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Online Object Searching by a Humanoid Robot

in an Unknown Environment
Masato Tsuru1,2,3, Adrien Escande1,2, Arnaud Tanguy1,2, Kevin Chappellet1,2, and Kensuke Harada2,3

Abstract—This paper proposes a framework for an au-
tonomous humanoid robot, aimed at searching for a target object
in an unknown environment using 3D-simultaneous localization
and mapping (SLAM). The robot determines, while walking, the
next viewpoint from an environment map and aggregated object
recognition results, and automatically finds and grasps the target
object. Whereas most robot exploration studies require a static
map, hints regarding object position, area size limitations, or
offline viewpoint planning time for each observation, our system
can globally find an occluded object in an unknown environment,
based only on the 3D target model. The biggest novelty of
this research is that this framework always runs its viewpoint
planner in background and immediately updates the destination
if the camera gets environment/object information. To follow that
goal change quickly, the humanoid robot re-plans its footstep
trajectory without stopping, using foot landing estimation based
on 3D-SLAM’s localization. Notably, our robot can predict an
unobserved area, and actively reveal it while avoiding obstacles.
We validated the efficacy of this method through real experiments
with an “HRP2-KAI” in several environments, and achieved fully
automated searching and grasping.

Index Terms—Humanoid Robot Systems, SLAM, Vision-Based
Navigation, Perception-Action Coupling

I. INTRODUCTION

HUMANOID robots are expected to act autonomously to

accomplish a variety of tasks in a variety of industries

experiencing labor shortages, such as in construction, nursing

care, and domestic support. One of the typical tasks expected

of such robots is to find, grasp, and bring objects that humans

need. In this research, therefore, we set our goal to find and

grasp a target object, typically a hand tool, in an unknown

indoor environment. There are four typical technological ele-

ments required for a humanoid robot to autonomously search

for and grasp a target object: object recognition, environment

recognition, action planning, and bipedal walking. A signifi-

cant amount of research has been conducted in recent years

on these technologies. For example, the convolutional neural

networks have allowed for excellent innovation in the field

of “object recognition”[1][2]. In the field of “environmental

recognition”, research is being conducted on constructing

surrounding environments using LiDAR and map-based route
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Fig. 1. Our humanoid robot HRP2-KAI achieved object grasping through an
online exploration process and autonomous walking with 3D-SLAM.

planning[3]. In the “action planning” field, a method for

obtaining advanced action strategies based on sensor inputs

has been proposed, based on incorporating deep reinforcement

learning[4] and a partially observable Markov decision process

(POMDP)[5]. In the field of “bipedal walking”, research has

been conducted on balance control[6] and footstep planning.

Most of these studies have been conducted separately. How-

ever, it is not trivial to robustly connect these approach so

that the errors/failures of one is covered by the other, and to

reflect sensor inputs to the exploration as soon as possible.

An object searching problem based on bipedal humanoids has

been proposed as a way to integrate these functions [7][8][9].

However, in recent methods, the search area has been limited

by human[7], the approximate location of the object was given

in advance[8], or the environment was completely known in

advance[9][10]. Because these researches completely decom-

pose the robot work into a planning phase, a sensing phase,

and a walking phase, the robot is required to stop walking after

arriving at each intermediary goal to get object/environment

information. An automatic footstep planner on a point cloud

has also been proposed in[11], but they did not consider

autonomous exploration strategies.

In this paper, we propose a framework for an autonomous

humanoid system integrating object recognition, environment

http://jrl-umi3218.github.io/
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recognition, action planning and bipedal walking, based on

3D-simultaneous localization and mapping (SLAM). In the

proposed method, a head RGB-D camera is used to run the

3D-SLAM (RTabMap[12]), to map the environment in 3D, and

to estimate its position in real-time. Simultaneously, our object

recognition module detects a target object from the camera’s

input point cloud in a six degrees of freedom (6-DoF) format,

and aggregates it with other information (such as the direction

of observation) to memorize the recognition results in a world

coordinate system, as a simple 3D probability map style. The

3D-SLAM module generates in real-time a 2D map that the

robot uses for walking, by conservatively projecting obstacles

from the point cloud onto a horizontal plane. Simultaneously,

an “unknown” area in the 2D map (i.e., an area which cannot

be observed due to obstacles) is used in our search strategy.

An action planner module decides and updates the next goal

in real-time based on a comprehensive judgment of multiple

factors, such as the results of object recognition, the structure

of the 2D map, the unknown areas which possibly contain

the target object, and current position of the robot. A footstep

planner module plans the walking path at a high speed. Our

system predicts the next landing position of the foot based on a

camera position estimated by 3D-SLAM, so that the robot can

smoothly transition to the next walking plan without pausing

when the map or goal is changed while walking.

Comparing to previous works, the novelty is that our

exploration system can

• quickly reflect recognition results and automatically

change the next goal even before the robot arrives at the

previous goal.

• find a target object without providing hints in advance.

• reveal occluded/unobserved area from map structure.

• plan viewpoints based on accumulated results while walk-

ing.

• keep the goal planning time fast even after the map

extends.

Therefore, our main contribution is a stop-free exploration

framework: the robot can detect an object or obstacles, plan

its next goal, and smoothly change its walking path to the

new goal in parallel, without interrupting its walk. The main

technical difficulty is that, as 3D-SLAM dynamically extends

the map, it gets slower and slower to generate goal candidates

for the whole map and to evaluate each utility one by one.

To keep the planning speed fast, we implement a set of

techniques, i.e., compact 3D probability map, cut off areas

by heuristics, and inverse A* search.

In the following, we clarify the contributions and novelty

of this research by introducing related studies (Section II),

and explain how we established 3D-SLAM as the core of our

system by providing the details of the methods (Section III).

In Section IV, we describe several object search experiments

using a real robot, and discuss the usefulness of our approach.

We conclude with Section V.

II. RELATED RESEARCH

We suggest some related researches about object recog-

nition, footstep planning, and autonomous robot related to

exploration, object searching, or viewpoint planning.

A. Object Recognition

In this research, a 6-DoF format is desirable for object

recognition, as the final goal is to grasp the target object.

Research on object recognition is rapidly improving with

developments in deep learning. The Yolo series[1][13] are

not suitable for grasping tasks, as the output format is a 2D

bounding box. The methods for recognizing objects in the

6-DoF format from RGB images [14][15][16][17] requires

the correct answer data in the exact 6-DoF format for each

training image. Point-Cloud recognition methods [2][18][19]

have achieved object region extraction and categorization.

However, as our research considered future construction work

requiring accurate tool identification, we use 3D models to

specify a detailed instance as a target object.

B. Footstep Planning

Recent studies [20][21][22] have performed reasonable

planning with high reliability even in dynamic or 3D environ-

ments. R. Scona et al.[23] combines 3D-SLAM with humanoid

robot walking. However, they decide a fixed footstep plan and

correct online the walking motion to realize it. In contrast,

we use the camera position estimated by 3D-SLAM for real-

time estimation of feet landing positions, and always re-plan

the footstep trajectory with the predicted landing point as the

starting point, for every step. We partially reuse an open-

source code from Humanoid Navigation[24] that we modified

to handle the 2D obstacle map and start/goal position in real-

time.

C. Exploration and View Planning

Saidi et al.[7][25] performed exploration with a humanoid

robot. They use a heuristics to reduce the volume of non-

observed space in a limited area. While they did not set any

target objects, so it is sufficient that the robot has a brief look

at every area, we set a specific target object and deal with

an uncertainty of object recognition. B.Yamauchi[26] detects

frontier areas in 2D map and the robot actively extends the

environment map by going to the nearest one. In our case,

we subsample the map in sub-divisions and evaluates them by

a heuristics which consists of the size of unknown/obstacle

area, accumulated recognition results, and a walking cost.

Isler et al.[27] decide the next best viewpoint by the best

information gain in a probabilistic volumetric map. In our

method, after the selection of interesting object candidate,

we generate viewpoint candidates surrounding it and select

one based on an heuristic considering observed directions.

Makarenko et al.[28] combined the exploration strategy[26]

with the evaluation for stable localization in 2D-SLAM. The

3D-SLAM[12] we use is an color feature based tracking

between camera images, and our exploration strategy does

not take the possibility of localization lost into account.

Gonzalez-Banos and Latombe[29] generate goal candidates

for exploration based on boundaries of the 2D map. In our

case, we sample goal candidates in circle, centered on a

highly scored sub-division, and evaluate each goal candidate

with considering observable area from there, walking cost by
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Fig. 2. Visualized result information containers in the world coordinate
system. These boxes are located at each discretized key position. Each of
them contains the ICP fitting score and observed directions, and is colored
based on reference to ICP score.

reverse A* search. Masuzawa and Miura[30] express the time

limit in the form of a penalty function. In comparison, our

system continues to explore the area until the recognition

module detects an object with an evaluation score high enough

in our 3D probability map. Monica et al.[9] give a position of

interest (POI) to the robot and their goal is to reduce occlusions

around the POI area. In contrast, we do not provide any POI

information nor hints, and the robot walks based only on its

vision.

Kim and Likhachev[5] proposed an NBV planning method

based on a POMDP. Their PR2 mobile robot detected a target

object through a point cloud process from a cluttered and

occluded table scene. In POMDP, the estimated object poses

are described as hypotheses, that are validated or discarded by

accumulating observations. Works in [31] and [32] are both

using Markov assumption to estimate exploration utility for

NBV planning to reduce occluded areas with mobile robots.

However, their methods also require POIs or target regions

in advance, to generate viewpoint candidates beforehand, and

calculate utilities for every camera position candidate. They

also require at least a few tens of seconds (e.g., 30s in [31]).

In our case, the environment and object recognition results

are updated in real-time; therefore, the exploration goal can

change every time the robot obtains new information, even

while walking.

III. OUR METHODS

A. Overview of System

In this paper, we present a scheme allowing a humanoid

robot to autonomously find an object in an unknown envi-

ronment. The inputs consist solely in the visual data acquired

by a RGB-D camera and a 3d model of the target object.

As shown in the upper part of Fig. 1, and further detailed in

Fig. 3, we integrated four modules (6-DoF object recognition,

environment recognition, action planner, and footstep planner)

with 3D-SLAM. To connect the information obtained from the

3D-SLAM to the robot’s autonomous activities, this research

proposes four approaches for the integration of 3D-SLAM and

each module.

Fig. 3. Process flow of our system. 3D SLAM module obtains RGB-depth
data through the Xtion camera and publishes an organized 3D point cloud, 2D
map, and camera pose in a world frame. The modules all work in different
threads.

The 6-DoF object recognition module takes as inputs a 3D-

model of the target object and an RGB-D point cloud from the

camera, and estimates the object position in a 6-DoF format

in real-time. The estimation results are aggregated and stored

with additional information such as the observation direction

and are embedded in the 3D probability map (Fig.2).

The environment recognition module divides the 2D map,

which is a projection of the 3D point cloud map from the

3D-SLAM, into four areas: “obstacle”, “collision”, “floor”,

and “unknown”. As this study uses the 2D map not only

for walking but also for search action planning, the regions

that are not observed yet because of obstacles are labeled as

“unknown” and thus are preferentially observed to find the

target object.

The action planner module constantly plans and updates

the next destination in real-time, based on a comprehensive

assessment of multiple factors such as the results of object
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recognition, structure of the 2D environment map, and current

position of the robot. As the search target may not always be

in the robot’s field of view from the beginning, we propose an

action strategy based on heuristics for evaluating the priority of

the search for each region. As the results of object recognition

also include false positives, even if the robot is able to

recognize an object once, it does not immediately perform

a grasp. Rather, it determines the priority of observation by

comparing it with other encapsulated recognition results, or

plans additional observation actions from other directions.

The footstep planner module quickly plans the walking path

to the target point suggested by the action planning module on

the 2D map generated by the environment recognition module.

Our system also predicts the landing position of the feet by

using forward kinematics from the estimated camera position

using the 3D-SLAM, and provides the planner module with

the first step of a walking motion in order to shift smoothly to

the next walking motion without pausing the walking motion

when the goal is changed.

B. 6-DoF Object Recognition and Aggregation of Recognition

Results

We construct the object recognition module based on

feature-based matching. In addition, as the robot should ul-

timately grasp the object, the output is not in a bounding box

format but rather a 6-DoF position (x, y, z, roll, pitch, yaw),
based on applying the 3D-model to the point cloud. The

object recognition module divides the raw RGB-D point clouds

obtained from the depth camera into many clusters based on

color and distance, and for each cluster, it extracts Fast Point

Feature Histogram (FPFH) features[33]. Then the module

compares each feature to the target 3D-model’s FPFH feature

to estimate the 6-DoF position. Then, we apply iterative closest

point (ICP) alignment, using the previous FPFH estimation

result as the initial position. The module is always running in

background, allowing the robot to detect the target object in

real-time, even while walking.

However, the point cloud recognition module sometimes

outputs false positives. Even worse, as the robot acquires

points while moving, the object recognition results are not

always exactly at the same position. To make the robot system

robust, we uses a simple 3D probability map to accumulate

the object recognition results (and the viewpoint planner

module decides the next goal based on this probability map).

Whenever the object recognition module outputs a result, the

3D probability map aggregates the ICP error and the camera

direction into one result container that is stored. To be tolerant

to the position error, we discretize the object’s position into

30-cm cubic units, and if an object has been recognized in

the vicinity in the past and an aggregation container already

exists at the discretized position, we update the contents of the

existing aggregation container instead of creating a new one.

When updating, a higher ICP score is adopted, and the obser-

vation directions are added and expanded so that the objects

are stored as having been observed from multiple directions.

This overwriting process keeps the number of aggregation

containers compact even after the robot walked around and

the exploration area gets very large. Memorizing observed

direction makes it possible for the robot to walk around the

container position where the object has been detected multiple

times with high accuracy and to make additional observations

in directions not yet observed.

C. Information Compression from 3D Point Cloud to 2D Map

For the sake of generality and practicality, we perform the

object search without a priory knowledge on the surroundings,

such as a static 2D room map. We only suppose a flat ground.

For this purpose, we designed an environment recognition

module that recognizes the surrounding environment and ex-

pands the search area in real-time as the robot walks. Using the

robot’s head camera and the open-source 3D-SLAM software

RTabMap[12], the robot maps the surrounding environment

in a large-scale 3D point cloud format. However, the number

of point clouds grows to hundreds of thousands as the robot

walks; as such, the robot cannot maintain its processing speed

if it accesses the whole point cloud every time when it

plans the next reasonable viewpoint. In this paper, we use an

original 2D map instead of a 3D map to retain the information

for object search. This enables the humanoid robot to avoid

obstacles, and to plan reasonable observation viewpoints under

uncertainty.

Based on height and plane detection, RTabMap classifies

the point cloud obtained from 3D-SLAM into three categories:

floor, obstacle, and ceiling, . It also projects these clouds onto

a 2D map, and two types of floors and obstacles are labeled.

To prevent the robot from hitting obstacles while walking, our

environment recognition module generates a “collision” area

by dilation of the “obstacle” area by half the width of the

robot. The footstep planner only allows the feet to land on the

“floor”, so that the robot avoids obstacles in real-time.

Additionally, to improve the efficiency of the object search,

we make the robot prioritize unknown/occluded areas that have

not yet been observed. Since there are many occlusions in

the real world, the RGB-D camera cannot obtain any point

cloud in an occluded area at all. Thus, the 3D-SLAM point

cloud contains a significant amount of vacant space. However,

we believe that vacant space is the most meaningful area

for an object searching task in an unknown environment,

as there may be a new “floor” area for leading robots to a

further area, or the target object may be hidden. Therefore, our

environment recognition module assigns a fourth type of area

to such vacant spaces in the projected 2D map: “unknown”.

The action planner module determines goals by considering

the “unknown” areas, and the robot walks to reveal such

occluded information. It also adds “unknown” areas on the

outside edges of the 2D map, enabling the robot to actively

expand its range of searching.

D. Predictive Evaluation of Unknown/Occluded Area and

Action Planner Module

Our exploration strategy consists of four phases: large

exploration, additional observation from another direction,

approaching, and grasping. This viewpoint planner module

also runs in parallel and always updates the goal while the
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Algorithm 1 Large Exploration Algorithm

Input: 2D environment map map, robot position probot,

object candidates in recognition memory bank o1, .., oJ
Output: next goal gnext(x, y, θ)

1: separate map into 2m × 2m sub-divisions r1, ..., rI .

2: for ri ∈ r1, ..., rI do

3: compute ”unknown” volume vi(ri)
4: compute L2 norm Li(probot, ri)
5: sub-division heuristic score hi = w1vi − w2Li

6: for oj ∈ o1, ..., oJ do

7: if candidate oj is inside of ri then

8: add bonus: hi+ = w3score(oj)
9: end if

10: end for

11: end for

12: sort sub-divisions r1, ..., rI by heuristic score h1, ..., hI

13: initialize the highest visiting utility umax = 0
14: while gnext is empty do

15: extrude rhigh which has the highest utility score

16: generate goal candidates g1, ..., gK around rhigh
17: for gk ∈ g1, ..., gK do

18: predict observable volume Vk(gk,map)
19: plan obstacle avoidance path A*(probot, gk,map)
20: get path cost ck (if no paths found: ck = ∞)

21: uk = Vk − ck
22: if uk > umax then

23: update goal gnext = g

24: update highest utility umax = u

25: end if

26: end for

27: remove rhigh from the sub-division list r1, ..., rI
28: end while

29: return gnext

robot is walking, to immediately reflect the observation results

in the exploration.

Large exploration

The exploration follows Algorithm 1. Because the robot

does not have a complete nor perfect environment map, we

have to plan the next goal heuristically. A unique feature of this

research is that the heuristics evaluation equation includes not

only the results of object recognition, but also the size of the

“unknown” area as calculated by the environment recognition

module. This allows the robot to operate with a policy of

expanding its recognition area. It actively discovers hidden

objects and new paths blocked by obstacles and performs

exploratory actions that extend its own possible range of

action. The biggest difficulty is to keep the planning time fast

even after the area extends much larger, like 10m × 10m.

The previous method[29] evaluates the observation utilities

and reachability for every goal candidates. However, it gets

much slower after the exploration area got larger. To keep

the viewpoint planning fast, we first prioritize sub-divisions

with heuristic scores, then generate goal candidates locally

and dynamically as needed, and evaluate their utility and

reachability (l12 and l16 in Alg.1).

The planner first divides the 2D map into 2m × 2m sub-

divisions (l1 in Alg.1). For each sub-division, the area of

the “unknown” and distance cost (L2 norm) from the current

position are calculated and subtracted with weights to obtain

a heuristics score (l3 - l5). Furthermore, if there are object

recognition result containers in the region, a bonus score

proportional to its ICP accuracy is added to the heuristics score

(l6 - l10). These heuristics allow the robot to prioritize visits

of area that are “unobserved”, “close to the current position”,

and “where a likely object candidate has been detected in the

past”.

Once the sub-division of interest is determined, the next

step is to determine the appropriate standing position (x, y, θ)
to observe it. We generate discrete candidate goal points (on a

40-cm resolution grid, discarding all points in collision) inside

and outside of the sub-division, and predict the observable area

for each candidate point by considering the obstacle region in

the 2D map. In addition, by searching the walking path from

the current position to each candidate point on the 2D map

by A* path search, the planner determines the reachability

and calculates the walking cost. (If no path is found, the goal

candidate point is rejected as unreachable.) To accelerate the

planning time, we use reverse A* search and keep its closed

list as a cache data indicating unreachable places. Because

many candidate points are in small unreachable areas, this

allows to quickly discard them (Fig.4). The above two points

allow the robot to move around to a point that is unobstructed

by obstacles, based on combining the area predicted to be

observable with the distance cost of travel.

This exploration planning also runs in real-time (approx-

imately 1 – 5Hz), so that the robot can update its search

action by reflecting the results from object recognition and

environment recognition while walking. When the recognition

module finds an object with an ICP score higher than a

threshold, the action planner module proceeds to the next

“additional observations from another direction” phase to

further verify the recognition results.

Additional observation from another direction

After the robot finds a score estimation result that is higher

than a threshold, the robot attempts to confirm it. Owing to

3D-SLAM, our estimation result contains occluded/revealed

direction information, so the robot is able to estimate and

walk in the unobserved direction. Therefore, this observation

strategy leads the robot to walk around the object candidate,

and to observe it from several directions.

The planner first generates a number of goal candidates

(x, y, θ) in a circle with a 2m radius area, centered on the

recognition result on the 2D map. For each goal candidate,

the planner checks whether any obstacles might disturb the

observation by drawing a line from the goal to the estimated

object position, and determines the next goal based on the

weighted sum of the walking distance cost and observable

direction which is scored as a decimal number between 0.0

and 1.0 (0.0 : perfectly observed, 1.0 : not observed at all).

The black and white directions represent the observation score

in Fig.5. After walking, if the camera module recognizes the
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Initial situation of A* search. Opening surrounding nodes. Proceeding the A* search.
The goal is not reachable (no

more open nodes).

Next candidate is in a cell
already flagged as closed:
search stops immediately.

This goal candidate is also
not valid.

This goal candidate can open
new nodes.

Found a feasible goal.
If A* search began at robot

position...
...it is too long in practice to

close all the nodes.

Fig. 4. Closed list as a cache memory in our A* search. Red : Goal candidate for which we want to check reachability, grey: obstacles, O : Open nodes,
C : Closed nodes. Our system begins A* search from the goal candidate position, and re-uses the closed list for other goal candidates.

Fig. 5. Additional observation from another direction to confirm the recog-
nition result.

object in the same position with a high score from more than

two view directions, the system proceeds to the next strategy

step, i.e., approaching. On the contrary, if the candidate does

not achieve a good score from other viewpoints, the system

reduces the probability of that result container, and resumes

the large exploration step again.

Approaching Step

After confirming the object position from several view di-

rections, the robot approaches the object as closely as possible

to grasp the object. We use security margins for collision

during the exploration, however, that could prevent the robot to

come close enough for grasping. Therefore, we have to switch

the collision check into more precise method. We design a pair

of goals, named as “before approaching” and “final standing”

at same time, and apply the precise collision check only to

“final standing” goal.

First, the planner module designs a “final standing” position

for grasping on the 2D map with only the object area. At

this time, the planner uses precise collision checking which

approximates the robot’s 2D shape as a rectangle, instead

of using collision area in the 2D map explained in Section

III-C. The planner generates some feasible standing position

candidates surrounding the estimated object position. Second,

it straightly moves these “final standing” positions away by

50cm to get “before approaching” goal candidates. After

confirming collision safety for each goals, the robot executes

the pair of goals one-by-one. This allows the robot to approach

object’s support in a straight line, and to safely approach the

edge of the object support.

Grasping After approaching the estimated object position,

the robot uses a more accurate object registration method, i.e.,

2D-6D local registration[34]. This local registration uses the

6-DoF estimated position from our recognition module as an

initial guess and an iterative optimization process based on a

black-and-white image to refine it. Upon completion, the robot

selects the hand closer to the object and performs a grasping

motion, following a spline-based trajectory of the hand defined

with respect to the object position and a predefined grasp

position manually chosen on the target 3D-model.

E. Real-Time Prediction of Foot Landing Position and Walking

on Changing Map

To continue walking smoothly even if a goal is changed

while walking, we propose a real-time landing position esti-

mation based on 3D-SLAM (Fig.6). The 3D-SLAM module

Fig. 6. Real-time prediction of foot landing position by 3D-SLAM.
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always estimates a camera pose (pc) in a world coordinate

system, and a controller observes all joint angles of the robot.

By solving whole-body forward kinematics, the robot can

directly estimate its foot poses (pr and pl). To maintain

stability, the robot does not change the next landing point

while its foot is in air, and re-plans the footsteps plan from

the next landing point. Assuming that the robot is standing

on its right foot during walking, the previous landing point

(pr) is slipped by d0 from the reference position r0, and that

error is added to the next left landing point r1. The planner

predicts the next landing point as r′
1
= r1 + d0; then, it starts

re-planning from r′
1

on the left foot while the left foot is

still in air. After the actual left foot landing, it calculates the

actual landing point by solving the forward kinematics again,

and obtains the error d1 = r′
1
− p0. This process enables the

generation of a new footstep plan while the foot is in air (i.e.,

without waiting for foot landing), and a direct transition to a

new walking motion. We did a brief experiment to verify its

accuracy. (https://youtu.be/X74LgGnkgow)

IV. EXPERIMENTS

We applied the entire method on a real robot (HRP-2KAI)

equipped with an XtionProLive RGB-D camera and attempted

object-finding tasks in several environments. The implemen-

tation of the robot controller was done with mc rtc[35]. The

extrinsic camera calibration parameters were obtained using

hand-eye calibration as proposed in [36]. We moved the robot’s

head link and obtained the relative motion of the camera from

visual SLAM and the corresponding head link motion from

the known robot’s kinematics.

A. Scenario 1

We attempted a simple situation without obstacles. The

target object was a vacuum gripper with size 30 ×

20 × 11cm. Poles were set up around the area to

keep the robot inside the crane’s range. The robot suc-

ceeded in grasping 8 times in 10 trials. (Evidence

videos are available at https://youtu.be/al2jNbLTEL8 and

https://youtu.be/CPV4 qupFic.)

B. Scenario 2

Second, we tried an occluded, more complex situation. We

deployed a partition board in the area and hid the object on

the other side of it. The robot could not see the object from

the initial position at all, so it needed to walk to a meaningful

viewpoint to reduce the occlusion.

The robot first looked around, and could not obtain any

estimation results; then, it found the unobserved area and

approached it. After walking to the other side of the par-

tition board, it detected the target object in its sight and

succeeded in grasping in the end. (See Fig.1 and the main

video https://youtu.be/2rr84jnez4k)

C. Scenario 3

We tried unlimited exploration with a mobile lifter. The

size of walkable area was approximately 8m × 16m, and

it is a soft hourglass type, i.e., the robot has to find the

path to the other side of area. (see Fig. 7 and a video

https://youtu.be/q-xpZdomM0k)

D. Discussion

The different experiments validate our approach in that it

let the robot find, walk to and grasp the target object. The

grasping proves that the overall system is precise enough. The

system is not perfect though, and while it often succeed, we

sometimes encountered failures. For example the SLAM can

get lost when in front of a largely un-textured wall or perturbed

by a moving obstacle, or the ICP can fail to recognize an

object. The most common cause of failure was that ICP

would fall into a local solution and produce a higher match

score than the truly correct object. “Additional observation”

phase usually leads the robot to other view directions and the

existence probability decreased, however, if there are no fea-

sible viewpoints due to obstacles, the robot passes “additional

observation” phase and tries to grasp the false positive result.

There were also delicate parameter tuning problems. Weights

for the exploration heuristics (l5 and l8 in Alg.1) changes

the robot nature: e.g., giving big w1 makes it more actively

explore but it frequently travels back and forward over long

distances, or giving big w3 makes it cautious and check for

low-scored result containers, and the map does not expand

smoothly. The higher the threshold to change the exploration

phase from “additional observation” to “approaching step”, the

more conservative the robot becomes and it takes a longer time

to reach grasping step. We discretized the object’s position into

30-cm cubic units to accept Point-Cloud registration errors, but

the errors are relative to the size of the target object, and the

discretization needs to be changed according to this size. As a

thumb rule, We take the size of the cube so that it can slightly

bound the object.

V. CONCLUSION

We proposed a way to use a 3D-SLAM system so that a

humanoid robot can find automatically a desired object in an

unknown environment. We experimented it on HRP-2KAI in

three situations where the robot, deciding its next viewpoint

by itself, succeeded in finding the object, that was not initially

in its field of view, or was occluded by an obstacle.
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