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Abstract

This work will discuss computational approaches developed to refine and improve
current cancer treatments.
Cancer is one of the leading causes of death globally, responsible for millions of
deaths each year. It is a complex group of diseases characterized by the uncontrolled
growth and spread of abnormal cells in the body, driven by a multitude of genetic
mutations. These cells can invade surrounding tissues and, if left untreated, may
spread to other parts of the body. Therefore, it is essential to search for an effective
treatment, which not only alleviates symptoms and improves the quality of life, but
also addresses the underlying mechanisms of cancer.
Over the years, various strategies have been developed and implemented to treat
cancer as effectively as possible. However, most currently employed cancer treatments
have significant side effects, which can severely affect patients’ quality of life. As a
result, there is a pressing need for therapies that are not only effective in targeting
cancer cells, but also minimize harm to healthy tissues, thereby improving the
patient’s overall experience during treatment.
This work will focus specifically on one type of treatment: targeted therapies,
which have shown significant results in recent years, both in terms of reducing side
effects and improving treatment efficacy. Targeted therapies, as the name suggests,
are designed to focus on specific molecules or pathways involved in cancer growth
and progression. By precisely targeting these elements, targeted therapies aim to
disrupt the cancer’s ability to proliferate, while minimizing damage to healthy cells,
resulting in improved treatment outcomes and fewer side effects.
However, identifying effective targets is not straightforward, as it depends on a
variety of factors. In fact, throughout the years, numerous studies have attempted
to differentiate between the vast number of mutations that occur in cancer, aiming
to identify the most relevant ones for tumor treatment.
Fortunately, certain phenomena in genomic data have been identified that could
potentially be leveraged to simplify the search in this field. This work will explore
the computational approaches adopted in recent years, the challenges this search
presents, and the genomic characteristics that newly developed algorithms leverage
to classify mutations efficiently.
The first chapter of this work will provide an overview of cancer, exploring its
causes, current treatment options, and a more detailed examination of targeted
therapies. The second chapter will highlight the challenges associated with differen-
tiating among the vast number of mutations involved in cancer and will introduce
the studies that will be analyzed throughout this work, focusing specifically on how
they mathematically formulated biological phenomena observed statistically in
genomic data. The third chapter will delve deeper into the algorithms employed
by the discussed studies, and explain how they employed their own metrics. Finally,
the last chapter will address additional considerations regarding the studies
presented.
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Chapter 1

Introduction

1.1 Cancer

1.1.1 Overview

Cancer is a group of diseases characterized by uncontrolled cell proliferation, which
allows cells to infiltrate into organs and tissues, thereby altering their functions and
structure. There are more than 100 types of cancer, which can be grouped into
broader categories, such as carcinomas, sarcomas, leukemias and others [38].
Estimates predicted more than 2 million new cases of cancer of any site in the United
States in 2024, with over 600,000 deaths [29]. According to SEER [11] 22, cancer is
most frequently diagnosed among individuals aged 65-74, who also represent the age
group with the highest cancer-related mortality, accounting for approximately 30%
of cases in both diagnoses and deaths [4].
Cancer is often preceded by a range of symptoms, some of which may be subtle or
easily overlooked. Possible signs and symptoms include persistent coughing, changes
in bowel habits, unexplained bleeding, lumps, unexplained weight loss, persistent
pain, yellowing or itchy skin, and feeling tired or unwell without a clear reason [37].
The exponential growth of cancer is driven by mutations in cellular DNA, which
encodes the instructions for cell development and multiplication, therefore errors in
these instructions can lead to cancerous transformation. These genetic mutations
can arise from several factors, including random chance or exposure to carcinogens
[32]. These and other causes will be discussed in the following sections.

1.1.2 Causes

The development of cancer is a complex, multistep process influenced by various
factors, making it too simplistic to attribute cancer to a single cause. While genetic
mutations can occur randomly through errors in DNA during cell division, or be
inherited from a parent [32], many agents — such as radiation, chemicals, and viruses

— have been found to induce cancer.

https://en.wikipedia.org/wiki/Carcinoma
https://en.wikipedia.org/wiki/Sarcoma
https://en.wikipedia.org/wiki/Leukemia
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Radiation and many chemical carcinogens work by damaging DNA and causing
mutations. These are known as initiating agents because they trigger genetic
changes that lead to cancer. For example, solar ultraviolet radiation, chemicals in
tobacco smoke, and aflatoxin are well-documented carcinogens. Tobacco smoke, in
particular, is a major cause of lung cancer and is also linked to cancers of the oral
cavity, throat, larynx, esophagus, and other areas. It is estimated that smoking
contributes to a significant portion of all cancer deaths.
In contrast, some carcinogens — known as tumor promoters — facilitate cancer
development by stimulating cell proliferation rather than by inducing mutations.
Tumor formation in animal models typically requires an initiating agent and a
promoter to facilitate the growth of mutated cells. For instance, hormones (especially
estrogens) are tumor promoters in certain cancers.
Additionally, some viruses are known to cause cancer in both animals and humans,
such as those linked to liver cancer and cervical carcinoma. These viral-induced
cancers highlight the broader impact of carcinogens and underscore their role in
both viral and non-viral cancer development [9].
In summary, the various ways in which different factors contribute to cancer em-
phasize the complexity of the disease and underscore the importance of developing
effective treatment approaches, which will be explored in later sections.

1.1.3 Mutations in cancer development

The fundamental feature of cancer development is tumor clonality, meaning tumors
often develop from single cells that start to proliferate abnormally. However, the
clonal origin of tumors does not mean that the initial progenitor cell had all the
features of a cancer cell from the start. Instead, cancer evolves through a multistep
process in which cells gradually acquire malignant characteristics through a series of
alterations. This multistep nature is indicated by the fact that most cancers develop
later in life. For example, the incidence of colon cancer increases markedly with age,
showing a dramatic rise as individuals grow older. This steep age-related increase
suggests that cancer typically results from multiple abnormalities accumulated
over many years.
At the cellular level, cancer development is viewed as a process of mutation and
selection for cells with progressively greater abilities to proliferate, survive, invade,
and metastasize. The first stage, known as tumor initiation, involves a genetic
alteration that triggers abnormal growth in a single cell, leading to the expansion
of a population of clonally derived tumor cells. Tumor progression, continues as
additional mutations arise within this cell population, with some mutations providing
a selective advantage. As a result, cells bearing these advantageous mutations
become dominant within the tumor, a process known as clonal selection. This
selection continues throughout the tumor’s evolution, causing it to grow more rapidly
and become increasingly malignant [9].
Undoubtedly, mutations are fundamental to the development of cancer and its
progression. Therefore, to effectively combat this disease, it is essential to gain a

https://en.wikipedia.org/wiki/Aflatoxin
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comprehensive understanding of how these genetic alterations occur and contribute
to tumor development.

1.2 Targeted therapy

1.2.1 Current cancer treatment

Research aimed at finding cancer treatment is continuously evolving due to the
disease’s lethality and complexity. Currently, the primary techniques used to remove,
control, manage, and delay the effects of cancer include [5]:

• surgery, which involves the removal of the cancerous region and is generally
reserved for solid tumors;

• radiotherapy, which uses x-rays to destroy tumor cells, aiming to target the
cancerous region as precisely as possible to preserve healthy tissue; however,
radiotherapy can increase the risk of developing secondary tumors, such as
leukemia or sarcomas, and may lead to delayed effects like dementia, amnesia,
or progressive cognitive difficulties;

• chemotherapy, which employs cytotoxic drugs to block cellular division in both
cancerous and healthy cells, but they can also induce side effects in rapidly
renewing tissues;

• hormone therapy, which alters the balance of specific hormones, potentially
leading to side effects such as joint pain or osteoporosis.

Recent advancements in traditional cancer treatments like chemotherapy, radiother-
apy, and surgery have contributed to a decline in cancer mortality rates over the
years. However, these methods still face significant limitations, often resulting in
tumor recurrence and mortality, due to their various side effects. This has prompted
a shift toward mutation-targeted therapies, as a result of their potential to
precisely target cancer cells and minimize damage to healthy cells and tissue [31, 36].

1.2.2 Overview and origin

Targeted therapy is a form of cancer treatment that targets proteins responsible
for the growth, division, and spread of cancer cells, and it forms the basis of precision
medicine. The targets include growth factor receptors, signaling molecules, cell-cycle
proteins, and other molecules crucial for normal tissue development and homeostasis,
which often become overexpressed or altered in cancer cells, leading to their aberrant
function [39].
Unlike standard chemotherapy, which indiscriminately destroys both rapidly dividing
cancerous and normal cells, targeted therapies specifically attack abnormal proteins
produced by mutated genes. Because normal cells lack these tumor-specific mutations,

https://en.wikipedia.org/wiki/Personalized_medicine
https://en.wikipedia.org/wiki/Personalized_medicine
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targeted therapies often show a higher degree of selectivity, causing fewer off-target
effects and achieving more rapid and substantial tumor reduction [36].
The concept of targeted therapy originates from the German Nobel Prize Paul
Ehrlich’s idea of a “magic bullet” [12], when he envisioned a chemical capable of
specifically targeting microorganisms. Over a century later, advances in molecular
biology enhanced our understanding of the mechanisms behind cancer initiation,
promotion, and progression. This progress led to the development of treatments
that can interfere with specific molecular targets, typically proteins, linked to tumor
growth and progression [39].

1.2.3 Therapy types

Most types of targeted therapy consist of small-molecule drugs, which are used for
targets located inside cells because their small size allows them to enter cells easily,
and monoclonal antibodies, which are laboratory-produced proteins engineered
to bind to specific targets on cancer cells. Some monoclonal antibodies help the
immune system identify and destroy cancer cells by marking them, while others
directly inhibit the growth of cancer cells or induce their self-destruction, and still
others deliver toxins directly to cancer cells [31].
Most targeted therapies treat cancer by interfering with specific proteins that promote
tumor growth and spread. This approach differs from chemotherapy, which often kills
all rapidly dividing cells. The following are the different approaches that targeted
therapy employs [31].

• Immunotherapy. Cancer cells can often evade detection by the immune system.
Certain targeted therapies mark cancer cells, making them easier for the
immune system to identify and destroy, while others enhance the immune
system’s ability to fight cancer more effectively.

• Signal interruption. Targeted therapies can interrupt signals that cause cancer
cells to grow and divide uncontrollably. Cells normally divide in response to
specific signals binding to proteins on their surface. However, some cancer cells
present changes in the proteins that tell them to divide without the signals.
Targeted therapies can block these proteins, slowing the uncontrolled growth
of cancer.

• Angiogenesis inhibition. The process through which new blood vessels form
is called angiogenesis; beyond a certain size tumors need new blood vessels,
thus the tumor sends signals to start angiogenesis. Some targeted therapies
can disrupt the signals that trigger this process, preventing the formation of a
blood supply, and restricting the tumor’s size.

• Cell-killing agents delivery. Some monoclonal antibodies are combined with
substances like toxins, chemotherapy drugs, or radiation. These antibodies
bind to targets on the surface of cancer cells, delivering the cell-killing agents
directly into the cells, causing them to die. Most importantly, cells without
these targets remain unharmed.

https://en.wikipedia.org/wiki/Angiogenesis
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• Apoptosis activation. Cancer cells often evade the natural process of cell death,
known as apoptosis, which initiates when cells become damaged or are no
longer needed. Some targeted therapies can trigger apoptosis in cancer cells,
leading to their death.

• Hormone therapy. Some types of breast and prostate cancer require specific
hormones to grow. Hormone therapies block the body’s production of growth
hormones or prevent them from acting on cells, including cancer cells.

The diverse strategies employed by targeted therapies highlight the innovative
approaches being developed to treat cancer more precisely. As research advances,
these methods will continue to evolve, potentially improving outcomes and reducing
side effects compared to traditional treatments.

1.2.4 Drawbacks and side effects

Like all cancer treatment, targeted therapy also has limitations, and often works
best when combined with other types of targeted therapies or additional cancer
treatments like chemotherapy and radiation [31].
In particular, developing drugs for certain targets can be challenging due to factors
including the target’s structural complexity, its function within the cell, or a combi-
nation of both. Moreover, cancer cells can develop resistance to targeted therapy,
which may occur if the target itself mutates, rendering the therapy unable to interact
with it effectively. Alternatively, resistance can arise if cancer cells adapt and find
new growth mechanisms that do not rely on the target [31].
As for side effects, in general, targeted molecular therapies have good toxicity profiles.
However, side effects differ from person to person, even among those undergoing
the same cancer treatment [28], and some patients may be highly sensitive to these
drugs and may develop specific and severe toxicities [39].
The most common side effects of targeted therapy are diarrhea and liver issues, but
they may also include problems with blood clotting and wound healing, high blood
pressure, fatigue, mouth sores, nail changes, loss of hair color, and skin problems.
In rare cases, a perforation may occur in the wall of the esophagus, stomach, small
intestine, colon, rectum, or gallbladder. Medications are available to manage many
of these side effects, either by preventing them or treating them once they arise.
Additionally, most side effects of targeted therapy subside after the treatment is
completed [31].
In conclusion, although targeted therapy shows promise with generally manageable
side effects, it has limitations such as potential drug resistance and varying individual
responses. Effective management of these side effects and ongoing research are
essential to improving treatment outcomes and patient care.

https://en.wikipedia.org/wiki/Apoptosis


1.2 Targeted therapy 6

1.2.5 Drugs targeting mutations

As mentioned earlier, mutations play a crucial role in the growth and development
of cancer. Targeted therapy allows for precise targeting of the mutations that enable
cancer to continue its progression. In particular, oncogenic gene mutations may be
druggable in several ways [36]:

• some oncogenic gene mutations encode proteins that are structurally or func-
tionally different from the wild-type (WT), normal version of the protein; these
differences create an opportunity for developing targeted therapies because a
drug can be designed specifically to bind to these unique features, and inhibit
the protein’s activity, without affecting the WT protein in healthy cells;

• gene mutations often result in the abnormal activation of some protein, through
mechanisms like a gain-of-function mutation or gene amplification; although
these proteins are considered druggable, the mutation does not necessarily
change the protein in a way that allows for mutant-specific targeting, i.e.
drugs may also target the WT version of the protein present in healthy cells,
potentially leading to more side effects;

• some oncogenic mutations create novel molecular dependencies or vulnera-
bilities in cancer cells, which can be exploited by targeted therapies; these
are called actionable mutations because they provide new targets for drug
development that are specific to cancer cells and do not exist in normal cells.

While truly druggable mutations in the first category are relatively rare, many
overactive or amplified targets still offer effective therapeutic opportunities due
to their elevated expression levels or the significant dependence of cancer cells on
these specific proteins. Additionally, mutations that currently lack targeted therapy
options can still function as biomarkers to guide other therapeutic decisions [36].
Advances in targeted therapies have been significantly driven by technological
progress in sequencing over the past two decades, particularly with the development
of next-generation sequencing (NGS). The identification of both common and rare
genetic mutations has launched research into targeted therapies against mutant
proteins and aberrant molecular signaling pathways. Moreover, the discovery of the
BCR-ABL fusion gene and the development of the BCR-ABL inhibitor imatinib
marked a breakthrough in targeted cancer therapies, leading to numerous FDA-
approved drugs [36]. However, the challenge of developing targeted therapies remains
difficult, particularly for mutations that affect normal and cancerous proteins alike, or
those for which no targeted therapies currently exist. The complexities of druggable
mutations and their effects on treatment underscore the need for ongoing research
and refinement in this area. Given the importance of fully understanding the role
of mutations in cancer development, to improve targeted therapies and cancer
treatment overall, research must focus on genomic mutations and their classification.
The next chapter will discuss the existence of different types of mutations and the
current techniques used to classify them.

https://en.wikipedia.org/wiki/Massive_parallel_sequencing
https://en.wikipedia.org/wiki/Philadelphia_chromosome
https://en.wikipedia.org/wiki/Imatinib
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Chapter 2

Pathway identification criteria

This chapter will describe the two types of mutations involved in cancer development
and the challenges associated with distinguishing between them.

2.1 Mutations and pathways

2.1.1 Passenger and driver mutations

In the previous chapter, it was discussed how mutations play a critical role in cancer
development, but not every aberration that occurs in a tumor is relevant to its
proliferation. In fact, cancer mutations are generally divided into two categories:
passenger mutations and driver mutations. Passenger mutations do not confer
direct benefits to tumor growth or development, whereas driver mutations actively
contribute to cancer progression by providing an evolutionary advantage and pro-
moting the proliferation of tumor cells. Driver genes are genes that harbor at least
one driver mutation, though they may also contain passenger ones [35].
Although the consensus is that mutations are divided into these two categories, some
studies do not fully agree with this dichotomous model [20]. Further complicating
matters, the term driver gene has two distinct meanings in cancer research. Origi-
nally, the driver-versus-passenger concept was used to differentiate mutations that
provide a selective growth advantage from those that do not. According to this defi-
nition, genes without driver mutations cannot be classified as driver genes. However,
many genes that have few or no driver mutations are still referred to as driver genes
in the literature. This includes genes that are overexpressed, underexpressed, or
epigenetically altered in tumors. Although some of these genes might contribute
significantly to cancer development, classifying all of them as driver genes may be
misleading [35].
Despite these complexities, it is generally accepted that mutations can be categorized
into the two described types. This classification is essential, as identifying driver
mutations can significantly advance the development of targeted therapies, which
may specifically target driver mutations directly.
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2.1.2 Problems with frequency analyses

To classify mutations into drivers and passengers, assessing their biological function is
essential, though this remains a challenging task. Numerous methods exist to predict
the functional impact of mutations based on a priori knowledge. However, these
approaches often fail to integrate information effectively across various mutation
types and are limited by their reliance on known proteins, rendering them less
effective for less-studied ones [22].
With the decreasing cost of DNA sequencing, it is now possible to categorize
mutations by examining their frequency, as driver mutations are typically the most
recurrent in patients’ genomes. For instance, some methods focus on comparing
the mutation frequency of an individual gene to that of others within the same or
related tumors, while accounting for sequence context and gene size. For genes with
a very high number of mutations, such as TP53 or KRAS, most statistical methods
will strongly suggest that these genes are drivers; these highly mutated genes are
often referred to as mountains [22, 35].
However, genes with more than one, but still relatively few mutations, termed hills,
are more common in cancer genome landscapes. In these cases, mutation frequency
and context alone are insufficient to reliably identify driver genes, as background
mutation rates can vary significantly among different patients and regions of the
genome. Recent research on normal cells has shown that the mutation rate can vary
more than 100-fold within the genome. In tumor cells, this variation can be even
greater, affecting entire genomic regions in a seemingly random manner [35].
Moreover, because driver mutations are primarily found in genes involved in cell
signaling pathways, in many cases different patients harbor mutations in different
pathway loci. Consequently, driver mutations can vary widely between patient
samples, even within the same cancer type, resulting in minimal overlap of mutated
genes across sample pairs, even from the same patient, which further reduces the
statistical power of frequency-based analyses [22, 40].
Therefore, methods based solely on mutation frequency can only prioritize genes
for expanded investigation and cannot definitively identify driver genes that are
mutated at relatively low frequencies [35].

2.1.3 Focus on pathways

An alternative method to assessing the recurrence of individual mutations or genes
is to examine mutations within the context of cellular signaling and regulatory
pathways, and biological considerations further support this approach. In particular,
multiple alternative driver mutations in different genes can lead to similar downstream
effects, hence the selective advantage is distributed across the frequencies of these gene
alterations, which means that different mutations can affect the same pathway across
various samples [2, 22]. This suggests that the focus should be on driver pathways
rather than on individual driver mutations. Indeed, most recent cancer genome
sequencing studies analyze known pathways for the enrichment of somatic mutations,
and methods have been developed to identify pathways that are significantly mutated

https://www.ncbi.nlm.nih.gov/gene/7157
https://www.ncbi.nlm.nih.gov/gene/3845
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across multiple patients. Additionally, new algorithms have extended pathway
analysis to genome-scale gene interaction networks [34].
However, pathway analysis relies on the prior identification of gene groups within
known pathways. While some of them are well-documented and cataloged in multiple
databases, our understanding remains incomplete. In particular, many databases
aggregate all elements of pathways but often lack details on which specific components
are active in particular cell types.
These limitations, along with the increasing number of sequenced cancer genomes,
raise the question of whether it is possible to automatically identify groups of
genes with driver mutations or mutated driver pathways directly from
somatic mutation data, collected from a large number of patients [34]. This topic
will be explored in the following sections, which will discuss the various techniques
developed for identifying driver pathways based on mutation data.

2.1.4 Searching for driver pathways

Finding mutated driver pathways may seem implausible, because of the enormous
number of possible gene sets to test, e.g. there are more than 1026 sets of 7 human
genes. This makes it necessary to find specific properties or characteristics to
guide the search efficiently. Fortunately, our current understanding of the somatic
mutational processes in cancer suggests constraints on the expected patterns of
mutations, which considerably narrow down the number of gene sets that need to
be considered [34].
First, studies suggest that a major cancer pathway should be disrupted in a substantial
number of patients, thus it is expected that most patients will exhibit aberrations
in some genes within this pathway. Therefore, it is assumed that driver genes
constituting a driver pathway are frequently mutated across many samples, a property
that is referred to as coverage [34].
Second, while this feature is useful for identifying driver pathways, most techniques
developed in recent years leverage a much stronger statistical property observed
in cancer patient data: each patient typically has a relatively small number of
mutations that affect multiple pathways, thus each pathway will contain 1 driver
mutation on average per sample. This concept of mutual exclusivity among driver
mutations within the same pathway, as statistically observed in patient samples, is
then axiomatized and employed by research algorithms designed to identify driver
mutations and pathways [22]. Note that mutual exclusivity does not affect different
pathways, as it occurs exclusively within a single pathway.
Therefore, a driver pathway consists of genes that are mutated in numerous
patients, with mutations being approximately mutually exclusive. It is also observed
that pathways exhibiting these characteristics are generally shorter and comprised
of fewer genes on average [22].
While the precise explanation for the phenomenon of mutual exclusivity is not yet
fully understood, several hypotheses appear plausible [10, 7, 34]:
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• one hypothesis is that mutually exclusive genes are functionally connected
within a common pathway, acting on the same downstream effectors and
creating functional redundancy; consequently, they would share the same
selective advantage, meaning that the alteration of one mutually exclusive
gene would be sufficient to disrupt their shared pathway, thereby removing the
selective pressure to alter the others; this explanation, however, does not fully
account for the phenomenon because the co-alteration of mutually exclusive
genes should not result in negative effects on the cell;

• an alternative explanation is that the co-occurrence of mutually exclusive
alterations is detrimental to cancer survival, leading to the elimination of cells
that harbor such co-occurrences; moreover, some pairs of mutually exclusive
genes could be synthetic lethal, meaning that while the alteration of one gene
may be compatible with cell survival, the simultaneous aberration of both
genes would be lethal to the cell.

An example of the latter is provided by the gene pair ERG and SPOP, which are
commonly overexpressed in patients with prostate cancer, but they are mutually
exclusive due to their synthetic lethality. Wild-type SPOP facilitates the degradation
of various proteins, including ZMYND11, which regulates androgen receptor (AR)
signaling. Tumors with mutant ERG require reduced AR signaling to sustain their
cancerous effects; therefore, mutant ERG upregulates WT SPOP to enhance the
degradation of ZMYND11 and lower AR signaling. In contrast, when SPOP is
mutated, it loses the ability to degrade ZMYND11, leading to its accumulation
and increased AR signaling. This amplified AR signaling is incompatible with the
function of mutant ERG, which relies on low AR signaling. Consequently, while
ERG and SPOP mutations can each support oncogenic activity individually, their
simultaneous aberration is not viable due to the conflicting requirements for AR
signaling [3].

2.2 Assessing mutual exclusivity

Even though the exact mechanisms behind mutual exclusivity in genetic mutations
remain unclear, this phenomenon can still be effectively leveraged in research for
identifying cancer driver pathways. In particular, the next sections will focus on
the algorithms and techniques developed to quantify levels of mutual exclusivity
within gene groups.

2.2.1 Challenges in quantifying mutual exclusivity

Finding an effective method to appropriately quantify the level of mutual exclusivity
is not straightforward. In the statistical literature, two types of mutual exclusivity
are defined: hard and soft. Hard mutual exclusivity describes events that are
presumed to be strictly mutually exclusive, with the null hypothesis being that
any observed overlap is due to random errors. However, in this context, it is not

https://www.ncbi.nlm.nih.gov/gene/2078
https://www.ncbi.nlm.nih.gov/gene/8405
https://www.ncbi.nlm.nih.gov/gene/10771
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feasible to test for hard mutual exclusivity, as this is a property observed statistically
from patient data. Therefore, it is necessary to relax the constraint to soft mutual
exclusivity, where two otherwise independent events overlap less than expected, either
due to chance or some statistical interaction.
Moreover, while soft mutual exclusivity of a pair of genes can be assessed using the
Fisher’s exact test, there is no agreed-upon method for analytically testing mutual
exclusivity among more than two genes. For instance, one intuitive approach could
involve checking whether each pair of genes within a gene group exhibits mutual
exclusivity; this method, however, may be overly strict, as a gene set can exhibit a
strong mutual exclusivity pattern as a whole even if no individual pairs show any [2].
Due to the complexity of measuring mutual exclusivity, recent papers have proposed
various approaches, based on different assumptions, which will be discussed in later
sections.

2.2.2 A deterministic formalization of mutual exclusivity

One of the earliest [10] and most widely used mathematical formalizations for
modeling and quantifying mutual exclusivity was introduced by Vandin et al. [34], the
authors of an algorithm called Dendrix. But, before discussing it, some preliminary
definitions are needed to provide context. In fact, all papers explored in this work
will reference the following definitions.
Definition 2.1 (Mutation matrix). A mutation matrix is a matrix with m rows
and n columns, where each row represents a patient and each column represents a
gene, and the entry ai,j is equal to 1 if and only if gene j is mutated in patient i.
Example 2.1 (Mutation matrix). An example of a mutation matrix is the following:

g1 g2 g3
p1 0 1 0
p2 1 1 0
p3 0 0 1

Table 2.1. A mutation matrix.

Definition 2.2 (Coverage of a gene). Given a gene g, the coverage of g denotes
the set of patients which have g mutated, and it is defined as follows

Γ(g) := {i | ai,g = 1}

Definition 2.3 (Mutual exclusivity). A set M of genes is mutually exclusive if
no patient has more than one mutated gene of M , formally

∀g, g′ ∈ M Γ(g) ∩ Γ(g′) = ∅

Definition 2.4 (Coverage of a set). Given a set M of genes, the coverage of M
denotes the set of patients who have at least one of the genes in M mutated, and it
is defined as follows

Γ(M) :=
⋃

g∈M

Γ(g)

https://en.wikipedia.org/wiki/Fisher%27s_exact_test
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Note that any gene set M of size k can be thought of as an m × k column submatrix
of a mutation matrix A of size m×n, up to rearranging A’s columns (their order does
not matter since they represent genes). Accordingly, such a submatrix is said to be
mutually exclusive if each row contains at most one 1. These two representations
will be used interchangeably throughout this work.
To define an equation that mathematically assesses mutual exclusivity and coverage
of a given gene set M , the formalization should reflect the following properties
(discussed in previous sections):

i) high coverage: most patients have at least one mutation in M ;

ii) high approximate exclusivity: most patients have exactly one mutation in M .

To evaluate these two properties, Vandin et al. [34] introduced a measure that
quantifies the trade-off between the two. First, they define the following formula,
which measures M ’s coverage overlap.

Definition 2.5 (Coverage overlap). Given a set M of genes, the coverage overlap
of M is defined as follows:

ω(M) :=
∑

g∈M

|Γ(g)| − |Γ(M)|

Note that the sum present in this formula is the number of 1s in M ’s corresponding
submatrix.

Example 2.2 (Coverage overlap). Considering the mutation matrix in Example 2.1;
if M = {g1, g2}, then

ω(M) = |Γ(g1)|+|Γ(g2)|−|Γ({g1, g2})| = |{p2}|+|{p1, p2}|−|{p1, p2}| = 1+2−2 = 1

Indeed, ω(M) is the number of patients that are counted more than once in the
sum, i.e. the number of patients that have more than one mutation in M . Note that
ω(M) ≥ 0, with equality holding only if no patient has more than one mutated gene
of M .

Definition 2.6 (Mutual exclusivity). A gene set M is considered to be mutually
exclusive if ω(M) = 0.

Note that this definition matches the one given in Definition 2.3.
Finally, the equation developed by Vandin et al. [34] can be described.

Definition 2.7 (Weight of gene set). Given a set of genes M , to take into account
both coverage and coverage overlap, the following measure is introduced:

W (M) := |Γ(M)| − ω(M) = 2 |Γ(M)| −
∑

g∈M

|Γ(g)|
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This weight assesses the degree of mutual exclusivity among M ’s genes and the
extent to which their mutations cover the patient data. It does this by calculating
M ’s coverage and subtracting M ’s coverage overlap. Indeed, W (M) = |Γ(M)| when
M is mutually exclusive, since it has no coverage overlap. Therefore, the optimal
gene set is the one that maximizes its weight, as a higher weight value indicates
greater levels of coverage and mutual exclusivity.
As previously mentioned, a gene set M can be represented as a column submatrix of
a mutation matrix A. Thus, finding the optimal gene set is equivalent to identifying
the optimal A’s column submatrix, which means that the following problem has to
be solved.

Maximum Weight Submatrix Problem (MWSP): Given an m × n
mutation matrix A, and an integer k > 0, find a m × k submatrix M of
A that maximizes W (M).

Finding the solution to this problem is computationally difficult, even for small
values of k (e.g. there are ≈ 1023 subsets of size k = 6 of 20,000 genes). In fact,
the following proof (provided by Vandin et al. [34]) shows that this problem is
NP-Complete.

Theorem 2.1 (MWSP ∈ NP-Complete). The Maximum Weight Submatrix Prob-
lem is NP-Complete.

Proof. The associated decision problem of the MWSP is formulated as follows:

h−MWSP := {⟨A, h⟩ | ∃M column submatrix of A : W (M) = h}

It can be shown that this problem is in NP, as follows. Consider the following verifier
V , which takes an input ⟨w, c⟩, and computes as described below:

• given ⟨w, c⟩, interpret w as ⟨A, h⟩, where A is a m × n matrix, and c as a
matrix M with m rows; if the encoding is not correct, reject;

• if M is not a submatrix of A, reject;

• evaluate W (M); accept if and only if W (M) = h.

It follows that

⟨A, h⟩ ∈ h−MWSP =⇒ ∃M submatrix of A | W (M) = h

=⇒ ∃c = M | ⟨⟨A, h⟩ , M⟩ ∈ L(V )

⟨A, h⟩ /∈ h−MWSP =⇒ incorrect coding ∨ ∄M submatrix of A | W (M) = h

=⇒ ∄c = M | ⟨⟨A, h⟩ , M⟩ ∈ L(V )

https://en.wikipedia.org/wiki/Decision_problem
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therefore

⟨A, h⟩ ∈ h−MWSP ⇐⇒ ∃M submatrix of A | ⟨⟨A, h⟩ , M⟩ ∈ L(V )

hence V verifies h−MWSP . Note that V operates in polynomial time, as each of
its computations can be completed in polynomial time; in particular, computing
W (M) for a submatrix M of dimensions m × k requires O(m · k) time. This proves
that MWSP ∈ NP.
The proof of NP-Hard-ness is by reduction from the Independent Set Problem (ISP),
which is known to be NP-Hard [15]. In the ISP, it is asked whether there is an
independent set of size h in a given graph G. An independent set for G = (V, E) is
a set of vertices I ⊆ V (G) such that there is no edge among the vertices of I, i.e.

∀u, v ∈ I | u ̸= v (u, v) /∈ E(G)

Given an instance of the ISP, a mutation matrix representing an instance of the
MWSP is built in polynomial time as follows:

• let ∆ := maxv∈G deg(v), and for each v ∈ V (G) let Sv :=
{

s
(1)
v , . . . , s

(∆−deg(v))
v

}
be a set of variables; also, consider the following set

S := {se | e ∈ E(G)} ∪

 ⋃
v∈V (G)

Sv


• build a matrix A of size |S| × |V (G)|, as illustrated below

v1 . . . vn

se1
. . .

... . . .

sem

. . .

s
(1)
v1

. . .
...

s
(∆−deg(v1))
v1

... . . .
s

(1)
vn

...

s
(∆−deg(vn))
vn

. . .
Table 2.2. The described matrix.

• define A’s cells as follows:

as,v = 1 ⇐⇒ s = s(u,v), u ∈ V (G) ∨ s ∈ Sv

https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
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which means that as,v will be 1 if and only if s is either a variable from the set
{se | e ∈ E(G)} where the edge e has v as endpoint, or s is a variable defined
in Sv.

Note that this matrix can be built in polynomial time, because

• its first half contains m · n cells

• the vertex v̂ that maximizes |Sv̂| is such that

deg(v̂) = 1 =⇒ |Sv̂| = ∆ − deg(v̂) = ∆ − 1 = O(∆) = O(n)

and since there are n sets, the matrix’s second half contains (n · n) · n = n3

cells

therefore the time complexity to create it is O
(
n3 + nm

)
. Moreover, note that:

i) ∀v ∈ V (G) |Γ(v)| = ∆ due to the added variables at the end of each column;

ii) ∀u, v ∈ V (G) Γ(u) ∩ Γ(v) ̸= ∅ ⇐⇒ (u, v) ∈ E, since no pair of columns
can have a 1 in the same row in the second half of A by definition of the sets
Sv1 , . . . , Svn , therefore Γ(u) and Γ(v) can have an intersection if and only if
there is an edge (u, v) ∈ E(G).

Hence, consider a set M = {v1, . . . , vk} of k columns of A. Note that:

• from (i) it follows that
k∑

i=1
|Γ (vi)| = k∆

and consequently |Γ(M)| ≤ k∆, meaning that the largest value |Γ(M)| can
have is k∆; thus, from the equation in Definition 2.7, it follows that the
maximum value W (M) can reach is

W (M) = 2 |Γ(M)| −
k∑

i=1
|Γ (vi)|

= 2k∆ − k∆
= k∆

• from (ii) it follows that |Γ(M)| = k∆ ⇐⇒ ∀u, v ∈ V (G) Γ(u) ∩ Γ(v) =
∅ ⇐⇒ ∀u, v ∈ V (G) (u, v) /∈ E(G) ⇐⇒ M is an independent set, by
definition.

This means that W (M) = k∆, i.e. is maximized, if and only if M is an independent
set; therefore, the MWSP can be solved on A if and only if the ISP can be solved
on G. This proves that MWSP ∈ NP-Hard.

The approach developed by Vandin et al. [34] will be discussed in the next chapter.
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2.2.3 A statistical approach

Given that exact mutual exclusivity in real somatic data is unlikely, a common
approach in this field is to rely on statistical methods. The following section will
describe the metric developed by Babur et al. [2], which employs statistical analysis
to identify driver pathways.
To begin with, Babur et al. [2] criticize the metric developed by Vandin et al. [34],
because it has a strong bias toward highly mutated genes, and in some instances, the
excessive emphasis on coverage leads to false positives and negatives. Therefore, they
propose a metric that extends Fisher’s exact test — also known as hypergeometric
test — to quantify the mutual exclusivity within a gene set.
Before exploring their metric, it is important to note that a uniform alteration
frequency across samples may not always hold, particularly for hyper-mutated samples,
often resulting from prior mutations in DNA repair mechanisms. Addressing this
heterogeneity is challenging, as each overlap in the null model has a different
probability. This remains an open problem, and to partially mitigate it, Babur et al.
[2] decided to exclude hyper-altered samples from the analysis.
The following definitions will introduce the metric they developed. Consider the
following null hypothesis:

H0: Given a group of genes, a member gene is altered independently of
the union of the other alterations in the group.

Using Dendrix’s notation, H0 states that for a given gene set M , for every gene
g ∈ M , mutations in Γ(g) are independent of alterations in Γ(M − {g}). In brief, H0
states that any observed pattern among gene alterations is due to random chance,
not due to any underlying biological or oncogenic mechanism. Given a single gene
g, H0 can be tested by evaluating g’s co-distribution with the union of the others,
through an hypergeometric test, which is performed as described below.

Definition 2.8 (Notation). Let M be a gene set, and let g ∈ M ; define the following
variables:

• γ(g) := |Γ(g)|

• γ(M) := |Γ(M)|

• Mg := M − {g}

• γ(g, Mg) := |Γ(g) ∩ Γ(Mg)|

To test H0 for a gene g ∈ M , it is necessary to quantify the probability that
there are γ(g, Mg) patients who have both gene g and any gene in M mutated; let
this probability be represented by the random variable X. Since X follows an
hypergeometric distribution, denoted as

X ∼ H(m, γ(g), γ(Mg))

https://en.wikipedia.org/wiki/Hypergeometric_distribution
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this probability can be assessed by using the probability mass function (PMF) of
the hypergeometric distribution, namely:

P (X = γ(g, Mg)) =

(
γ(g)

γ(g, Mg)

)(
m − γ(g)

γ(Mg) − γ(g, Mg)

)
(

m

γ(Mg)

)

Note that, by using the inclusion-exclusion principle

|Γ(M)| = |Γ(g)| + |Γ(M − {g})| − |Γ(g) ∩ Γ(M − {g})|

this probability can also be evaluated using Fisher’s exact test, by employing the
following contingency table:

alterations in Γ(g) alterations not in Γ(g)
alterations in Γ(M − {g}) γ(g, Mg) γ(Mg) − γ(g, Mg) γ(Mg)

alterations not in Γ(M − {g}) γ(g) − γ(g, Mg) m − γ(M) m − γ(Mg)
γ(g) m − γ(g) m

Table 2.3. The Fisher’s exact test performed by Babur et al. [2].

This probability is used to determine the mutual exclusivity score of M , but further
details will be discussed in the next chapter, as the scoring method involves multiple
functions that are integral to running the algorithm itself. The following algorithm
will be used to evaluate M ’s score.

Algorithm 2.1 p-values procedure: given a gene set M , derived from a mutation
matrix A, the algorithm returns the p-values of each gene g ∈ M .

1: function pValues(M , A)
2: P := {}
3: for g ∈ M do
4: P.add_entry(g, P (X ≤ γ(g, Mg))) ▷ this is g’s p-value
5: end for
6: return P
7: end function

2.2.4 Extending the deterministic equation

While identifying individual driver pathways is crucial for cancer research and
treatment, most cancer patients are likely to have driver mutations across multiple
pathways. The metrics discussed so far do not account for multiple pathways
simultaneously. As will be shown in the next chapter, these formalizations can be
applied iteratively to identify multiple driver pathways, though this may not be the
most precise approach. Leiserson et al. [22] refine the weight function of Vandin et al.
[34] to extend their metric, enabling the assessment of mutual exclusivity across
multiple driver pathways.

https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle
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To effectively identify multiple pathways, it is necessary to establish criteria for
evaluating potential collections of gene sets. Based on the same biological reasoning
mentioned earlier, it is expected that each pathway will contain approximately
one driver mutation. Furthermore, since each driver pathway is crucial for cancer
development, it is expected that most patients will harbor a driver mutation in most
driver pathways. Consequently, high exclusivity is predicted within the genes of each
pathway, along with high coverage of each pathway individually. One metric that
meets these criteria is the sum of individual weights of a given collection of gene
sets, as defined below.

Definition 2.9 (Weight of a collection). Given a collection of t gene sets M =
{M1, . . . , Mt}, the weight of M is defined as follows:

W ′(M) :=
t∑

ρ=1
W (Mρ)

This metric is employed by Leiserson et al. [22] in their algorithm, which will be
explored in the next chapter.

2.2.5 A clustering method

Another notable approach used in several studies to find mutually exclusive mod-
ules involves constructing gene graphs and identifying clusters based on specific
criteria. This method is demonstrated by Hou et al. [16], who propose an algorithm
designed to address the limitations of previous techniques. They argue that earlier
approaches are generally inefficient for large datasets, lack consistency in results due
to their randomized nature, and can only identify a few small modules. Additionally,
these methods require restructuring whenever new biological information is added,
whereas their approach has a notable degree of flexibility, as its objective function
does not need to change with the addition of new data sources. Moreover, it has
low computational cost, an important consideration in this context, as previously
discussed. The following equations will describe how Hou et al. [16] formalized
biological assumptions to define a technique able to achieve these results.
First, the structure of the graph will be described. Let G = (V, E) be a complete graph
of genes, thus an edge exists between any pair of vertices. Each edge (u, v) ∈ E(G)
is assigned two weights:

• a positive weight w+
uv, which represents the cost of placing u and v in different

clusters; thus, by making w+
uv large, placing u and v in different clusters is

discouraged, and viceversa;

• a negative weight w−
uv, which represents the cost of placing u and v in the

same cluster ; thus, by making w−
uv large, placing u and v in the same cluster

is discouraged, and viceversa.

The clustering algorithm aims to identify clusters of vertices (i.e. genes) that exhibit
both high coverage and mutual exclusivity within clusters.
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As mentioned earlier, this algorithm is quite flexible and allows the integration
of weight values with information derived from external data. Specifically, Hou
et al. [16] present multiple versions of their algorithm, depending on the type of
information used to define the weights between edges. The following labels will be
used to distinguish the components of the weights:

• the (e) label refers to exclusivity;

• the (c) label refers to coverage;

• the (n) label refers to network information;

• the (x) label refers to expression data.

To define the weights, linear combinations of these components are utilized. The
different versions of this algorithm, and the various definitions of the weights, will
be discussed in the following chapter. This section will specifically focus on how
Hou et al. [16] defined mutual exclusivity and coverage.
Let A be an m × n mutation matrix, as described in Definition 2.1. In addition, let
C be an m × n matrix representing the CNV data, where ci,j = 0 means that there
is no change in the copy number of gene j in sample i, otherwise, the corresponding
number reflects the deviation of the CNV number from its baseline — hence, C
contains both positive and negative values. Following this, a binary matrix M is
constructed combining A and C, as follows:

mi,j = 0 ⇐⇒
{

ai,j = 0
lcnv < ci,j < hcnv

(2.1)

where lcnv and hcnv are lower and upper bounds on copy numbers that determine
the significance level. Thus, if mi,j = 0, no mutation of gene j is recorded in sample
i, otherwise gene j is deemed mutated.

Definition 2.10 (Coverage of a vertex). Given a vertex u ∈ V (G), i.e. a gene, the
coverage of u is defined as follows

S (u) := {i | mi,u = 1}

and it denotes the set of patients in which u is altered.

Note that S (u) corresponds to Γ(u) under Dendrix’s notation, but is defined through
the M matrix respectively.
Now that the preliminaries have been covered, the following definitions will outline
how mutual exclusivity and coverage are defined.

Definition 2.11 (Mutual exclusivity component). The mutual exclusivity com-
ponent between two genes u, v ∈ V (G) is defined as follows:

w−
uv(e) := a · |S (u) ∩ S (v)|

min(|S (u)| , |S (v)|)
where a is a user-defined scaling parameter.
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This ratio is often referred to as Intersection over Minimum (IoM), and suits the
criteria of mutual exclusivity because the fewer patients who have both u and v
mutated, the smaller the weight, making it more plausible that u and v are mutually
exclusive, therefore the cost of placing them in the same cluster should be low. Note
that

∀u, v ∈ V (G) a = 1 =⇒ 0 ≤ w−
uv(e) ≤ 1 (2.2)

Focusing on coverage, if two genes u and v increase the coverage of the set significantly,
w+

uv(c) should be large such that they are encouraged to be placed in the same
cluster. Let

D(u, v) := |S (u)∆S (v)| (2.3)

where ∆ denotes the symmetric difference of two sets; a large value of D(u, v)
suggests that u and v should be placed in the same cluster. Also, let

D := {D(u, v) | u, v ∈ V (G)} (2.4)

and let T (J) be the J-th percentile of the values in D .

Definition 2.12 (Coverage component). The coverage component is defined as
follows:

w+
uv(c) :=


1 D(u, v) > T (J)
D(u, v)
T (J) D(u, v) ≤ T (J)

Note that, similar to Equation 2.2

∀u, v ∈ V (G) 0 ≤ w+
uv(c) ≤ 1 (2.5)

The next chapter will illustrate the various versions of the algorithm developed by
Hou et al. [16].

https://en.wikipedia.org/wiki/Symmetric_difference
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Chapter 3

Finding driver pathways

In the previous chapter, various studies were discussed in terms of how they formalized
biological assumptions, with particular emphasis on the metrics developed to assess
coverage and mutual exclusivity within gene groups. This chapter will delve
deeper into the algorithms employed by these studies to identify driver pathways
using their respective metrics and hypotheses.
Existing approaches can be categorized into two types: de novo approaches, which
identify mutually exclusive patterns using only genomic data from patients, and
knowledge-based methods, which integrate the analysis with external a priori
information. De novo approaches might lack sufficient information as they do not
utilize pre-existing pathway databases, protein-protein interaction (PPI) networks
or phenotype data. Conversely, given that our understanding of gene and protein
interactions in humans is still incomplete, and many pathway databases fail to
accurately represent the specific pathways and interactions present in cancer cells,
knowledge-based approaches may be limited by their dependence on existing data
sources. Consequently, de novo methods might yield new but potentially less accurate
results, while knowledge-based approaches may limit the discovery of novel biological
insights [10, 22].

3.1 Dendrix

3.1.1 A greedy approach

Vandin et al. [34] introduced the most widely adopted metric in pathway discovery
research, namely W (M) (presented in Definition 2.7). In addition to this, they defined
the Maximum Weight Submatrix Problem (MWSP), discussed in Section 2.2.2, and
proposed the following greedy algorithm, called Dendrix (de novo [10]), to solve it.
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Algorithm 3.1 Greedy Dendrix : given the set of all genes G, and an integer k, the
algorithm finds the set of genes M of size k that maximizes W (M).

1: function greedyDendrix(G, k)
2: M := {g1, g2} such that M maximizes W (M) ▷ pick the best gene pair
3: for i ∈ [3, k] do
4: Choose ĝ ∈ arg maxg∈G W (M ∪ {g})
5: M = M ∪ {ĝ}
6: end for
7: return M
8: end function

Clearly, the time complexity of the algorithm is O
(
n2 + kn

)
= O

(
n2) — where

n = |G|, therefore k ≤ n — because finding {g1, g2} in line 2 requires O
(
n2) and the

arg max in line 4 has cost O(n).
While this algorithm is efficient, there is generally no guarantee that it will identify
the optimal set M̂ that maximizes W (M̂). However, Vandin et al. [34] prove that
Algorithm 3.1 can correctly identify M̂ with high probability when the mutation
data come from the Gene Independence Model (GIM), which is described below

Definition 3.1 (Gene Independence Model). Let A be an m × n mutation matrix,
such that M̂ is the maximum weight submatrix of A, and |M̂ | = k; the matrix A
satisfies the Gene Independence Model (GIM) if and only if:

i) each gene g /∈ M̂ is mutated in each patient with probability pg ∈ [pL, pU ],
independently of all other events, for some 0 ≤ pL, pU ≤ 1;

ii) W (M̂) = rm for some 0 < r ≤ 1;

iii) for all M ⊂ M̂ of cardinality l := |M |, it exists 0 ≤ d < 1 such that

W (M) ≤ l + d

k
W (M̂)

Note that:

• condition (i) reflects the independence of mutations for genes outside the mu-
tated pathway, a standard assumption for somatic single-nucleotide mutations,
according to Vandin et al. [34];

• condition (ii) ensures that mutations in M̂ cover a large number of patients
and are mostly exclusive;

• condition (iii) means that each gene in M̂ is important, so there are no subset
of M̂ that predominantly contributes to W (M̂).

Although it is possible to efficiently obtain accurate results with high probability
under the GIM, genes within M̂ may exhibit observed mutation frequencies similar
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to those of genes outside M̂ . This similarity can make it challenging to distinguish
between them based solely on mutation frequency, regardless of the number of
patients.
To illustrate this, consider the following scenario: observed gene mutation frequencies
fall within the range of [3 × 10−5, 0.13] — based on a background mutation rate of
≈ 10−6 [8]. If somatic mutations are measured in n = 20, 000 human genes, and
the size of M̂ is 10, then approximately 2,400 patients are needed for the greedy
algorithm to identify M̂ with a probability of at least 1 − 10−4. While this number
of patients is expected to be available from large-scale cancer sequencing projects
[17], it exceeds current availability.
Therefore, in practical applications, the effectiveness of this greedy algorithm depends
on having mutation data from a sufficiently large number of patients. Moreover,
the GIM model may be appropriate for certain types of somatic mutations, such
as single-nucleotide aberrations, but may not be suitable for others. To address
these limitations, Vandin et al. [34] developed an alternative approach, which will
be detailed in the following section.

3.1.2 Using MCMCs

To overcome the drawbacks of the aforementioned greedy algorithm, Vandin et al.
[34] developed a Markov Chain Monte Carlo (MCMC) approach, which does not rely
on assumptions about the distribution of mutation data or the number of patients. In
particular, this MCMC method does not assume independence among mutations in
different genes, making it particularly useful for analyzing copy-number aberrations
(CNAs), which often involve correlated mutations due to amplification or deletion of
adjacent genes.
Vandin et al. [34] employed the Metropolis-Hastings algorithm to sample sets M ⊆ G
of k genes, with the following stationary distribution, proportional to ecW (M), for
some constant c > 0

π(M) = ecW (M)∑
R∈Mk

ecW (R)

where Mk := {M ⊂ G : |M | = k}. While there are no guarantees on the rate
of convergence of the Metropolis-Hasting algorithm to the stationary distribution,
Vandin et al. [34] prove that their MCMC is rapidly mixing, therefore the stationary
distribution is effectively reached in a practical number of steps.
The main idea of the MCMC algorithm involves constructing a Markov chain, where
each state represents a collection of k columns from a given mutation matrix A,
and transitions between these states occur by swapping one gene at each iteration.
Further details of the algorithm are discussed below.

Definition 3.2 (Dendrix’s MCMC). The MCMC’s procedure of Dendrix is
defined through the following steps:

1. initialization: given the set of all genes G, choose an arbitrary subset M0 ⊆ G
of k genes;

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Markov_chain
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2. iteration: for t = 1, 2, . . . derive Mt+1 from Mt as follows:

(a) choose a gene w uniformly, at random, from G;
(b) choose a gene v uniformly, at random, from Mt;
(c) let M ′

t := (Mt − {v}) ∪ {w};
(d) let ∆W := W (M ′

t) − W (Mt);

(e) let P (Mt, w, v) := min
[
1, ec∆W

]
, where c > 0;

(f) set Mt+1 := M ′
t with probability P (Mt, w, v), else Mt+1 := Mt.

Note that:

• w is chosen from G, thus if w ∈ Mt then

M ′
t = (Mt − {v}) ∪ {w} = Mt − {v}

which means that no genes were added to W ′
t ; this must be allowed because

maximizing the weight may require removing genes already present in the
current set, without adding new ones;

• ∆W measures the change in the weight function with the new set, and the
constant c is a scaling factor that adjusts the importance of this difference;
note that

∆W ≥ 0 =⇒ ec∆W ≥ 1 =⇒ P (Mt, w, v) = 1 =⇒ Mt+1 = M ′
t

in fact when ∆W > 0 the weight has improved, therefore the next iteration
should start from M ′

t ; conversely

∆W < 0 =⇒ ec∆W < 1 =⇒ P (Mt, w, v) = ec∆W

which means that when ∆W < 0 (i.e., the weight has decreased) the change
will be performed with probability ec∆W — note that this value is still close to
1 if the weight has not decreased significantly.

Vandin et al. [34] prove that their MCMC is rapidly mixing for some c > 0, but
details of this proof are beyond the scope of this work. The following sections will
briefly discuss some of the results obtained through their algorithm.

3.1.3 Results

This section will briefly discuss the results reported by Vandin et al. [34] from running
the MCMC algorithm on real data. To improve the efficiency of the algorithm,
the mutation matrix was optimized by merging genes T = {g1, . . . , gh} that were
mutated in the same patients into larger metagenes gT , where each metagene
represents the combined mutations occurring in those same patients. The MCMC
algorithm samples gene sets with a frequency proportional to their weights, thus in
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order to focus on high-weight sets, only those with a frequency of at least 1% were
reported.
Vandin et al. [34] applied their MCMC algorithm (with the constant c set to c = 0.5)
to analyze somatic mutations obtained from high-throughput genotyping of 238
oncogenes across 1,000 patients, spanning 17 cancer types (a study conducted by
Thomas et al. [33]). A mutation matrix was constructed with 298 patients and
18 mutation groups, based on the groupings from Thomas et al. [33]. They ran
the MCMC algorithm on gene sets ranging in size from 2 to 10, sampling every
10,000 iterations after running the algorithm for 10 million iterations. The analysis
identified a set of 8 mutation groups, altered in 94% of patients with at least one
mutation, totaling 295 mutations (p < 0.01). They state that these mutated genes
are linked to well-known cancer pathways. Additionally, two sets of size 10, which
included the initial 8 mutation groups, were found in 95% of patients, accounting
for 302 mutations (p < 0.01).
They also applied their algorithm to somatic mutations in lung adenocarcinoma,
using data from The Cancer Genome Atlas (TCGA) [8], which included 188 patients
and 623 genes, of which 356 were found to be mutated in at least one patient.
For gene sets of size k = 2, the pair (EGFR, KRAS) was identified in 99% of
samples, covering 90 patients, with no overlap, indicating high mutual exclusivity;
additionally, when analyzing sets of size k = 3, the algorithm uncovered a novel
triplet (EGFR, KRAS, STK11), appearing in 8.4% of samples. Vandin et al. [34]
highlight that all three genes are involved in regulating the mTOR pathway, which is
known to be crucial in lung adenocarcinoma. To identify additional sets, the MCMC
algorithm was rerun after removing the triplet, revealing the pair (ATM, TP53)
with a sampling frequency of 56%, covering 76 patients. Although these reported
sets showed high exclusivity, their relatively low coverage suggests that they may
not represent complete driver pathways. Indeed, Vandin et al. [34] propose that
this could be due to the limited number of genes analyzed or the focus on specific
mutation types. Moreover, there was no significant overlap between patients with
mutations in (ATM, TP53) and those with mutations in (EGFR, KRAS, STK11),
suggesting that these gene sets likely belong to distinct biological pathways.
The MCMC algorithm was also applied to mutation data from 84 patients with
glioblastoma multiforme (GBM), analyzing somatic mutations across 601 genes,
resulting in a total of 453 mutations, with 223 genes found to be mutated in at
least one patient (filtered using CNAs). For gene sets of size k = 2, the most
frequently sampled pair was (CDKN2B, CYP27B1), appearing 18% of the time, and
for k = 3, the triplet (CDKN2B, RB1, CYP27B1) was sampled 10% of the time.
The analysis revealed that CYP27B1 had a nearly identical mutation profile to a
metagene composed of six adjacent genes, but was excluded due to an additional
mutation in a single patient. The metagene’s amplification likely targeted CDK4,
suggesting that the key triplet of interest was (CDKN2B, RB1, CDK4), which is
part of the RB1 signaling pathway, associated with shorter survival in GBM patients.
After removing this triplet, the pair (TP53, CDKN2A) was sampled with 30%
frequency, linked to the p53 tumor suppression pathway. Further analysis, after
removing both sets, revealed the pair (NF1, EGFR), which was sampled 44% of the
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time and is part of the RTK pathway, crucial for cell proliferation and survival.
All these findings highlight the ability of the MCMC algorithm to identify significant
gene sets related to known cancer pathways.

3.2 Multi-Dendrix

The following section will introduce an extension of the MWSP, along with a
modification to the weight function W (M).

3.2.1 An alternative approach to the MWSP

Vandin et al. [34] propose a solution to the MWSP that may not appear immediately
intuitive, given that the problem itself resembles an optimization problem. Indeed,
Leiserson et al. [22], the authors of Multi-Dendrix (de novo [10]), present an alter-
native approach by formulating the problem as an Integer Linear Program (ILP),
called DendrixILP(k), which is described below.
To begin, it is necessary to define two sets of indicator variables: consider a gene
set M , described by a set of boolean variables, one for each gene j ∈ M , defined as
follows

IM (j) = 1 ⇐⇒ j ∈ M (3.1)

and a set of indicator variables, one for each patient i, expressed in this form

Ci(M) = 1 ⇐⇒ ∃g ∈ M | i ∈ Γ(g) (3.2)

therefore Ci(M) is equal to 1 if and only if M covers the i-th patient.
The ILP formulation provided by Leiserson et al. [22] is illustrated below.

Definition 3.3 (DendrixILP(k)). DendrixILP(k) is defined by the following ILP:

maximize
m∑

i=1

2 · Ci(M) −
n∑

j=1
IM (j) · ai,j

, (3.3)

subject to
n∑

j=1
IM (j) = k, (3.4)

n∑
j=1

IM (j) · ai,j ≥ Ci(M), 1 ≤ i ≤ m. (3.5)

Note that Equation 3.3 uses the second version of the definition provided in Defini-
tion 2.7, and Equation 3.4 limits the size of M to be exactly k. Moreover, note that
Equation 3.5 only forces Ci(M) = 0 when the i-th patient has no mutated genes in

https://en.wikipedia.org/wiki/Receptor_tyrosine_kinase
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M , but does not force Ci(M) = 1 when the patient has at least one, as required by
Equation 3.2. However, the objective function will be maximized when Ci(M) = 1,
thus Equation 3.2 is satisfied.

Lemma 3.1 (Correctness of DendrixILP(k)). Given a gene set M , the sum in
Equation 3.3 correctly evaluates W (M).

Proof. Rearranging the terms in Equation 3.3

m∑
i=1

2 · Ci(M) −
n∑

j=1
IM (j) · ai,j

 = 2
m∑

i=1
Ci(M) −

m∑
i=1

n∑
j=1

IM (j) · ai,j

and it is trivial to check that

|Γ(M)| =
m∑

i=1
Ci(M)

since it it true by definition, and

∑
g∈M

|Γ(g)| =
m∑

i=1

n∑
j=1

IM (j) · ai,j

because the RHS counts the number of cells of A such that ai,j = 1 for every
j ∈ M .

The next section will discuss how Leiserson et al. [22] extended this ILP formulation
to enable the search for multiple driver pathways.

3.2.2 The ILP

As outlined in Section 2.2.4, Leiserson et al. [22] propose that the most effective
approach for this research is to identify multiple driver pathway rather than
focusing on a single one. To accomplish this, they extended the weight metric
introduced by Vandin et al. [34] to find a collection of gene sets that maximizes the
sum of the individual weights. Specifically, they extended the MWSP as follows:

Multiple Maximum Weight Submatrices Problem (MMWSP):
Given an m × n mutation matrix A, and integer t > 0, and two integers
kmin, kmax ≥ 0, find a collection M = {M1, . . . , Mt} of column subma-
trices of A that maximizes W ′(M), where each submatrix Mρ — for
1 ≤ ρ ≤ t — has size m × kρ for some kmin ≤ kρ ≤ kmax.

Note that the sets in the optimal collection may vary in size, as different pathways are
likely to have different lengths; additionally, note that this problem is NP-Complete,
as for the case where t = 1 (proof provided in Theorem 2.1). Furthermore, Leiserson
et al. [22] state that collections M with a large value of W ′(M) are also likely
to exhibit higher coverage Γ(Mρ), for each individual gene set Mρ. Consequently,
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optimal solutions tend to produce collections where many patients have mutations
in more than one gene set, which may involve pairs or larger groups of co-occurring
mutations — a phenomenon observed in real cancer data.
The ILP developed by Leiserson et al. [22] to simultaneously search for multiple
driver pathways is described below.

Definition 3.4 (Multi-Dendrix). Multi-Dendrix is defined by the following ILP:

maximize
t∑

ρ=1

m∑
i=1

2 · Ci(Mρ) −
n∑

j=1
IMρ(j) · ai,j

, (3.6)

subject to
n∑

j=1
IMρ(j) · ai,j ≥ Ci(Mρ), 1 ≤ i ≤ m, (3.7)

kmin ≤
n∑

j=1
IMρ(j) ≤ kmax, 1 ≤ ρ ≤ t, (3.8)

t∑
ρ=1

IMρ(j) ≤ 1, 1 ≤ j ≤ n. (3.9)

Note that:

• Equation 3.6 and Equation 3.7 extend Equation 3.3 and Equation 3.4 respec-
tively;

• Equation 3.8 allows each gene group to have a size between kmin and kmax;

• Equation 3.9 forces each gene to appear in at most 1 set within the collection,
preventing overlappings between sets.

Moreover, Leiserson et al. [22] state that this ILP can be extended to allow the gene
sets of the collection to overlap, since the genes in the intersection may be involved
in multiple biological processes. Hence, Equation 3.9 is replaced with the following
equation:

t∑
ρ=1

IMρ(j) ≤ ∆, 1 ≤ j ≤ n (3.10)

where ∆ is the maximum number of gene sets a gene can be a member of, and the
following constraint is added:

n∑
j=1

∑
ρ̸=ρ′

IMρ(j) · IMρ′ (j) ≤ τ, 1 ≤ ρ ≤ t (3.11)

where τ is the maximum size of the intersection between two gene sets.
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3.2.3 Comparing Multi-Dendrix with Iter-Dendrix

Since the greedy algorithm of Dendrix can identify a single driver pathway, finding
multiple pathways could be achieved by running the algorithm iteratively. Leiserson
et al. [22] provide a detailed explanation of this approach, referred to as Iter-Dendrix,
with the pseudocode shown below.

Algorithm 3.2 Iter-Dendrix: given the set of all genes G, an integer k, and an
integer t, the algorithm finds the collection M of t gene sets of size k that maximizes
W ′(M).

1: function iterDendrix(G, k, t)
2: M := ∅
3: for i ∈ [1, t] do
4: Mi := greedyDendrix(G, k) ▷ procedure defined in Algorithm 3.1
5: M = M ∪ {Mi}
6: G = G − Mi

7: end for
8: return M
9: end function

This procedure runs the greedy algorithm iteratively, removing the chosen set from G
after each iteration. Vandin et al. [34] discussed this approach toward the end of their
work, highlighting some limitations. In particular, if the gene sets corresponding
to each pathway are disjoint, Iter-Dendrix can be effective in identifying these sets,
successfully finding disjoint sets M1 and M2 with high weight, as exclusivity is
only evaluated within sets, not between them. However, if M1 and M2 share genes,
removing one set could also remove part of the other. In cases where the overlap is
minimal, this approach may still identify the remaining portion of the second set.
However, if the sets significantly intersect, Iter-Dendrix is likely to fail [34].
Leiserson et al. [22] compare the outputs of their ILP with Iter-Dendrix: denoting
with M and I the collections of gene sets obtained from Multi-Dendrix and Iter-
Dendrix respectively, they state that W ′(M) ≥ W ′(I). They also argue that M
could contain sets with strictly greater weight than the ones comprising I, due to
several factors:

• there may be multiple gene sets Iρ that maximize W (Iρ) on the ρ-th iteration
of Iter-Dendrix, and this version of Dendrix can only extend one of them;

• the gene set Iρ that maximizes W (Iρ) selected by Iter-Dendrix in the ρ-th
iteration may not be a member of M , since M could include gene sets that
are suboptimal when considered in isolation;

• when kmin < kmax, Multi-Dendrix may choose gene sets with fewer than kmax
genes, if doing so maximizes the overall weight W ′(M).

Leiserson et al. [22] state that all of these scenarios occur when analyzing real
mutation data.
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3.2.4 Results

Leiserson et al. [22] applied Multi-Dendrix and Iter-Dendrix to four somatic mutation
datasets: GBM, lung adenocarcinoma, a newer GBM dataset, and BRCA; these
datasets were processed to remove low-frequency mutations and outliers. After
processing, the GBM dataset included 46 genes from 84 patients, the lung dataset
had 190 genes from 163 patients, the newer GBM dataset contained 398 genes from
261 patients, and the BRCA dataset included 375 genes from 507 patients. They
focused on results from the GBM and BRCA datasets specifically, as they are more
representative of modern genomic data, and the data was obtained from computing
collections of sizes ranging between 2 ≤ t ≤ 4, with a minimum size kmin = 3, and a
maximum size ranging between 3 ≤ kmax ≤ 5.
In the GBM analysis, both algorithms produced similar results, except Iter-Dendrix
identified the IRF5 gene in one case, though Multi-Dendrix ran significantly faster
(142 seconds compared to over 10 hours). They identified four main modules in the
data, corresponding to key signaling pathways related to cancer, with mutations
affecting a large proportion of samples:

• RB signaling pathway: this module, including genes such as CDK4, RB1
and CDKN2A/B, was mutated in 87.7% of samples, and it also included
mutations in MSL3, a gene with a potential role in cancer that merits further
investigation;

• RTK/RAS/PI(3)K pathway: this module included PTEN, PIK3CA, PIK3R1,
and IDH1, among others; mutations in this module were present in 62.8% of
samples, and while IDH1 is not a known member of this pathway, its mutual
exclusivity with other genes suggests complex interactions;

• p53 signaling pathway: this module featured TP53, MDM2, MDM4, and
NLRP3, affecting 57.8% of samples; this module highlights critical interactions
in cancer progression, and it includes NPAS3, which has emerging links to
GBM.

• RTK/RAS/PI(3)K and RB pathways: this module, involving EGFR, PDGFRA,
and RB1, appeared in 45.6% of samples; while EGFR and PDGFRA are part
of the RTK/RAS/PI(3)K pathway and RB1 is in the RB pathway, the mutual
exclusivity here may be influenced by subtype-specific mutations.

When applying the two algorithms to the BRCA dataset, at first the algorithms
grouped frequently mutated genes into single sets, despite their high coverage overlap.
This was due to the weight function outweighing coverage |Γ(M)| over overlap ω(M).
To enhance mutual exclusivity, Leiserson et al. [22] increased the overlap penalty, by
using the following modified weight function:

W (M) = |Γ(M)| − αω(M)

and a value of α = 2.5. With this adjustment, Multi-Dendrix identified four distinct
modules:
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• PI(3)K/AKT pathway: this module contains genes such as PTEN, PIK3CA,
PIK3R1, AKT1, and HIF3A, and amplification at 12p13.33; it is mutated in
61% of samples, and it includes not only key genes in this pathway, but also
the 12p amplification, though its target remains unclear;

• p53 signaling pathway: this module includes mutations in TP53, CDH1,
GATA3, CTCF, and GPRIN2, affecting 56% of samples; this module relates
to known breast cancer-related genes involved in metastasis and proliferation,
but it does not have any known interactions;

• p38-JNK1 stress kinase pathway: this module features mutations in MAP2K4,
MAP3K1, PPEF1, SMARCA4, and WWP2, present in 44.4% of samples;
it includes both kinases and a phosphatase, though interactions within this
module are minimal;

• cell cycle progression: this module comprises CCND1 amplification and muta-
tions in MAP2K4, RB1, and GRID1, found in 36.3% of samples; it includes
mutations in MAP2K4, with limited interaction evidence.

To summarize, despite some differences in specific results, Multi-Dendrix and Iter-
Dendrix produced largely consistent findings; Multi-Dendrix, however, was signifi-
cantly faster. Both methods successfully identified key gene modules across the GBM
and BRCA datasets, uncovering important cancer-related pathways and patterns of
mutual exclusivity.

3.3 MDPFinder

The following section will discuss a method that utilizes the same scoring function
W (M), but it is based on a genetic algorithm.

3.3.1 The genetic algorithm

As outlined in the previous chapter, the weight function W (M) has been widely
adopted across multiple studies, due to its intuitive nature and its suitability for
formalizing mutual exclusivity and coverage. One study that employed this metric —
though not previously discussed, because its approach to mutual exclusivity mirrors
that of Vandin et al. [34] — is the work by Zhao et al. [40], which introduced an
algorithm called MDPFinder (knowledge-based [10]).
Their method utilizes a Genetic Algorithm (GA), a flexible and adaptable approach
capable of optimizing a wide range of scoring functions. It models genetic variation
within a population, evolving through a process of random selection, thereby avoiding
the need to enumerate all possible solutions.
Before detailing the genetic procedure, it is necessary to first define the hypothesis
space and the genetic operators of the algorithm.
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Definition 3.5 (Hypothesis space). A member of the population is defined by a
binary string of length n, i.e. the number of genes. Given a gene set M , the value of
the i-th position of an individual represents the membership of the i-th gene in M .
Therefore, if the target gene set has size k, the hypothesis space is constituted by
all the possible binary strings with length n that have k 1s, namely

H :=

(x1, . . . , xn) | xi ∈ {0, 1}, i ∈ [1, n],
n∑

j=1
xj = k


An individual of the population is denoted as hi ∈ H, and its corresponding gene
set as Mi.

Definition 3.6 (Fitness function). The fitness fi of each individual hi ∈ H is
defined as the rank ri of the score W (Mi), in ascending order :

∀hi ∈ H fi := ri

Note that it is used an ascending order because W (Mi) has to be maximized, and
higher-ranking individuals are favored in selection for the next generation, such that
fitness increases with rank.

Definition 3.7 (Selection probability). Given the rank ri of an individual hi, the
selection probability is defined as follows:

pi = 2ri

P (P + 1)

where P is the population size.

Therefore, the individual with the highest fitness value (i.e., highest ranking) is most
likely to be transferred into the next generation.
This selection operator is based on the roulette wheel selection, which states that
the probability of choosing an individual is equal to

pi = fi∑P
j=1 fj

= ri

P (P +1)
2

= 2ri

P (P + 1)

which is precisely the equation in Definition 3.7.

Definition 3.8 (Crossover operator). The crossover operator specifies the breed-
ing process as follows: the offspring inherits the variables shared by both parents,
while the non-shared ones are selected from the symmetric difference of the parents’
genetic makeup.

Definition 3.9 (Mutation operator). The mutation operator randomly sets the
value of one variable from 1 to 0, and changes another variable value from 0 to 1,
ensuring the feasibility of every offspring.

To prevent premature convergence and enhance the accuracy of the algorithm, Zhao
et al. [40] employ a local search strategy to improve search performance, which is
described below.

https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)#Roulette_wheel_selection
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Definition 3.10 (Local search). The local search procedure is defined as follows:
the values of two variables are randomly altered, as the mutation operator; if this
adjustment improves the current solution, it is accepted. The search is terminated
once all variables have been tested with this routine.

Definition 3.11 (GA procedure). The following are the details of the genetic
algorithm:

1. population generation: a random population of size P and mutation rate pm is
generated, where P = n (i.e. the number of available genes);

2. breeding: for each iteration, P couples are selected from the current population,
based on pi, and each couple generates an offspring;

3. mutation: each offspring may optionally mutate with probability pm;

4. selection: all parents and offspring are ranked based on their scoring values,
and the top P individuals are selected to form the next generation (this is
commonly referred to as truncation selection);

5. local search: verify if the iteration is stuck in a local solution (e.g. if the
maximum scoring value does not improve over two consecutive iterations); if
this is the case, perform a local search;

6. termination: proceed as such until the termination criterion is met (e.g. if
the current maximum scoring value does not improve over 10 consecutive
iterations); if this occurs, then end the procedure.

Note that the algorithm is independent of how W (M) is defined, offering significant
versatility in its application. The following section will describe an integration
procedure, employed by Zhao et al. [40], to improve the results.

3.3.2 The integration procedure

In practical applications, multiple optimal solutions may exist. Additionally, due
to data noise and other factors, the solutions considered optimal — i.e. the ones
with the highest W (M) — may not necessarily be the most relevant in a biological
context. To identify the most biologically meaningful solutions, Zhao et al. [40]
integrate other types of data, to refine the results. Specifically, the GA procedure is
extended by incorporating gene expression data to enhance its performance.
The integrative model is developed based on the observation that genes within the
same pathway typically collaborate to perform a specific function. Consequently,
the expression profiles of gene pairs within the same pathway often exhibit higher
correlations than those in different pathways. This characteristic can be leveraged
to distinguish between gene sets that have the same score: the model focuses on
detecting gene sets whose scores W (M) are close to the optimal solution, but whose
member genes display stronger correlations with each other.

https://en.wikipedia.org/wiki/Truncation_selection
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Definition 3.12 (Integrative measure). Given an m × n mutation matrix A, an
expression matrix E with the same dimensions, and an A’s submatrix M of size
m × k, the integrative model is defined by the following measure:

FME := W (M) + λ · R(EM )

where EM is E’s expression submatrix that corresponds to M , and R(EM ) is
described by the following equation:

R(EM ) :=
∑

j1 ̸=j2

|pcc(xj1 , xj2)|
k(k−1)

2

where pcc(·) is the Pearson correlation coefficient, and xj is the expression profile of
gene j.

In other words, R(EM ) represents the sum of the correlation coefficients for each
pair of genes (note that j1 ̸= j2 means that the pair j1, j2 is counted only once),
normalized by the total number of possible gene pairs in M .
Moreover, note that

−1 ≤ pcc(xj1 , xj2) ≤ 1 =⇒ 0 ≤ |pcc(xj1 , xj2)| ≤ 1 =⇒ 0 ≤ R(EM ) ≤ 1

therefore, when λ = 1 the value of FME can be used to discriminate the gene sets
with the same W (M). Moreover, for values of λ ≥ 1, the gene set with the strongest
correlation and approximate exclusivity can be identified.
The next section will describe the results obtained by the GA algorithm using the
integrative model, with λ values set to 1 and 10.

3.3.3 Results

Zhao et al. [40] compared the results of three algorithms:

• the findings from their GA approach;

• the outcomes from an ILP, identical to the one developed by Leiserson et al.
[22], which they refer to as DendrixILP(k), discussed in Section 3.2.1;

• the MCMC algorithm, developed by Vandin et al. [34], discussed in Sec-
tion 3.1.2.

They grouped genes mutated in the same patients into metagenes, similar to the
approach of Vandin et al. [34] (details in Section 3.1.3). To evaluate the significance
of the identified gene patterns, a permutation test was employed. Results were
reported for gene sets with sizes ranging from 2 ≤ k ≤ 10, including an analysis of
second optimal patterns by removing the initially identified gene set, as was done by
Vandin et al. [34].
The three algorithms were initially tested on the dataset used by Vandin et al. [34]
to compare their performance: the ILP produced exact results in less than 1 second,

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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while the MCMC and GA algorithms took over 5 and 60 seconds, respectively.
Despite the differences in runtime, all three methods identified the same gene sets,
such as the set (EGFR, KRAS, STK11) in the lung adenocarcinoma dataset when
k = 3, as also reported by Vandin et al. [34]. Additionally, the ILP and GA methods
were applied to three datasets not used by them; as before, the ILP consistently
obtained exact results in under 1 second, demonstrating its efficiency across multiple
datasets. Details of all findings are presented below.
The first dataset used by Zhao et al. [40] was created by Stransky et al. [30], who
performed whole-exome sequencing on 74 tumor-normal pairs, revealing previously
unimplicated genes in head and neck squamous cell carcinoma (HNSCC). The
mutation dataset includes 4920 genes, with an average of 130 coding mutations
per sample. The mutation matrix is sparse, with only TP53 and TTN mutated in
more than 20 samples, affecting 46 and 23 samples, respectively. To explore other
pathways, Zhao et al. [40] removed these two genes from the dataset and applied the
three algorithms to the remaining genes. For gene sets with k = 6, a unique optimal
set (ANO4, CDKN2A, NFE2L2, NOTCH1, SYNE1, TP63) was identified, altered in
60.8% of the samples, with a p-value of 0.01. For k < 6, the optimal solutions were
subsets of these six genes, while for k > 6, multiple optimal solutions were found.
Zhao et al. [40] suggest that mutations in CDKN2A, NOTCH1, TP63, and SYNE1
are linked to terminal differentiation in squamous epithelia.
The second dataset used by Zhao et al. [40] was sourced from the TCGA [8] and
includes data on DNA CNAs, and gene expression profiles from 206 glioblastoma
samples, with sequence data available for 91 of these. After preprocessing, mutation
and expression matrices were constructed using 90 samples and 1126 genes. For
mutation patterns, when k = 2 two key gene sets were identified: (CDKN2A, TP53),
which are involved in the p53 signaling pathway, and (CDKN2B, CDK4-TSPAN31).
Analysis of the expression data showed that CDK4 has a stronger correlation with
CDKN2B than TSPAN31, highlighting CDK4’s greater importance. When k = 3,
the optimal gene set included CDK4, CDKN2B, and RB1, confirming findings
from other studies. After removing these five genes, an additional optimal set was
identified at k = 5: (PTEN, EGFR, PIK3R1, PIK3CA, GRIA2). Most of these
genes are part of the RTK/RAS/PI(3)K signaling pathway, which is critical in
glioblastoma.
The final dataset reported by Zhao et al. [40] is the ovarian carcinoma dataset from a
recent TCGA study. This dataset includes mRNA expression, microRNA expression,
promoter methylation, DNA CNAs from 489 samples, and exon DNA sequences from
316 tumors. After preprocessing, mutation and expression matrices were created,
covering 313 samples and 6108 genes. The mutation distribution was uneven as
in the first database, with TP53 mutations prevalent in most samples, while TTN
mutations were considered artifacts and were removed from the analysis. For k = 2,
the gene pair (CCNE1, MYC), involved in cell cycle progression, was identified in
135 samples. At k = 3, NINJ2 was added to this optimal gene set. For k = 4, the
ILP model identified a set of four genes: (KRAS, PPP2R2A, PRPF6, RYR2). In
contrast, the integrative model identified an alternative set: (KRAS, MAPK8IP2,
NF1, STMN3), which showed stronger correlations among the genes. KRAS, NF1,
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and MAPK8IP2 are part of the MAPK signaling pathway, while STMN3 is associated
with cancer progression. Zhao et al. [40] highlight that these findings demonstrate
the advantage of the integrative model in identifying gene sets with functional
relationships, even when mutation-based scoring results in suboptimal solutions.
In summary, the comparison performed by Zhao et al. [40] demonstrated the ILP’s
efficiency in identifying significant gene sets across various cancer datasets, and
their findings showcased their integrative model’s strength in revealing functional
relationships among genes.

3.4 Mutex

The following section will explore the specifics of a different algorithm, that employs
a statistical approach and a different scoring function.

3.4.1 A different greedy method

The approach developed by Vandin et al. [34] employed a greedy algorithm to search
for the most mutually exclusive driver pathway (discussed in Section 3.1.1); this
technique is highly versatile, as it can be adapted to a broad range of scoring
functions. Similarly, Babur et al. [2] also utilized a greedy algorithm in their
study, developing an algorithm called Mutex (knowledge-based [10]), which employs a
fundamentally different scoring function than W (M), which incorporates statistical
and probabilistic elements.
The following algorithms will provide a partial description of their approach; first,
the main greedy procedure is described below.

Algorithm 3.3 Greedy Mutex: given a gene g, an integer kmax, a directed gene
graph G, a mutation matrix A, and a boolean variable final, the algorithm returns
the gene set M , of size |M | < kmax, that maximizes the Mutex’s scoring function —
which will be described later — using g as the starting gene.

1: function greedyMutex(g, kmax, G, A, final)
2: M := {g}
3: do
4: Mp := M
5: M := expandGroup(M, G, A, final) ▷ refer to Algorithm 3.4
6: while M ̸= Mp ∧ |M | < kmax ▷ if new genes were added to M
7: return M
8: end function

The algorithm proceeds as follows:

• first, M is initialized with only g;

• in each iteration, the algorithm saves M in a temporary variable Mp, and
computes expandGroup (which will be described later);
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• if M = Mp (i.e., M was not expanded), or if |M | exceeds the maximum size,
the algorithm terminates and returns M .

Note that the roles of G, A and final will be clarified in the following pseudocodes.
The next algorithm illustrates the expandGroup procedure in detail.

Algorithm 3.4 Group expansion procedure: given a gene set M , a directed gene
graph G, a mutation matrix A, and a boolean variable final, the algorithm expands
M , if possible.

1: function expandGroup(M , G, A, final)
2: b := NULL ▷ b is the current best candidate
3: bs := 1 ▷ bs is b’s associated score
4: N := {}
5: if final then
6: P := pValues(M, A) ▷ refer to Algorithm 2.1
7: for g ∈ M do
8: N .add_entry(g, Ng) ▷ Ng is g’s null distribution, based on P[g]
9: end for

10: end if
11: ms := score(M, A, final, N ) ▷ current M ’s score
12: for c ∈ δ(M) do ▷ the set of candidates (refer to Definition 3.13)
13: if final then
14: P ′ := pValues (M ∪ {c}, A)
15: for g ∈ (M ∪ {c}) do
16: N [g] = N ′

g ▷ N ′
g is based both on P ′[g] and Ng

17: end for
18: end if
19: cs := score (M ∪ {c}, A, final, N ) ▷ c’s associated score
20: if cs < bs ∧ cs < ms then ▷ c discarded if cs does not improve M
21: b := c
22: bs := cs

23: end if
24: end for
25: if b ̸= NULL then
26: return M ∪ {b}
27: end if
28: return M
29: end function

This procedure is extensive, but it can be divided into smaller sections. However,
before delving into the details, it is necessary to introduce and discuss some key
pieces of information.
First, the algorithm expects a directed gene graph G as input. This graph is
constructed by Babur et al. [2] using data from the Pathway Commons [6], SPIKE
[26], and SignaLink [13] databases. In this graph, the vertices represent genes, and
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the directed edges indicate signaling relationships between genes or proteins — the
authors describe the generation of this graph in another work [1].
Given this directed gene graph G, consider the following definition.

Definition 3.13 (Proximity). Given a directed gene graph G, and a gene set
M ⊆ V (G), the proximity of M is defined as the set of vertices v such that, when
added to M , there exists a gene s ∈ V (G) for which all genes in the augmented set
still share a common downstream target that can be reached without traversing any
genes outside of the augmented gene set. Using symbols

δ(M) := {v ∈ V (G) | ∃s ∈ V (G) : ∀u ∈ M ∪ {v} ∃u → s only traversing M ∪ {s, u}}

where u → s is a path that starts in u and ends in s.

This definition is dense, but the following example [2] can help clarify its meaning.

Example 3.1 (Proximity). The figure below shows an example of the expansion
of an initial gene set {A}, using the Algorithm 3.3. Vertices with bold borders
represent the elements of the current set M , while the grey-colored ones are the
current candidates in the proximity δ(M) of M .

Figure 3.1. Greedy expansion of {A}, left to right.

The proximity δ(M) is utilized in line 2 of the algorithm to define the set of potential
candidates that could expand M . Indeed, the goal of Babur et al. [2] is to identify
mutually exclusive altered groups, where members share a common downstream
signaling target. They state that this strategy narrows the search space to areas
with a higher concentration of true positives. While it may slightly reduce recall, it
also lessens the loss of statistical power associated with multiple hypothesis testing.
Additionally, this approach provides an initial explanation for the observed mutual
exclusivity, i.e. through a shared effect on a downstream gene.
Another aspect to discuss is the null distribution of a given gene g ∈ M , which
represents g’s distribution under H0 (defined in Section 2.2.3), denoted as Ng in
the algorithm. Given a gene g ∈ M , Babur et al. [2] estimate g’s null distribution
through a procedure that approximately involves the following steps:

1. initialization: define Ng as an empty list;

2. iteration: for i = 1, . . . , imax derive Ng[i] as follows:

(a) randomly permute g’s alterations — i.e., permute g’s column in A ran-
domly;

https://en.wikipedia.org/wiki/Precision_and_recall
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(b) let Mg := greedyMutex(g, kmax, G, A, false);
(c) let Pg := pValues(Mg, A);
(d) let Ng[i] := Pg[g].

This is a sketch of the complete procedure, and the omitted details extend well
beyond the scope of this discussion. The main conclusion from this algorithm is that
g’s null distribution is derived from its p-value (namely Pg[g]), computed when its
alterations are randomly permuted. This randomization aims to modify γ(g, Mg),
simulating a scenario in which H0 holds, i.e. alterations in Γ(g) are independent of
mutations in Γ(M − {g}). Note that Pg[g] is computed through the greedyMutex
function, with final set to false to prevent infinite recursion and avoid recomputing
the null distributions. In the expandGroup procedure, it will be assumed that for
any g ∈ M , Ng can be computed as described.
With these definitions established, the expandGroup algorithm can be explained in
detail. Specifically, it can be broken down into the following sections:

1. if final = true, fill N such that

∀g ∈ M N [g] = Ng

where Ng is g’s null distribution, based on g’s p-value computed on M ;

2. initialization: let ms be M ’s score (refer to Algorithm 3.5);

3. iteration: for each candidate c in δ(M), compute as follows:

(a) if final = true, update N such that

∀g ∈ (M ∪ {c}) N [g] = N ′
g

where N ′
g is g’s null distribution, based both on g’s p-value computed on

M ∪ {c}, and on Ng;
(b) let cs be (M ∪ {c})’s score;
(c) if cs improves both the current best score, and ms, update the current

best score with cs.

4. if the best candidate b could be determined, return M ∪ {b}; otherwise, return
M .

Note that this procedure requires cs to improve both the current best score and M ’s
base score, meaning that suboptimal solutions are not explored by the algorithm.
Finally, the last procedure, which computes the mutual exclusivity score of a given
gene set, can be introduced. Although this score is a crucial part of the metric
developed by Babur et al. [2] to assess mutual exclusivity within a gene set, this
algorithm could not be introduced in the previous chapter because it relies on the
null distribution dictionary N , defined in Algorithm 3.4, which in turn depends on
the null distribution estimation, based on Algorithm 3.3 (with final = false).
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Algorithm 3.5 Scoring procedure: given a gene set M , a mutation matrix A, a
boolean variable final, and a null distribution dictionary N , the algorithm computes
M ’s mutual exclusivity score.

1: function score(M , A, final, N )
2: P := pValues(M, A)
3: if final then ▷ initial p-values correction
4: for g ∈ M do
5: Ng := N [g]
6: c := |{i | Ng[i] ≤ P[g]}|

7: P[g] := max
(

P[g],
c

Ng.len()

)
8: end for
9: end if

10: return maxg∈M P[g] ▷ the least significant is the largest
11: end function

First, the algorithm evaluates P , the p-value dictionary; then, if final = true, P is
corrected for multiple hypothesis testing. Finally, the largest value in P is returned.
Note that both in line 7 and line 10, the largest value is chosen: this is because the
larger the p-value, the less significant it is. Therefore, in line 7, the focus is on being
as cautious as possible, while in line 10, the aim is to ensure that each member of M
contributes to the pattern. Lastly, the boolean variable final ensures that, during
the evaluation of the null distributions, the scores being used remain uncorrected.
The complete algorithm works by calling greedyMutex for each possible g ∈ G with
final set to true, and then comparing the resulting sets. Finally, these sets may
optionally undergo a false discovery rate (FDR) control procedure, which lies outside
the scope of this work. Note that many details from the original code have been
removed for brevity, in each described algorithm.

3.4.2 Results

Babur et al. [2] applied their algorithm to identify mutual exclusion patterns in
mutation and copy number profiles from multiple TCGA studies. The gene network
they employed was cropped to the proximity of significantly mutated genes (derived
from MutSig [21]) and significantly altered genes (provided by GISTIC [24]). Lastly,
to reduce noise, genes with low alteration rates were filtered out in each study, and
groups of up to 5 genes were examined.
They identified a total of 199 genes in their results, with 31 appearing in at least
two studies. Notably, TP53 was the most recurrent gene, followed by well-known
tumor suppressors and oncogenes such as PTEN, KRAS, and MYC. Among less
recognized genes, OBSCN and ARID1A are highlighted for their potential roles
in cancer — the latter has previously been shown to act as a tumor suppressor in
gastrointestinal cancers (GI). The most frequent common targets among the result
groups include PIK3R1, HRAS, BRAF, MYC, RAC1, and RHOC, with mutually
exclusive alterations observed upstream of RHOC in five datasets. Although RHOC
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alterations are infrequent in TCGA samples, its overexpression is associated with
cancer cell metastasis, suggesting that its activation may represent a significant
downstream effect of driver alterations.
To assess the novelty of the findings, Babur et al. [2] examined co-citations of the
recurrent genes with the term “cancer”, using CoCiter [27]. The last 10 genes on
the list had fewer than 25 co-citations, indicating they are not well-established
cancer drivers. However, further investigation revealed that 5 of these genes —
TRRAP, OBSCN, RIT1, AGAP2, and RORC — contain so called mutation hotspots.
Mutation hotspots are DNA segments particularly prone to genetic alterations [25],
and are considered indicators of driver mutations, as changes in different regions
of a driver gene can confer varying levels of selective advantage to a cancer cell —
passenger mutations are typically randomly distributed [2]. Among the remaining
5 genes, the gene pair (CERS2, NCSTN) showed copy number alterations in the
results.
Additionally, Babur et al. [2] compared the performance of their method with several
previously published studies, including Dendrix [34], MDPFinder [40], and Multi-
Dendrix [22]. They derived a large dataset from breast cancer data in cBioPortal,
which included 830 genes with an alteration rate of at least 3% across 958 samples.
This dataset was constructed through several steps aimed at randomizing gene
alterations while preserving alteration ratios. Mutex outperformed the other methods,
significantly improving the receiver operating characteristic (ROC) curves; notably,
a modified version of Mutex that did not use signaling networks showed decreased
performance, highlighting the advantages of incorporating pathway information.
In contrast, Dendrix, MDPFinder, and Multi-Dendrix performed poorly due to
their reliance on the same weight function W (M), which favors noise over signal.
Moreover, other methods’ generative models also struggled because they assumed
equal alteration chances among group members. Mutex demonstrated improved
scoring criteria and efficiency, exhibiting strong scalability in terms of memory and
runtime, comparable to MDPFinder, and significantly more efficient than Dendrix
and similar algorithms.
In conclusion, the greedy algorithm developed by Babur et al. [2] identified known
mutually exclusive driver pathways, and highlighted potential roles for lesser-known
genes, namely OBSCN, ARID1A and RHOC.

3.5 C3

The last section will outline the different versions of the clustering algorithm
anticipated in the previous chapter.

3.5.1 Multiple versions

In the final section of the previous chapter (namely, Section 2.2.5), it was mentioned
that Hou et al. [16] developed multiple versions of their clustering algorithm; these
variants will be explored in detail in the following paragraphs. In particular, they
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defined three methods for assigning weights to the edges of their gene graph G, to
perform their vertex clustering algorithm, called C3 (knowledge-based [10]):

1. ME-CO, where w− depends on mutual exclusivity and w+ depends on cover-
age;

2. NI-ME-CO, where w− depends on mutual exclusivity and w+ depends on
coverage and network information;

3. EX-ME-CO, where w− depends on mutual exclusivity and w+ depends on
coverage and expression data.

Note that w− depends solely on the mutual exclusivity component in each version of
the algorithm, whereas the value of w+ varies depending on the specific algorithm
variant chosen. The following section will introduce the standard version of C3.

3.5.2 The standard version

The initial version of their clustering algorithm is the standard one, which considers
only mutual exclusivity and coverage, and it is described below.

Definition 3.14 (ME-CO). In the ME-CO version of the algorithm, the following
definitions apply:

∀u, v ∈ V (G) w−
uv := w−

uv(e) (3.12)

∀u, v ∈ V (G) w+
uv := w+

uv(c) (3.13)

The definitions for w−
uv(e) and w+

uv(c) are provided in Definition 2.11 and Defini-
tion 2.12 respectively.
Note that in each version discussed, optional rescaling is applied to ensure that the
weight formulas satisfy additional constraints required later in the algorithm, though
the specifics are beyond the scope of this analysis.
While this version of the algorithm does not include any external data, the variant
outlined in the next section incorporates additional supplementary information into
the weights.

3.5.3 Integrating network information

Pan-cancer studies, as reported in multiple papers, have demonstrated a significant
relationship between network topology and the distribution patterns of cancer
drivers. Specifically, the impact of deleterious mutations on the phenotype can be
mitigated by certain configurations of the corresponding protein complexes, while
other arrangements can amplify their effect. For example, most variants found in
healthy individuals tend to be located at the periphery of the interactome, where



3.5 C3 43

they do not affect network connectivity. In contrast, cancer-driver somatic mutations
are more likely to occur in central, internal regions of the interactome and within
highly integrated components [16]. This suggests that network topology significantly
influences the impact of cancer driver mutations, and to assess the implications
for cancer development, Hou et al. [16] analyzed network distances between driver
variants to identify patterns.
To precisely quantify the network distances between driver variants, Hou et al. [16]
computed the pairwise network distances between genes within a large pathway,
comprising 8726 genes, by using an implementation of the standard Dijkstra algo-
rithm. To reduce the computational cost of running Dijkstra’s algorithm O

(
87262)

times, 1000 pairs were randomly selected for this test. Using the most comprehensive
known driver list from the Cancer Gene Census (CGC) [14], the same distances were
calculated for driver genes, this time for all gene pairs. The resulting distribution
of shortest paths is shown in Figure 3.2 [16], revealing that the average shortest
distance between drivers is significantly smaller than that between two randomly
selected genes.

Figure 3.2. Distribution of distances between genes in the network.

These findings indicate that network distance and connectivity information should
be considered when identifying potential driver mutations. This can be achieved
by adjusting the positive weight of edges connecting two genes: specifically, if both
endpoint genes are drivers, they should be sufficiently central within a given
pathway, close to other known drivers, or to each other.
Hence, from the KEGG [18] database, Hou et al. [16] built an undirected graph G′,
where each vertex represents a gene and the edges describe interactions between
them — note that |V (G)| = |V (G′)| = n. For each vertex u ∈ V (G′), let N (u)
denote the set of u’s neighbors, and let N ′(u) := N (u) ∪ {u}. Also, let
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f(u, v) := |N ′(u) ∩ N ′(v)|
|N ′(u) ∪ N ′(v)| (3.14)

which is referred to as the Jaccard similarity coefficient; a large value of f(u, v)
indicates that u and v are well connected in G′ and are likely involved in the same
pathway, suggesting that they should be clustered together. Furthermore, let

F := {f(u, v) | u, v ∈ V
(
G′)} (3.15)

and let T ′(J ′) be the J ′-th percentile of the values in F .
The network information component of the positive weights is described below.

Definition 3.15 (Network information component). The network information
component is defined as follows:

w+
uv(n) :=


1 f(u, v) > T ′(J ′)
f(u, v)
T ′(J ′) f(u, v) ≤ T ′(J ′)

Finally, the version of C3 that incorporates the network information is defined as
follows.

Definition 3.16 (NI-ME-CO). The NI-ME-CO version of the algorithm is defined
by the following equations:

∀u, v ∈ V (G) w−
uv := w−

uv(e) (3.16)

∀u, v ∈ V (G) w+
uv := w1w+

uv(c) + w2w+
uv(n) (3.17)

where w1, w2 ≥ 0 and w1 + w2 = 1.

The next section will describe a third variant, that incorporates gene expression
data instead of network information.

3.5.4 Integrating expression data

Another valuable type of data that could be integrated into the positive weights
for clustering is gene expression data. This is based on the assumption that
co-expressed genes are likely to be involved in the same function or cancer pathway.
Therefore, genes with strong positive or negative co-expression should be clustered
together. The following paragraphs will describe how Hou et al. [16] include expression
data into w+.
Given a vertex u ∈ V (G), let z(u) be the vector of the time-evolving expression
values of u. Thus, let

https://en.wikipedia.org/wiki/Jaccard_index
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g(u, v) := |⟨z(u), z(v)⟩|
||z(u)|| ||z(v)|| (3.18)

where ⟨a, b⟩ denotes the inner product of the vectors a and b, while ||a|| is a’s L2

norm. This equation is known as the cosine similarity, since the ratio that defines
g(u, v) is equal to the cosine of the angle between z(u) and z(v) — the only difference
is the absolute value in the numerator, which is used to capture both positive and
negative correlations. A large value of g(u, v) suggests that the expression vectors of
u and v are highly correlated, hence they should be clustered together. Note that

∀u, v ∈ V (G) 0 ≤ g(u, v) ≤ 1

Moreover, let

G := {g(u, v) | u, v ∈ V (G)} (3.19)

and let T ′′(J ′′) be the J ′′-th percentile of the values in G .
Hence, the gene expression component of the positive weights can be defined as
follows.

Definition 3.17 (Expression data component). The expression data component
is defined as follows:

w+
uv(x) :=


1 g(u, v) > T ′′(J ′′)
g(u, v)
T ′′(J ′′) g(u, v) ≤ T ′′(J ′′)

Lastly, the third variant of C3 is described below.

Definition 3.18 (EX-ME-CO). The EX-ME-CO version of the algorithm is
defined by the following equations:

∀u, v ∈ V (G) w−
uv := w−

uv(e) (3.20)

∀u, v ∈ V (G) w+
uv := w1w+

uv(c) + w2w+
uv(x) (3.21)

where w1, w2 ≥ 0 and w1 + w2 = 1.

3.5.5 Other versions

Hou et al. [16] also mention that other combinations can be used, with appropriate
adjustments to the weights, such as the following version, which will be termed
NI-EX-ME-CO in this work.

https://en.wikipedia.org/wiki/Cosine_similarity
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Definition 3.19 (NI-EX-ME-CO). The NI-EX-ME-CO version of the algorithm
is defined by the following equations:

∀u, v ∈ V (G) w−
uv := w−

uv(e) (3.22)

∀u, v ∈ V (G) w+
uv := w1w+

uv(c) + w2w+
uv(n) + w3w+

uv(x) (3.23)

where w1, w2, w3 ≥ 0 and w1 + w2 + w3 = 1.

3.5.6 The clustering ILP

The previous paragraphs outlined the definitions of the weights for the edges in the
gene graph G; instead, this section will explain how C3 operates. Specifically, Hou
et al. [16] opted to use an ILP approach to formulate their clustering algorithm,
which will be explained in more detail in the following paragraphs.
Note that the classical formulation of correlation clustering does not impose any
restrictions on cluster sizes. However, most driver identification methods inherently
include cluster size limits, as they directly affect the computational complexity of
the algorithms — many even fail to operate beyond a certain size. Another reason
for imposing a cluster size limit is the expectation that driver genes of specific cancer
types will be grouped together, and recent findings indicate that only a small number
of drivers are typically present in any given cancer type. Thus, if clusters are too
large, they may include drivers from multiple cancer types, hiding this separation
of the drivers. Furthermore, introducing cluster size constraints helps to avoid the
formation of non-informative giant clusters or singleton clusters [16].
Therefore, Hou et al. [16] introduce a cluster size constraint by assuming that all
clusters are of size k at most; clearly, setting k equal to the total number of vertices
effectively removes this constraint, allowing flexibility in cluster size selection.
The ILP of C3 is defined as follows.

Definition 3.20 (C3’s ILP). The C3 algorithm can be defined by the following
ILP:

minimize
∑

e∈E(G)
(w+

e xe + w−
e (1 − xe)), (3.24)

subject to xuv ≤ xuz + xzv, u, v, z ∈ V (G) distinct, (3.25)

∑
v∈V (G)

u̸=v

(1 − xuv) ≤ k, u ∈ V (G), (3.26)

xe ∈ {0, 1}, e ∈ E(G). (3.27)
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In this formulation, the variables xe allow to describe any non-overlapping clustering
of the vertices of G, since xe ∈ {0, 1} for each e ∈ E(G).
Note that Equation 3.24 aligns with the definitions provided in Section 2.2.5, as
xuv = 1 implies that u and v should belong to different clusters, while xuv = 0
implies that the two vertices should be placed into the same cluster.
Furthermore, Equation 3.26 states that for a fixed vertex u ∈ V (G), the number
of variables xuv equal to 0, for any v ∈ N (u), must not exceed k — which is the
clustering size constraint previously discussed.
Lastly, Equation 3.25 is the triangle inequality, which ensures that if u and z are
placed in the same cluster, and z and v are also placed in the same cluster, then u
and v will be clustered together. This means that belonging to the same cluster is a
transitive property, since

xuz = 0
xzv = 0
xuv ≤ xuz + xzv

=⇒ xuv = 0

The next section will illustrate a relaxation of this ILP.

3.5.7 The rounding procedure

Since solving ILPs is NP-Complete [19], Hou et al. [16] relax the problem by changing
Equation 3.27 to an interval constraint

0 ≤ xe ≤ 1

leading to an LP program, the solution of which may be fractional. Hence, to
obtain a valid clustering, the fractional solutions have to be rounded. Therefore,
instead of solving the LP, they remove Equation 3.26 from the linear program, and
employ the following rounding procedure to round the fractional values.

Algorithm 3.6 Rounding procedure: given a solution {xe}e∈E(G) of the relaxed
version of the ILP provided in Definition 3.20, a rational value α, and the maximum
cluster size k, the algorithm rounds the solution to integer values.

1: function roundingProcedure(G, {xe}e∈E(G), α, k)
2: C := ∅ ▷ the output set of clusters
3: S := V (G)
4: while S ̸= ∅ do
5: Choose an arbitrary u ∈ S ▷ this is the pivot vertex
6: T := {w ∈ S − {u} | xuw ≤ α} ▷ u’s neighbors under α’s threshold
7: if

∑
w∈T xuw ≥ α

2 |T | then
8: C = C ∪ {{u}} ▷ add a singleton cluster {u}
9: S = S − {u}

10: else if |T | ≤ k then
11: C = C ∪ {{u} ∪ T} ▷ add the cluster {u} ∪ T
12: S = S − ({u} ∪ T )

https://en.wikipedia.org/wiki/Triangle_inequality
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13: else
14: Partition T into {T ′

0, T1, . . . , Tp}, such that:
• |T ′

0| = k

• |Ti| = k + 1 for each 0 < i < p

• |Tp| ≤ k + 1
15: T0 := T ′

0 ∪ {u} ▷ T0 has k + 1 elements
16: for i ∈ [0, p] do
17: C = C ∪ {Ti} ▷ add each partition as a cluster
18: end for
19: S = S − ({u} ∪ T )
20: end if
21: end while
22: return C
23: end function

The algorithm can be summarized as follows:

1. initialization: let C := ∅ and S := V (G);

2. iteration: while S ̸= ∅, compute as follows:

(a) choose a pivot vertex u ∈ S arbitrarily;
(b) let T be the set of u’s neighbors w ∈ N (u) such that xuw is at most α;
(c) if α

2 |T | is at most
∑

w∈T xuv, add {u} to C as a singleton cluster, and
remove u from S;

(d) otherwise, if |T | is at most k, add {u} ∪ T to C as a cluster, and remove
it from S;

(e) otherwise, partition T in multiple subsets, such that each subset contains
k + 1 elements (technically, the last partition will contain only the remain-
ing elements), and the first subset contains u; then, add each partition of
T as a separate cluster to C, and remove every partition from S.

The rationale behind the condition in line 7 can be explained by examining the
meaning of xuw: specifically, if xuw is close to 1, u and w are likely to be placed in
different clusters, as previously described in Section 3.5.6. Note that, if the sum∑

w∈T xuw is greater than or equal to a value proportional to |T |, it indicates that
there are numerous edges (u, w) for w ∈ T with significantly high xuw. Therefore,
this suggests that u should likely be placed in a cluster different from all its filtered
neighbors T .
In contrast, if this condition does not hold, it is probable that several variables
indicate that u should be clustered with some of its filtered neighbors. Therefore,
when this condition fails, and |T | ≤ k, u and T are forced to form a cluster in line
11.
Lastly, if none of the preceding conditions are satisfied, it means that u should not
form a singleton cluster, but the presence of numerous filtered neighbors precludes



3.5 C3 49

the formation of a T ∪ {u} cluster. Therefore, line 14 partitions T into smaller
clusters of size k + 1.
As a final note, Hou et al. [16] conducted an analysis to determine the optimal value
for α, which was found to be 2

7 , but the proof of this value is beyond the scope of
this work.
Finally, the complete C3 algorithm that Hou et al. [16] employed to obtain their
results is described below.

Definition 3.21 (C3). The C3 algorithm is defined as follows: first, the next ILP
is solved

minimize
∑

e∈E(G)
(w+

e xe + w−
e (1 − xe)), (3.28)

subject to xuv ≤ xuz + xzv, u, v, z ∈ V (G) distinct, (3.29)

0 ≤ xe ≤ 1, e ∈ E(G). (3.30)

and then the rounding procedure defined in Algorithm 3.6 is applied.

3.5.8 Results

To perform a comparative analysis with an existing study, Hou et al. [16] selected the
CoMEt algorithm — developed by Leiserson et al. [23] — for comparison, and the
results of their analysis are detailed below. In particular, they ran both algorithms
utilizing mutation and CNV data sourced from the TCGA [8] database, specifically
focusing on BRCA and GBM.
Both algorithms were tested on a high-memory server under identical conditions,
except when CoMEt encountered memory errors at cluster size k = 15, allowing
only C3 to be tested for that case. This highlights the computational flexibility of
their algorithm, particularly in terms of adjusting both the cluster size k and the
number of clusters formed. In the benchmark Hou et al. [16] focused on the following
evaluation criteria:

• to assess the mutual exclusivity within a cluster, they evaluated the median pair-
wise exclusivity for each gene pair (g1, g2) of the cluster, utilizing the Fisher’s
exact test — specifically, they used the same contingency table described in
Section 2.2.3, but in their case M = {g1, g2};

• to quantify the coverage of a given cluster, they calculated the proportion of
patients who exhibited at least one alteration of a gene in the cluster;

• as mentioned in Section 3.5.3, driver genes tend to cluster closer together
within biological pathways compared to random gene selections; therefore, to
identify potential cancer driver genes, they measured the shortest network
distances between genes in the discovered clusters;
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• lastly, to determine biological significance based on driver genes, they calculated
the proportion of known drivers within the ten most mutually exclusive clusters,
using a curated list of driver genes from the CGC [14].

When analyzing mutual exclusivity, C3 demonstrated better performance, particularly
for BRCA, where it produced more mutually exclusive clusters with lower p-values
across most cluster sizes. Both methods found biologically significant clusters, but
C3’s median exclusivity scores were generally stronger, except for cluster size k = 10.
For GBM, the results were less pronounced due to the smaller dataset, but C3 still
outperformed CoMEt in overall mutual exclusivity.
Regarding coverage, CoMEt was superior in GBM, where it achieved a higher median
coverage of 0.696 compared to C3’s 0.632. For BRCA, however, both algorithms
performed similarly, with no significant difference in coverage. The choice of weights
in C3, which prioritized mutual exclusivity over coverage, likely contributed to its
lower coverage performance.
Moreover, in the pairwise distance analysis of clustered genes, C3 and CoMEt
performed similarly for BRCA, but C3 showed a statistically significant improvement
in GBM, with smaller average distances between genes in clusters. This indicates
that C3 tends to favor more tightly related clusters in cancer pathways, particularly
for GBM.
Lastly, in terms of driver identification, C3 outperformed CoMEt across all cluster
sizes. For BRCA, C3 achieved a median driver proportion of 0.160 in the top ten
clusters, while CoMEt reached 0.117. A similar trend was observed for GBM, where
C3 found a median driver proportion of 0.170 compared to CoMEt’s 0.120.
In addition to this analysis, Hou et al. [16] tested C3’s ability to identify clusters
of genes that may represent novel candidate cancer drivers, focusing on those with
biologically significant interactions and high mutual exclusivity and coverage. Their
analysis particularly emphasized large cluster sizes, which have not been extensively
reported in the literature.
For BRCA, a notable cluster included several potential driver genes such as PTEN,
HUWE1, CNTNAP2, GRID2, CACNA1B, CYSLTR2, and MYH1, with a mutual
exclusivity p-value of 0.0084. This cluster is primarily influenced by mutations in
PTEN and HUWE1, with PTEN being a well-known tumor suppressor gene, and
the other genes in the cluster are also potential drivers, with roles in apoptosis, DNA
repair, and cell signaling. The tightly interconnected nature of these genes suggests
they may collectively define a new driver pathway, supported by the presence
of high-impact common drivers like TP53 and MYC, which are critical in cancer
pathways such as apoptosis and DNA repair.
In the GBM analysis, a cluster of size 10 genes was identified, containing four
known drivers (GLI1, WNT2, BRAF, PLCG1) alongside several potential drivers.
Notably, this cluster showed a mutual exclusivity p-value of 0.0901, which is relatively
low for GBM. The genes in this cluster are involved in various pathways related
to cell growth, apoptosis, and DNA repair, with six of the ten genes forming a
compact network community. For instance, GLI1 is a key hedgehog signaling gene

https://www.ncbi.nlm.nih.gov/gene/10075
https://www.ncbi.nlm.nih.gov/gene/26047
https://www.ncbi.nlm.nih.gov/gene/2895
https://www.ncbi.nlm.nih.gov/gene/774
https://www.ncbi.nlm.nih.gov/gene/57105
https://www.ncbi.nlm.nih.gov/gene/4619
https://www.ncbi.nlm.nih.gov/gene/2735
https://www.ncbi.nlm.nih.gov/gene/7472
https://www.ncbi.nlm.nih.gov/gene/5335
https://en.wikipedia.org/wiki/Hedgehog_signaling_pathway
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linked to glioblastoma, which plays a crucial role in cell differentiation and stem cell
self-renewal.
In conclusion, C3 outperformed CoMEt in mutual exclusivity, driver gene identifi-
cation, and cluster tightness, particularly for BRCA. Although CoMEt had better
coverage in GBM, C3 identified more biologically significant clusters and handled
larger cluster sizes without errors, making it a more robust tool for cancer research.
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Chapter 4

Discussion

This last chapter provides a discussion of the studies presented, evaluating their
methodologies, considering additional aspects not previously addressed, and review-
ing the quality of their written presentation.

4.1 Dendrix

4.1.1 The deterministic formalization

Vandin et al. [34] provided one of the first mathematical formalizations of the
phenomena of mutual exclusivity and coverage, in the context of gene mutations.
Specifically, the definitions introduced offer a very intuitive approach to formalizing
these biological concepts:

• the coverage of a gene is defined as the set of patients exhibiting a mutation
of that gene, equivalent to the number of 1s in its column of the mutation
matrix;

• a set of genes is defined to be mutually exclusive if no patient has more
than one mutated gene in the set, i.e. no row of the set’s associated submatrix
has more than 1 one;

• the coverage of a gene set is the set of patients with at least one mutation
in the set;

• the coverage overlap of a gene set is the count of patients who possess more
than one mutation within the gene set;

• the weight of a gene set is calculated as the difference between the coverage
of the gene set and its coverage overlap.

Consequently, a higher weight for a gene set indicates both greater coverage and
mutual exclusivity among its genes. The weight formula suggests that the optimal
gene set, i.e. the one that maximizes its weight, is the one where the associated
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matrix has a high number of rows with at least one 1, and a minimal number of
rows with more than one 1.
This metric stands out as one of the most elegant among those discussed in this work,
offering both a clear and intuitive measure, along with a straightforward formula.
Although their metric may appear to oversimplify the complexity of identifying
driver pathways — since mutual exclusivity alone does not capture all aspects of
pathway analysis, and exact mutual exclusivity is rarely observed in real data — it
remains a widely accepted deterministic formalization. Numerous studies, including
those referenced in this work, suggest that this measure represents one of the most
refined approaches currently available.

4.1.2 Additional considerations

The work of Vandin et al. [34] is precise and methodical, and the mathematical
analysis is also thorough and well-supported. The supplemental material includes
extensive proofs, such as the NP-Hard-ness of the MWSP (provided in Theorem 2.1),
the correctness of their greedy algorithm, and the rapid mixing property of their
MCMC approach. The clarity of this presentation greatly facilitates the understand-
ing of the study and stands out compared to other papers analyzed, which often
lack this level of explanation, as discussed in subsequent sections.
As a final note, conducting a comparative analysis between the MCMC approach and
a random search method would be interesting. For instance, consider the following
algorithm:

1. initialization: given the set of all genes G, choose an arbitrary subset M0 ⊆ G
of k genes;

2. iteration: for t = 1, 2, . . . derive Mt+1 from Mt as follows:

(a) define W ⊆ G and V ⊆ Mt randomly;
(b) choose (ŵ, v̂) ∈ arg max

(w,v)∈W ×V
W ((Mt − {v}) ∪ {w});

(c) set Mt+1 := (Mt − {v̂}) ∪ {ŵ}.

At each step, this algorithm selects a predetermined amount of random adjustments,
choosing the one that maximizes the weight as the base set for the next iteration.
It would be interesting to evaluate how this approach performs on real data, and
whether the MCMC algorithm outperforms it.

4.2 Multi-Dendrix

4.2.1 The ILP of Dendrix

Leiserson et al. [22] formulated the MWSP as an ILP, which offers a more intuitive
and natural approach to the problem. However, as highlighted by several authors,

https://en.wikipedia.org/wiki/Random_search
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the set M that maximizes W (M) may not always represent an actual biological
driver pathway. This limitation stems from the fact that exact mutual exclusivity
and coverage are rarely observed in real mutation data, making exact solutions to
the MWSP potentially unrealistic. Therefore, a more statistical approach or a
probabilistic method, such as the MCMC algorithm used by Vandin et al. [34], may
offer more reliable results in certain contexts.

4.2.2 The ILP of Multi-Dendrix

The ILP formulation for the simultaneous identification of multiple driver
pathways is a natural extension of Dendrix’s ILP. However, it may face the same
challenge in that optimal solutions might not correspond to actual biological pathways.
Moreover, Leiserson et al. [22] highlight that while the ILP used in Multi-Dendrix
effectively finds optimal solutions, it does not rigorously explore suboptimal ones, in
contrast with the MCMC approach, which samples them based on their weight.
Additionally, the weight function W ′(M) in Multi-Dendrix does not explicitly account
for the co-occurrence of mutations between genes in different sets. Instead, it
prioritizes gene sets with high coverage and approximate exclusivity, which may
lead to co-occurrence due to high coverage alone (e.g. when all gene sets have
full coverage). Given that co-occurrence is crucial in large biological pathways,
algorithms that optimize for gene sets where mutations frequently co-occur might
be more effective in identifying key components of these pathways [22].
Lastly, it is worth emphasizing that, according to survey studies [10], this approach
remains one of the fastest — due to the efficiency of ILP solvers — and performs
exceptionally well.

4.2.3 Additional considerations

As a final note, their exposition of the ILP of Multi-Dendrix lacks clarity and
precision. Specifically, in their definition of the MMWSP, each set in the collection
is of size exactly m × k for a fixed k. However, the ILP formulation they originally
provided does not include any equation defining the sizes of the sets in the collection.
Based on the context, it seems likely that the intention was for each gene set to have
a variable size, ranging between kmin and kmax. In general, such a discrepancy could
potentially raise concerns regarding time complexity, a critical consideration given
the large-scale data typical in this field.

4.3 MDPFinder

4.3.1 The ILP of Dendrix

To solve the MWSP, Zhao et al. [40] formulated an ILP that is identical in the
formulation and constraints to the one proposed by Leiserson et al. [22]. Although
the MDPFinder paper was published in 2012 and the Multi-Dendrix paper in 2013,
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the latter does not reference the work of Zhao et al. [40], and both studies present
the ILP formulation of Dendrix as their own innovation. For greater clarity and
more detailed definitions of the indicator variables, in this work, the formulation
was attributed to Leiserson et al. [22], because their presentation of the MWSP’s
ILP was clearer compared to that of Zhao et al. [40].

4.3.2 The genetic algorithm

Genetic algorithms offer a flexible and intuitive framework for exploration and
optimization. However, a significant drawback is their relatively slow performance
compared to other methods. In fact, as noted by Zhao et al. [40], their genetic
algorithm is considerably slower than the alternatives they tested, being 12 times
slower than the MCMC algorithm, and over 60 times slower than the ILP.
Despite its undeniable slowness, the versatility of this approach is notable: it allows
for easy modification of the objective function and offers a well-suited integration
procedure that may be challenging to incorporate into other algorithm types, such
as the ILP. Additionally, the ability to explore suboptimal solutions is valuable, as
shown in many findings reported in this work.

4.4 Mutex

4.4.1 The statistical approach

As mentioned in previous sections, a statistical approach, such as the one employed
by Babur et al. [2], appears to be the most suitable choice in this field, as exact
mutual exclusivity rarely occurs in nature. In fact, survey studies [10] indicate that
this algorithm significantly outperforms others in terms of both precision and recall.
Moreover, their hypergeometric model is particularly interesting, as it presents a
novel way to assign a score to a given group of genes M , i.e. by evaluating the
probability of overlap between the alterations of a specific gene g ∈ M , and the
alterations of the remaining ones M − {g}.
Additionally, Babur et al. [2] mention in their Discussion section that they aim to
expand their work by exploring additional topological structures within the biological
network. In fact, their current method focuses on genes with a common downstream
target and necessitates that all group members are directly connected in the network
without intermediary non-member nodes. However, incorporating linker nodes could
facilitate the identification of more distant mutual exclusion relationships [2].

4.4.2 Additional considerations

The methodology presented in this paper lacks clarity, creating significant challenges
in understanding their approach. While a preliminary explanation of the algorithm
is provided by the authors, essential details are omitted, making it difficult to
fully comprehend the procedure. The recursive nature of the algorithm further

https://en.wikipedia.org/wiki/Precision_and_recall
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complicates matters, as the simplified overview does not capture its full complexity.
To gain a clearer understanding of the methodology, the Java source code provided
in the supplementary materials was examined. This analysis helped clarify the
underlying processes and the implementation of the algorithm, revealing that the
pseudocode included in the paper is a significantly simplified version of the
complete algorithm, which contains numerous nuanced aspects.
The description of the null distribution estimation proved particularly difficult to
interpret. However, after reviewing the source code, it became evident that the
process is inherently complex. The null distributions are constructed recursively,
involving multiple calls to the greedyMutex procedure (described in Algorithm 3.3)
and incorporating various constants that dictate the evaluation methods, along
with numerous other factors. This complexity highlights the challenge of succinctly
explaining such an intricate algorithm, and providing a comprehensive description
would fall outside the scope of this work.
As a final note, it is particularly surprising that Babur et al. [2] did not mention a
crucial detail regarding their approach, which became apparent only after reviewing
their source code: in their greedy algorithm, the expandGroup procedure (discussed
in Algorithm 3.4) requires selecting a candidate that is not only the best among
those in δ(M), but also improves the current score of M . The rationale behind
this decision is not immediately clear and would benefit from further explanation.
This choice implies that Mutex does not explore suboptimal solutions, although
incorporating a less optimal candidate could potentially lead to a better overall
solution at the end of the greedy algorithm.

4.5 C3

4.5.1 The clustering approach

The algorithm proposed by Hou et al. [16] presents a particularly intriguing approach,
as applying a clustering method to this problem is not an immediately obvious
solution. A potential avenue for further exploration could involve a modified version
of the algorithm, where a single weight w is assigned to each edge, and a function is
introduced to evaluate it, depending on the trade-off between w− and w+. Despite
this potential variation, the ILP formulation of the clustering problem is well
constructed, and the rounding procedure is intuitively compelling. Their method
demonstrates considerable versatility, both in terms of the flexibility of cluster sizes
and the potential for integration with external data.
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Conclusions

In the first part of this work, an overview of cancer was provided, including its causes
and the various types of treatments currently in use, with a particular emphasis
on targeted therapies. Specifically, targeted therapies show promise because they
help reduce the side effects that characterize all existing cancer treatments. The
primary goal of these therapies is to directly target driver mutations, which play a
crucial role in cancer development.
However, distinguishing between driver and passenger mutations is very difficult,
as both types of mutations can occur simultaneously, and passenger mutations
often outnumber driver ones, making it challenging to identify which mutations
significantly contribute to cancer progression. Instead, identifying driver pathways
appears to be a promising approach, as multiple driver mutations in different genes
can produce similar downstream effects, potentially causing various mutations to
impact the same pathway across multiple samples.
Indeed, the second part of this work introduced multiple studies that aimed to
develop approaches for identifying driver pathways. Specifically, the focus of this
section was on the biological assumptions the various studies made, and how
their developed metrics reflected those assumptions. Notably, mutual exclusivity
among mutations within a driver pathway is one of the most frequently observed
phenomena in genomic data, and many recent studies have formalized this biological
characteristic in various ways.
Finally, the last part of this work examined the various algorithms employed by
the studies introduced in the second part, illustrating how each study utilized its
own developed measure of mutual exclusivity and other biological assumptions in
order to identify driver pathways, and potentially discover new ones.
As a final note, future research may integrate emerging technologies, such as
single-cell sequencing, to further refine our understanding of driver pathways.
Additionally, extending these algorithms to account for tumor heterogeneity and
adaptive resistance mechanisms will be critical in expanding their applicability
to diverse cancer types. The identification of driver pathways and the ability
to measure key genomic phenomena hold significant promise for improving the
precision of targeted therapies, which could lead to more powerful and personalized
treatment, tailored to the unique genetic profiles of each patient.

https://en.wikipedia.org/wiki/Single-cell_sequencing
https://en.wikipedia.org/wiki/Tumour_heterogeneity
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