
Report of the
Astl Programming Language

Draft in preparation of version
0.40

21 January 2020

Andreas F. Borchert

https://creativecommons.org/licenses/by-sa/4.0/

Contents

1 Lexical elements 6
1.1 Source files . 6
1.2 Character set . 6
1.3 Lines and columns . 6
1.4 Comments . 6
1.5 Tokens . 6
1.6 Single-character delimiters . 7
1.7 Compound delimiters . 7
1.8 Keywords . 7
1.9 Identifiers . 8
1.10 Literals . 8

1.10.1 Decimal literals . 8
1.10.2 String literals . 8
1.10.3 Regular expressions . 8
1.10.4 Program text literals . 9

1.10.4.1 Embedded variable references 9
1.10.4.2 Embedded expressions . 9
1.10.4.3 Interpretation of multi-line literals 9

2 Types 10
2.1 Null value . 10
2.2 Boolean values . 10
2.3 Integer values . 10
2.4 String values . 10
2.5 Lists . 11
2.6 Dictionaries . 11
2.7 Functions . 12
2.8 Abstract syntax trees . 12
2.9 Matching results of regular expressions . 14
2.10 Control flow graph nodes . 14
2.11 Streams . 15
2.12 Implicit Conversions . 16

2.12.1 Conversions to string type . 16
2.12.2 Conversions to integer type . 16
2.12.3 Conversions to Boolean type . 16
2.12.4 Conversions to list type . 16
2.12.5 Conversions to dictionary type . 16
2.12.6 Conversion to abstract syntax tree type 17

2.13 Examining the type of an object . 17

4 Contents

3 Expressions 18
3.1 Designators . 19
3.2 Increment and decrement operators . 19
3.3 List aggregates . 19
3.4 Dictionary aggregates . 20
3.5 Abstract syntax tree constructors . 20
3.6 Function constructors . 21
3.7 Function calls . 22
3.8 Primaries . 22
3.9 Factors . 23
3.10 Power expressions . 23
3.11 Multiplicative expressions . 23
3.12 Additive expressions . 24
3.13 Comparison operators . 24
3.14 String repetition . 25
3.15 String and list concatenation . 25
3.16 Matching strings against regular expressions 25
3.17 Logical expressions . 26
3.18 Conditional expressions . 26
3.19 Assignments and expressions . 27

4 Statements 28
4.1 Blocks . 28
4.2 Deletion statement . 28
4.3 Conditional statement . 29
4.4 Loop statements . 29
4.5 Return statement . 29
4.6 Variable declarations . 30

5 Function definitions 31
5.1 Regular global functions . 31
5.2 Main function . 32
5.3 Other global functions . 32

6 Tree expressions 33
6.1 Simple tree expressions . 33
6.2 Operator sets . 34
6.3 Named tree expressions . 34
6.4 Contextual tree expressions . 35
6.5 Conditional tree expressions . 35

7 Attribution rules 36
7.1 Regular attribution rules . 36
7.2 Named attribution rules . 37

8 State machines 38
8.1 Regular state machines . 38
8.2 Abstract state machines . 42

9 Transformations 43
9.1 Regular transformation rules . 43
9.2 Named sets of generating transformation rules 44
9.3 Named sets of in-place transformation rules 44

Contents 5

10 Operator rules 46

11 Print rules 48
11.1 Regular print rules . 48
11.2 Named sets of print rules . 49

12 Units 50
12.1 Libraries . 50
12.2 Operator set clauses . 51
12.3 Order of appearance . 51
12.4 Regular rule sets . 51
12.5 Global scope . 51

13 Execution 52
13.1 Standard execution order . 52
13.2 Free-standing execution order . 52

14 Predefined bindings 54

Chapter 1

Lexical elements

1.1 Source files

Astl program source files must end in the suffix “.ast” which is to be omitted when source
files are refered to.

1.2 Character set

Astl program sources are to be encoded in UTF-8. While most Astl tokens including iden-
tifiers consist of ASCII characters only, arbitrary non-ASCII characters are permitted in
string literals (see 1.10.2), program text literals (see 1.10.4), regular expression literals (see
1.10.3), and comments.

Case is significant.

1.3 Lines and columns

To provide locations for error messages, lines and columns are tracked while reading a
program source. The newline character (ASCII 10) is interpreted as line terminator and
considered otherwise as being equivalent to the space character (ASCII 32). Tabs (ASCII 9)
are similarly treated as space characters but cause the current column to be advanced to
the next multiply of 8 plus 1. Unicode codepoints are counted as one character indepen-
dently from the number of bytes required to encode them in UTF-8.

1.4 Comments

Comments can be delimited by “/*” and “*/”. Nested comments are not supported. Alter-
natively, comments start with “//” and are ended by the next line terminator. Comments
are handled like space characters.

1.5 Tokens

Each program source is converted into a sequence of tokens during the lexical analysis.
Tokens can be delimiters consisting of one or more special characters, reserved keywords,
identifiers, or literals. Tokens end if the next character is a space or if the next character
cannot be added to it.

1.6 Single-character delimiters 7

Example: The character sequence a[i2]+=exists f{i2}? 12: existsf consists of the follow-
ing tokens:

a an identifier
[a single-character delimiter
i2 an identifier
] a single-character delimiter
+= a compound delimiter
exists a keyword
f an identifier
{ a single-character delimiter
i2 an identifier
} a single-character delimiter
? a single-character delimiter
12 a decimal literal
: a single-character delimiter
existsf an identifier

1.6 Single-character delimiters

Following delimiters consist of one character only and cannot be part of a longer token
which is not a literal:

{ } []
^ * . ,
? : ;

1.7 Compound delimiters

Following delimiters consist of one or multiple characters:

() <()>
< <= > >=
− −> −− −=
+ += ++
& && &=
! !=
= =~ ==
||

1.8 Keywords

Following keywords are reserved. They cannot be used as identifiers.

abstract div library pre transformation
and else machine print var
as elsif mod private when
at exists nonassoc retract where
attribution foreach null return while
cache if on right x
close import operators rules
create in opset shared
cut inplace or state
delete left post sub

8 Lexical elements

1.9 Identifiers

Identifiers begin with a letter, i.e. “A” to “Z” and “a” to “z”, or an underscore “_”, and are
optionally continued with a sequence of more letters, underscores, or decimal digits “0”
to “9”. Some identifiers are predefined (see 14).

1.10 Literals

Literals can be decimal literals, string literals (see 1.10.2), regular expressions (see 1.10.3,
and program text literals (see 1.10.4).

1.10.1 Decimal literals

Decimal literals begin with a decimal digit “0” to “9” and optionally more digits. Decimal
constants are unsigned and can be of arbitrary size.

1.10.2 String literals

String literals are delimited by “"”. Backslashes, i.e. “\”, are escape characters, i.e. they
remove the special meaning of the following character or allow to insert special characters
into a string:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
form feed FF \f
alert BEL \a
space \
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
left brace { \{
right brace } \}
dollar $ \$
octal number ooo \ooo
16-bit Unicode codepoint in hex hhhh \uhhhh
32-bit Unicode codepoint in hex hhhhhhhh \Uhhhhhhhh

(This includes the set of ⟨simple-escape-sequence⟩ and ⟨octal-escape-sequence⟩ of the C
language as defined by the ISO standard 9899-1999.)

Examples: "Hello, world" represents the text “Hello, world”, "\"" represents the dou-
ble quote “"”, "\\" represents the backslash “\”, and "Two\nlines" represents “Two”, fol-
lowed by a line terminator, and “lines”. Unicode codepoints can be specified using four
(using \u) or height hex digits (using \U). Example: "\U0001f37a Cheers!".

1.10.3 Regular expressions

A regular expression is a literal that is enclosed by the delimiters “m{” and “}”. Regular
expressions are interpreted by the Perl Compatible Regular Expression library (PCRE).1 Reg-

1See http://www.pcre.org and http://www.pcre.org/current/doc/html/pcre2syntax.html.
The options PCRE2_ALT_BSUX, PCRE2_UCP, and PCRE2_UTF are set.

http://www.pcre.org
http://www.pcre.org/current/doc/html/pcre2syntax.html

1.10 Literals 9

ular expressions must be encoded in UTF-8 and expect the text to be in UTF-8.
Example: m{[a−zA−Z_][a−zA−Z_0−9]*}

1.10.4 Program text literals

A program text literal begins with “q{” and is ended by a balanced “}”.2 These literals
are designed to support the generation of program text within the print rules (see 11).
They may include embedded references to variables or embedded expressions that are
interpolated when the literal is evaluated. As in string literals (see 1.10.2), the backslash
“\” may be used to escape following characters. Braces may be used without preceding
backslashes within a program text literal as long as they are balanced.

Example: q{{}} is equivalent to q{\{\}}.
Leading and trailing white spaces are removed unless escape sequences are used to

protect them.

1.10.4.1 Embedded variable references

An embedded variable reference begins with the character “$”and is followed by an iden-
tifier. Spaces between “$”and the identifier following it are not permitted.

1.10.4.2 Embedded expressions

An embedded expression begins with the character sequence “${”, is followed by an arbi-
trary expression, and closed by “}”.

1.10.4.3 Interpretation of multi-line literals

Program text literals may extend over multiple lines. In this case, the indentations of the
individual lines are interpreted relatively to each other.

Example: Following program text literal generates an if-else-statement construct that
references the variables condition, then_statement, and else_statement. The white space be-
tween the opening “{” and “if” is ignored. Similarly, the trailing whitespace between
$else_statement and the closing “}” is skipped. However, the relative indentations are noted,
i.e. “$then_statement” is to be indented by three additional spaces.

q{
if ($condition)

$then_statement
else

$else_statement
}

2This type of literal is perhaps familiar to those knowing Perl. However, its semantics follows that of the
“qq{...}” construct in Perl which allows interpolation.

Chapter 2

Types

Variables are untyped but values are typed. There exist twelve different types of values:
null, Boolean values, integers, strings, lists, dictionaries, functions, abstract syntax trees,
matching results of a regular expression, control flow graph nodes, input streams, and
output streams.

2.1 Null value

Null values can have the value null only. Uninitialized variables are initially bound to
null (see 4.6).

2.2 Boolean values

Boolean values can be either true or false.
The standard identifiers true and false may be used to denote the two possible Boolean

values. In the following example, a variable named flag is declared and set to false. In the
following statement the Boolean value of a logical expression is assigned to flag.

var flag = false;
flag = flag || (i == 7);

2.3 Integer values

Integer values can be of arbitrary size as their implementation is based on the GNU Mul-
tiple Precision Library1. Please note that floating point values are not supported.

2.4 String values

Strings are sequences of Unicode codepoints which can be of arbitrary length.
The following example demonstrates how implicitly strings can be converted to in-

tegers or integers to strings. Firstly, the variable i is initialized to the integer value 17.
Secondly, j is initialized to the concatenation of the strings "17" (implicitly converted from
the integer value of i) and "8". Finally, the sum of i and j is computed where j is converted
to an integer first. These implicit conversions are enforced by the operators “&” which
expects strings and “+” which expects integers.

1https://gmplib.org/

https://gmplib.org/

2.5 Lists 11

var i = 17;
var j = i & "8";
var k = i + j; // k is set to 195

When strings are converted to integers and vice versa, a decimal representation is
expected or generated, respectively. Conversions of strings to integers are implemented
using the mpz_set_str function of the GNU Multiple Precision Library with base set to
10. This means that initial white space characters are permitted in the string. However,
trailing non-whitespace characters are not permitted.2

The predefined functions utf8_len and utf8_byte (see 14.1) allow to access the UTF-8
representation of a string.

2.5 Lists

Lists are ordered sets of elements which can be accessed by using indices 0..n − 1.
The following example shows how lists can be constructed using the [...]-syntax and

how to iterate through lists using a foreach- or while-statement:

var cities = ["Berlin", "Hamburg", "Stuttgart", "Ulm"];
foreach city in (cities) {

println(city);
}
// alternatively, indices can be used:
var index = 0;
while (index < len(cities)) {

println(cities[index]);
++index;

}

Expressions of list type reference the data structure that is actually representing the list.
Consequently, an assignment of a list causes a list to be shared (shallow copy). Example:

var numbers = [1, 3, 5];
var more_numbers = numbers;
push(more_numbers, 7);
// len(numbers) == 4

By using the predefined functions push and pop, lists can be used as FIFO queues.

2.6 Dictionaries

Dictionaries are data structures that map string-valued keys to values of arbitrary type
(including null).

The attribution rule in the following example shows how dictionaries can be used to
construct symbol tables. Abstract syntax trees that are bound to variables (id, declarator
and block in this example) can be used as dictionaries to attach attributes to a node of the
syntax tree. In this example, block.vars designates the entry of the dictionary block selected
by the key vars. Whenever a key is constant and an identifier (see 1.9), the dot-operator
can be used as a selecting operator of dictionaries. Selector expressions can be put into {...}
as demonstrated by {id} in this example. As shown below, dictionaries can be constructed
using the {...} syntax. In this case the keys in front of the “->” delimiter must be identifiers.

2In this regard, the semantics diverts from that of Perl which evaluates "10x" + 1 as 11.

12 Types

("direct_declarator" ("identifier" id)) as declarator
in ("compound_statement" *) as block −> {

block.vars{id} = {
decl −> declarator,
used −> false,
minlevel −> −1,
minblock −> null,

};
}

Individual keys and their associated entries in a dictionary may be deleted through a
deletion statement.

Example:

delete block.vars{id}; // delete entry for id in block.vars

Expressions of type dictionary just reference the data structure representing the actual
dictionary. Consequently, an assignment of a dictionary causes a dictionary to be shared
(shallow copy).

Dictionaries can also be interpreted as sets where the key values represent the mem-
bers and the associated values are ignored. Following set operators are supported which
expect both operands to be of the dictionary type:3

“+” union of two sets
“−” difference, i.e. taking the first set and removing all keys belonging

to the second set
“∗” intersection of two sets
“^” symmetric difference, i.e. the result includes keys only which be-

long either to the first or to the second set but not to both
All set operators work on the keys only. The associated values are taken from the first
operand of a set operator, if present, and otherwise taken from the second. In addition,
the assignment operators “+=” and “−=” are supported for sets (see 3.19).

2.7 Functions

Function values consist of an optional parameter list, a function body and a closure. A
closure of an anonymous function allows a function body to refer to all lexically visible
bindings at the point where the function was constructed.

In the following example, the anonymous functions assigned to incr and decr refer both
to the same instance of the local variable counter (see 4.6).

var counter = 0;
var incr = sub { return ++counter; };
var decr = sub { return −−counter; };

2.8 Abstract syntax trees

An abstract syntax tree is either a token or a node consisting of an operator represented
by a string and an ordered list of subtrees. There exists two kinds of leafs, i.e. token leafs
or operator nodes with an empty list of subtrees.

3The set operators resemble those of Pascal. Unlike Modula-2 that added an operator for the symmetric
difference, however, “/” is not used for this operator. Instead, “^” has been taken because C uses it as operator
for XOR which is similar to the symmetric difference.

2.8 Abstract syntax trees 13

Each node (be it a regular node or a leaf node representing a token) has an associated
set of attributes that is organized in the form of a dictionary.

Tokens provide a textual string in two variants. The token literal value preserves the
original text sequence while the token text value provides the processed contents of a
token. Example: In case of a string literal "Hello, world!", the token literal value returns
the entire sequence including the quotes while the token text value returns the contents of
the string literal without the quotes. The token literal value and the token text value of a
token can be retrieved through tokenliteral and tokentext standard functions, respectively.

Examples: The following function traverse traverses an abstract syntax tree recursively
to generate a string representing it. The standard function isoperator is used to distinguish
between operator and token nodes. An operator node can be examined like a list to re-
trieve the individual subtrees.

sub traverse (node) {
var result = "";
if (isoperator(node)) {

result = "(" & operator(node);
foreach operand in (node) {

result &= " " & traverse(operand);
}
result &= ")";

} else {
result = tokenliteral(node);

}
return result;

}

Alternatively, the individual operands can be indexed:

sub traverse (node) {
var result = "";
if (isoperator(node)) {

result = "(" & operator(node);
var index = 0;
while (index < len(node)) {

result &= " " & traverse(node[index]);
++index;

}
result &= ")";

} else {
result = tokenliteral(node);

}
return result;

}

The attributes of the root node of an abstract syntax tree can be examined using the pre-
defined extract_attributes function (see 14):

foreach (attribute, value) in (extract_attributes(node)) {
// ...

}

The following attribution rules matches all "compound_statement" operator nodes with
an arbitrary number of subnodes. Whenever the rule is executed, the operator node is
bound to block due to the as clause. Abstract syntax trees provide a dictionary that can be
used for per-node attributes. The example below initializes the attributes vars, level, and
up of block:

14 Types

("compound_statement" *) as block −> {
block.vars = {};
block.level = 0;
block.up = null;

}

Expressions of type abstract syntax tree reference a node within an abstract syntax tree.
Consequently, an assignment of an abstract syntax tree causes the tree to be shared.

2.9 Matching results of regular expressions

If a regular expression matches, a variable can be bound to its result. This result consists of
the matched text and a list of captured substrings, if “(...)”-constructs where used within
the regular expression. Objects of this type can be interpreted as strings, in this case the
whole matched text is delivered. Alternatively, when indices are used, beginning with an
index of 0 for the first captured substring, or when objects of this type are put into a list
context, the captured substrings are delivered.

Examples: In the following transformation rule (see 9), dec is bound to the sequence of
digits recognized by the regular expression. Variables bound to matching results can be
used like scalars to refer to the matched text.

("decimal_literal" m{^\d+$} as dec) −> ("decimal_literal" {dec + 1})

The regular expression of the following example captures one substring which is refered
to by dec[0].

("decimal_literal" m{^\d+(\d)$} as dec) −> ("decimal_literal" {dec & dec[0]})

2.10 Control flow graph nodes

Attribution rules can be used to construct a interprocedural control flow graph in con-
formance to the IFDS framework by [Reps et al. 1995]. In this framework, a program is
represented by a set of directed graphs G = {G1, ..., Gn} where each individual graph Gi
represents a procedure. Each graph Gi = (Ni , Ei , ni) consists of nodes Ni, directed edges
Ei, and a unique name ni.

Nodes are created using the cfg_node function which takes one or two parameters. The
parameters specify a type and/or the associated node of an abstract syntax tree:

var node1 = cfg_node(node); // cfg node associated with an ast node
var node2 = cfg_node("entry"); // cfg node created with the type "entry"
var cls = cfg_node("close_block", block); // typed cfg node with ast node

Control flow node types are strings which can be used as identifiers (see 1.9). These
types can be queried using the cfg_type function and used within conditions of state ma-
chines:

/* kill instance when we are leaving our block;
node is bound to the current cfg node */

at close_block where node.astnode == block −> close

Directed edges are created using the function cfg_connect which takes two control flow
graph nodes and optionally a third parameter with a label which is a string that can be
used as an identifier (see 1.9):

// label "t" represents "true" for conditional paths
cfg_connect(node1, node2, "t");

2.11 Streams 15

Labels can be used within conditions of state machines. Following example matches
the tree expression against the abstract syntax node of the current control flow graph node,
requires that the node is typed as conditional_fork and tests within the if constructs for the
labels “t” and “f”:

("identifier" varname) as id at conditional_fork
where exists id.object && id.object == object
if t and when welldefined −> nonnull
if t and when isnull −> cut
if f and when welldefined −> isnull
if f and when nonnull −> cut

Either all edges from a node have distinct labels or none of the edges are labelled.
Each control flow node has (like syntax tree nodes) a set of attributes that is organized

as a dictionary. If a control flow node is associated to a node of an abstract syntax tree, the
astnode field allows to access it.

The foreach loop may be used to iterate through all successor nodes of a control flow
graph node. In case of labeled edges, the branches can be examined in the branch dictio-
nary.

The set of graphs G is represented by the predefined dictionary named graph. Per con-
vention this graph shall have the following attributes:

attribute type description
entries dictionary entry nodes by name
exits dictionary exit nodes by name
nodes list list of all nodes

Expressions of type control flow graph node reference a node within a control flow graph.
Consequently, an assignment of a node causes the node to be shared.

2.11 Streams

Streams exist in two variants, input and output streams. The predefined bindings include
stdin (standard input), stdout (standard output), and stderr (standard error output) (see
14). Files can be opened using the open function. By default, open returns an input stream
but files can also be opened for writing using "r" as second parameter. The predefined
functions getline, println, and prints allow to read or to write to a stream, respectively.
Streams are implicitly closed when the last reference to it is cut.

sub main(argv) {
foreach arg in (argv) {

var input = open(arg);
if (input) {

var line;
while (defined(line = getline(input))) {

println(line);
}

} else {
println(stderr, arg, ": could not be opened for reading");

}
}

}

16 Types

2.12 Implicit Conversions

In dependence of their context, values may be implicitly converted into another type, if
possible. A run time error is raised whenever a conversion cannot be done.

2.12.1 Conversions to string type

Null values are converted to the empty string, integers are converted into their decimal
representation, Boolean into "1" or "0", match results into the matched substring, and flow
graph nodes into their type. In case of abstract syntax trees, a conversion delivers either
the result of the standard function operator in case of operator nodes or tokentext otherwise.
In case of lists and dictionaries, the size is returned (equivalent to the len standard func-
tion). Functions without parameter lists are invoked with args bound to null and their
result is converted into string type. An empty string is delivered if null is returned.

Streams are converted to their associated file names which were passed to open. The
predefined standard streams are converted to the respective names, i.e. "stdin", "stdout",
and "stderr".

2.12.2 Conversions to integer type

Null values are converted to 0, Boolean values false and true are converted to 0 and 1,
respectively. All other types are converted into a string first and then interpreted as a
decimal integer, i.e. an optional minus sign followed by a non-empty sequence of digits
“0” to “9” of arbitrary length. If the string does not conform to this format, a run time error
is raised.

Streams are converted to 1, if they are in a good state, and 0 otherwise in case of errors
or on encountering end of input.

2.12.3 Conversions to Boolean type

Null values are converted to false. Non-zero integer values are converted to true, zero to
false. All abstract syntax trees, match results, and flow graph nodes are converted to true
irrespectively of their value. (Note that even an empty match result is evaluated as true to
distinguish it from a failed match.)

Streams are converted to true, if they are in a good state, and false otherwise in case of
errors or on encountering end of input.

Values of other types are converted into strings first. The string values "" and "0" are
converted to false, all other values to true.

2.12.4 Conversions to list type

A null value is converted into an empty list. An abstract syntax tree is, if its root is an op-
erator node, converted to a list of subtrees of its root, or, if it is a token, converted to a list
of one string-valued element representing the token text. A dictionary is converted into a
sorted list of keys. In case of match results, a list of all strings is generated that were cap-
tured by the regular subexpressions. (This list is empty if there were no subexpressions.)
For control flow graph nodes a list of successor nodes is generated. All other types are
converted into a string and from this string a list is contructed with that element.

2.12.5 Conversions to dictionary type

A null value is converted into an empty dictionary. Syntax tree nodes are converted to
their set of attributes (see 2.8). All other types are converted to list first (see 2.12.4). Then

2.13 Examining the type of an object 17

each element of the list gets converted into a string (see 2.12.1) which is subsequently used
as a key. For the associated values the Boolean value true is used.

2.12.6 Conversion to abstract syntax tree type

The value is converted to a string and the string value is turned into an abstract syntax
tree consisting just of a token whose token text is identical to the string. A null value is
treated similarly but an empty string is taken.

2.13 Examining the type of an object

The predefined function type takes an arbitrary object as value and returns its type as
string:

object type returned string
null "null"
Boolean value "boolean"
integer value "integer"
string value "string"
list "list"
dictionary "dictionary"
function "function"
abstract syntax tree "tree"
matching results "match_result"
control flow graph node "flow_graph_node"
input stream "istream"
output stream "ostream"

Chapter 3

Expressions

Expressions serve to compute values. They can have side effects. Following table summa-
rizes all operators along with their priorities and associativity:

Operators Function Type Priority Associativity
identifiers and
literals

simple symbols primary 14 —

d.f field selection postfix 14 left to right
d{f} field selection postfix 14 left to right
a[i] element selection postfix 14 left to right
exists d.f existance operator prefix 13 left to right
++i prefix increment prefix 13 non-associative
i++ postfix increment postfix 13 non-associative
−−i prefix decrement prefix 13 non-associative
i−− postfix decrement postfix 13 non-associative
(e) grouping prefix 13 non-associative
[] list aggregate prefix 13 non-associative
{} dictionary aggregate prefix 13 non-associative
<()> tree construction prefix 13 non-associative
f() function call postfix 13 left to right
sub {} function constructor prefix 13 non-associative
− negation prefix 12 non-associative
! logical negation prefix 12 non-associative
^ power infix 11 right to left
* div mod multiplicative operators infix 10 left to right
+ − additive operators infix 9 left to right
< > <= >= == =! comparison operators infix 8 left to right
x repetition infix 7 left to right
& concatenation infix 6 left to right
=~ regexp match infix 5 non-associative
&& logical and infix 4 left ro right
|| logical or infix 3 left to right
? : selection infix 2 non-associative
= &= += −= assignment prefix 1 right to left

3.1 Designators 19

3.1 Designators

A designator allows to specify an object that can be assigned to. Possible designators are
named variables or selected elements of a variable:

⟨designator⟩ −→ ⟨identifier⟩
−→ ⟨designator⟩ “.” ⟨identifier⟩
−→ ⟨designator⟩ “{” ⟨expression⟩ “}”
−→ ⟨designator⟩ “[” ⟨expression⟩ “]”

Identifiers refer to one of the bound or locally declared variables. The visibility of a vari-
able name is determined by its lexical scope. In case of name conflicts, the innermost
declaration takes precedence.

Objects of dictionary or abstract syntax tree type accept a selector in the form of a
key using the “.”-construct for identifiers or the {...}-construct using arbitrary expressions
which are converted into a string. Unused keys may only be used if no further selectors
are following and if the designator is used at the left side of an assignment or as parameter
to the exists operator. Otherwise, the use of a non-existing key causes a run-time error to
be raised.

Objects of list, match result, or abstract syntax tree type accept a selector in the form
of a list index using the [...]-construct using arbitrary expressions which are converted
into an integer (see 2.12.2). (In case of abstract syntax trees, an index is only accepted if
the root element of the tree is an operator node.) Indices must fall into the range [0..n −
1] where n is the length of the list or match result or the number of operands in case
of an abstract syntax tree. Individual elements of a match result that represent captured
substrings or subtrees selected out of an abstract syntax tree must not be assigned to. Lists
can be extended only through the push standard function.

3.2 Increment and decrement operators

Designators can be incremented or decremented using prefix or postfix operators:

⟨prefix-increment⟩ −→ “++” ⟨designator⟩
⟨prefix-decrement⟩ −→ “−−” ⟨designator⟩
⟨postfix-increment⟩ −→ ⟨designator⟩ “++”
⟨postfix-decrement⟩ −→ ⟨designator⟩ “−−”

In case of the prefix increment and decrement operators, the resulting value of the expres-
sion is the value of the designator after it has been incremented or decremented. In case
of the postfix increment and decrement operators, the resulting value of the expression is
the value the designator before it has been incremented or decremented.

3.3 List aggregates

List aggregates construct list values:

20 Expressions

⟨list-aggregate⟩ −→ “[” “]”
−→ “[” ⟨expression-list⟩ “]”

⟨expression-list⟩ −→ ⟨expression⟩
−→ ⟨expression-list⟩ “,” ⟨expression⟩

Nested list aggregates construct nested data structures. Example:

var matrix = [[1 2 3], [4 5 6], [7 8 9]];

3.4 Dictionary aggregates

Dictionary aggregates construct dictionary values:

⟨dictionary-aggregate⟩ −→ “{” “}”
−→ “{” ⟨key-value-pairs⟩ “}”
−→ “{” ⟨key-value-pairs⟩ “,” “}”

⟨key-value-pairs⟩ −→ ⟨key-value-pair⟩
−→ ⟨key-value-pairs⟩ “,” ⟨key-value-pair⟩

⟨key-value-pair⟩ −→ ⟨identifier⟩ “->” ⟨expression⟩
−→ ⟨string-literal⟩ “->” ⟨expression⟩

Identifiers on the left-hand-side of a “->” operator do not refer to equally-named variables
in the current lexical scope but are interpreted literally. In the following example, member
is a dictionary with one entry where the key is “name” and its associated value “Andreas”:

var name = "Andreas";
var member = {name −> name};

Key values which are not of string type are converted implicitly to strings (see 2.12.1).
Null values are not permitted as keys.

3.5 Abstract syntax tree constructors

Tree constructors create new abstract syntax trees:

⟨tree-constructor⟩ −→ “<(” ⟨string-literal⟩ “)>”
−→ “<(” ⟨string-literal⟩ ⟨subnodes-constructor⟩ “)>”

⟨subnode-constructor⟩ −→ ⟨identifier⟩
−→ ⟨identifier⟩ “...”
−→ ⟨tree-expression-constructor⟩
−→ ⟨tree-expression-constructor⟩ as ⟨identifier⟩
−→ “{” ⟨expression⟩ “}”
−→ “{” ⟨expression⟩ “}” as ⟨identifier⟩

3.6 Function constructors 21

−→ “{” ⟨expression⟩ “}” “...”
−→ “{” ⟨expression⟩ “}” “...” as ⟨identifier⟩

⟨tree-expression-constructor⟩ −→ “(” ⟨string-literal⟩ “)”
−→ “(” ⟨string-literal⟩ ⟨subnodes-constructor⟩ “)”

⟨subnodes-constructor⟩ −→ ⟨subnode-constructor⟩
−→ ⟨subnodes-constructor⟩ ⟨subnode-constructor⟩

If an expression in curly braces or a bound variable name is followed by the “...” op-
erator, the expression or variable must be a list of subnodes (see 2.5) whose elements are
inserted at the corresponding place.

The syntax is close to tree expressions (see 6) except that the topmost parentheses
require angle brackets and that all constructs are omitted that are required for matching
a tree expression. Alternatively, the predefined functions make_node and make_token (see
14.1) can be used.

The following example constructs abstract syntax trees that correspond to 3 + 4 ∗ 5
and 2 ∗ (3 + 4 ∗ 5), respectively:

var node = <("+"
{ make_token("3") }
("*"

{ make_token("4") }
{ make_token("5") }

)
)>;
var expr = <("*" { make_token("2") } node)>;

Alternatively, make_node can be used:

var node = make_node("+",
make_token("3"),
make_node("*",

make_token("4"),
make_token("5")

)
);
var expr = make_node("*", make_token("2"), node);

3.6 Function constructors

Function constructors define local functions. Their lexical closure, i.e. the lexical scope
at the location of the function construction including the instances of the local variables
visible at the time when the function was constructed, remains visible within the body of
the function and continues to exist as long as the function can be refered to.

⟨function-constructor⟩ −→ sub ⟨block⟩
−→ sub ⟨parameter-list⟩ ⟨block⟩

⟨parameter-list⟩ −→ “(” “)”
−→ “(” ⟨identifier-list⟩ “)”

22 Expressions

⟨identifier-list⟩ −→ ⟨identifier⟩
−→ ⟨identifier-list⟩ “,” ⟨identifier⟩

If no parameter list is specified, the number of parameters is variable. All actual ar-
guments are then converted into a list and bound to args. Otherwise, if a parameter list
is given, the number of parameters is fixed and the formal parameters are bound to the
corresponding actual parameters.

3.7 Function calls

Functions without parameter lists can be invoked with an arbitrary number of parame-
ters. All parameters are evaluated left to right and their results bound to the elements
of the list args. This list is empty if no parameters are passed. Otherwise, if the function
has a parameter list, the number of actual arguments must match the number of named
parameters.

⟨function-call⟩ −→ ⟨primary⟩ “(” “)”
−→ ⟨primary⟩ “(” ⟨expression-list⟩ “)”

The value of a function call is determined by its return value (see 4.5). If a function has no
return statement, null is returned.

Note that functions without parameter lists can also be implicitly invoked through an
implicit conversion of a function value to a string (see 2.12.1). In this case, args is bound
to null.

3.8 Primaries

⟨primary⟩ −→ ⟨designator⟩
−→ exists ⟨designator⟩
−→ exists “(” ⟨designator⟩ “)”
−→ ⟨prefix-increment⟩
−→ ⟨prefix-decrement⟩
−→ ⟨postfix-increment⟩
−→ ⟨postfix-decrement⟩
−→ “(” ⟨assignment⟩ “)”
−→ ⟨list-aggregate⟩
−→ ⟨dictionary-aggregate⟩
−→ ⟨tree-constructor⟩
−→ ⟨function-call⟩
−→ ⟨function-constructor⟩
−→ ⟨cardinal-literal⟩
−→ ⟨string-literal⟩
−→ null

3.9 Factors 23

The exists operator returns true if a given key of a designator is used within a dictionary
or not. Example:

var dict = {a −> "a", b −> null};
var b1 = exists dict.a; // is true
var b2 = exists dict.b; // is true, even if the value is null
var b3 = defined(dict.b); // is false as dict.b is null
var b4 = exists dict.c; // is false
var b5 = exists dict.c.d; // not permitted as dict.c does not exist

3.9 Factors

⟨factor⟩ −→ ⟨primary⟩
−→ “−” ⟨primary⟩
−→ “!” ⟨primary⟩

The unary minus operator “−” converts its operand into an integer and toggles its sign.
The logical negation operator “!” converts its operand into a boolean value and negates it.

3.10 Power expressions

⟨power-expression⟩ −→ ⟨factor⟩
−→ ⟨power-expression⟩ “^” ⟨factor⟩

If both operands are dictionaries, the binary operator “^” is interpreted as set operator
implementing the symmetric difference (see 2.6).

Otherwise, the binary operator “^” converts its operands a and b to integer values and
returns ab. Note that the value of b must be non-negative and not larger than 231 − 1.

3.11 Multiplicative expressions

⟨multiplicative-expression⟩ −→ ⟨power-expression⟩
−→ ⟨multiplicative-expression⟩ “∗” ⟨power-expression⟩
−→ ⟨multiplicative-expression⟩ div ⟨power-expression⟩
−→ ⟨multiplicative-expression⟩ mod ⟨power-expression⟩

If both operands are dictionaries, the binary operator “∗” is interpreted as intersection
operator for sets (see 2.6).

24 Expressions

Otherwise, all multiplicative operators convert their operands into integer values (see
2.12.2) and return an integer value.

The operators div and mod follow Knuth’s definition of these operators if b ̸= 0
[Knuth 1997]:

a div b :=
⌊ a

b

⌋
a mod b := a − b

⌊ a
b

⌋
A runtime error is raised if the second operand is zero.

3.12 Additive expressions

⟨additive-expression⟩ −→ ⟨multiplicative-expression⟩
−→ ⟨additive-expression⟩ “+” ⟨multiplicative-expression⟩
−→ ⟨additive-expression⟩ “−” ⟨multiplicative-expression⟩

If both operands are dictionaries, the additive operators are interpreted as set operators
(see 2.6), “+” delivering the union, and “−” the difference.

Otherwise, all additive operators convert their operands into integer values (see 2.12.2)
and return an integer value.

3.13 Comparison operators

⟨comparison⟩ −→ ⟨additive-expression⟩
−→ ⟨comparison⟩ “==” ⟨additive-expression⟩
−→ ⟨comparison⟩ “!=” ⟨additive-expression⟩
−→ ⟨comparison⟩ “<” ⟨additive-expression⟩
−→ ⟨comparison⟩ “<=” ⟨additive-expression⟩
−→ ⟨comparison⟩ “>=” ⟨additive-expression⟩
−→ ⟨comparison⟩ “>” ⟨additive-expression⟩

In case of the comparison operators “==” (equality) and “!=” (inequality), null is consid-
ered equal to null only. Non-scalar types, i.e. lists, dictionaries, functions, abstract syntax
trees, matching results of regular expressions, and control flow graph nodes, are consid-
ered equal only if they refer to the same object.

If one of the operands of integer type (see 2.3), the other operand, if it is not of integer
type, is converted to an integer value (see 2.12.2). The comparison is then performed on
two integers.

Otherwise, both operands are converted to string type (see 2.12.1) and the comparison
is then performed octet by octet in comparing their numerical values in the local encoding.

3.14 String repetition 25

3.14 String repetition

⟨repetitive-expression⟩ −→ ⟨comparison⟩
−→ ⟨repetitive-expression⟩ x ⟨comparison⟩

The repetition operator “x” converts its left operand into a string (see 2.12.1) and its right
operand into an integer (see 2.12.2). If the right operand is zero or negative, the empty
string is returned. Otherwise, a string is generated which consists of n repetitions of the
left operand where n is the value of the right operand. Example:

var fred2 = "fred" x 2; /* result is "fredfred" */
var spaces = " " x 80; /* 80 space characters */

3.15 String and list concatenation

⟨concatenation-expression⟩ −→ ⟨repetitive-expression⟩
−→ ⟨concatenation-expression⟩ “&” ⟨repetitive-expression⟩

If any of the two operands is of list type, the other operand is, if necessary, converted into
a list (see 2.12.4) and a concatenated list is returned consisting of all elements of the first
operand, followed by those of the second operand.

Otherwise, both operands are converted to strings (see 2.12.1) and the concatenated
string of the first and second operand is returned.

3.16 Matching strings against regular expressions

⟨match-expression⟩ −→ ⟨concatenation-expression⟩
−→ ⟨concatenation-expression⟩ “=~” ⟨regular-expression⟩
−→ ⟨concatenation-expression⟩ “=~” ⟨concatenation-expression⟩

The matching operator converts its left operand into a string (see 2.12.1) and matches its
against the regular expression. If any substring of the left operand matches the regular
expression, an object of match result type (see 2.9) is constructed and returned. Otherwise,
null is returned.

The regular expression can be either specified by a literal (see 1.10.3) or by an arbitrary
expression. In the latter case, it is converted to a string (see 2.12.1) and then interpreted as
an regular expression like the corresponding literals but without the enclosing braces.

The regular expression engine is aware of the encoding in UTF-8:

• A dot in the regular expression does not match a byte but a Unicode codepoint.

• Captures select sequences of Unicode codepoints.

26 Expressions

• Unicode extensions for regular expressions are supported.1

Invalid regular expressions cause runtime exceptions.
Example: The following function ast_summary takes an abstract syntax tree node as ar-

gument and returns a text representation of it. If this representation extends over multiple
lines, the intermediate lines are replaced by dots:

sub ast_summary (tree) {
var text = gentext(tree);
var res;
if (res = text =~ m{([^\n]*)\n.*\n(.*)}) {

text = res[0] & " ... " & res[1];
} elsif (res = text =~ m{([^\n]*)\n}) {

text = res[0] & " ...";
}
return text;

}

3.17 Logical expressions

⟨and-expression⟩ −→ ⟨match-expression⟩
−→ ⟨and-expression⟩ “&&” ⟨match-expression⟩

⟨or-expression⟩ −→ ⟨and-expression⟩
−→ ⟨or-expression⟩ “||” ⟨and-expression⟩

The logical operators evaluate the first operand and convert it to Boolean type (see 2.12.3).
If in case of the logical and operator “&&” the first operand evaluates to false, the logi-
cal expression returns false without evaluating the right operand (short circuit evaluation).
Similarly, if in case of the logical or operator “||” the first operand evaluates to true, the
logical expression returns true without evaluating the right operand.

Otherwise, the second operand is evaluated and converted to Boolean type and its
value is returned.

3.18 Conditional expressions

⟨conditional⟩ −→ ⟨and-expression⟩
−→ ⟨and-expression⟩ “?” ⟨and-expression⟩ “:” ⟨and-expression⟩

The conditional operator “?” evaluates its first operand and converts it to Boolean type
(see 2.12.3). If it is true, the second operand is evaluated and returned, otherwise the third.

1See http://www.pcre.org/current/doc/html/pcre2syntax.html for details.

http://www.pcre.org/current/doc/html/pcre2syntax.html

3.19 Assignments and expressions 27

3.19 Assignments and expressions

⟨assignment⟩ −→ ⟨conditional⟩
−→ ⟨designator⟩ “=” ⟨assignment⟩
−→ ⟨designator⟩ “&=” ⟨assignment⟩
−→ ⟨designator⟩ “+=” ⟨assignment⟩
−→ ⟨designator⟩ “−=” ⟨assignment⟩

⟨expression⟩ −→ ⟨assignment⟩

The regular assignment operator “=” implements reference semantics, i.e. values do not
get copied or cloned but references are shared. In case of elementary data types like strings
or integers, the effect is not seen as values do not change. Instead, even in case of an in-
crement or decrement operator, new values are represented by new objects. The effect,
however, can be observed in case of updatable structured data types like lists and dictio-
naries. Example:

var l1 = [1, 2, 3];
var l2 = l1; // both, l1 and l2, refer to the same list
l1[0] = 4;
// l2[0] == 4;

The updating assignment operators “&=”, “+=”, and “-=”, if used on elementary data
types (i.e. strings or integers), compute a new value from the old value of the left-hand-
side and the given right-hand-side and assign it to the designator. In case of lists and the
“&=” operator, the referenced list is extended by the right-hand-side.

The assignment operators “+=” and “-=” are interpreted as corresponding set opera-
tors if the designator is a dictionary. In this case, if the right operand is converted into a
dictionary, if necessary (see 2.12.5). Example:

var set = {};
set += 1; set += 2;
// set: {1 −> true, 2 −> true}
set −= 1;
// set: {2 −> true}

Note that set1 += set2 is a short form of set1 = set1 + set2, i.e. a reference to a newly cre-
ated dictionary is assigned to. The old dictionary remains untouched. This behaviour is
different from following loop which extends the existing dictionary:

foreach (key, value) in (set2) {
if (!exists set1{key}) {

set1{key} = value;
}

}

Chapter 4

Statements

4.1 Blocks

A block groups a sequence of instructions and opens a nested scope, i.e. variables declared
within a block are not visible outside the block. Whenever a block is executed, a new in-
stance of it is created with its own set of local variables (see 4.6). Blocks and their variables
are implicitly refered to through closures (see 2.7).

⟨block⟩ −→ “{” “}”
−→ “{” ⟨statements⟩ “}”

⟨statements⟩ −→ ⟨statement⟩
−→ ⟨statements⟩ ⟨statement⟩

⟨statement⟩ −→ ⟨expression⟩ “;”
−→ ⟨delete-statement⟩ “;”
−→ ⟨if-statement⟩
−→ ⟨while-statement⟩
−→ ⟨foreach-statement⟩
−→ ⟨return-statement⟩ “;”
−→ ⟨var-statement⟩ “;”

4.2 Deletion statement

A deletion statement allows to delete a key and its entry in a dictionary. If the given key
does not exist, the operation has no effect.

⟨delete-statement⟩ −→ delete ⟨designator⟩

4.3 Conditional statement 29

4.3 Conditional statement

An if-statement allows to execute code conditionally. It consists of a sequence of condi-
tions and associated blocks with an optional else-part at the end. The conditions are eval-
uated and converted to boolean type (see 2.12.3) in the given order until one of them eval-
uates to true. Then the associated block is executed. Otherwise, if none of the conditions
evaluates to true, the else-part is executed, if present.

⟨if-statement⟩ −→ if “(” ⟨expression⟩ “)” ⟨block⟩
−→ if “(” ⟨expression⟩ “)” ⟨block⟩ else ⟨block⟩
−→ if “(” ⟨expression⟩ “)” ⟨block⟩ ⟨elsif-chain⟩
−→ if “(” ⟨expression⟩ “)” ⟨block⟩ ⟨elsif-chain⟩ else ⟨block⟩

⟨elsif-chain⟩ −→ ⟨elsif-statement⟩
−→ ⟨elsif-chain⟩ ⟨elsif-statement⟩

⟨elsif-statement⟩ −→ elsif “(” ⟨expression⟩ “)” ⟨block⟩

4.4 Loop statements

⟨while-statement⟩ −→ while “(” ⟨expression⟩ “)” ⟨block⟩
⟨foreach-statement⟩ −→ foreach ⟨identifier⟩ in “(” ⟨expression⟩ “)” ⟨block⟩

−→ foreach “(” ⟨identifier⟩ “,” ⟨identifier⟩ “)” in “(” ⟨expression⟩ “)” ⟨block⟩

A while statement evaluates first the condition, converts it to boolean (see 2.12.3). If the
condition is true the associated block is executed. This process repeats until the condition
evaluates to false.

The first variant of the foreach statement converts its expression into a list (see 2.12.4)
and binds the given identifier to each list member in turn and executes the associated
block for it.

The second variant with two variable names expects a dictionary (see 2.6) and binds
the given variables to each key and its associated value in the dictionary and executes the
associated block for it. The order of the keys is implementation-dependent.

4.5 Return statement

A return statement is valid within functions only (see 2.7 and 5). In its first variant, null
is returned (see 2.1). The second variant evaluates the given expression and returns its
result. In each case, the execution of the current function is terminated and the execution
continues after the function call.

⟨return-statement⟩ −→ return
−→ return ⟨expression⟩

30 Statements

4.6 Variable declarations

Variable declarations bind the given variable name to the value of the given expression or,
if no expression has been given, to null in the current instance of the local block. Multiple
declarations of the same variable name within the same block are not permitted. Variables
must not be used before being declared and references to equally-named variables of outer
blocks in the same block are prohibited.

⟨var-statement⟩ −→ var ⟨identifier⟩
−→ var ⟨identifier⟩ “=” ⟨expression⟩

The binding of a variable can be changed through one of the assignment operators in a
expression statement (see 3.19).

Chapter 5

Function definitions

5.1 Regular global functions

Functions can be defined at the global level. They are globally visible and their closures
are restricted to the set of predefined bindings and the other global functions.

⟨function-definition⟩ −→ sub⟨identifier⟩ ⟨block⟩
−→ sub⟨identifier⟩ ⟨parameter-list⟩ ⟨block⟩

Parameter passing is handled as for locally constructed functions (see 3.6 and 3.7):

• If a parameter list is given, the number of actual arguments must match the length of
the parameter list and each of the named parameters is bound to the corresponding
actual argument on invocation.

• Otherwise, if no parameter list is given, any number of actual parameters is permit-
ted, and passed through the list args.

Example: The following function computes the greatest common divisor of the two argu-
ments a and b:

sub gcd (a, b) {
while (a != b) {

if (a > b) {
a −= b;

} else {
b −= a;

}
}
return a;

}

Each function returns a value. If the function ends without executing return or if the re-
turn-statement is without value, null is returned. Otherwise, the value of the return ex-
pression is returned (see 4.5).

Local functions can be defined using function constructors (see 3.6) and within state
machines (see 8.1).

32 Function definitions

5.2 Main function

The global main function, if it exists, is invoked implicitly within the regular execution
order (see 13.1) or is controlling the entire execution in case of a free-standing script (see
13.2). The remaining command line arguments are passed as list to main, either through an
explicitly named parameter or, if the parameter list has been omitted, through the variable
args which is locally bound within main (see 3.7):

/* variant with explicit parameter list */
sub main (argv) {

foreach arg in (argv) {
/* process arg... */

}
}

/* variant without explicit parameter list */
sub main {

foreach arg in (args) {
/* process arg... */

}
}

The argument list passed to main includes neither the binary of the Astl interpreter nor the
name of the script or any other options that are consumed by the runtime environment.
The name of the script can be obtained through the predefined binding cmdname.

The return value of the main function is ignored.

5.3 Other global functions

Named attribution rules (see 7.2), named generating transformation rules (see 9.2), named
in-place transformation rules (see 9.3), and named print rules (see 11.2) can be used like
regular global functions. They all expect an abstract syntax tree as argument (see 2.8).

Chapter 6

Tree expressions

Tree expressions are used in attribution rules (see 7), state machines (see 8), transformation
rules (see 9), and print rules (see 11). A tree expression matches or fails for a particular
node in an abstract syntax tree. Whenever a tree expression matches and the associated
rule gets executed, the bindings of the tree expression are visible in the lexical scope of the
rule. In addition, it is possible to construct trees using a notation that is close to the tree
expressions (see 3.5).

6.1 Simple tree expressions

A simple tree expression consists of a operator set (see 12.2) and an arbitrary number of
subnodes, specified by nested tree expressions, variable names, variable-length lists using
the “...” operator, or by using the wildcard operator “*”. Tree expressions containing the
operator “...” or the wildcard operator “*” are of variable arity. A tree expression matches
a node of an abstract syntax tree if and only if

• the corresponding node is an operator node with an operator that is included in the
operator set, and where

• in case of a fixed arity, the number of subnodes matches the arity, and where

• each of the subtree expressions matches the corresponding subtree.

Regular expressions match token nodes only where the regular expression matches
the token literal. String literals match tokens only where the token literal is equal to the
string literal.

Whenever a named variable is used within ⟨subnode⟩, it is, if defined, compared
against the corresponding subtree, or, if undefined, bound to the corresponding subtree.
In the former case the variable can be either an node of an abstract syntax tree or an ar-
bitrary value that can be converted into a string. In case of a node of an abstract syntax
tree, a comparison covering operators, operands and tokens but not attributes is done re-
cursively. In case of a string, the match succeeds if and only if the corresponding subtree
represents a token and if the texts are identical.

Within a list of subnodes, one (and at maximum only one) named variable may be
followed by a “...” operator. In this case the variable is either bound to a list consisting of
the remaining subnodes or the list of remaining subnodes is matched against the already
existing list by comparing the list length and by matching each list element against the
corresponding subnode. This list can be empty if there are no additional subnodes.

34 Tree expressions

⟨tree-expression⟩ −→ “(” ⟨operator-expression⟩ “)”
−→ “(” ⟨operator-expression⟩ ⟨subnodes⟩ “)”
−→ “(” ⟨operator-expression⟩ “*” “)”

⟨subnodes⟩ −→ ⟨subnode⟩
−→ ⟨subnodes⟩ ⟨subnode⟩

⟨subnode⟩ −→ ⟨named-tree-expression⟩
−→ ⟨regular-expression⟩
−→ ⟨string-literal⟩
−→ ⟨identifier⟩
−→ ⟨identifier⟩ “...”

⟨regular-expression⟩ −→ ⟨regexp-literal⟩
−→ ⟨regexp-literal⟩ as ⟨identifier⟩

6.2 Operator sets

Operator sets include at least one operator and are defined through operator expressions:

⟨operator-expression⟩ −→ ⟨string-literal⟩
−→ ⟨identifier⟩
−→ “[” ⟨operators⟩ “]”

⟨operators⟩ −→ ⟨operator-term⟩
−→ ⟨operators⟩ ⟨operator-term⟩

⟨operator-term⟩ −→ ⟨string-literal⟩
−→ ⟨identifier⟩

Named operator sets can be defined through the opset clause (see 12.2) which must be
declared before it can be used.

6.3 Named tree expressions

Named tree expressions allow to bind a named variable to a matched subnode within the
tree expression.

⟨named-tree-expression⟩ −→ ⟨tree-expression⟩
−→ ⟨tree-expression⟩ as ⟨identifier⟩

6.4 Contextual tree expressions 35

6.4 Contextual tree expressions

Contextual tree expressions allow to specify patterns which must match for one of the
parent nodes. If multiple parent nodes match, the innermost is taken for the bindings. If
multiple contexts are given in an “and in”-chain, the next context is always taken rela-
tively to the previously matched context node. Negated context expressions succeed if no
matching parent node is found. No bindings result from negated context expressions and
every negated context expression resets the context to the original node.

⟨contextual-tree-expression⟩ −→ ⟨named-tree-expression⟩
−→ ⟨named-tree-expression⟩ in ⟨context-expression⟩
−→ ⟨named-tree-expression⟩ “!” in ⟨context-expression⟩

⟨context-expression⟩ −→ ⟨context-match⟩
−→ ⟨context-match⟩ and in ⟨context-expression⟩
−→ ⟨context-match⟩ and “!” in ⟨context-expression⟩

⟨context-match⟩ −→ ⟨named-tree-expression⟩

If a variable named here is used within a context expression, it matches only if the original
node or one of its parent nodes is equal to the node the variable here is bound to. If multiple
such special variables are needed in multiple consecutive context expressions, here1, here2
etc. may be used in this order from left to right.

Example: Following tree expression matches all identifiers that are used on the right-
hand-side of an assignment expression in C:

("identifier" id) in (assignment_operators lhs here) as assignment −> {
println(id, " used on rhs of ", gentext(assignment));

}

Following example matches all cases where an identifier is within the same expression
once on the left-hand-side of an expression and then on the right-hand-side:

("identifier" id)
in (assignment_operators here1 rhs) as inner_assignment and
in (assignment_operators lhs here2) as outer_assignment −> {

println(id, " is assigned to and used in ", gentext(outer_assignment));
}

6.5 Conditional tree expressions

Conditional tree expressions allow to augment a tree expression with an expression which
may use any of the variables bound in the tree expression. The conditional expression is
evaluated only if the contextual tree expression matches and before any of the associated
rules are executed.

⟨conditional-tree-expression⟩ −→ ⟨contextual-tree-expression⟩
−→ ⟨contextual-tree-expression⟩ where ⟨expression⟩

Chapter 7

Attribution rules

7.1 Regular attribution rules

An attribution rule consists of a tree expression and a block. When attribution rules are
executed, the abstract syntax tree is traversed depth-first. For each visited node of the
abstract syntax tree, all attribution rules are executed whose tree expressions match the
visited node.

Attributes rules are executed in pre- or postorder in respect to the traversal of the
subnodes. By default, rules are executed in preorder. The keywords pre and post can be
used to specify the order.

When multiple rules match, they are ordered first by arity (in preorder those rules
with varying arity are executed first, in postorder rules with varying arity come last) and
second by the order of appearance in the source.

⟨attribution-rules⟩ −→ attribution rules “{” ⟨attributions⟩ “}”
⟨attributions⟩ −→ ⟨attribution⟩

−→ ⟨attributions⟩ ⟨attribution⟩
⟨attribution⟩ −→ ⟨conditional-tree-expressions⟩ “->” ⟨block⟩

−→ ⟨conditional-tree-expressions⟩ “->” pre ⟨block⟩
−→ ⟨conditional-tree-expressions⟩ “->” post ⟨block⟩

Example: In the following example we have three attribution rules that focus on opera-
tor nodes with the operator "compound_statement". The first rule is executed first. Af-
terwards, the second rule is executed whenever a compound statement is nested within
another compound statement. Then all the attribution rules are executed that match the
subnodes. Finally, the third rule is executed last as it is a postfix rule.

("compound_statement" *) as block −> {
block.vars = {};
block.level = 0;
block.up = null;

}
("compound_statement" *) as inner_block

in ("compound_statement" *) as outer_block −> {
inner_block.level = outer_block.level + 1;

7.2 Named attribution rules 37

inner_block.up = outer_block;
}
("compound_statement" *) as block in ("translation_unit" *) as root −> post {

foreach (varname, entry) in (block.vars) {
if (entry.used) {

if (entry.minblock != block) {
println(location(entry.decl) & ": variable " & varname &

" should be moved into " & location(entry.minblock));
}

} else {
println(location(entry.decl) & ": unused variable " & varname);

}
}

7.2 Named attribution rules

Named attribution rules are similar to regular attribution rules but they are not implicitly
executed (see 13.1). The given name is bound to a function which executes the associated
attribute rule set. The function takes one optional parameter that specifies the root node of
the to be traversed tree. Otherwise, if no parameter is given, root is taken (see 14). Within
this rule set, root is bound to the to be attributed abstract syntax tree.

⟨attribution-rules⟩ −→ attribution rules ⟨identifier⟩ “{” ⟨attributions⟩ “}”

Chapter 8

State machines

8.1 Regular state machines

A state machine consists of a finite number of named states, a set of variables, and a set of
rules. Rules can create instances of a state machine, change their states, execute arbitrary
code, or stop their execution. State machines without creation rules are called global state
machines. All other state machines are called local.1

State machines may be derived from an abstract state machine. In this case, the name
of the abstract state machine is to be given after a colon.

⟨state-machine⟩ −→ state machine ⟨identifier⟩ “(” ⟨states⟩ “)”
“{” ⟨sm-vars⟩ ⟨sm-functions⟩ ⟨sm-rules⟩ “}”

−→ state machine ⟨identifier⟩ “:” ⟨identifier⟩ “(” ⟨states⟩ “)”
“{” ⟨sm-vars⟩ ⟨sm-functions⟩ ⟨sm-rules⟩ “}”

State machine instances are executed during a recursive traverse of the control flow graph
(see 13.1). Initially, all global state machines are instantiated. Local state machines are
instantiated whenever a create clause fires for the first time for a control flow graph node.
State machines instances continue to run through the traverse until they are explicitly
stopped. If a node of the control flow graph has multiple exits, a copy of a state machine
is created for each of the possible paths.

All global state machine instances derived from the same state machine are related to
each other. All local state machine instances that are derived from the same instance that
was created at a particular control flow graph node are also related to each other.

Variables declared within a state machine are either shared or private. Shared variables
are shared among all state machine instances that are related to each other. Private vari-
ables are never shared among instances of a state machine but kept private for each path
taken by a state machine.

⟨sm-vars⟩ −→ [⟨sm-var-declarations⟩]
⟨sm-var-declarations⟩ −→ ⟨sm-var-declaration⟩

−→ ⟨sm-var-declarations⟩ ⟨sm-var-declaration⟩
1This property conforms to the chosen abstract state machine (see below). However, it is well possible to have

a local state machine which is derived from global or global_tracker. In this case, you will get an interprocedural
analysis for a local object.

8.1 Regular state machines 39

⟨sm-var-declaration⟩ −→ shared var ⟨identifier⟩
−→ shared var “=” ⟨expression⟩
−→ private var ⟨identifier⟩
−→ private var ⟨identifier⟩ “=” ⟨expression⟩

Local functions can be declared within a state machine. They inherit the scope from their
state machine instance including all shared and private variables.

⟨sm-functions⟩ −→ [⟨sm-function-definitions⟩]
⟨sm-function-definitions⟩ −→ ⟨function-definition⟩

−→ ⟨sm-function-definitions⟩ ⟨function-definition⟩

State machines are implicitly executed in the course of a regular execution order (see 13.1)
if a control flow graph has been constructed through the attribution rules and if graph.root
exists and points to a node of the control flow graph. In case of a free-standing execu-
tion enviroment (see 13.2), the execution of state machines can be initiated through the
run_state_machines function.

State machines instances, when executed, have a state and begin initially with the
very first state of their list of named states. State machines traverse through the control
flow graph. The execution of a state machine instance stops if a control flow graph node
has already been visited by a related state machine instance with the same state. For ev-
ery edge leaving the actual control flow graph node, a new instance of a state machine is
constructed which inherits the state and the values of the private variables from its pre-
decessor and continues to share the shared variables with its predecessors. All these new
instances are related to each other and to the instance they have been derived from.

While traversing a control flow graph, the rules of a state machine can consider

(1) the node of the abstract syntax tree associated with the control flow graph node in-
cluding its associated data structures, if existant (see ⟨conditional-tree-expression⟩),

(2) the current node of the control flow graph includes its type and its associated data
structures (using the at keyword, see ⟨cfg-node-expression⟩),

(3) the label of the edge leaving the current node of the control flow graph (using the if
keyword, see ⟨cfg-edge-condition⟩), and

(4) the current state (using the when keyword, see ⟨sm-state-condition⟩).

Combinations of (3) and (4) can be grouped (see ⟨sm-alternatives⟩) and associated to a
combination of (1) and (2) (see ⟨sm-condition⟩):

⟨sm-rule⟩ −→ ⟨sm-condition⟩ “->” ⟨sm-block⟩
−→ ⟨sm-condition⟩ ⟨sm-alternatives⟩
−→ ⟨sm-condition⟩ “->” create ⟨block⟩
−→ on close ⟨sm-handler⟩

⟨sm-condition⟩ −→ ⟨conditional-tree-expression⟩
−→ at ⟨cfg-node-expression⟩
−→ ⟨conditional-tree-expression⟩ at ⟨cfg-node-expression⟩

40 State machines

⟨cfg-node-expression⟩ −→ ⟨cfg-node-types⟩
−→ ⟨cfg-node-types⟩ where ⟨expression⟩
−→ “*”
−→ “*” where ⟨expression⟩

⟨cfg-node-types⟩ −→ ⟨identifier⟩
−→ ⟨cfg-node-types⟩ or ⟨identifier⟩

⟨sm-alternatives⟩ −→ ⟨sm-alternative⟩
−→ ⟨sm-alternatives⟩ ⟨sm-alternative⟩

⟨sm-alternative⟩ −→ if ⟨cfg-edge-condition⟩ “->” ⟨sm-block⟩
−→ when ⟨sm-state-condition⟩ “->” ⟨sm-block⟩
−→ if ⟨cfg-edge-condition⟩ and

when ⟨sm-state-condition⟩ “->” ⟨sm-block⟩
⟨cfg-edge-condition⟩ −→ ⟨identifier⟩

−→ ⟨cfg-edge-condition⟩ or ⟨identifier⟩
⟨sm-state-condition⟩ −→ ⟨identifier⟩

−→ ⟨sm-state-condition⟩ or ⟨identifier⟩

If a star is given in a ⟨cfg-node-expression⟩, all control flow graph nodes are matched. This
allows to write a rule that fires in all cases:

at * −> {
// ...

}

The expressions that are given as conditions to ⟨conditional-tree-expression⟩ or ⟨cfg-node-
expression⟩ have access to all shared and private variables of the state machine. In addi-
tion, the name node is bound to the control flow graph node in the condition of ⟨cfg-node-
expression⟩ (but not in the condition of ⟨conditional-tree-expression⟩). (The node of the
abstract syntax tree, if defined, can be accessed through node.astnode.)

When a rule fires, i.e. if its condition is true, an optional action gets performed and an
optional block is executed. If multiple rule conditions are true, the associated actions and
blocks are executed in the order of appearance.

⟨sm-block⟩ −→ ⟨block⟩
−→ ⟨sm-action⟩
−→ ⟨sm-action⟩ ⟨block⟩

⟨sm-action⟩ −→ cache “(” ⟨expression⟩ “)”
−→ close
−→ cut
−→ retract
−→ ⟨identifier⟩

The actions close, cut, and retract stop the execution of a state machine instance. In ad-
dition, close causes the close handler to be invoked, and retract undoes the visit of that
particular control flow graph node. Whenever a state machine instance stops, the stop is
immediate, i.e. no further rules are evaluated.

8.1 Regular state machines 41

The cache action expects a parameter designating a control flow graph node and
checks if the successor node has already been visited. If this has been the case, the state
machine continues at the given node with the resulting states of the state machine instance
with the same entry state. This allows an interprocedural execution of state machines. For
this to work, a function call requires at least two special nodes, one for the call and one
for the return position. The function call is linked to the entry node of the function which
must be used by all function calls to that function. The exit node of the function is ex-
pected to be linked to all return nodes that are paired with a call node to that function.
Note that the state machine must explicitly cut off all the return nodes that are not paired
with the corresponding call node (see the example below). The close handler, if defined, is
invoked if the instance that hit the function first is unable to find a path leading to the exit
node. As cache considers the actual state when deciding how to go on, the current state
must not be changed by any of the rules matching the particular control flow graph node.

If a state machine stops at the end of a path, i.e. if the action close is executed or if the
current node of the control flow graph has no edges departing from it, all close handlers
are invoked, possibly in dependence of the current state.

⟨sm-handler⟩ −→ “->” ⟨block⟩
−→ when ⟨sm-state-condition⟩ “->” ⟨block⟩

Within a ⟨cfg-node-expression⟩, the blocks, and close handlers all local variables and func-
tions of the state machine including those inherited from the abstract state machines are
visible. In addition, the variables bound by a ⟨conditional-tree-expression⟩ and the follow-
ing list of bindings is visible within a ⟨cfg-node-expression⟩ or a block:

name type description
current_state string textual representation of the current state

when the current control flow graph node
was entered

label string string representation of the label of the cur-
rent edge in the control flow graph; this
string is empty if no such label has been de-
fined

node control flow graph node refers to the actual control flow graph node;
note that node.astnode, if it exists, refers to the
associated node of the abstract syntax tree

Example: The following state machine is derived from global_tracker, an abstract state ma-
chine which is itself derived from global (see 8.2) and which supports the err method that
delivers a backtrace documenting the path that lead to an error. This state machine tracks
all global interprocedural paths and checks that the invocations of lock and unlock are
properly balanced:

state machine lock_checker: global_tracker (unlocked, locked, broken) {
("function_call" ("identifier" "lock")) at call

when unlocked −> locked
when locked −> broken { err("lock possibly called twice"); }

("function_call" ("identifier" "unlock")) at call
when locked −> unlocked
when unlocked −> broken { err("unlock possibly called unbalanced"); }

on close when locked −> {

42 State machines

if (!endless_recursion) {
err("missing invocation of unlock at end of path");

}
}
on close −> {

if (endless_recursion) {
err("endless recursion detected");

}
}

}

8.2 Abstract state machines

Abstract state machines allow to factorize common rule sets out of regular state machines.
Abstract state machines are never instantiated. If a state machine (be it regular or abstract)
is derived from an abstract state machine, all its variables and rules are inherited.

All outer blocks associated to a rule of a state machine share the same scope. This
includes all outer blocks of a regular state machine and all inherited outer blocks. In con-
sequence, a block within an abstract state machine can use variables that are defined in a
regular state machine that is derived from the abstract state machine.

⟨abstract-state-machine⟩ −→ abstract state machine ⟨identifier⟩
“{” ⟨sm-vars⟩ ⟨sm-functions⟩ ⟨sm-rules⟩ “}”

−→ abstract state machine ⟨identifier⟩ “:” ⟨identifier⟩
“{” ⟨sm-vars⟩ ⟨sm-functions⟩ ⟨sm-rules⟩ “}”

Example: The follow abstract state machine serves as common rule set of global state
machines. Global state machines do not follow the local links at a function call but follow
the extern links to the entry node of the called function. Whenever they return from the
exit node of a called function back to the rtn node paired to the call node they cut all paths
that are not properly nested. The nesting is checked through the private variable chain.

abstract state machine global {
private var chain = {nestlevel −> 0};
at actual_call

if local −> cut
if extern −> cache(node.branch.local) {

chain = {
nestlevel −> chain.nestlevel + 1,
next −> chain,
callid −> node.callid

};
}

at rtn where chain.nestlevel == 0 || chain.callid != node.callid −> retract
at rtn where chain.nestlevel > 0 && chain.callid == node.callid −> {

chain = chain.next;
}

}

Chapter 9

Transformations

Transformation rules allow to generate new abstract syntax trees on base of a given tree,
or to modify an abstract syntax tree in-place. Like attribution rules, transformation rules
can be collected in named rule sets which are executed only by invoking them.

9.1 Regular transformation rules

Regular transformation rules do not belong to a named rule set and do not operate in-
place. Instead, if specified, they allow to generate mutants in conjunction with the printing
rules. They are executed in the course of a regular execution order implicitly at the end
if print rules exist (see 13.1). If a main function is defined (see 5.2), they are processed as
soon as the execution of the main function is finished. Regular transformation rules are
not executed in case of a free-standing script (see 13.2).

In dependence of the command line arguments, a set of files is generated where each
file contains a variant of the original source where exactly one transformation rule at one
point in the abstract syntax tree was executed. The print rules are free to use the special
bindings location and rulename to insert the information of the transformed location and
the rulename, if given, in the generated output (see 14).

If the set of regular transformation rules is executed and none of them matches, a
runtime exception is raised (“no matching transformation rule found”).

⟨transformation-rules⟩ −→ transformation rules “{” ⟨transformations⟩ “}”
⟨transformations⟩ −→ ⟨transformation⟩

−→ ⟨transformations⟩ ⟨transformation⟩
⟨transformation⟩ −→ [⟨identifier⟩ “:”] ⟨conditional-tree-expression⟩ “->”

⟨transformation-instructions⟩
−→ [⟨identifier⟩ “:”] ⟨conditional-tree-expression⟩ “->”

pre ⟨transformation-instructions⟩
−→ [⟨identifier⟩ “:”] ⟨conditional-tree-expression⟩ “->”

post ⟨transformation-instructions⟩

The right-hand side of a transformation rule consists of the replacement tree construct and
optional blocks that are executed before and after the actual transformation takes place.

44 Transformations

⟨transformation-instructions⟩ −→ [⟨pre-transformation-block⟩]
⟨subnode-constructor⟩
[⟨post-transformation-block⟩]

⟨pre-transformation-block⟩ −→ ⟨block⟩
⟨post-transformation-block⟩ −→ ⟨block⟩

Example: Following simple mutating transformation rule replaces an addition by a multi-
plication and exchanges the two operands:

transformation rules {
("+" op1 op2) −> ("*" op2 op1)

}

9.2 Named sets of generating transformation rules

Named sets of generating transformation rules are not implicitly executed unlike the reg-
ular transformation rules (see 13.1). Instead the given name is bound to a function that

• expects an abstract syntax tree as parameter or, if no parameter is given, uses root,

• generates a clone for each instance where a transformation rule matches a node of
the abstract syntax tree,

• applies the matching transformation rule on the matching node, and

• returns a list of the transformed clones.

If no transformation rule matches, an empty list is returned.
Within this rule set, root is bound to the to be transformed abstract syntax tree.

⟨named-transformation-rules⟩ −→ transformation rules ⟨identifier⟩ “{” ⟨transformations⟩ “}”

9.3 Named sets of in-place transformation rules

Named sets of in-place transformation rules are not implicitly executed like the regular
transformation rules (see 13.1). Instead the given name is bound to a function that

• expects a to be transformed abstract syntax tree as parameter or, if no parameter is
given, uses root,

• performs all the transformations in-place,

• suppresses the execution of any possibly conflicting rule, and

• returns the number of transformations performed.

9.3 Named sets of in-place transformation rules 45

Please note that in-place transformation rules never match the given root node to pre-
serve the referential integrity. Within this rule set, root is bound to the to be transformed
abstract syntax tree.

⟨named-inplace-transformation-rules⟩ −→ inplace transformation rules ⟨identifier⟩
“{” ⟨transformations⟩ “}”

Due to the suppression of possible conflicts, in-place transformation functions are usu-
ally embedded in a loop that apply the transformations repeatedly until none of the trans-
formation rules fire:

inplace transformation rules simplification_rules {
("−>" op name) −> ("." ("pointer_dereference" op) name)
("[]" array index) −> ("pointer_dereference" ("+" array index))
/* ... */

}

sub simplify(tree) {
while (simplification_rules() > 0) {}

}

Chapter 10

Operator rules

Operator rules, if present, are processed before a program text is generated using the print
rules (see 11). Whenever an associativity is expressed by the abstract syntax tree which
would get lost by the print rules without parenthesizing everything, an operator node is
inserted with “LPAREN” as operator to override the precedence and associativity of the
language. The operator used for parenthesizing can be changed by definining an operator
set named parentheses which consists of one operator only. This means that, whenever
operator rules are employed, an additional rule is required in the print rules that generates
the required parenthesis, e.g. by

("LPAREN" expr) −> q{($expr)};

or by defining an operator set first (see 12.2):

opset parentheses = ["()"];

// ...

print rules {
("()" expr) −> q{($expr)}

}

Operators are to be grouped and sorted by precedence in ascending order. For each group
of operators, the associativity has be to specified by one of the keywords left, right, or
nonassoc. The keyword is followed by a list of strings representing the corresponding
operators of the abstract syntax tree.

Named operator sets can be defined through the opset clause (see 12.2) which must be
declared before it can be used.

⟨operator-rules⟩ −→ operators “{” ⟨operator-lists⟩ “}”
⟨operator-lists⟩ −→ ⟨operator-list⟩ “;”

−→ ⟨operator-lists⟩ ⟨operator-list⟩ “;”
⟨operator-list⟩ −→ left ⟨operators⟩

−→ right ⟨operators⟩
−→ nonassoc ⟨operators⟩

⟨operators⟩ −→ ⟨operator-term⟩
−→ ⟨operators⟩ ⟨operator-term⟩

⟨operator-term⟩ −→ ⟨string-literal⟩

47

−→ ⟨identifier⟩

The following example shows the operator rules for the C programming language:

opset assignment_operators = [
"=" "+=" "−=" "*=" "/=" "%=" "<<=" ">>=" "&=" "^=" "|="

];

operators {
left ",";
right assignment_operators;
right "conditional_expression";
left "||";
left "&&";
left "|";
left "^";
left "&";
left "==" "!=";
left "<" ">" "<=" ">=";
left "<<" ">>";
left "+" "−";
left "*" "/" "%";

right "cast_expression";
right "pointer_dereference" "address_of"

"unary+" "unary−" "!" "~" "sizeof"
"prefix++" "prefix−−";

left "{}";
left "postfix++" "postfix−−" "function_call"

"−>" "." "[]";
}

Chapter 11

Print rules

Print rules define how abstract syntax trees are converted into strings.

11.1 Regular print rules

Regular print rules do not belong to a named set of print rules. They are implicitly used by
the gentext function (see 14) and for generating the results of the regular transformation
rules (see 9.1).

Print rules consist of individual rules giving a tree expression (see 6) and a program
text literal (see below). The generation of texts starts with the top-level node passed to
gentext or at the root node of the transformed syntax tree. This node is matched against the
available rules. If none matches, a run-time error is raised, specifying the operator and its
arity. If multiple rules match, the last one is taken. The program text literal of the matching
rule specifies the to be generated text (see 1.10.4). This literal may include placeholders
which are interpolated. If one of these placeholders refers to a bound subnode, the print
rules are executed recursively to generate the to be interpolated text for the subnode.

⟨print-rules⟩ −→ print rules “{” ⟨sequence-of-print-rules⟩ “}”
⟨sequence-of-print-rules⟩ −→ ⟨print-rule⟩

−→ ⟨sequence-of-print-rules⟩ ⟨print-rule⟩
⟨print-rule⟩ −→ ⟨conditional-tree-expression⟩ “->” ⟨print-expression⟩

A print expression is a program text literal enclosed in “q{” and “}” with to be interpo-
lated placeholders that begin with the character “$”. If a placeholder references a variable
bound to a subnode, it is expanded by the recursively generated text of that subnode. In
case of expressions, the result is converted into a string and inserted at the corresponding
position.

In case of multiline program text literals, indentations are interpreted relatively to each
other. Leading and trailing white space is removed unless protected by escape sequences.
Tab stops (i.e. ASCII 9) cause the current column to be interpreted by advancing to the next
multiply of 8 plus 1 (see 1.3). Whenever leading spaces are required to indent generated
text, leading tabs are used whenever possible.

If a placeholder referencing a variable bound to a list of subnodes is followed by the
“$...” placeholder, the sequence is replaced by the empty text if the list is empty, by the
generated text for the first subnode of the list, if the list has just one subnode, and oth-
erwise expanded by the generated texts for all subnodes with the text between the list

11.2 Named sets of print rules 49

variable and the “$...” operator inserted between each of the generated text sequences for
the individual subnodes.

⟨program-text-literal-placeholder⟩ −→ “$” ⟨identifier⟩
−→ “$” “{” ⟨expression⟩ “}”
−→ “$...”

Examples: The following print rule generates the text for an if-statement in C:

("if" expression then_statement else_statement) −> q{
if ($expression)

$then_statement
else

$else_statement
}

This print rules supports compound statements with an arbitrary number of subnodes,
each of them representing a statement within the compound statement:

("compound_statement" stmt...) −> q{
{

$stmt
$...

}
}

11.2 Named sets of print rules

Named sets of print rules are not implicitly executed. Instead the given identifier is bound
to a function that

• expects an abstract syntax tree as parameter or, if no parameter is given, uses root,

• recursively applies the print rules as in the case of regular print rules, and

• returns the generated text as gentext for the regular print rules.

A run-time error is raised whenever during the traverse a node is found without a match-
ing print rule within the set.

⟨named-print-rules⟩ −→ print rules ⟨identifier⟩ “{” ⟨sequence-of-print-rules⟩ “}”

Chapter 12

Units

A compilation unit begins with library and import clauses and provides an arbitrary num-
ber of rules and definitions:

⟨unit⟩ −→ [⟨clauses⟩] [⟨rules⟩]
⟨clauses⟩ −→ ⟨clause⟩

−→ ⟨clauses⟩ ⟨clause⟩
⟨clause⟩ −→ ⟨import-clause⟩

−→ ⟨library-clauses⟩
−→ ⟨operator-set-clause⟩

⟨import-clause⟩ −→ import ⟨identifier⟩ “;”
⟨library-clause⟩ −→ library ⟨string-literal⟩ “;”

⟨rules⟩ −→ ⟨rule⟩
−→ ⟨rules⟩ ⟨rule⟩

⟨rule⟩ −→ ⟨function-definition⟩
−→ ⟨attribution-rules⟩
−→ ⟨state-machine⟩
−→ ⟨abstract-state-machine⟩
−→ ⟨transformation-rules⟩
−→ ⟨named-transformation-rules⟩
−→ ⟨named-inplace-transformation-rules⟩
−→ ⟨operator-rules⟩
−→ ⟨print-rules⟩
−→ ⟨named-print-rules⟩

12.1 Libraries

Libraries are source files ending in the suffix “.ast” that can be loaded through an import
clause and are looked for in all directories of the library path. The library path consists
initially of the current directory only. Library clauses add the given directories to the end
of the library path. Libraries must conform to the same syntax, i.e. they are considered as

12.2 Operator set clauses 51

⟨unit⟩. All their rules and definitions are added to the global pool of rules and definitions.
Multiple attempts to import the same library unit are permitted. In this case, just the first
import clause is executed.

Multiple operator rules (see 10) are not permitted.

12.2 Operator set clauses

Operator sets can be defined through operator set clauses:

⟨operator-set-clause⟩ −→ opset ⟨identifier⟩ “=” ⟨operator-expression⟩ “;”

Operator expressions (see 6.2) can be used within tree expressions (see 6) and operator
rules (see 10). Operator set clauses must textually precede the tree expressions or operator
rules using them.

12.3 Order of appearance

In case of attribution, transformation, and print rules the order of appearance is significant.
As all libraries can contribute to the global rule sets, their order is defined as follows:

1. The first source file (usually presented at the command line) is considered first.

2. Within a source file, the order is preserved.

3. Import directives are executed after a source file has been loaded.

4. For each imported unit which has not been loaded yet, the same process starts recur-
sively.

12.4 Regular rule sets

Regular rule sets, i.e. regular attribution rules (see 7.1), regular transformation rules (see
9.1), and regular print rules (see 11.1), can be spread over multiple units and are implicitly
united in the order of appearance (see 12.3). This allows, for example, the main program
which is loaded first to override a particular print rule by defining a print rule within its
unit.

12.5 Global scope

The global scope includes all predefined bindings (see 14), global functions (see 5), named
attribution rules (see 7.2), named generating transformation rules (see 9.2), named in-
place transformation rules (see 9.3), and named print rules (see 11.2). In case of the func-
tion definitions, the order of appearance does not matter as all global functions see all
other global functions. The name of state machines do not belong to the global bindings,
i.e. a global function name can conflict with the name of a state machine but this is not
recommended.

Chapter 13

Execution

The order of execution depends on the actual implementation. But there exist some vari-
ants which are supported by the Astl library. Custom implementations can divert from
this.

13.1 Standard execution order

This is the most common order of execution where execution starts with the construction
of the abstract syntax tree which is not controlled by the Astl program but by its environ-
ment. In case of syntax errors, the execution is aborted.

Following steps are performed if a valid and non-empty abstract syntax tree is present:

1. Regular attribution rules (see 7.1) are executed, if they exist.

2. State machines (see 8) are executed, if they exist and a control flow graph has been
constructed using attribution rules.

3. The main function is executed, if it exists (see 5.2).

4. The regular transformation rules are executed, provided that regular print rules ex-
ist (see 11.1). For each transformation, a new abstract syntax tree is generated and
printed, in dependence of the command line arguments, either to standard output
or into individual output files.

13.2 Free-standing execution order

Alternatively, some implementations support a so-called free-standing execution order
where no abstract syntax tree is generated at the beginning. Instead, the entire execution
is controlled by the main function (see 5.2).

The main function can process its command line arguments, open file arguments, and
parse them using the parse function (which does not belong to the standard set of prede-
fined functions). Parsing, if successful, delivers an abstract syntax tree. Otherwise, a string
is returned with an error message.

The regular attribution rules can be executed using the builtin function run_attribution_rules.
The execution of state machines can be initiated through run_state_machines.

Both is not done automatically to give the opportunity to construct a tree from multiple
input sources:

13.2 Free-standing execution order 53

sub main(argv) {
var trees = [];
foreach arg in (argv) {

var input = open(arg);
var res = parse(input);
if (type(res) == "string") {

println(stderr, "parse of ", input, " failed:\n", res);
} else {

push(trees, res);
}

}
var root = <("super−root" { trees }...)>;
run_attribution_rules(root);
run_state_machines(root);

}

Note that the variable root can be redefined in the free-standing execution order while it
is read-only in the regular execution model.

Regular transformation rules (see 9.1) will never fire in case of free-standing scripts.

Chapter 14

Predefined bindings

Some bindings are provided at a global scope. None of these values may be redefined at
the global level nor modified (i.e. by referencing them on the left side of an assignment)
but it is possible to hide them by local declarations. The only exception is the variable
root in the free-standing execution model (see 13.2) which is initially null but may be
redefined.

name type description
assert function aborts the execution if its operand is false
cfg_connect function creates a directed edge between the two given control

flow nodes; a label can be optionally specified through a
third parameter

cfg_node function creates a control flow node and expects a control flow
node type in form of a string, or an abstract syntax tree,
or a node type as first and an abstract syntax tree as sec-
ond parameter

cfg_type function returns the type of a control flow node
chr function returns a string consisting of one Unicode codepoint with

the value of the first argument converted to an integer; an
exception is thrown if the integer value is negative or too
large

clone function creates a clone of dictionaries and lists (one level deep
copy, not done recursively); in all other cases it is similar
to a regular assignment

clone_ast function creates a clone of an abstract syntax tree whereas all at-
tributes are copied as well as in regular assignments

cmdname string basename of the Astl script
copy function accepts a target and a source argument which must be

both non-null and of the same type; the contents of the
source is then copied to the target

defined function returns true if the value is non-null
env dictionary dictionary of environment variables
exit function expects an argument that is converted to an integer value

which is taken modulo 256 and interpreted as exit code;
this function does not return but terminates execution
with the given exit code

extract_attributes function expects an abstract syntax tree (see 2.8) and extracts the
attributes of its root node in a newly created dictionary

Continued on the next page

55

name type description
false boolean boolean value of false
getline function expects an input stream and returns the next line read

from the stream without the line terminator; null is re-
turned when the input stream has ended or in case of er-
rors

gentext function requires the print rules to be available and converts an ast
node into a string

graph dictionary is predefined as an empty dictionary which is used as data
structure for the construction of the control flow graph
(see 2.10) and during the execution of the state machines
(see 8)

integer function converts its argument into an integer value
isoperator function its operand must be a node of an abstract syntax tree; true

is returned if it is an operator node
isstring function returns true if the value is of type string
len function returns the length of the list, or the number of keys in a

dictionary, or the number of Unicode codepoints within a
string (with linear complexity), or the number of captured
substrings in a match result

location function its operand must be a node of an abstract syntax tree; re-
turns a string representing its source location

make_node function creates an abstract syntax operator node where the first
parameter specifies the operator and the remaining argu-
ments the subnodes; lists of subnodes are supported and
get expanded

make_token function returns an abstract syntax tree leaf node consisting of a
token; the token text is derived from the first argument
which is converted to a string

open function expects one or two arguments, the first specifying a file-
name, the second a mode where "r" (for reading) and "w"
(for writing) are accepted; the file name is opened in re-
spect to the given mode (for reading if just the filename is
given) and a corresponding stream is returned, if success-
ful; null is returned in case of errors

operator function its operand must be an operator node of an abstract syn-
tax tree; returns a string representing its operator

ord function returns the first Unicode codepoint value of the first argu-
ment which is converted to a string

pop function removes and returns the first element of a list
push function its first operand is a list which is extended by appending

all the remaining arguments to it
println function prints all arguments and a line terminator to standard out-

put
prints function prints all arguments to standard output
root tree points to the root node of the abstract syntax tree

preloaded in course of the regular execution model (see
13.1); the free-standing execution model (see 13.2) sets
root initially to null but allows it to be redefined; within
named attribution rules (see 7.2) and transformation rules
(see 9.2 and 9.3) root is locally bound to the abstract syntax
tree passed to the corresponding function

Continued on the next page

56 Predefined bindings

name type description
stdin istream standard input stream
stdout ostream standard output stream
stderr ostream standard error output stream
string function converts its argument into a string value
tokenliteral function returns the literal text of a token; this usually includes the

delimiters, e.g. the string quotes in case of a string
tokentext function returns the processed text of a token; this usually does not

include the delimiters or the escape characters
true boolean boolean value of true
type function returns the type of its argument as a string (see 2.13)
utf8_byte function takes two arguments, a string s and an index i, and returns

the i-th byte of the UTF-8 representation of s
utf8_len function returns the number of bytes of the UTF-8 representation

of its argument which must be a string

Whenever print rules are executed for a transformed program text, some additional pre-
defined bindings are added:

name type description
location string the string representation of the location of the trans-

formed program text
rulename string the name of the applied transformation rule, if defined

and null otherwise.

Index

∗, 12, 23
+, 24
−, 12, 23, 24
−=, 12, 27
−−, 19
(, 21, 22, 29, 34, 38, 40
), 21, 22, 29, 34, 38, 40
)>, 20
*, 34, 40
+, 10, 12, 24
++, 19
+=, 12, 27
„ 20, 22, 29
-=, 27
->, 11, 20, 36, 39–41, 43, 48
., 19
..., 20, 21, 34
/, 12
:, 26, 38, 42, 43
;, 28, 46, 50, 51
<, 24
<(, 20
<=, 24
=, 27, 30, 39, 51
==, 24
=~, 25
>, 24
>=, 24
?, 26
$, 49
$..., 49
&, 10, 25
&=, 27
&&, 26
[, 19, 20, 34
], 19, 20, 34
^, 12, 23
||, 26
{, 19–21, 28, 36–38, 42–46, 48, 49
}, 19–21, 28, 36–38, 42–46, 48, 49

abstract, 7, 42
abstract syntax tree, 12, 17, 19

constructor, 20

abstract-state-machine, 42, 50
additive-expression, 24
aggregate

dictionary, 20
list, 19

and, 7, 35, 40
and-expression, 26
args, 31, 32
as, 7, 13, 20, 21, 34
ASCII, 6
assignment, 22, 27
associativity, 18, 46
astnode, 15
at, 7, 39
attribution, 7, 36, 37
attribution-rules, 36, 37, 50
attributions, 36, 37

backslash, 8
block, 21, 28, 29, 31, 36, 39–41, 44
Boolean, 10, 16
branch, 15

cache, 7, 40, 41
cardinal-literal, 22
cfg-edge-condition, 39, 40
cfg-node-expression, 39–41
cfg-node-types, 40
cfg_connect, 14
cfg_node, 14
cfg_type, 14
character set, 6
clause, 50
clauses, 50
close, 7, 39–41
closure, 12, 28, 31
column, 6
command line, 32
comment, 6
comparison, 24, 25
concatenation-expression, 25
conditional, 26, 27
conditional statement, 29
conditional tree expression, 35
conditional-tree-expression, 35, 39–41, 43, 48

58 Index

conditional-tree-expressions, 36
context-expression, 35
context-match, 35
contextual tree expression, 35
contextual-tree-expression, 35
control flow graph, 14, 39
control flow node type, 14
conversion, 16
create, 7, 38, 39
cut, 7, 40

decimal literal, 8
decrement operators, 19
delete, 7, 12, 28
delete-statement, 28
delimiter, 6, 7
designator, 19, 22, 27, 28
dictionary, 11, 16, 19

aggregate, 20
dictionary-aggregate, 20, 22
digit, 8
div, 7, 23, 24

else, 7, 29
elsif, 7, 29
elsif-chain, 29
elsif-statement, 29
execution order

free-standing, 52
exists, 7, 19, 22, 23
expression, 18–21, 27–30, 35, 39, 40, 49
expression-list, 20, 22
extract_attributes, 13

factor, 23
floating point, 10
flow graph node, 16
foreach, 7, 11, 15, 29
foreach-statement, 28, 29
function, 12

anonymous, 12
constructor, 21
definition, 31
global, 32
invocation, 22
local, 21, 31
main, 32

function-call, 22
function-constructor, 21, 22
function-definition, 31, 39, 50

getline, 15
GNU Multiple Precision Library, 10, 11
graph, 15, 55

graph.root, 39

identifier, 6, 8, 19–22, 29–31, 34, 37–40, 42–
45, 47, 49–51

identifier-list, 21, 22
if, 7, 15, 29, 39, 40
if-statement, 28, 29
import, 7, 50
import-clause, 50
in, 7, 29, 35
increment operators, 19
inplace, 7, 45
integer, 10, 16

key, 19
key-value-pair, 20
key-value-pairs, 20
keyword, 6, 7

leaf, 12
left, 7, 46
len, 16
lexical analysis, 6
lexical closure, 21
library, 7, 50
library-clause, 50
library-clauses, 50
line, 6
line terminator, 6
list, 11, 16, 19

aggregate, 19
list-aggregate, 20, 22
literal, 6, 8

decimal, 8
program text, 9
regular expression, 8
string, 8

location, 6, 43
LPAREN, 46

machine, 7, 38, 42
main, 32, 43, 52
match result, 16, 19, 25
match-expression, 25, 26
mod, 7, 23, 24
multiplicative-expression, 23, 24

named tree expression, 34
named-inplace-transformation-rules, 45, 50
named-print-rules, 49, 50
named-transformation-rules, 44, 50
named-tree-expression, 34, 35
newline, 6
node, 12

Index 59

node.astnode, 40
nonassoc, 7, 46
null, 7, 10, 11, 16, 17, 22, 24, 25, 29–31, 54–56

octal-escape-sequence, 8
on, 7, 39
open, 15, 16
operator, 16
operator node, 12
operator rules, 46
operator set, 33, 34, 46
operator table, 18
operator-expression, 34, 51
operator-list, 46
operator-lists, 46
operator-rules, 46, 50
operator-set-clause, 50, 51
operator-term, 34, 46
operators, 7, 34, 46
opset, 7, 34, 46, 51
or, 7, 40
or-expression, 26

parameter list, 31
parameter-list, 21, 31
parentheses, 46
parse, 52
pop, 11
post, 7, 36, 43
post-transformation-block, 44
postfix-decrement, 19, 22
postfix-increment, 19, 22
power-expression, 23
pre, 7, 36, 43
pre-transformation-block, 44
precedence, 46
prefix-decrement, 19, 22
prefix-increment, 19, 22
primary, 22, 23
print, 7, 48, 49
print rule, 9
print rules, 48

named, 49
regular, 48

print-expression, 48
print-rule, 48
print-rules, 48, 50
println, 15
prints, 15
priority, 18
private, 7, 39
program text literal, 9
program-text-literal-placeholder, 49
push, 11, 19

queue, 11

regexp-literal, 34
regular expression, 8, 25, 33
regular-expression, 25, 34
repetitive-expression, 25
retract, 7, 40
return, 7, 22, 29, 31
return-statement, 28, 29
right, 7, 46
root, 37, 44, 45, 55
rule, 50
rules, 7, 36, 37, 43–45, 48–50
run_attribution_rules, 52
run_state_machines, 52

sequence-of-print-rules, 48, 49
set operators, 12

assignment operators, 27
difference, 24
intersection, 23
symmetric difference, 23
union, 24

sets, 12
shallow copy, 12
shared, 7, 39
short circuit evaluation, 26
simple-escape-sequence, 8
sm-action, 40
sm-alternative, 40
sm-alternatives, 39, 40
sm-block, 39, 40
sm-condition, 39
sm-function-definitions, 39
sm-functions, 38, 39, 42
sm-handler, 39, 41
sm-rule, 39
sm-rules, 38, 42
sm-state-condition, 39–41
sm-var-declaration, 38, 39
sm-var-declarations, 38
sm-vars, 38, 42
source file, 6
space, 6
special character, 6
state, 7, 38, 42
state machine

abstract, 42
global, 38, 42
local, 38
regular, 38

state machines
related, 38

state-machine, 38, 50

60 Index

statement, 28
conditional, 29
deletion, 28

statements, 28
states, 38
stderr, 15, 56
stdin, 15, 56
stdout, 15, 56
stream, 15, 16
string, 10, 16
string literal, 8
string-literal, 20–22, 34, 46, 50
sub, 7, 21, 31
subnode, 33, 34
subnode-constructor, 20, 21, 44
subnodes, 34
subnodes-constructor, 20, 21
subtree, 12
suffix, 6
syntax tree

constructor, 20

tab, 6, 48
token, 6, 12

literal value, 13
text value, 13

tokenliteral, 13
tokentext, 13, 16
transformation, 7, 43–45
transformation rule, 14
transformation-instructions, 43, 44
transformation-rules, 43, 50
transformations, 43–45
tree expression, 33

conditional, 35
contextual, 35
named, 34

tree-constructor, 20, 22
tree-expression, 34
tree-expression-constructor, 20, 21
type, 10

Unicode, 6
unit, 50, 51
UTF-8, 6, 9, 25

var, 7, 30, 39
var-statement, 28, 30
variable

private, 38
shared, 38

when, 7, 39–41
where, 7, 35, 40

while, 7, 11, 29
while-statement, 28, 29
wildcard operator, 33

x, 7, 25

Bibliography

Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming,
section 1.2.4, pages 39–40. Addison-Wesley, Reading, Massachusetts, third edition, 1997.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 49–61, New York, NY, USA,
1995. ACM. ISBN 0-89791-692-1. doi: http://doi.acm.org/10.1145/199448.199462.

	Lexical elements
	Source files
	Character set
	Lines and columns
	Comments
	Tokens
	Single-character delimiters
	Compound delimiters
	Keywords
	Identifiers
	Literals
	Decimal literals
	String literals
	Regular expressions
	Program text literals
	Embedded variable references
	Embedded expressions
	Interpretation of multi-line literals

	Types
	Null value
	Boolean values
	Integer values
	String values
	Lists
	Dictionaries
	Functions
	Abstract syntax trees
	Matching results of regular expressions
	Control flow graph nodes
	Streams
	Implicit Conversions
	Conversions to string type
	Conversions to integer type
	Conversions to Boolean type
	Conversions to list type
	Conversions to dictionary type
	Conversion to abstract syntax tree type

	Examining the type of an object

	Expressions
	Designators
	Increment and decrement operators
	List aggregates
	Dictionary aggregates
	Abstract syntax tree constructors
	Function constructors
	Function calls
	Primaries
	Factors
	Power expressions
	Multiplicative expressions
	Additive expressions
	Comparison operators
	String repetition
	String and list concatenation
	Matching strings against regular expressions
	Logical expressions
	Conditional expressions
	Assignments and expressions

	Statements
	Blocks
	Deletion statement
	Conditional statement
	Loop statements
	Return statement
	Variable declarations

	Function definitions
	Regular global functions
	Main function
	Other global functions

	Tree expressions
	Simple tree expressions
	Operator sets
	Named tree expressions
	Contextual tree expressions
	Conditional tree expressions

	Attribution rules
	Regular attribution rules
	Named attribution rules

	State machines
	Regular state machines
	Abstract state machines

	Transformations
	Regular transformation rules
	Named sets of generating transformation rules
	Named sets of in-place transformation rules

	Operator rules
	Print rules
	Regular print rules
	Named sets of print rules

	Units
	Libraries
	Operator set clauses
	Order of appearance
	Regular rule sets
	Global scope

	Execution
	Standard execution order
	Free-standing execution order

	Predefined bindings

