{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Modelling with RBC\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "Here, we'll see an example of macro modelling: a real business cycle model. This example is due to [Chad Fulton](http://www.chadfulton.com/).\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "from sympy import *\n", "\n", "# Set max rows displayed for readability\n", "pd.set_option(\"display.max_rows\", 6)\n", "# Plot settings\n", "plt.style.use(\n", " \"https://github.com/aeturrell/coding-for-economists/raw/main/plot_style.txt\"\n", ")\n", "# Set seed for random numbers\n", "seed_for_prng = 78557\n", "prng = np.random.default_rng(\n", " seed_for_prng\n", ") # prng=probabilistic random number generator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model specification\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\max \\mathbb{E}_0 \\sum_{t=0}^\\infty \\beta^t u(c_t, l_t)\n", "$$\n", "\n", "the budget constraint: yt=ct+it\n", "the capital accumulation equation: kt+1=(1−δ)kt+it\n", "1=lt+nt\n", "\n", "where households have the following production technology:\n", "\n", "$$\n", "y_t = z_t f(k_t, n_t)\n", "$$\n", "and where the (log of the) technology process follows an AR(1) process:\n", "\n", "$$\n", "\\log z_t = \\rho \\log z_{t-1} + \\varepsilon_t, \\qquad \\varepsilon_t \\sim N(0, \\sigma^2)\n", "$$" ] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "codeforecon", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 4 }