program over so(n). We first transform it to an unconstrained
program by finding a general expression for the solutions of eX = Q for Q ∈ SO(n) and X ∈ so(n).

The real Schur decomposition of Q is Q = UDUT with U ∈ O(n) and D a block diagonal matrix
(see Horn & Johnson (2013, Corollary 2.5.11(c))):

D =


D1

. . .
Dr

Iodd

 , Di =

[
cosθi −sinθi
sinθi cosθi

]
∈ SO(2) (2.1)

with Iodd an empty matrix if n is even or Iodd = I1 if n is odd, and r = bn/2c. U can be chosen so that
06 θi 6 π and the Di appear by decreasing order of θi. The first matrices Di groups the −1 eigenvalues
(if any) which always occur by pair and correspond to θi = π . Likewise, the +1 eigenvalues are grouped
2-by-2 in the last Di with θi = 0, leaving a single eigenvalue 1 alone if n is odd.

Let us then define the following matrices:

F0 =

[
0 −1
1 0

]
, F̄i =

02i−2
F0

0n−2i

 , and Xi =UF̄iUT , i = 1..r (2.2)

so that Di = eθiF0 , D = e∑θiF̄i (since the F̄i commute), and Q = Ue∑θiF̄iUT = eU(∑θiF̄i)UT
= e∑θiXi .

Denoting ui the i-th column of U , note that Xi is simply obtained by Xi = u2iuT
2i−1−u2i−1uT

2i.
Throughout this paper we consider the following hypothesis for Q:

H : θi 6= θ j for all 16 i 6= j 6 r and θr 6= 0 if n is odd

The second part of the hypothesis implies that Q has no more than 2 eigenvalues equal to 1.
H is satisfied almost everywhere on SO(n).

4 of 13 A. ESCANDE

Our first main result is the next theorem:

THEOREM 2.1 Let Q ∈ SO(n) satisfying H and U , Xi and r defined as above. Then all the real skew-
symmetric solutions to eX = Q are given by

X =
r

∑
i=1

(θi +2kiπ)Xi, (k1, . . . ,kr) ∈ Zr (2.3)

With this result, problem (1.4) becomes the following unconstrained program, where X0 = ∑θiXi:

min.
k∈Zr

1
2

∥∥∥∥∥X0 +2π

r

∑
i=1

kiXi−A

∥∥∥∥∥
2

F

(2.4)

which can be solved easily thanks to a property of the Xi, giving us our second main results:

THEOREM 2.2 Let Q ∈ SO(n) satisfying H , A ∈ so(n) and X0 ∈ so(n) such that eX0 = Q. A solution
to problem (1.4) is

X = X0 +2π

r

∑
i=1

k∗i Xi with k∗i = round
(
〈Xi,A−X0〉

4π

)
(2.5)

This solution is unique if for i = 1..r,
1
2
〈Xi,A−X0〉 6≡ π (mod 2π).

We conclude this section with the remark that log0(Q) is the principal logarithm of Q:

THEOREM 2.3 Take A = 0. If H holds and Q has no −1 eigenvalue, the solution to problem (1.4) is
the principal logarithm of Q.

3. Implementation

To solve problem (1.4), we need to compute first X0 and the Xi, then apply eq. (2.5). Matrices Xi also
appear in Gallier & Xu (2003) where they are obtained by solving m = n(n−1)/2 systems of size r with
the same Vandermonde matrix. This matrix quickly becomes very poorly conditioned as n increases, so
that the computation of the Xi is completely wrong when n is more than a few units. On the contrary,
performing a real Schur decomposition of Q and computing X0 and the Xi from it is both a fast and
numerically stable solution. The final algorithm can be sum up as follows:

Algorithm 3.1 logA(Q)

(i) compute the real Schur decomposition Q =UDUT with D as in eq. (2.1)
(ii) let Xi = u2iuT

2i−1−u2i−1uT
2i for i = 1..r

(iii) compute the angle θi corresponding to Di for i = 1..r
(iv) let X0 = ∑θiXi

(v) let ki = round
(
〈Xi,A−X0〉

4π

)
for i = 1..r

(vi) return X = X0 +2π ∑kiXi

In practice, there are few chances that a built-in Schur decomposition routine gives D with the re-
quired structure, as the Schur decomposition is only unique up to a permutation of the diagonal blocks

FAST CLOSEST LOGARITHM ALGORITHM 5 of 13

and the signs of the off-diagonal elements (the sinuses) is arbitrary. In particular, the −1 and +1 eigen-
values might be mixed together or with the 2×2 blocks. There will be the need to apply proper permu-
tations and reflexions. Numerically, it is necessary to decide when a diagonal value Di,i is considered as
a −1 or +1 eigenvalue. Instead of comparing directly the value to ±1 with a given precision, it is more
precise to look at the neighbor values, i.e. to test if |Di+1,i|6 ε and |Di,i+1|6 ε , with ε a user-specified
threshold (we typically take 5×10−14 for 64-bit floats). This is because, numerically, cosθ = 1 as soon
as |θ |<

√
2εm, with εm the machine precision, while sinθ has the same precision as θ .

The proper implementation of step (iii) is of course to use a built-in atan2 function, i.e. taking
θi = atan2(D2i−1,2i,D2i−1,2i−1). The Frobenius inner product of step (v) should be implemented as
vec(Xi)

T vec(A−X0): the vectorization is costless as matrices are internally represented by 1-dimensional
arrays, so the computation is simply a dot product.

The algorithm should check the properties of Q during its run: if Q is not in SO(n), an error must be
returned; if H does not hold, a warning can be printed. The former can be checked cheaply after the
Schur decomposition in step (i), from the form of D and ensuring that each Di is in SO(2). The latter is
to be checked after step (iii).

If A= 0, the algorithm can be stopped at step (iv) and return X0, which is then the principal logarithm
of Q if the hypothesis of Theorem 2.3 holds. In this case, the implementation of the algorithm in Matlab
is 5 to 20 times faster than the built-in logm function. This is not surprising since logm does not take
into account the fact that Q is an element of SO(n).

Theoretically, the most costly step of the algorithm is the Schur decomposition whose complexity
is O(n3) (see Golub & Van Loan (1996, p. 359)). Steps (ii) and (v) are r repetitions of an operation in
O(n2), so in O(n3) as well. The accumulations in steps (iv) and (vi) are also in O(n3). Lastly, step (iii)
is in O(n). The algorithm has thus a complexity of O(n3).

4. Proofs of the main results

4.1 Commuting matrices

The proof of Theorem 2.1 relies heavily on matrices commuting with D and F = ∑(θi + 2kiπ)F̄i. We
restrict to the case where 06 θi 6 π and H is satisfied to give the characteristics of such matrices.

With M denoting the set
{[

m1 −m2
m2 m1

]
,(m1,m2) ∈ C2

}
, we have the two following theorems:

THEOREM 4.1 Let D be defined as in eq. (2.1) with 06 θi 6 π and H satisfied. M ∈Mn(C) commutes
with D if and only if (iff)

M =


M1

. . .
Mr

αIodd

 , with α ∈ C and
{

Mi ∈M2(C) if θi = 0 or θi = π

Mi ∈M otherwise (4.1)

THEOREM 4.2 Let F be defined as above, with 0 6 θi 6 π and H satisfied. M ∈Mn(C) commutes
with F iff

M =


M1

. . .
Mr

αIodd

 , with α ∈ C and
{

Mi ∈M2(C) if θi = 0 and ki = 0
Mi ∈M otherwise (4.2)

6 of 13 A. ESCANDE

The proof of both theorems is given in Appendix A.
It is also useful to study under which similarity a skew-symmetric matrix remains skew-symmetric:

LEMMA 4.1 Let A be a non-zero skew-symmetric matrix, and U a non-singular matrix. UAU−1 is
skew-symmetric iff UTU commutes with A

Proof.
(
UAU−1

)T
=−UAU−1 ⇐⇒ U−T ATUT =−UAU−1 ⇐⇒ U−T AUT =UAU−1 ⇐⇒ AUTU =

UTUA �

LEMMA 4.2 Let A ∈ so(2), A 6= 0. For U non-singular matrix, UAU−1 is skew-symmetric iff U ∈M

Proof. From the previous lemma, UTU commutes with A so UTU ∈M . Since UTU is symmetric, this
implies that UTU = aI2 for some a. We thus have U = bV with b2 = a and V a unitary matrix, therefore
U ∈M . Conversely, for any non-singular matrix U in M , UAU−1 is skew-symmetric. �

4.2 Enumeration of solutions for eX = Q

In this section, we prove Theorem 2.1. The starting point is a theorem from Gantmacher (1959, p. 241):

THEOREM 4.3 For a non-singular complex matrix Q with Jordan canonical form ZJZ−1 and J =
diag(J1, . . . ,Jr), the general solution to the equation eX = Q is

X = ZM

L1
. . .

Lr

M−1Z−1, with Li = log(Ji)+2ikiπIri , ki ∈ Z (4.3)

where ri is the size of i-th Jordan block Ji, log(Ji) is a logarithm of Ji (typically the principal logarithm
when defined) and M is a non-singular (complex) matrix which commutes with J.

Culver (1966) examines the conditions for the form (4.3) to be real and possibly unique. In this
section, we adapt the solution (4.3) to the case of Q ∈ SO(n) satisfying H and X ∈ so(n).

For Q ∈ SO(n), the Jordan canonical form is simply the eigenvalue decomposition. Introducing

P0 =
√

2/2
[

i −1
1 −i

]
and P = diag(P0, · · · ,P0, Iodd), which are both unitary matrices, this decomposition

can be obtained from the real Schur decomposition as Q =UPCP∗UT with

C = P∗DP =


C1

. . .
Cr

Iodd

 , Ci =

[
cosθi + isinθi 0

0 cosθi− isinθi

]
(4.4)

Let Eodd be the empty matrix if n is even and
[
2ikoddπ

]
otherwise, kodd ∈ Z. By applying Theo-

rem 4.3 to eq. (4.4) we get the form of the solution X = UPMEM−1P∗UT where M is a non-singular
matrix commuting with C and

E =


E1

. . .
Er

Eodd

 , Ei = i
[

θi +2kiπ 0
0 −θi +2k′iπ

]
, (ki,k′i) ∈ Z2 (4.5)

FAST CLOSEST LOGARITHM ALGORITHM 7 of 13

X cannot be real skew symmetric unless its eigenvalues are either 0 or purely imaginary and occurring
by conjugate pairs. When H holds, this implies that k′i =−ki and Eodd = 0. Then we define

Fi = P0EiP∗0 = (θi +2kiπ)F0 and F =


F1

. . .
Fr

0odd

= ∑(θi +2kiπ)F̄i (4.6)

and the solution writes X =UPMP∗FPM−1P∗UT , for M non-singular matrix commuting with C. Not-
ing that MC = CM ⇐⇒ MP∗DP = P∗DPM ⇐⇒ PMP∗D = DPMP∗, X can finally be expressed as
UMFM−1UT with M a non-singular matrix commuting with D. Such a matrix M is obtained with
theorem 4.1.

The Fi are in so(2) and thus F is in so(n). Yet this last form of X may not be skew-symmetric,
depending on the choice of M. According to Lemma 4.1, it is skew-symmetric iff (UM)T (UM) = MT M
commutes with F . MT M has thus the form given by Theorem 4.2.

We can now state an intermediate result (which can actually be proven even if H does not hold,
with a careful handling of ki, k′i, k j, k′j when θi = θ j):

THEOREM 4.4 Let Q ∈ SO(n) satisfying H and UDUT be its real Schur decomposition. The real
skew-symmetric solutions to the equation eX = Q are all the matrices UMFM−1UT where F is given by
eq. (4.6) with (k1, . . . ,kr) ∈ Zr and M is a non-singular matrix commuting with D and such that MT M
commutes with F .

A matrix M as described by this theorem has the form given by Theorem 4.1 with each Mi a non-
singular element of M and α 6= 0. Indeed, if θ1 = π , Theorem 4.1 implies than M1 can be any ma-
trix, but the requirement that MT M commutes with F enforces that MT

1 M1 commutes with F1, yielding
(Lemma 4.2) that M1 ∈M . Same goes for Mr if θr = 0. In the other cases, and for M2 to Mr−1,
Theorem 4.1 implies that Mi ∈M , and MT

i Mi automatically commutes with Fi.
According to Theorem 4.2, such a matrix M commutes with F . Then X =UMFM−1UT =UFUT =

U ∑(θi +2kiπ)F̄iUT = ∑(θi +2kiπ)Xi which proves Theorem 2.1.
For Q respecting H , there is a countable infinity of solutions. To the contrary, if Q does not respect

H , the number of solutions is a non-countable infinity: only the diagonal blocks of M corresponding to
unique θi commute with the associated Fi so that their choice does not matter. The choice of the others
does impact the solution.

4.3 Formulation as a CVP and solution

In this section, we prove Theorem 2.2. We rely on the orthogonality of the Xi:

THEOREM 4.5
〈
Xi,X j

〉
= 2δi, j (δi, j the Kronecker delta).

Proof. If i = j,
〈
Xi,X j

〉
= ‖Xi‖2

F = ‖F̄i‖2
F = ‖F0‖2

F = 2, using the fact that U is orthogonal to pass from
Xi to F̄i (see Horn & Johnson (2013, p.342)).
If i 6= j, we use the fact that on so(n) 〈A,B〉=− trace(AB) and XiX j =UF̄iF̄jUT = 0. �

Let us denote A′ = A−X0, a′ = vec(A′), and N =
[
vec(X1) · · · vec(Xr)

]
. Since for any ma-

trix M, ‖M‖2
F = ‖vec(M)‖2

2 and by linearity of the vec operator, we have ‖X0 +2π ∑kiXi−A‖2
F =

‖vec(X0 +2π ∑kiXi−A)‖2
2 = ‖2π ∑ki vec(Xi)−vec(A′))‖2

2 = ‖2πNk−a′‖2
2.

8 of 13 A. ESCANDE

Under hypothesis H , problem (1.4) is thus ultimately reformulated as

min.
k∈Zr

∥∥2πNk−a′
∥∥2

2 (4.7)

This latter formulation is known as the Closest Lattice Vector Problem (CVP) (see Agrell et al. (2002);
Hanrot et al. (2011) for comprehensive surveys of the subject) and is NP-hard in the general case. In
our particular case however, we have NT N = 2Ir as a consequence of Theorem 4.5, so that the solution
of the problem is extremely simple to compute, using the following theorem:

THEOREM 4.6 Let f (x) = xT x− qT x for some q ∈ Rr. Let x0 be the minimizer of f over Rr. A
global minimizer x∗ of f over Zr is obtained by rounding each component of x0 to the nearest integer:
x∗ = round(x0).
If no component of x0 has a decimal part equal to 0.5, the solution is unique.

Proof. See appendix B. �
Taking q = 1

2π
NT a′, solving eq. (4.7) is equivalent to minimizing the quantity kT k− qT k whose

minimizer over Rr is k0 =
1

4π
NT a′ and thus, whose minimizer over Zr is, according to Theorem 4.6,

k∗ = round
(

1
4π

NT a′
)
=
[
round

(1
4π
〈X1,A−X0〉

)
· · · round

(1
4π
〈Xr,A−X0〉

)]T (4.8)

Theorem 2.2 is a direct consequence of the above results. The uniqueness condition is obtained by
writing that the decimal part of 1

4π
〈X1,A−X0〉 must not be 0.5.

Note that X0 can be any specific skew-symmetric solution to eX = Q, not necessarily ∑θiXi since
shifting X0 by ∑2k0

i π for a given k0 will yield a solution with k∗− k0 instead of k∗.
If Q has no −1 eigenvalue, then 0 6 θi < π and X0 = ∑θiXi is the principal logarithm of Q. For

A = 0, 1
4π
〈Xi,A−X0〉=−

1
2pi

θi due to the linearity of vec and Theorem 4.5, and −1
2
<− 1

2pi
θi 6 0 so

that k∗i = 0. Thus log0(Q) is the principal logarithm of Q, proving Theorem 2.3.

5. Experimental results

The above algorithm, as well as Shingel’s one (see Shingel (2009, eq. (9))) were implemented and
tested in Matlab on an Intel Core 2 Duo CPU at 2.53GHz, with 4Go of RAM. For both, we spent time
to optimize the speed and make the implementation robust. For Shingel’s algorithm, we used (4,4)-Padé
approximations for evaluating the matrix function it relies on.

5.1 Validity

We first assert the validity of our algorithm with the following test: for a given matrix size n, we
randomly take r = bn/2c values 0 6 θi < 100 and form a matrix F as in eq. (4.6). We then generate a
random orthogonal matrix U using the method of Stewart (1980) and compute the matrices A =UFUT

and Q = eA. Next, we generate a random matrix R ∈Mn(R) from which we get the skew-symmetric
matrix B = R−RT . We take a random α , 0 6 α <

√
2π

‖B‖F
and form the matrix A′ = A+αB. We finally

compute L = logA′(Q) with our algorithm and compare it with A. We should get L = A, what we justify
now: taking the θi randomly ensures that H holds (even on finite-precision computer, the probability
to get twice the same value is extremely low with a good pseudo-random generator). Furthermore,
according to Lemma 5.1 below, the distance (in Frobenius norm) between two distinct solutions of

FAST CLOSEST LOGARITHM ALGORITHM 9 of 13

-15 -14 -13 -12 -11 -10 -9 -8 -7
0

100

200

300

400

500

600

700

800

900

1000

log
10

(||L-A||
max

)

N
u

m
b

er
 o

f o
cc

u
rr

en
ce

s

-16 -15 -14 -13 -12 -11
0

100

200

300

400

500

600

700

800

900

1000

log
10

(||e L-Q||
max

)

 4
 5
 8
 11
 16
 22
 32
 45
 64
 90
128

FIG. 2. Accuracy in the computation of logA′ (Q) for n ∈ {4,5,8,11,16,22,32,45,64,90,128}. With the error e being ‖L−A‖max
(left) or

∥∥eL−Q
∥∥

max (right), each bar of the histograms displays the number of times we got 10i 6 e < 10i+1 over 1000 tests.
log10 is the logarithm in base 10.

eX = Q is at least 2
√

2π . Therefore, any matrix in the open ball of center A and radius
√

2π is closer to
A than to any other solution. With our upper bound on α , we ensure that the closest solution to A′ is A:
‖A′−A‖F = α ‖B‖F <

√
2π .

LEMMA 5.1 Let X ′ and X ′′ be two distinct solutions of eX = Q. If H holds, ‖X ′−X ′′‖F > 2
√

2π .

Proof. If H holds, all the solutions are given by eq. (2.3). Thus X ′ = ∑(θi + 2k′iπ)Xi and X ′′ =
∑(θi + 2k′′i π)Xi for some k′ and k′′ in Z. We note k = k′− k′′ and have ‖X ′−X ′′‖F = 2π ‖∑kiXi‖F =

2π ‖∑kiF̄i‖F = 2π

√
2∑k2

i = 2
√

2π ‖k‖2. The minimum norm for k 6= 0 is 1. �
We performed the test for different values of n from 4 to 128. For each n we repeated the test 1000

times. We asserted that we found the good solution by computing ‖L−A‖max and
∥∥eL−Q

∥∥
max. We

chose the max norm (‖M‖max = maxi, j
∣∣mi, j

∣∣) instead of the Frobenius norm here, because the former,
unlike the latter, is independent of the matrix size n. We recall that for M ∈Mn(R), ‖M‖max 6 ‖M‖F 6
n‖M‖max (see Horn & Johnson (2013, Problem 5.6.P23)). The results are depicted by the histograms
in Fig. 2. They show that the algorithm always converges to the correct solution and is very accurate:
for the values of n considered, the error ‖L−A‖max is never more than 10−8 and mostly between 10−14

and 10−10. It degrades with the size of the matrices. Even when L is not extremely close to A, it is
numerically a very good estimate of logQ in that the error between eL and Q is lower than 10−12.

Our algorithm is therefore correct and accurate. The accuracy is not a surprise, since we rely on a
Schur decomposition which is known to be numerically very stable.

5.2 Computation time

We also checked the performances of our algorithm, and compared them with those of classical
built-in functions in Matlab (namely the matrix logarithm logm and the Schur decomposition schur)
and our implementation of Shingel’s algorithm. To do so, we took, for each matrix size n, the average
computation time over 100 runs with matrices obtained randomly. Each algorithm was tested with the

10 of 13 A. ESCANDE

schur(Q)
schur(M)
logm(Q)
flog(Q,A)
flog(Q,0)
ilog(Q,0)

10
-2

10
1

10
0

10
-1

10
-3

10
-4

10
-5

10
0

10
1

10
2

10
3

Matrix size n

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

FIG. 3. Computation times for different algorithms and different matrix sizes. schur and logm are the built-in Matlab functions,
flog is the algorithm of this paper, ilog is the algorithm in Shingel (2009). M, Q and A are matrices such that M ∈ Mn(R),
Q ∈ SO(n) and A ∈ so(n).

same set of random matrices (when applicable). As soon as n was more than a few units, it became
too difficult to generate random pairs (Q,A) such that the computation of logA(Q) with Shingel’s algo-
rithm would converge. Therefore, we restricted for this algorithm to the computation of log0(Q), and
generated random matrices Q until we got 100 working for a given size. While testing, it appeared
that the Schur decomposition of a (special) orthogonal matrix Q was faster to obtain than the Schur
decomposition of an ordinary one M, so we included the timings of both cases for better comparison.

The results of this test are depicted in Fig. 3 for the following cases:

(a) real Schur decomposition of Q ∈ SO(n),
(b) real Schur decomposition of M ∈Mn(R),
(c) matrix logarithm of Q with Matlab’s logm,
(d) logA(Q) with our algorithm, A ∈ so(n),
(e) log0(Q) with our algorithm, stopping at step (iv) (short version),
(f) log0(Q) with Shingel’s algorithm.

Our algorithm (case (d)) is, as expected, much faster than Shingel’s (case (f)): 16.8 times faster for
n = 6, 286 times faster for n = 36, which is coherent with the complexities in n3 and n6. It is faster than
logm by a factor 3−15, while the short version (case (e)) is faster by a factor 5−20.
Case (d) is slower than case (a) by a factor 7−9 for the lowest dimensions (n6 6) but the ratio quickly
drop to 2− 3 for higher dimensions: various overheads, in particular the cost of permuting the Schur
decomposition to get D as in eq. (2.1), get negligible when n increases. At higher dimensions, the
decomposition and the computation of the Xi (steps (i) and (ii)) account for 70%− 75% of the whole
algorithm. Consequently, case (d) is only about 20% slower than case (e).

FAST CLOSEST LOGARITHM ALGORITHM 11 of 13

6. Conclusion

We proposed an algorithm that computes the real skew-symmetric logarithm of a special orthogonal
matrix Q which is the closest to a given skew-symmetric matrix. To do so, we carefully characterized
all the possible values for log(Q) and showed that under the hypothesis that Q has not twice the same
imaginary eigenvalue and at most twice the same real eigenvalue, the possibilities are countable. We
then rewrote the problem as an integer program that we showed to be trivially solvable. The obtained
algorithm builds on a Schur decomposition and is both fast and accurate.

While the hypothesis H might seem restrictive at first, it is not in practice, since it is satisfied almost
everywhere on SO(n), making the algorithm widely applicable. If H does not hold for a matrix Q0,
eq. (2.3) does not enumerate all the solution of eX = Q0 so that the algorithm will return a solution
for problem (1.4) which is likely sub-optimal. This solution is the limit of the solution obtained for
Q0 +δQ ∈ SO(n) when δQ goes to 0n

1.
The extension to all of SO(n) appears to be much more complex. However, it remains to precisely

study the characteristics of matrices that both commutes with the matrices D and let the solutions to the
problem eX = Q real skew-symmetric. Maybe some properties could be found that would simplify this
extension.

While the motivation for this work is to interpolate on SO(n), minimizing the variations of the
output, the paper in itself concentrates on solving problem (1.4). To our best knowledge, choosing
Ai+1 = logAi

(Qi+1) does not necessarily yield the minimum varying interpolation between the Qi, but
is a good heuristic choice to avoid too many variations. We do not tackle here the problem of finding
the minimum varying interpolation between the Qi. However, we believe that the study we did here,
especially on the enumeration of the logarithms, can be a good basis for addressing the problem.

REFERENCES

AGRELL, E., ERIKSSON, T., VARDY, A., VARDY, E. & ZEGER, K. (2002) Closest point search in lattices. IEEE
Transactions on Information Theory, 48, 2201–2214.

BLOCH, A. M. & ISERLES, A. (2005) Commutators of skew-symmetric matrices. International Journal of
Bifurcation and Chaos, 15, 793–801.

CULVER, W. J. (1966) On the existence and uniqueness of the real logarithm of a matrix. Proceedings of the
American Mathematical Society, 17, 1146–1151.

GALLIER, J. & XU, D. (2003) Computing exponentials of skew-symmetric matrices and logarithm of orthogonal
matrices. International Journal of Robotics and Automation, 18, 10–20.

GANTMACHER, F. R. (1959) The theory of matrices, vol. 1. AMS Chelsea Publishing.
GOLUB, G. & VAN LOAN, C. (1996) Matrix computations, 3rd edn. John Hopkins University Press.
HANROT, G., PUJOL, X. & STEHLÉ, D. (2011) Algorithms for the shortest and closest lattice vector problems.

Coding and Cryptology. Lecture Notes in Computer Science, vol. 6639. Springer Berlin Heidelberg, pp.
159–190.

HORN, R. A. & JOHNSON, C. R. (2013) Matrix Analysis, 2nd edn. Cambridge University Press.
SHINGEL, T. (2009) Interpolation in special orthogonal groups. IMA Journal of Numerical Analysis, 29, 731–745.
STEWART, G. W. (1980) The efficient generation of random orthogonal matrices with an application to condition

estimators. SIAM Journal on Numerical Analysis, 17, 403–409.

1Even when imposing 06 θi 6 π and the θi in decreasing order, the Schur decomposition Q0 =U0D0UT
0 is not unique (but D0

is). However U0 can be chosen so that the limit of the Schur decomposition of Q0 +δQ is U0D0UT
0 . Whatever the choice of U0

our algorithm returns the same solution, hence this property.

12 of 13 A. ESCANDE

Appendix A. Proof of Theorems 4.1 and 4.2

In all this section, D is such that 06 θi 6 π and H holds. We first detail the proof of Theorem 4.1.

If n is odd, D has the form
[

D′

1

]
and M is partitioned conformally as

[
M′ m1
mT

2 α

]
. MD = DM

implies that M′D′ = D′M′, D′m1 = m1, D′T m2 = m2 and α can have any value. Because of H , 1 is not
an eigenvalue of D′ so m1 = 0 and m2 = 0. We can thus restrict to studying M such that MD = DM for
n even.

We partition M in 2-by-2 blocks Mi, j. Solving MD = DM is equivalent to solving r2 2-by-2 systems

Mi, jD j = DiMi, j. For one of this system, we write Mi, j =

[
m1 m2
m3 m4

]
, ck = cosθk and sk = sinθk, k = i, j.

We then get the system: 
ci− c j si s j 0
−si ci− c j 0 s j
−s j 0 ci− c j si

0 −s j −si ci− c j




m1
m2
m3
m4

= 0 (A.1)

Noting Si, j its matrix, we have det(Si, j) = 4(cosθ1− cosθ2)
2. If i 6= j, θi 6= θ j, thus det(Si, j) 6= 0, the

only solution is zero and Mi, j = 0. Otherwise, for i = j, we have two cases:

• θi = 0 or θi = π , so that Si,i = 0, any vector is solution and Mi,i ∈M2(C)

• θi 6= 0, then solving the above systems yield m1 = m4 and m2 =−m3, i.e. Mi,i ∈M .

M is thus block diagonal and has the form of eq. (4.1), which proves Theorem 4.1.
The proof of Theorem 4.2 follows the same reasoning, remarking that for i 6= j, θi +2kiπ 6=±(θ j +

2k jπ) whatever (ki,k j) ∈ Z2.

Appendix B. Proof of Theorem 4.6

We want to show that the minimizer x∗ over Zr of f (x) = xT x− qT x is obtained by rounding each

x0

x0 x0 +()1
0

x0 +()0
1

x0 +()1
1

FIG. 4. Example of optimization over Z2. x0 is the minimum of the function depicted by the grey circles and we have x∗ =
bx0c+[1 0]T .

component of the minimizer x0 of f over Rr.
Whatever q ∈ Rr, f is a strictly convex function whose minimizer over Rr satisfies 2x0 = q.

FAST CLOSEST LOGARITHM ALGORITHM 13 of 13

Let bx0c be the componentwise floor of x0. We note d = x0 − bx0c and make the variable change
x = bx0c+ z = x0−d + z. Note that d is in [0,1)r. We then have

f (x) = (x0−d + z)2−qt (x0−d + z) (A.2)

= x2
0 +(2x0−q)T︸ ︷︷ ︸

0

(z−d)+(z−d)2−qT x0 (A.3)

= (z−d)2 + xT
0 (x0−q) (A.4)

so that minimizing f over Zr is equivalent to

min.
z∈Zr
‖z−d‖2 (A.5)

Since ‖z−d‖2 = ∑(zi−di)
2, which is a sum of positive quantities, it is easy to see that the minimum

is reached when each zi is the nearest integer to di, i.e. 0 if di < 0.5, 1 if di > 0.5 and 0 or 1 if di = 0.5.
Whatever the tie-breaking rule, the minimizer z∗ is obtained by rounding d componentwise and thus
x∗ = bx0c+ z∗ is obtained by rounding x0 componentwise.

Since z ∈ {0,1}r, a geometric interpretation of this proof is that x0 belongs to the hypercube bx0c+
[0,1]r and that x∗ is the vertex of this hypercube that is the closest to x0 (see Fig 4).

