A Language Based on Two Relations between Symbols

Agustin Rafael Martinez
Universidad de Buenos Aires
Argentina
agustin@dc.uba.ar

Abstract

We present a language with all the power of abstraction and
the simplicity of two fundamental relations: substitution and
categorization. With a graphic symbol representing each one
of them, we created a playful visual programming environ-
ment aimed at teaching with high expressive power. This
environment includes tools to inspect the program execu-
tion and a console to try visual expressions. This is achieved
without resorting to text, since the symbols are user-defined
drawings. To address complex problems, the language of-
fers another set of tools to define text-based programs. Here
we show a functional prototype of our rule-based, general-
purpose declarative programming language.

CCS Concepts: « Software and its engineering — Gen-
eral programming languages; « Social and professional
topics — Computing education.

Keywords: general-purpose programming languages, visual
programming, computer science education

ACM Reference Format:

Agustin Rafael Martinez. 2022. A Language Based on Two Rela-
tions between Symbols. In Proceedings of the 2022 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward! °22), December 8-10,
2022, Auckland, New Zealand. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3563835.3567660

1 Introduction

In teaching programming, an important issue is the limita-
tion of the expressive power of visual languages [32]. An-
other well-known problem is the gap in the teaching process
from simple graphically defined programs to complex pro-
grams written in conventional languages [7] [6] [25]. Both
problems are related, since it is the expressive limitation
of visual languages that forces a change when advancing
towards the programming of complex models.

Onward! °22, December 8-10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 2022 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
’22), December 8—10, 2022, Auckland, New Zealand, https://doi.org/10.1145/
3563835.3567660.

The approaches to these problems are oriented in two iden-
tifiable directions. There are projects that decide to maintain
simplicity at the cost of having a limited power of abstrac-
tion [27] [14] [7]. On the other hand, there are projects that
decide to increase the expressive power of visual languages
[10] [32], and what is gained in expressiveness is lost in com-
plexity. Faced with this situation, teachers must choose the
tool to introduce their students to programming and then
identify the instance or instances in which the language
change is necessary.

In this work we present a different solution. The proposal
is not to change the language, but only to change the tools.
Our language can work in a visual way with a high power
of abstraction. We can define categories and parameterize
any sequence of symbols, no matter what kind they are.
When we need to move towards models where text is more
appropriate to express them, we can change the tools but
continue programming with the same language.

The name of the language is Representar, which in Spanish
means ‘to represent’. The name highlights the vision of the
project: programming is creating “epistemic representations”
[4, p. 1]. This point of view is constitutive of the language,
which is based on a representationalist theory of knowledge
[21] [22]. From this theory comes the idea that human sym-
bolic language is based on two fundamental relationships
between symbols: substitution and categorization.

The structure of the paper is as follows. First, we show dif-
ferent scenarios addressed by graphical programming with
our language. Then we present the syntax of the language
and we analyze its fundamental characteristics. Subsequently,
we describe some aspects of the implementation that help
to understand the evaluation mechanisms. After that, we
present text-based implementations with the language, some
of them considered complex in programming. Later, we re-
view related works in both dimensions of the project: visual
and textual. Finally, we discuss future works and make some
final comments by way of conclusion.

2 User-Defined Drawings as the Symbols
Building the Program

We present a declarative alternative to graphical program-
ming that dispenses with text completely, and encourages
programming through drawings made by the user. These
drawings become the symbols that the learner can drag and
drop at will, living an early experience about the essence of
computing: the manipulation of symbols.

https://doi.org/10.1145/3563835.3567660
https://doi.org/10.1145/3563835.3567660
https://doi.org/10.1145/3563835.3567660

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

We show four versions of our visual programming en-
vironment, adapted to different activities. The intention is
to highlight the variety of topics that can be addressed by
programming with drawings: from socio-environmental is-
sues, robot behaviors, to simple representations of natural
numbers and arithmetic operations.

2.1 The Drawing-Based Programming Environment

Here we present the basic programming and drawing tool
and the fundamental symbols that allow programming with
user-defined drawings.

Table 1. Basic cards of the drawing environment

B Points Defines a substitution
Around Defines a categorization

When Defines a condition on a substitution
‘cg Wildcard Categorizes any sequence of symbols

Lljs

HEa@®

Figure 1. The minimal version of the visual programming
environment with the two cards that represent the two fun-
damental relations.

On Table 1 we present a description of the four basic cards
of the visual environment and in Figure 1 we show what
users have initially available. This is a playful environment
that already has two fundamental cards of this programming
game. These cards are available at the top left. The first card
represents the act of pointing or referencing: any sequence
of symbols can point to any other sequence. The second
card represents the other fundamental relationship of the
language: categorization. Every symbol can be categorized

Agustin Rafael Martinez

by any other. The drawings chosen to represent these rela-
tionships are inspired by two symbols of the American Sign
Language that mean ‘pointing’ and ‘around’ respectively. At
the top right of the environment there are three elements: a
button to draw new cards, a trash can to get rid of created
drawings, and a black hole to get rid of copies of the cards
that have been unused. In the center of the window is the
board where the cards are played to define the program. Be-
low is a kind of console or REPL, that lets us throw cards on
the left and see the results of their evaluation on the right.
When the cards in the central board change, the results of
the REPL are updated live.

The first step to program in this environment is to draw
new symbols by pressing the button to create a new card.
This is how the drawing tool shown in Figure 2 opens. We can
take colors from the palette that is around the card frame and
draw inside the established space. In this way, the different
symbols that will be manipulated in the representation are

created.
~= Il

. Bs®

Figure 2. Drawing a card: the tree.

2.2 Representing a Socio-Environmental Problem

We want to show that with our language and tools we can
deal with any topic without the need to go beyond the ma-
nipulation of symbols.

Let’s suppose the case in which the region where the chil-
dren live is being crossed by a socio-environmental problem.
Teachers can decide to address the issue in class. In such a
case, is there a possibility that programming can participate
in an experience of reflection on a socio-environmental prob-
lem? Let’s assume the problem is forest fires. Why not draw
and program around this problem? It is not proposed to rep-
resent the problem with scientific rigor but rather to attend
to an expression need through programming and drawing.

In the face of forest fires, the figure of the tree, the fire
and the ash can be represented. At the top of Figure 3, on

A Language Based on Two Relations between Symbols

the second line, all the cards drawn are located from where
unlimited copies of them can be obtained. A first rule to
define with these cards is the one where the fire ignites the
tree leaving ash in its advance. This is represented in the first
line of the central board: tree and fire are replaced by fire
and ashes. The other aspect addressed is the fight against
the fire by means of a helicopter firefighter who turns the
fire into ashes, leaving a rainbow in its wake and keeping
the tree intact. This is the second substitution rule of the
implemented program.

P
..II..

FlaXEZA
! I«ff' !III
BII [2Y e e

Figure 3. A program representing a socio-environmental
problem.

Since fire can originate from different sources, not just
from a bonfire, it is possible to categorize other cards as other
possible forms of fire. This is expressed in the third line, the
cigarette behaves like any other fire in this representation.
In the same way, flowers and bushes can be equally victims
of the flames, in that sense the tree is a "prototype-based
category" [17, p. 62] of the rest of the plants. This is expressed
in the last two lines of the central board.

At the bottom of Figure 3 we can see how the defined
program works. Three lines are evaluated separately, the
first and the second are identical except for the presence of
the firefighter. In the first case the result is that the plants are
preserved, while in the absence of the firefighter everything
turns to ashes and fire.

It is usually considered something advanced to have access
to debug or inspect in some way the execution. In this project,
by simply clicking on a result, a window opens that shows

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

the transformation of the initial sequence until the result is
reached.

F TP
GREm
o~z

AL
AL
AL
AL

Pel-elbalg)
2[>>]>)

Figure 4. Inspection of substitutions in an evaluation.

If we click on the place where the mouse pointer is in
Figure 3, the window of Figure 4 opens. In this way, the exe-
cution is inspected. On the left side of Figure 4, the transfor-
mation of the evaluated sequence is seen, with the symbols
that are being replaced in each step highlighted in orange.
To the right of each line is the substitution relation applied
in each transformation, which in the example is always the
same.

In short, the evaluation works as follows: given a sequence
of symbols, the interpreter looks for relations to replace the
entire sequence. If it is not possible to replace the entire
sequence, it is attempted to transform it by parts. Once a
part is transformed, the entire sequence is attempted to be
transformed again. The execution ends when there are no
substitutions that can transform the sequence. In this sense,
every sequence of symbols is syntactically valid and there-
fore executable. The language is fully permissive, that is one
aspect of the flexibility of its syntax.

2.3 Programming the Behavior of a Robot

With this example we want to show that with our language
it is possible to represent typical behaviors in educational
robotics.

This second scenario provides specific cards for robot con-
trol that we describe in Table 2, some of them referring to
basic robot behaviors and other to its parts: sensors and
actuators. The robot in question is driven by two indepen-
dent wheels, and has two proximity sensors and two light
sensors at the front. This is a fairly standard configuration
of a teaching-oriented robot, which allows defining typical
behaviors in educational robotics: avoiding obstacles and
moving in relation to the ambient light [20] [2].

An educational sequence could probably begin by explor-
ing the simulator by throwing predefined symbols into the
REPL console and seeing how the robot moves. Later we
can try to define an infinite loop with a simple behavior,
like going back and forth continuously. Then introduce the
behaviors of going towards the light and avoiding obstacles

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Agustin Rafael Martinez

e rrrrEENomEE

SuiFd

SEaIN
-

)i B3

Figure 5. The drawing-based programming environment including a robot simulator.

separately and finally the combination of both in a single
program as it appears in Figure 5 and is explained in Table 3.

In the center of Figure 5 we can see: on the left, the board
with a program already defined and on the right the simula-
tion. We can add obstacles or light sources and see how the
robot performs in different situations. To define the program
we draw three new cards: one representing an infinite loop,
another representing the robot’s behavior in general, and
another that represents a particular behavior that the robot
can adopt, go towards the light. The meaning of the cards
is expressed in its drawings but the cards make sense, for
the program, in the substitution rules defined on the board.
In the example, we defined five substitution explained in
Table 3. There we can see that the behavior of the robot has
3 definitions, the last line defines a behavior without condi-
tions, where the robot goes towards the light. This particular
behavior is defined in the second line of the board following
the classical proposal of Braitenberg [2, p. 7 vehicle 2b]. The
order in which the lines are defined is not relevant for the
interpreter. The third and fourth substitutions in the board of
Figure 5 are applied when the left or right proximity sensor
perceives the proximity of something. In those cases, the
robot turns in the opposite direction to the sensed obstacle.
In this way, the behavior of going towards the light and the
one of avoiding obstacles are combined in a simple graphical
program defined without any text.

The behavior of avoiding obstacles has priority over going
towards the light, given that the substitutions with condi-
tions have priority of application over the ones without con-
ditions. The decision of which substitution to apply is up to
the interpreter, simplifying the programming. Here we see
the contribution of the declarative nature of the language.

Table 2. Provided cards to define robot behaviors

Robot goes forward
Robot goes backwards
Robot turns right
Robot turns left

Robot stops

Right wheel

Left wheel

Right light sensor
Left light sensor
Right proximity sensor
Left proximity sensor

Near an obstacle

MNP eEE I EDE

Execution waits a while

To get the robot running, we throw the loop card into
the REPL console. The ellipsis points at the bottom left of
Figure 5 mean that the evaluation of the expression on the
right is not yet complete, and it won’t be since it’s an infinite
loop. This does not prevent us from inspecting the execution.

A Language Based on Two Relations between Symbols

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Table 3. Description of each line of the program of Figure 5

e
S~ moN

Infinite loop user-defined drawing substituted by:
robot behavior drawing and again infinite loop drawing

Go to the light substituted by: left wheel takes right light

sensor value and right wheel takes left light sensor value

Robot behavior, when right proximity sensor is near an
obstacle, substituted by: robot turns left

Robot behavior, when left proximity sensor is near an
obstacle, substituted by: robot turns right

Robot behavior user-defined drawing substituted by:
go to the light user-defined drawing

e
G

=)
Imlpmw] >V

Figure 6. One iteration of the infinite loop that updates the
robot’s behavior.

Figure 6 shows the execution of one iteration of the loop
when the proximity sensors do not find obstacles so that the
behavior is to go towards the light.

New relationships can be defined through predefined cards
or new cards drawn. Changing relationships affects live the
behavior of the simulated robot, without the need to inter-
rupt its movement.

2.4 Building a Control Flow Notation

With this example we want to show that with our language
it is possible to fully represent a simple abstract model such
as Booleans and with it emulate syntactic structures of con-
ventional languages.

In Figure 7 we show a representation of booleans and a
definition of an ‘if... then... else’ notation based on them.
We draw symbols to represent truth and falsehood: ‘T” and
‘F’ respectively. Then we draw symbols for the logical opera-
tions ‘and’, ‘or’, ‘not’, and a symbol for the abstract notion of
boolean. We categorize ‘T" and ‘F’ by the notion of boolean
in the first two lines of the board. The next six lines complete
the representation of booleans.

We defined the ‘if... then... else’ statement in the last
two lines of the board. To do it, we had to play the wildcard.
Like in card games, the wildcard can take the place of any
card. In our game, the wildcard is a primitive symbol that

Q% +E®

TF AV B i

Ity o A
F Qe

71T ¥

- F T

TNAB B

TV E T

F AB ¥

¥ B B

V
$We
sWe
it T then @ dee @g@
it F e ® L. SFS '
if T thn & & & dee A

T T e & L de A A
it T A TF fhen < dee A &

'y Iy < <

Figure 7. Definition and use of booleans and ‘if... then...
else’ notation.

categorizes any sequence of symbols. We used it here in a
particular way: we placed it ‘around’ other symbols that we
draw to represent any phrase. These newly drawn symbols
now categorize the wildcard, so they categorize the symbols
included by the wildcard, thay way becoming user-defined
categories that include any sequence of symbols.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

' & 5 | = @
ih‘? Eﬁ ﬂ”&iﬁ S P
[-]
o

Agustin Rafael Martinez

-

Figure 8. Inspection of an execution where the control flow notation is applied for the case where the condition is true.

In the case that the condition is true, the whole statement
is replaced by the phrase after the ‘then’. When the condition
is false, the resulting phrase is the one after the ‘else’. Since
evaluation ends when there are no more substitutions to
apply, the resulting phrase of the ‘if... then... else’ will con-
tinue to be evaluated while the other phrase will be ignored
and not executed.

Figure 8 shows the substitution process until the truth
value of the condition is obtained and then the corresponding
if... then... else’ substitution is applied.

2.5 Modeling the Natural Numbers

With this example we want to show that it is possible to
visually represent some elements of complex abstract models
such as the arithmetic of natural numbers.

In Figure 9 we show some drawn digits. By means of next
and previous relationships between them we define addi-
tion. The number two works as an exemplar of the numbers
greater than one, it is a prototype-based category. On the
other hand, the symbol ‘IN’ represents the abstract notion
of number, in this sense it is a class-based category. From
the point of view of the language there is no difference be-
tween both categories, this distinction is an interpretation of
the programmer. These categories make it possible to define
the addition recursively, with the base case being when 1 is
added to another number. We can see these definitions in
the first and second line of the center of Figure 9. In Figure
10 we can se the execution of the expression ‘2+2’.

The last expressions at the bottom of Figure 9 does not
achieve the expected result because there are undefined rela-
tions. Nevertheless, evaluation does not fail, on the contrary,
it expresses where to continue the development of the model.
The sum of ‘3+2’ returns ‘the next of 4°, making it explicit
where the program should be expanded to include that cal-
culation. We should draw the number five and define it as
the successor of four to complete it.

With drawings and the two fundamental language rela-
tionships, we represented something as abstract as natural

e

-

L

H+ @@

B

B

+
N
2

«=

IS

«[==|=|EE)E) + + o Q
N2 222 ey

3
RO == PR

S
&
&1

Figure 9. A simplified representation of the sum of natural
numbers.

G oo
N R

€3
o+
)

number and an arithmetic operations. However, a complete
representation of the natural numbers requires making the
jump to text-based programming.

A Language Based on Two Relations between Symbols

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Table 4. Drawing and textual notation of the Representar language

y
(

B

)

e Defines a substitution rule

Defines a categorization

e ... - . Defines a substitution with conditions
A~ Defines a substitution, declaring local parameter names at the beginning
e - ..t Defines a substitution with conditions, declaring local parameter names

! See Figure 19 for an example of use of this notation.

2 (35

o e ®

N ¢ 2
N = I
S
&

=p| RS

= RS = R}

|| s (o | s
AN

@ RS =

y‘:{h@r%

Figure 10. Substitutions that solve the sum of 2+2.

3 The Language Characteristics

The previous activities have offered an approximation to the
language in its simplified graphical version. Now we will
analyze the fundamental characteristics of our programming
language.

3.1 Syntax

The language Representar is intended to be as flexible in its
syntax as natural language and writing are. Keeping this anal-
ogy in mind, in its textual version, the language’s elements
are words organized into sentences. In general, the elements
from which a program is built are symbols organized into
sequences. In the current implementation, the symbols are
graphical or textual. In future implementations, they could
be of another nature: auditory, tactile, or another sensory
alternative. In this language, every sentence, or sequence
of symbols, ‘compiles’ and runs. There are no syntax errors
that prevent the evaluation of a sentence. What can happen
is that there is no substitution of symbols that is applied to a
given sequence. In this case the execution will result in the
same expression originally evaluated.

To define substitution rules or categories between sym-
bols, we have to do it by evaluating sentences with particular
formats. In Table 4 we present the notation to define these

relationships. The substitution and categorization relations
previously defined with these notations constitute the pro-
grams.

A distinguishing feature is that given a sentence to be
evaluated, some of its symbols may or may not function as
parameters, depending on the substitutions that are applied
at runtime. That is, the parameters of an expression are not
determined a priori by the language syntax but are resolved
dynamically. Depending on what substitution is applied, a
term may turn out to be either a parameter or the equivalent
to the function or message name in other paradigms. This is
an aspect by which we say that the syntax of the language
is dynamic.

3.2 Text-Based Environment Specific Syntax

In textual mode we can tell the interpreter that a part of
the sentence must be evaluated before evaluating the entire
sentence. We call this early evaluation syntax. Alternatively
we can tell the interpreter that a part of the sentence should
be parsed as a block, as if it were one big indivisible symbol.
This is analogous to the use of closures in other languages
and we call it late evaluation syntax. Also we need a char-
acter to declare that a sentence ends. Table 5 presents these
syntactic characters that are specific to the textual version
of the language. Furthermore, whitespace plays an impor-
tant role in the textual version. They separate the words,
constituting them as symbols analogous to the cards of the
graphical environment.

Table 5. Syntactic characters of the textual version

(Early evaluation opening term

) Early evaluation closing term
Late evaluation opening term

, Late evaluation closing term
End of sentence term

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

3.3 Substitutions by Condition

There is a variant of the basic substitution rule. It is a rule
that includes a condition of application.

As the fundamental relations of substitution and cate-
gorization, the substitution by condition is not a syntactic
structure of flow control but a primitive relationship. As
we showed in the boolean activity, control flow notation
can be built from the two simplest relations of substitution
and categorization. However, the usefulness of substitution
rules with condition lies in simplifying the definition of some
programs as shown in the robot activity.

3.4 Categories by Construction

In its textual version, the language allows to define categories
with infinite elements by means of a specific syntax. In this
way it was possible to define the category of natural numbers
as lists of digits that cannot start with zero. Thus, fractions
could also be defined as natural numbers joined by a slash /’
in a same word. These definitions are found in Supplemental
Material.

3.5 Recursion

Since this general-purpose language does not provide flow
control syntax for iteration, what it offers is recursion. In
the activity of the numbers a simple definition of the sum
has been presented in recursive form.

In Figure 10 we can see how a sum is resolved first by
applying the recursive definition and then the base case.

3.6 Parameter Inference instead of Type Inference

In the rule defined by the sentence ‘1 + N &= IN1’, the symbol
‘N’ is functioning as the category on the left side and as
the parameter name on the right side. While in functional
programming the use of type inference has been extended in
order to abbreviate writing, here it is proposed to dispense
with naming parameters and to use their category directly.
In the textual version, if one wanted to explicitly name a
parameter, one could do so as shown in Table 4.

3.7 Alias for Categories

To gain declarativity, sometimes we can have different sym-
bols that represent the same category. In the definition of
‘if ... then ... else’ two categories were drawn as comic book
dialogue bubbles to represent any sentence. When they were
defined, the categorization relationship was used in reverse.
We placed the wildcard, which already categorized any se-
quence of symbols, ‘inside’ these new symbols. In this way,
two new categories were created that also include any se-
quence of symbols. In this sense, we can say that the dialogue
bubbles became aliases of the wildcard.

Agustin Rafael Martinez

4 Implementation Remarks

This section includes brief remarks about implementation
decisions that determine the behavior of the interpreter. The
intention of the section is to deepen the explanation of the
evaluation mechanism.

4.1 Substitution Rule Lookup

Given a concrete evaluation, a search is made for all the sub-
stitution relations that match with the sentence. At present,
all substitution relations are global, that is, the scope of the
search is always the same for all evaluations.

If there is no relation that applies to a sentence, it is eval-
uated by parts: first larger parts and, if there is no possible
substitution, smaller parts. When this occurs, a word is first
removed from the sentence and relations are sought. In this
case there are two subordinates to try: without the first word
or without the last, since the sequentiality of the symbols
is respected. If there is no possible substitution, two words
are removed, resulting in 3 variants: without the first two
words, without the last two, or without the first and last.
So successively, every sentence is attacked from the general
to the particular. If any part is transformed, the whole is
re-evaluated.

4.2 Matching of an Expression with a Substitution
Rule

Although the combinations in which a relation can apply
to a sentence are exponential, a polynomial algorithm is
currently used. This algorithm identifies a variety of combi-
nations, which is sufficient for the language to work. A more
complex algorithm would offer even more flexibility in how
programs are defined, promoting much less use of early and
late evaluation syntax.

4.3 Selection of which Substitution Rule to Apply

When the interpreter evaluates an expression, it may happen
that more than one substitution rule matches. To determine
which rule to apply, the interpreter follows the steps de-
scribed in Algorithm 1.

Algorithm 1 Select relation from: matchingRelations for
sentence: S

R « matchingRelations

R «select relations with user defined high priority: R

R «select relations from: R with more exact terms in: S
R «—select relations with less abstract categories from: R
R «select relations with more conditions from: R

r «—detect first relation in alphabetical order from: R
return r

The first thing is to verify if any of these substitutions
were defined as high priority by the user. The priority level
of a substitution can be high, medium or low. By default

A Language Based on Two Relations between Symbols

all substitutions have medium priority. Then the interpreter
analizes the exact terms of coincidence between the relations
and the sentence, the degree of abstraction of the categories
that define the relations and, if any, the number of conditions
in the definition of the relations. In each step there are fewer
and fewer substitution rules left. In the end, if there is more
than one substitution left, the first in alphabetical order is
chosen, so the selection criterion is deterministic.

4.4 Articulation of the Two Fundamental Relations:
Substitution and Categorization

The notion of ‘substitution’ refers directly to the evaluation
mechanism of the language. An expression is substituted for
others until there is nothing more to substitute, at which
point the evaluation ends. For example, when the expression
‘1 + 2’ is evaluated, the interpreter looks for substitution
relations that match this expression. If there were a sub-
stitution relation for those exact terms, that would be the
relation applied. In the last activity presented, between two
defined relations that match, the one applied is the substitu-
tion relation that takes any expression of the form ‘1 + N’
and transforms it into ‘N7’. Thus the expression ‘1 + 2’ is
transformed into ‘21”. In this case only the symbol 2 turned
out to be a parameter of the evaluation. Either the symbols
match exactly, that is, a symbol matches itself, or they can
do so by category. Therefore, for the symbol ‘2’ to match the
symbol ‘IN’, there must be categorization relations that define
that ‘2’ is included in the category ‘IN’. In this way the two
fundamental relations between symbols are complemented.

Categorization and substitution relations are created by
evaluating sentences. For example, the execution of the ex-
pression ‘1 + IN €& N1~ creates the substitution relation
applied in the previous example. Through the category ‘N’
it was possible to match the expression ‘1 + 2’ to that substi-
tution relation.

The fundamental relationships of this language do not
need to be syntactically reserved symbols to work. What
makes them possible are substitution rules defined beyond
Representar language. These are wired relationships, primi-
tives, that are defined in the Smalltalk environment [9] on
which our language is being implemented.

5 Written Words as the Symbols Defining
the Program

In this section we present text-based programming tools for
our language. We show that the relations of the graphical
environment are implemented over textual relations. We also
repeat the example of the booleans with the intention to show
the graduality of the transition from visual to textual. Then
we present three possible advanced activities. The purpose
of this section is to show the textual version of the language,
while continuing to analyze its potential, even in complex
topics currently reserved for advanced programmers.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

5.1 The Text-Based Programming Environment

Here we present the text programming editor and the sub-
stitution browser that goes with it.

The ‘Representar Editor’ allows us to program through
text. It also supports symbols drawn in the graphical envi-
ronment, allowing them to be copied and pasted, and inter-
spersed with text. This helps in a gradual transition from the
graphical to the textual experience.

-

@ Representar Editor
Numbers-Z * Drawed Relations 03
Numbers-0Q 9 +
Numbers-R 3
Robot Behavior 9 %
Scenario Socio-environr +
Scenario with Booleans =)
Scenario with Numbers 1| %
Scenario with Robot 9

>y

4
2+ NVNpEa2@+ N{E.

o) (<2 » ~ [() : '
2+%49, 3
2% 2, ¥
243, 20
2 + 3045

4

Figure 11. ‘Representar Editor’, the main programming tool.

The editor in Figure 11 has the same semantics as the
graphical environment of the first part. Below it offers a REPL
console, where the expressions on the left are evaluated. Re-
sults are displayed on the right and refreshed whenever the
program changes. In the center is where the substitution and
categorization relations are written. Above, these relations
are ordered by topic. When choosing a topic (in Figure 11
the selected topic is ‘Scenario with Numbers’), the sections
and categories defined within that topic are displayed in the
center. When choosing a section (in Figure 11 the selected sec-
tion is ‘Drawn Relations’), the substitution relations within
that section are displayed on the right. When selecting a sub-
stitution of categorization relation, its definition is displayed
in the center part to be read and modified.

In the center of the editor there is a bar with nine buttons.
The first two on the left allow us to undo and redo changes
in the substitution and categorization relations, as well as
their organization in topics and sections. The rest of the
buttons work as a keyboard, providing and also emphasizing
the main characters of the language. Among these buttons,
the three on the left are equivalent to the three fundamental
cards of the drawing environment: point, categorize and
the pipe to define substitutions by condition. The last four
buttons on the right are the proper syntactic characters (see
Table 5).

In the same way as in the graphical environment, when
selecting a result in the lower right part of the editor, it is

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

-

® Substitutions Browser

All Substitutions Numbers-N --

¥v2 + 3045
v Relation applied: d + n
Relation definition:d +n »d l +n 1.
+ Unapplied matching relations
n + m »:(((n without unity) + (m without unity)) +

»2 L +3045 17

»previous of 2 + 3045 1

> + 3045 t

»1 L +3045 1T 1

»previous of 1 + 3045 1 1

»0+3045 1T 1T

»3045 T T

»next of 3045 1

»next of 3045 when its last digitis (3045 last digit) T
»next of 3045 when its last digitis (2045 la wracter) T
»Next of 3045 whe S las (s517

»(3045 without las)Jomed with (nextof5) 1

(3 045 witho st character) joined with (next of 5) 1
»304 joined W|th([‘;)T

»304 joined w T

»304 jo 6 T

»3046 1

»Next of 3046

»next of 3046 when its last digitis (30 st dic
»next of3046when |ts last d|g|t|s(30 ast character)

~—

»he (\?w\ = s last dif
»{(3(out las) joined W|th (next of6)
»(3C character) joined with (next of 6)
»304]0|ned wn:h(ext of 6)
»304 joined w
»304 jo
» 3047
] >

Figure 12. Substitutions Browser.

possible to inspect the substitutions that took place in its
evaluation. In Figure 12 we can see the substitutions made
to solve the sum of ‘2 + 3045’.

The ‘Substitutions Browser’ allows us to see all the trans-
formations of the initial expression. For each substitution
it is possible to hierarchically browse the applied relation,
its definition, as well as the relations that matched with the
expression but that were considered of lower priority by the
interpreter’s Algorithm 1.

In the textual environment we implemented a representa-
tion of integer and fractional numbers based on substitution
and categorization relations. However, for didactic reasons it
may be possible to start from an editor that has only the basic
relations. This could be useful, for example, if we wanted
to implement a representation of the natural numbers from
scratch, continuing the last activity of drawing the num-
bers in a textual representation. Within the paper we will
only repeat the activity of booleans and conditionals in the
text-based environment. But any of the graphical activities
presented can be repeated using text.

Agustin Rafael Martinez

[] Representar Editor
Basic Relations | Sintax ParameteA phrase | phrase » phra
Substitution phrase ~ phrase | phra
< » v phrase ~ phrase » phr
phrase phrase » phrase
remove relation phrase

word “ =

phrase » phrase: is a basic relation defined beyond
Representar language.

° (<2 » ~ | () : '

Rehearsal space.
Try a sentece here.

Result space
See the result here

Figure 13. Editor with basic relations.

In Figure 13 we can see an editor that only has basic re-
lations. Above, the most used basic substitution relation is
selected. This relation allows any phrase to be replaced by
any other phrase. The coloring of the texts located in the
regions where one can write does not express the syntax
of the language but the evaluation that text would have. So
it is not syntactic highlighting but evaluation highlighting.
Orange indicates words that match exactly with the first
substitution rule that would be applied in case of evaluating
the expression. Blue parts of the sentence indicate words
that match by category, that is, parameters. Black indicates
words that will not be transformed in the first substitution
that applies.

In the center of the upper part of the editor we can see
that the primitive categories are three: ‘phrase’ that matches
with any non-empty sequence of symbols, “...” that matches
with any sequence, whether it is empty or with symbols, and
‘word’ that matches with any individual symbol.

5.2 Graphical Notation Implemented over Textual
Notation

The graphical notation is not only semantically the same as
the textual one, but it is implemented on top of it and can be
modified from the textual environment.

With the integrated execution of the graphical and tex-
tual environments in the same interpreter, we could define
the basic relations for programming with drawings through
textual relations. In other words we were able to build the
basic relations of the graphic environment without leaving
our language, which facilitated the development. In the same
way, users can give semantics to their drawings through text
when they feel limited by graphical tools.

In Figure 14 we can see how the substitution relation by
condition is implemented with a simple substitution rule that
replaces the graphical symbols with the textual notation.

A Language Based on Two Relations between Symbols

[] . Representar Editor

Basic Relations 4 Basic Sense & A4 M A
Booleans & Con: [Graphic-to-Text [

Exceptions & Te don't move o

Graphical Envifc forward & backv phrase [condition [
Numbers-Fractic go to light [

o

Numbers-Priorit light senses higt [

Numbers-N proximibeconog rase {7] something
Numbers-Z S|

Numbers-Q s%me -

Numbers-R SIS

< vl S v < >v

phrase g# condition] evaluation,
=: phrase | condition » evaluation.

Figure 14. Implementation of a fundamental graphical rela-
tion of substitution over a textual relation.

5.3 Building Booleans and the Control Flow
Notation with Text

The porpuse is to show the similarity between the graphical
and textual implementation of the same model.

[] Representar Editor
Basic Relations | Booleans & Conditional | ot trye A

Booleans & Condit . 0104n 4 true and boole
Natural Numbers Something true or booleat
< » anything v < > v
true » boolean.

false ™ boolean.

not true » false.

not false » true.

true and boolean » boolean.

false and boolean » false.

true or boolean » true.

false or boolean, » boolean.

phrase » something.

phrase =~ anything.

if true then something else anything, » something.

if false then something else anything, » anything.

) (<2 > ~ | ()

if(L+1>1)or (1 =1)then: 3 + 2, else Hello!. 5
ifl+1>1o0rl1l=1then 3 + 2 else Hello!. 5
if(L+1>2and1=1)then 3 + 2 else Hello!. Hello!
ifl+1>2and1=1then 3 + 2 else Hello!. Hello!

Figure 15. Implementation of booleans and ‘if ... then ... else’
with text

In the center of Figure 15 we can see exactly the same
model of the board of Figure 7 expressed through text. In-
stead of drawn symbols we use words. This shows the con-
tinuity between the graphic and textual environment that
the language facilitates. In the REPL console we define some

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

expressions that show how the conditional and booleans
work. This is implemented in a clean environment, which
includes a simple natural number model. We can see that
the newly created ‘if ... then ... else’ notation can work with
or without parentheses thanks to the matching algorithms
discussed in the previous section.

The implementation of the basic graphical relations on the
basis of the textual primitives, as well as the implementation
of the ‘if ... then ... else’, are demonstrations of the poten-
tial of the language in containing different domain-specific
notations. This allows the language to host domain-specific
sublanguages within the same environment.

5.4 Programming a Simple Model of Exceptions

The intention of this example is to show that the language
allows to represent a complex topic in a few lines.

The teaching and use of exceptions is currently reserved
for advanced programmers. How simple can an exception
model be? In this language, a one-line exception model is pre-
sented. This simplicity would allow students to implement
everything necessary for the language to support exceptions
and thus easily understand the fundamentals of their use.

The fundamental characteristic of exceptions is that exe-
cution must be interrupted when an error occurs. Nothing
else should be evaluated unless an exception is handled. If
the exception is not caught, the evaluation must end. In this
language, evaluation ends when no substitution is applied,
so when an exception occurs, no more substitutions should
be made. With the exception model presented, what happens
when an exception is raised is that only substitutions that
correspond to the exception model or that handle the raised
exception take place.

-

® Representar Editor
Basic Relations 4 Assert equals |.. Error description ! ...

-

Booleans & Conc [EXCéptions
Exceptions & Te: Should raise
Numbers-Fractio —

et description
Numbers-Priority evaluation
Numbers-N

result

<4 b

... Error description ! ..., » : Error description .

La] o > (57 I ()]
1/0. Error cannot divide by zero !
2+ 0. Error cannot divide by zero !
2+ 3045+ 1/0 + 5/7. Error cannot divide by zero !

Figure 16. The model of exceptions.

Figure 16 shows the implementation of exceptions. The
word ‘description’ is an alias for ‘phrase’, that is, any se-
quence of words matches with ‘description’. According to
this model, every exception must start with the word ‘Error’,
then a description and finally an exclamation mark. That is

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

a convention established by this one-line implementation of
exceptions. The written line is very easy to interpret, any
expression of the form ‘Error description !’, no matter what
is before or after, reduces itself by ignoring everything else
around.

“There is a huge semantic gap between what the program-
mer knows about his program and the way he has to express
this knowledge to a system for reasoning about that program.
Languages which can narrow this gap are sorely needed” [28,
p- 28]. If this need is still relevant, this example of an excep-
tion model shows the potential of Representar. A single line
is enough to express that everything around an expression
must be ignored. In comparison, the exception model of the
Smalltalk environment where we implement the language
[9] consists of 629 lines of code. This open model can be
modified from the language itself but is much more complex.

=

o Substitutions Browser]

All Substitutions Numbers-Priority priority
v2 + 3045 4 [0+ 5/7
» Relation applied: R basicOperation r priorityOperation
v2+3045+(1/0)+5/7
» Relation applied: n/ m
v2 + 3045 + ((reduce fractionon (
+ Relation applied: n + 0
Definition: n + 0 »: Error cannot divide by zero !.
» Unapplied matching relations
v2 + 3045 + ((reduce fraction on (Error cannot divide by
» Relation applied: ... Error description ! ...
v2 + 3045 + ((reduce fraction on Error cannot divide by
» Relation applied: ... Error description ! ...

0)) as fraction) +

v2 + 3045 + ((Error cannot divide by zero !) as fraction) |
» Relation applied: ... Error description ! ...
¥2 + 3045 + (Error cannot divide by zero ! as fraction) + §

» Relation applied: ... Et;rdr description ! ...

v2 + 3045 + (Error cannot divide by zero !') + 5/7
» Relation applied: ... Error description ! ...
v2 + 3045 + Error cannot divide by zero ! + 5/7
» Relation applied: ... Error description ! ...
v2 + Error cannot divide by zero ! + 5/7
» Relation applied: ... Error description ! ...
v2 + Error cannot divide by zero! + 5
» Relation applied: ... Error description ! ...
vError cannot divide by zero !
» Relation applied: ... Error description ! ...
v Error cannot divide by zero !
» Relation applied: No relation to apply
< >

Figure 17. Evaluation that raises an exception.

In the REPL in Figure 16 we can see that different evalua-
tions that include a division by zero result in the same excep-
tion. In Figure 17 we show that no other substitution relation
is applied once the exception occurs. When the exception
defined in the ‘n + 0 relation occurs, a process of succes-
sive evaluations is given where the substitution applied is
always the one corresponding to the model of exceptions,
until finally the execution ends signaling the error.

Agustin Rafael Martinez

5.5 Defining a Simple Testing Model

The porpuse is to show the simplicity in using a model to
build another model, in this case exceptions to build a testing
model.

There are two essential functionalities to define tests, one
that enables us to test that the result of an expression is
the expected one, and another that allows testing that the
expected error occurs. The first case can have a form similar
to “assert expression equals result”, the second a form of
“should expression raise error description”.

With two substitutions it’s possible to implement the two
aspects of the first functionality: 1) the one that returns the
expected result and 2) the one that doesn’t. If the result is not
what is expected, the usual behavior of a testing framework
is to throw an exception. Similarly, with two substitution
relations we can implement both situations in which the
expected error should occur.

"

[] . Representar Editor
Basic Relations & Assert equals

-

Should evaluation ra

Booleans & Con Exceptions Should evaluation rai
Exceptions & T¢ Should raise

Numbers-Fracti —

Numbers-Priorit | G€SCription 4

Nl e Y evaluation

< Lb | PP v < >

Should evaluation raise Error description !,
|: (evaluation) equivalent Error description !,

- ok.
9 & » A | () .)
Assert 1 + 1 equals 2. ok

Assert 2 + 2 equals 2. Error expected 2 instead of ¢
Should 1 / 0 raise Error ok

cannot divide by zero !. Error 2 / 0 does not raise err
Should 2 / 0 raise Error

i inti I
incorrect dESCI’Ipthn i < >

Figure 18. The testing model.

Figure 18 shows one of these four relations: the one that
allows testing if an expression fails with the correct descrip-
tion. The definition shown in the center has an applicability
condition that is declared between the pipe and the arrow.
The complete model of testing can be seen in Supplemental
Material.

Figure 19 shows the evaluation of the expression high-
lighted in gray in Figure 18. This is the test of an evaluation
that fails as it should: raising an exception with the correct
description.

5.6 Representing the Addition and Subtraction of
Amounts of the Same Thing

The intention of this example is to show that the language
allows to solve in a simple way a problem expressed collo-
quially, mixing words and mathematical symbols.

A Language Based on Two Relations between Symbols

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

& L Substitutions Browser

All Substitutions

¥vShould 1 /0 raise Error cannot divide by zero !

+ Unapplied matching relations
Should evaluation raise Error description !, » :
... Error description ! ..., » : Error description !.
v ok
» Relation applied: No relation to apply

Exceptions & Testing

+Relation applied: Should evaluation raise Error description ! @
Definition: Should evaluation raise Error description !, |: (evaluation) equivalent Error description !, » ok.

Error evaluation does not raise error description !.

Should raise

Figure 19. Substitutions in the testing of an expression that fails when it has to do so with the correct description.

We will represent the sum and subtraction of quantities of
the same thing. This is a general case that admits a generic
solution. When two quantities of the same thing are added
or subtracted, the quantities must be added or subtracted
directly and the result is obtained. It is a simple idea with a
single substitution to express it (see Figure 20).

Representar Editor

NUMbers-K A f
Robot Behavior EREEEN
Scenario Socio-envir
Scenario with Boole:
Scenario with Numb
Scenario with Robot
quantities of things
L >Y q >
anAmount aThing basicOperation otherAmount otherThing

~ number word basicOperation number word

| aThing = otherThing

»: (anAmount basicOperation otherAmount) aThing.

number word basicOpe

number

2] (< 4 » ~ [() : '

3 apples + 4 apples. 7 apples

2 dollars - 10 dollars + 3 dollars. F5dollars

15/31 meter - 2/5 meter. 13/155 meter

2 dollars + 4 apples 2 dollars + 4 apples

S

Figure 20. A single substitution relationship in order to add
or subtract amounts of the same thing.

The substitution rule of Figure 20 is a conditional rela-
tion that declares particular names for each parameter at
the beginning. These names are local, the scope does not go
beyond the substitution rule. In the first line we declared the
five parameters, in the second line, the categories of each
parameter respectively, in the third line is the application
condition, and in the fourth line we established how the new
expression that replaces the matching phrase must be assem-
bled. In Figure 21 we can see the sequence of substitutions
for the second sentence evaluated in the REPL console of
Figure 20.

e Substitutions Browser

All Substitutions quantities of things same thing
§»2 dollars - 10 dollars + 3 dollars
t»(2-10)dollars + 3 dollars

»((21)-(10 !))dollars + 3 dollars

»((previousof2)-(10 1)) dollars + 3 dollars
»(1-(10 L)) dollars + 3 dollars
»(1 -9)dollars + 3 dollars

(1 L)-(91))dollars + 3 dollars

»((previousof1)-(9 1))dollars + 3 dollars
»(0-(9 L))dollars + 3 dollars
»(0-(previous of 9))dollars + 3 dollars
»(0 -8)dollars + 3 dollars
, »(-join 8) dollars + 3 dollars
»-8 dollars + 3 dollars
»(-8 + 3) dollars
»(3-|-8|)dollars

»(3 =- =0 WIthout (
»(3 -8)dollars
H(31L)-(81))dollars

rst character) dollars

»((previousof3)-(8 1))dollars
»(2-(8 1))dollars

»(2 - (previous of 8)) dollars

»(2 -7)dollars

H(21L)-(7 4))dollars

»((previousof2)-(7 1)) dollars
»(1-(7 L))dollars
»(1-(previous of 7))dollars

»(1 -6)dollars

(1 1L)-(61))dollars
»((previousof1)-(6 4))dollars
»0-(6 L1))dollars

»(0 - (previous of 6)) dollars

»(0 -5)dollars

»(-join 5) dollars

» -5 dollars

Figure 21. Substitutions that solve a sequence with opera-
tions of adding and subtracting amounts of the same thing.

The creation of a single substitution relation was enough
to solve the sum and subtraction of quantities of the same
thing, whatever it is. In this simple activity, the potential for
reducing the semantic gap of the Representar language is

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

shown again. This happens both in the simplicity of the im-
plemented model and the closeness to the natural language
writing of the expressions that can be evaluated.

The same relation handles expressions with several terms.
In the execution of Figure 21, the first and thirteenth line
correspond to the application of the substitution rule defined
in Figure 20. The addition and subtraction of expressions of
different things was not altered, it remained something irre-
ducible as shown in the last expression of the REPL console
in Figure 19.

Having a simple model that is already functional is a great
motivation to expand it in different directions. We can add
relations to allow the addition and subtraction of different
things that have a conversion factor, for example units of
measure of the same type. We can incorporate relations of
multiplication and division, applying arithmetic operations
on quantities and on the things themselves.

6 Related Works

In this section we review related works in both dimensions
of the project. First, we analyze current approaches of visual
programming, where we compare our proposal with other
approaches in computer science education. Then, we discuss
related general purpose programming languages and analyze
similarities and differences with ours.

6.1 Related Works in Visual Programming Oriented
to Education

We will make an analysis and comparison with one of the
most widespread tools in computer science education: Scratch
[27] and other languages based on it, such as Snap! [10] and
mBlock [18] which present themselves as improvements
or adaptations for certain purposes. Also, we will analyze
another relevant tool: Etoys [14] and derived works [32] [7].

The first thing to note is that both Scratch and Etoys as
well as our project were initially implemented in Smalltalk.
While Etoys remains only implemented in this way, Scratch
has also been developed in javascript and can be used from
a web browser. This is a strategic aspect that distinguishes
Scratch project.

To make a comparison at the language level, it is pertinent
to show a specific example. We will return to the case of
programming a robot that must go towards the light and at
the same time avoid obstacles. Our program consists of 5
lines shown in Figure 22 and already described in Table 3.
In Figure 23 we can see a similar behavior of going towards
the light combined with avoiding obstacles, defined with a
Scratch version oriented to robot control: the mBlock Editor
[18] for the mBot robot [26].

A common element of the compared approaches is that
they all use drag and drop as a fundamental mechanism
for composing programs. The other common aspect is that
there are no error messages in any of them. All seek to

Agustin Rafael Martinez

Figure 22. Robot behavior defined in our language and de-
scribed in Table 3.

(o2y (50)

goToLight

&% left wheel turns at power - %, right wheel at power - %

Figure 23. A robot behavior analogous to that in Figure 22
defined with Scratch-style visual blocks.

minimize the basic building blocks that allow expressions to
be combined. And all have ‘liveness’ as a design principle
[19], which means there is no compilation step or edit/run
mode distinction.

A difference at first sight is that our visual language does
not use any text, while Scatch, and also Etoys, need text
to give meaning to their visual structures. Around Etoys
there has been an attempt to address this issue in a project
called V-Toys [7]. This tool is equally expressive to Etoys but
purely visual. Other Etoys-derived project called TileScript
[32] proposes a transition from Etoys scripts to purely textual
scripts. It tries to power up Etoys at the cost of increasing
its complexity. There is only one article that mentions each
of these projects and there is no prototype available to try
them.

In our project, the lack of text does not prevent us from a
central quality in programming languages, which is being
able to define abstractions. In our language, like Scratch and

A Language Based on Two Relations between Symbols

Etoys, we were able to define a simple abstraction, with no
parameters, that represents the behavior of going towards
the light. It was not necessary to resort to text for this, it was
enough to draw the concept as a card.

Regarding parameterization, Scratch and Etoys abstrac-
tions allow a limited set of parameter types, in the case of
Scratch only three (booleans, strings, and numbers). In our
language we can parameterize any sequence of symbols with-
out distinction between code and data. The visual language
that has deepened in this sense is Snap! [10] allowing to
dynamically parameterize even portions of its own code.

Another abstraction mechanism of our language are user-
defined categories. In Scratch and Etoys we cannot create
new types. In Snap! it is possible to define new data types
through lists but at the cost of complexity. Our visual lan-
guage offers great power of abstraction while keeping it
simple.

In our proposal the user does not have to go beyond the
symbols to test the language. We offer a fully graphical REPL
console for this. We also offer the possibility of inspecting
the execution of the program without resorting to any tex-
tual representation. These are novelties in visual languages
designed for teaching, along with the possibility of defining
categories with a single combinator. And another element
that stands out is that while in Scratch and Etoys the control
of the flow is explicit in the program, in our language this is
implicit and is the interpreter’s responsibility.

In Scratch and Etoys it is possible to draw the cartoon
character that the program controls, while in our prototype
this is not yet possible. Both Scratch and Etoys allows to have
unused modules in the programming environment, which
makes it easy to roll back or test changes. Our prototype does
not offer this yet, so deleting relationships requires rewriting
them to roll back. This reveals that our project has not yet
been used outside the laboratory.

6.2 Related Works on General-Purpose
Programming Languages

The history of programming languages shows a breadth and
variability in the possibilities of high-level languages. Re-
cent examples include Super-Glue [23] or Subtext [8]. Cases
like Forth [24] or APL [13] early showed the possibility of
really different variants. In the case of Forth, its conceptual
unit is the word, understood in the same way as in Represen-
tar: a sequence of characters delimited by spaces. Thus, the
flexibility of Forth’s syntax is a common feature with Repre-
sentar. On the other hand, Forth, based on stacks, achieved a
high-level approach to symbol manipulation combined with
a very close relationship to machine language and, therefore,
performance. Unlike Representar, Forth did not aim to cap-
ture the way humans represent knowledge or manipulate
symbols beyond the computer. On the contrary, it has been
presented as a particular way of "thinking about software
problems" 3, p. 119].

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

A branch of languages that seeks to emulate the human
decision process are rule-based programming languages.
Among them Prolog, CLIPS and OP5 stand out. These lan-
guages are associated with the development of expert sys-
tems: "[t]he rule-based approach has often been chosen for
programming expert systems because the pattern-action
model resembles human decision processes” [11, p. 1]. Since
they have a rule-based input/output transformation mecha-
nism, they are related to our language. However, rule-based
languages and systems, between other shared properties,
"[t]hey incorporate practical human knowledge in condi-
tional if-then rules" [16, p. 921]. While in Representar sub-
stitution rules can eventually present boolean conditions,
in rule-based programming all rules are defined based on
conditions. In the case of Representar, the distinctive aspect
of its substitution rules is that they match by category with
the input, a substantially different kind of rule. Rule-based
languages also allow to define ‘facts’ which, combined with
inference rules, they enables to solve queries. Our language,
although it is based on substitution rules, does not solve the
evaluation with an inferential mechanism.

The substitution mechanism of our language is inspired by
the ‘Substitution Model’ studied by Abelson and Sussman [1].
This specific aspect of our language is related to functional
programming. In Figure 24 we can see that in their book
the substitution mechanism is presented as a programmer’s
deduction. Instead, in our language, through the Substitution
Browser tool, it becomes the responsibility of the computer,
freeing the programmer from the work of having to mentally
reconstruct the substitution process. Another relationship
with languages such as Lisp and Scheme, is that Representar
is homoiconic: the same structures allow to represent both
code and data. In the case of Representar, these structures
are simply the words delimited by blanks.

factorial n » fact-iter 1 1 n.
fact-itern'mn| m>n»n'.
fact-iter n' m n»:fact-iter (n" %k m) (m + 1) n.

(factorial 6) B>—— W »factorial 6

(fact-iter 1 1 6) wfact-ite
(fact-iter 1 2 6) »fact-ite
(fact-iter 2 3 6) »fact-iter2 3 6
(fact-iter 6 4 6) vfact-iter64 6
(fact-iter 24 5 6) vfact-iter24 56
(fact-iter 120 6 6) Hact-iter 120 6 6
(fact-iter 720 7 6) =fact-iter 720 7 6

720 —— / »T720

Figure 24. Above our factorial function implemented ‘iter-
atively’ (following [1]). Below left a representation of the
substitution mechanism extracted from the book by Abel-
son and Sussman[1, p. 43]. Below right is a representation
auto-generated by our tools of this substitution process.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

The branch of languages that is historically linked to a the-
ory of knowledge is object-oriented programming. Simula-67
incorporated the notion of class and object [5]. Smalltalk kept
the same classical approach with two different fundamen-
tal relationships for sharing behavior: subclassification and
instantiation. Later Self [31] adopted a modern approach,
establishing a single sharing mechanism, the parent delega-
tion between objects. Through this relationship one object
can be an exemplar of another, or else represent an abstract
notion under which another object is categorized. Which
of them is established is not declared in the language but is
left to the programmer’s interpretation. In this sense, our
language is related to Self, since it offers a unique way of
defining flexible categories, based on prototypes or more
abstract notions. The clear difference is that our categories
are between symbols, not objects. And we cannot say that
they are a way of sharing behavior but rather a way of ex-
panding the range of application of the substitution rules.
Like Self and Smalltalk, our language is part of a tradition of
dynamic languages, which prioritizes flexibility and freedom
of expression over preventing errors through static checks.

Simula-67 and its successors are based on a classical theory
of knowledge. Self and its successors are inspired by modern
approaches from cognitive psychology [29] . Our language is
based on a theory developed by ourselves and presented in
previous works [21] [22]. In these articles we argue that hu-
man symbolic representation is not innate, it is constructed
through experience (unlike the honeybee that also collabo-
rates through symbolic communication [15]). Nevertheless,
we consider that there is a natural basis for human symbolic
communication, and it is given by two relationships between
symbols: substitution and categorization. The substitution
relationship in particular has an extra quality: it can refer-
ence beyond symbols, to the world. That is, a word or a set of
words can substitute for another set of words or reference an
entity or process beyond symbols. The Representar language
is an implementation and a complement of this theory of

knowledge.

7 Future Works

The immediate future work is to test the use of the system
built by children guided by a teacher in a didactic context.
By doing so, future activities we design could allow users
to draw a character in the simulator, program its behavior
and interaction with mouse and keyboard events, allow-
ing to build interactive animations. Another feature that
could be added is to allow the user to quantify visually. We
could incorporate a card that allows adjusting the amount of
what another card expresses. This new card would be like a
speedometer whose needle can be manipulated by the user.

In this project we have reduced the problem of changing
the language when going from simpler to more complex
programs. This problem was replaced by a two-mode scheme,

Agustin Rafael Martinez

one visual and one textual. Each mode has its own distinct
set of tools. Following Larry Tesler [30], a future work is to
advance in the integration of the tools, in order to offer a
modeless solution. This is a design challenge now before us.

However, the vision of the project goes much further than
what has been built. The graphical environment has the con-
ditions to be implemented as a Tangible User Interface [12].
It could work as a magnetic construction game combined
with drawing on paper with crayons. Figure 25 shows a stag-
ing of how this programming environment might look like.
The program is the same as the robot activity in the first
section. There would be a camera and a video projector on
the ceiling to project "copies" of drawings made on paper
onto the blank magnetic cards.

Figure 25. Photomontage of how programming with draw-
ings could look as a Tangible User Interface.

8 Final Words

Representar constitutes a new paradigm of programming that
combines both simplicity and expressiveness. The original
contribution lies in the fact that it is based on two funda-
mental relations between symbols: substitution and catego-
rization. Its versatility allows it to work in a visual mode,
with great power of abstraction and without the use of text
to make sense of its components. The execution is based on
a model of substitutions that can be visualized automatically,
freeing the programmer from the task of mentally repro-
ducing it. This debugging tool is available in visual mode,
constituting a novelty in languages oriented to education.
The other original contribution to visual languages is a con-
sole that allows us to execute purely graphical expressions.
In text mode it has all the power of a conventional language

A Language Based on Two Relations between Symbols

and it allows complex problems to be defined concisely and
declaratively. It has a very simple syntax, which goes little
further than delimiting words with white space.

Acknowledgments

This material is based upon work partially funded by the
Régimen de Participacion Cultural de la Ciudad Auténoma de
Buenos Aires under Grant No. EX-2021-18985508-GCABA-
DGDCC and Grant No. EX-2022-29729661-GCABA-DGDCC.
The author would like to thank Hernan Wilkinson, Juan Bu-
rella, Javier Legris, Guillermo Folguera, David Ungar, Dioni-
sio Martinez and Fundacién Argentina de Smalltalk.

References

[1] Harold Abelson and Gerald Jay Sussman. 1996. Structure and interpre-
tation of computer programs. The MIT Press.

[2] Valentino Braitenberg. 1986. Vehicles: Experiments in synthetic psychol-
ogy. The MIT Press.

[3] Leo Brodie. 2004. Thinking forth. Punchy Pub.

[4] Gabriele Contessa. 2013. Models and Maps: An Essay on Epistemic Rep-
resentation. unpublished manuscript, Carleton University, Ottawa, ON.
Retrieved July 6, 2022 from https://philarchive.org/archive/ CONMAM-
9

[5] Ole-Johan Dahl. 2004. The birth of object orientation: the simula
languages. From Object-Orientation to Formal Methods. Lecture Notes
in Computer Science. 2635 (2004), 15-25. https://doi.org/110.1007/978-
3-540-39993-3_3

[6] Mark Dorling and Dave White. 2015. Scratch: A Way to Logo and
Python. SIGCSE ’15: Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (2015), 191-196. https://doi.org/10.
1145/2676723.2677256

[7] Pierre-André Dreyfuss and Serge Stinckwich. 2008. V-Toys: An Experi-
ment in Adding Visual Tiles to EToys. In Sixth International Conference
on Creating, Connecting and Collaborating through Computing (C5 2008).
165-171. https://doi.org/10.1109/C5.2008.22

[8] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of pro-
gramming. OOPSLA °05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications (2005), 505-518. https://doi.org/10.1145/1094811.1094851

[9] Hilaire Fernandes, Ken Dickey, and Juan Vuletich. 2020. The Cuis-
Smalltalk book. Retrieved November 4, 2021 from https://github.com/
Cuis-Smalltalk/TheCuisBook

[10] Brian Harvey and Jens Monig. 2015. Lambda in blocks languages:

Lessons learned. In 2015 IEEE Blocks and Beyond Workshop (Blocks and

Beyond). 35-38. https://doi.org/10.1109/BLOCKS.2015.7368997

Frederick Hayes-Roth. 1985. Rule-Based Systems. Commun. ACM 28,

9 (sep 1985), 921-932. https://doi.org/10.1145/4284.4286

Hiroshi Ishii. 2008. The Tangible User Interface and Its Evolution. Com-

mun. ACM 51, 6 (jun 2008), 32-36. https://doi.org/10.1145/1349026.

1349034

[13] Kenneth E. Iverson. 1965. A programming language. AIEE-IRE ’62
(Spring): Proceedings of the May 1-3, 1962, spring joint computer confer-
ence (1965), 345-351. https://doi.org/10.1145/1460833.1460872

[14] Alan Kay. 2005. Squeak etoys, children and learning. Viewpoints

Research Institute (2005). Retrieved August 31, 2022 from http://www.

vpri.org/pdf/rn2005001_learning.pdf

Patrick L. Kohl, Neethu Thulasi, Benjamin Rutschmann, Ebi A. George,

Ingolf Steffan-Dewenter, and Axel Brockmann. 2020. Adaptive evolu-

tion of honeybee dance dialects. Proceedings of the Royal Society B 287,

20200190 (2020), 1-9. https://doi.org/10.1098/rspb.2020.0190

—

[11

—

[12

—

(15

—

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

[16] Thaddeus J. Kowalski and Leon S. Levy. 1996. Rule-based programming.
AT&T, USA.

[17] George Lakoff. 1987. Women, fire, and dangerous things. What categories
reveal about the mind. University of Chicago Press. https://doi.org/10.
7208/chicago/9780226471013.001.0001

[18] Makeblock 2022. mBblock Editor. Retrieved July 1, 2022 from https:
//ide.mblock.cc/

[19] John H. Maloney and Randall B. Smith. 1995. Directness and liveness
in the morphic user interface construction environment. In Proceed-
ings of the 8th annual ACM symposium on User interface and software
technology. 21-28. https://doi.org/10.1145/215585.215636

[20] Fred Martin. 1996. Kids learning engineering science using LEGO and
the programmable brick. Proc of AERA (1996).

[21] Agustin Rafael Martinez. 2020. Integracion del conocimiento cientifico
y materialismo dialéctico. Hic Rhodus. Crisis Capitalista, Polémica y
Controversias 19 (2020), 23-43. https://publicaciones.sociales.uba.ar/
index.php/hicrhodus/article/download/6161/5117

[22] Agustin Rafael Martinez. 2021. Representacién simbdlica y material-
ismo dialéctico. De la comunicacién simbdlica a la programacion de
computadoras. Hic Rhodus. Crisis Capitalista, Polémica y Controver-
sias 20 (2021), 59-78. https://publicaciones.sociales.uba.ar/index.php/
hicrhodus/article/download/6644/5553

[23] Sean McDirmid. 2007. Living it up with a live programming language.
OOPSLA °07: Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems, languages and applications
(2007), 623-638. https://doi.org/10.1145/1297027.1297073

[24] Charles H. Moore. 1974. FORTH: a new way to program a mini com-
puter. Astronomy and Astrophysics Supplement Series 15, 497 (1974).

[25] Mark Noone and Aidan Mooney. 2018. Visual and textual programming
languages: a systematic review of the literature. Journal of Computers
in Education 5, 2 (2018), 149-174. https://doi.org/10.1007/540692-018-
0101-5

[26] Jelena Pisarov and Gyula Mester. 2019. Programming the mbot robot
in school. Proceedings of the International Conference and Workshop
Mechatronics in Practice and Education, MechEdu (2019).

[27] Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (nov 2009), 60-67.
https://doi.org/10.1145/1592761.1592779

[28] Tim Sheard. 2004. Languages of the future. OOPSLA °04: Compan-
ion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications (2004), 116-119.
https://doi.org/10.1145/1028664.1028711

[29] Antero Ky6sti P Taivalsaari. 1997. Classes vs. Prototypes — Some
Philosophical and Historical Observations. Journal of Object-Oriented
Programming 10, 7 (Nov. 1997), 44-50.

[30] Larry Tesler. 2012. A Personal History of Modeless Text Editing and
Cut/Copy-Paste. Interactions 19, 4 (jul 2012), 70~75. https://doi.org/
10.1145/2212877.2212896

[31] David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity.
SIGPLAN Not. 22, 12 (dec 1987), 227-242. https://doi.org/10.1145/
38807.38828

[32] Alessandro Warth, Takashi Yamamiya, Yoshiki Ohshima, and Scott
Wallace. 2008. Toward A More Scalable End-User Scripting Language.
In Sixth International Conference on Creating, Connecting and Collabo-
rating through Computing (C5 2008). 172-178. https://doi.org/10.1109/
C5.2008.33

https://philarchive.org/archive/CONMAM-9
https://philarchive.org/archive/CONMAM-9
https://doi.org/110.1007/978-3-540-39993-3_3
https://doi.org/110.1007/978-3-540-39993-3_3
https://doi.org/10.1145/2676723.2677256
https://doi.org/10.1145/2676723.2677256
https://doi.org/10.1109/C5.2008.22
https://doi.org/10.1145/1094811.1094851
https://github.com/Cuis-Smalltalk/TheCuisBook
https://github.com/Cuis-Smalltalk/TheCuisBook
https://doi.org/10.1109/BLOCKS.2015.7368997
https://doi.org/10.1145/4284.4286
https://doi.org/10.1145/1349026.1349034
https://doi.org/10.1145/1349026.1349034
https://doi.org/10.1145/1460833.1460872
http://www.vpri.org/pdf/rn2005001_learning.pdf
http://www.vpri.org/pdf/rn2005001_learning.pdf
https://doi.org/10.1098/rspb.2020.0190
https://doi.org/10.7208/chicago/9780226471013.001.0001
https://doi.org/10.7208/chicago/9780226471013.001.0001
https://ide.mblock.cc/
https://ide.mblock.cc/
https://doi.org/10.1145/215585.215636
https://publicaciones.sociales.uba.ar/index.php/hicrhodus/article/download/6161/5117
https://publicaciones.sociales.uba.ar/index.php/hicrhodus/article/download/6161/5117
https://publicaciones.sociales.uba.ar/index.php/hicrhodus/article/download/6644/5553
https://publicaciones.sociales.uba.ar/index.php/hicrhodus/article/download/6644/5553
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1028664.1028711
https://doi.org/10.1145/2212877.2212896
https://doi.org/10.1145/2212877.2212896
https://doi.org/10.1145/38807.38828
https://doi.org/10.1145/38807.38828
https://doi.org/10.1109/C5.2008.33
https://doi.org/10.1109/C5.2008.33

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

A Supplemental Material

This appendix provides a file-out of the models implemented
in the Representar language that have been shown in the
paper: the model of exceptions and testing and the model of
natural and fractional numbers. Also, in Figure 27, is a list of
the basic or primitive relations of the Representar language.

In Figure 28, the category of natural numbers is partially
defined by extension by declaring that ‘digit’ is within the cat-
egory ‘IN’. But it is also defined by "construction” by declaring
how a word must be constructed to be considered a natural
number: it must start with a digit that is not zero and the
rest of its characters must be a list of digits.

As can be seen in Figure 28, the last categories in the list
have been defined using a syntax similar to mathematics
rather than using the language notation. This has been possi-
ble through the substitution relations of Figure 29. This is an
example of how the language allows itself to be syntactically
adapted to different domains.

At the end of Figure 35, a relation was included that allow
parentheses to be dispensed with, in order to ensure the
priority of multiplication and division over addition and
subtraction in an expression. This is another example of the
adaptability of the language to the syntactic conventions of
a specific domain.

The evaluation of the text of all the figures, allows us to
load the models in their correct topic and section within an
empty ‘Representar Editor’ like the one in Figure 13.

Topic name is Exceptions & Testing.
description is an alias of phrase.
phrase =~ evaluation.

result is an alias of phrase.

Section name is Assert equals.
Assert evaluation equals result, »:
Emor expected result instead of
(evaluation) on expression: evaluation !.
Assert evaluation equals result,
|: (evaluation) = result,
= ok.

Section name is Exceptions.
... Error description ! ..., » : Error description .

Section name is Manipulation.

Section name is Should raise.
Should evaluation raise Error description |,
|: (evaluation) equivalent Error description |,
»
Should evaluation raise Error description |,
=
Error evaluation does not raise emor description .
Should evaluation raise Error description !,
|: (evaluation) equivalent Error description |,
= ok.

Figure 26. Exception and testing models

Agustin Rafael Martinez

Section name is Substitution.
remove relation phrase

phrase ~ phrase | phrase » phrase
phrase » phrase

phrase ~ phrase » phrase

phrase | phrase » phrase

Section name is Categorization.

word € word 7

no more word ~ word

word definition by construction phrase
word ~ word

Section name is Symbol Manipulation.
word without last character

word join word

word without first character

word last character

word first character

Section name is Organization.

Topic to which belongs relation phrase
Section to which belongs relation phrase
Section name is phrase

Topic name is phrase

Section name is Performance.
R<R

Section name is Regularities & Invariants.
all the time phrase

Section name is Sintax Parameterization.

word is a term with its own meaning

word is an early evaluation closing term

word is an early evaluation oppening term

word now indicates the opening of a late evaluation
word now indicates the closing of a late evaluation
word is not a term with its own meaning

word now indicates the end of a sentence

Section name is File Management.

bring out all as phrase representation
bring in phrase representation

Figure 27. Predefined basic relation of the language.

A Language Based on Two Relations between Symbols

Topic name is Numbers-Ffi.

1 ~ nonZeroDigit.
2 ~ nonZeroDigit.
3 ~ nonZeroDigit.
4 ~ nonZeroDigit.
5 ~ nonZeroDigit.
6 ~* nonZeroDigit.
7 = nonZeroDigit.
8 ~ nonZeroDigit.
9 ~ nonZeroDigit.
nonZeroDigit ~ digit.
0 ~ digit.

digit ~ R

M definition by construction: nonZeroDigit [digit].
Yne R

VYme R
¥n'eR.

¥ natural € M.

v d € digit.

v d' e digit.

¥ w' e word.

¥ w e word.

Figure 28. Categories defined in the implementation of nat-
ural numbers.

Section name is Set Notation.
¥V name € set

~ Y word € word

»; set *» name.
word is an alias of category

~ word is an alias of word

= category ~ word.
element € set

~ word € word

»: glement ~ set.
subset c set

~ word c word

»: subset + set.

Figure 29. Notation of the domain of mathematics imple-
mented on the language. The first relation is the one used to
define the last eight categories of Figure 28.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Section name is Next & Previous.
next of 0 = 1.
next of 1 »» 2.
next of 2 » 3.
next of 3 » 4,
next of 4 » 5.
next of 5 » 6.
next of 6 » 7.
next of 7 » 8.
next of 8 » 9.
previous of 1> 0.
previous of 2 = 1.
previous of 3 > 2.
previous of 4 » 3.
previous of 5> 4,
previous of 6> 5.
previous of 7 = 6.
previous of 8 = 7.
previous of 9 > 8.
next of n »: nextof n when its last digit is (n last digit).
ni|onesofn=10
= ((n without ones) {) joined with 9.
ni|onesofn=10
= ((n without ones) 4) joined with 9.
n { »: (n without ones) joined with ({ones of n) 4).
nonZeroDigit 4 » previous of nonZeroDigit.
10 4 » 9,
n T » next of n.
next of n when its last digit is d
= (n without last digit) joined with (next of d).
next of 9 = 10.
next of n when its last digit is 9
=: (next of (n without last digit)) joined with 0.

Figure 30. Next and previous. Relationships necessary to
later address arithmetic operations.

Section name is +.

d+n=»dl+nt.

n + m =:(((n without unity) + (m without unity)) +
tens of ({unity of n) + (unity of m)))
joined with
{unity of ({unity of n) + (unity of m))).

O+ n>»n.

n+0>»n.

n+d=»dli+nt.

Figure 31. The sum of natural numbers that takes into ac-
count the positionality of the digits as we do when we calcu-
late by hand.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Section name is -.
n-d»: (ni)-(di).
n-0»n.
n-m|n=m>:0.
0-0>0.
n-m
| n = m & ones of n >= ones of m
»: ((n without ones) - (m without ones))
joined with ((ones of n) - (ones of m)).
m-n
| m > n & ones of m < ones of n
= ({(m without ones) - 1) - (n without ones))
joined with (((ones of m) + 10) - (ones of n)).
n-m|n=m>»:0.
d-ns=: (di)-(ni).

Figure 32. Subtraction of natural numbers.

Section name is *.

0% n=0.

n%0=»0

n-m»n %m.

d&n>» n+(n*(di)).

n % m»: ((n % (m without ones)) joined with 0)
+
(n * (ones of m)).

nkd>»d=*n.

Figure 33. Multiplication of natural numbers.

Section name is +.
n < 0 »: Error cannot divide by zero |.
0 divided by n » 0.
n divided by m > n join / join m.
m+n|m=n=»1
n divided by 1 = n.
n/ m »: (reduce fraction on (n + m)) as fraction.
n+=m|n>m
= ((first (m size + 1) digits of n) + m)
continue with rest of dividend
(last (n size - (m size + 1)) digits of n)
and divisor m.
n+ml:n>m& (nsize - 1) <= (m size),
=1+ ((n-m)=+ m).
mdivided by n|m =n =1
n<+1x»n.
n + f continue with rest of dividend w and divisor m
»=: (n with (w size) zeros) +
(reduce fraction on ({(f numerator)
«(m =+ (f dmominator}l))J'oin w) + m).
n continue with rest of dividend w and divisor m
»=: (n with (w size) zeros) +

(reduce fraction on (remove zeros from left of w) + m).

n -+ m > n join / join m.
n divided by m
|: n=m & (nsize - 1) <= (m size),
= 1 + ((n - m) divided by m).
ndividedbym|n>m
= ((first (m size + 1) digits of n) divided by m)
continue with rest of dividend
(last (n size - (m size + 1)) digits of n)
and divisor m.
0+n=0.

Figure 34. Division of natural numbers.

Agustin Rafael Martinez

Topic name is Numbers-R.
Fraction ~ R.

£ ~R.

YreR.

YreR.

Section name is negation.

negate r + Ehrase, > - - phrase.
negate r - phrase, »: - r + phrase.
negater»> -r.

Topic name is Numbers-Priority.
+ ~ basicOperation.

- % basicOperation.

~ priorityOperation.

{ = priorityOperation.

+ ~* priorityOperation.

Section name is priority.
R basicOperation r priorityOperation r*
»: R basicOperation (r priorityOperation r').

Figure 35. The real numbers up to where they were imple-
mented.

Section name is Comparing.
symbol to represent falsehood » F.
symbol to representtruth » T.
n > m | n size = m size = first digit of n > first digit of m.
d=d'»: (di) =(d'L).
w=w|w=ws=»T.
n<=m»n<m.
n=m: (n size) > (m size).
n > m | n size = m size & first digit of n = first digit of m
= (remove zeros from left of (n without first digit)) =
(remove zeros from left of (m without first digit)).
n=>m|n size = m size
» first digit of n > first digit of m.
w=w|w=w=T.
n<m>»m:>n.
0=n>»F.
n>=0=»T.
w=0=F.
d>n»F.
0=0=»T.
n<=m|n=m»T.
n > m | n size = m size & first digit of n = first digit of m
»: (remove zeros from left of (n without first digit)) =
(remove zeros from left of (m without first digit)).
n==m»n>m.
n==m|n=m=»Tn>=m|n=m=»T.
n=d=»T.n=m> (n-m) =0.
0=0=»F.n=0=2F.n<=m|n=m»T.

Figure 36. Comparison of natural numbers.

A Language Based on Two Relations between Symbols

Section name is Construction of Numbers.
w size = calculate w size.
first 1 digits of w > w first character.
n with 0 zeros » n.
first m digits of w
3 (\'_l f.irst character)
join
{first {m - 1) digits of (w without first character)).
remove zeros from left of w
| w first character =0
»: remove zeros from left of (w without first character).
n without ones
= n without last character.
0 joined with n, » n.
nsize = 1 + ((n without ones) size).
+ size» 1,
n joined with m »: n join m.
n last digit » n last character.
natural without |ast digit » natural without last character.
n without first digit = n without first character.
last m digits of w =
(last {m - 1) digits of (w without last character))
oin
j(w last character).
tens of d = 0.
digit size » 1.
last 1 digits of w > w last character.
n with m zeros »: (n joined with 0) with (m - 1) zeros.
n without last digit »» n without last character.
tens of n » unity of n without last digit.
remove zeros from left of w > w.
remove zeros from left of w
| w first character =0
=: remove zeros from left of (w without first character).
unity of n » n last digit.
remove zeros from left of 0 = 0.
first digit of n > n first character.
n without unity » n without last digit.
ones of n > n last character.
calculate size » 0.
calculate w size
»=: 1 + (calculate (w without last character) size).
natural last digit > natural last character.

Figure 37. Auxiliary relationships linked to properties of
natural numbers as well as to their construction.

Section name is Greatest Common Divisor.
GCD n m with remainder 0 = m.
GCD n m =: GCD n m with remainder (n %\ m).
GCD n m with remainder n’

»: GCD m n' with remainder (m Y\ n').

Figure 38. Greatest Common Divisor

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Section name is Quotient & Remainder.
quotient of n + f>n.
reminder of n + f when m is the divisor
» reminder of f when m is the divisor.
quotient of n» n.
reminder of f when m is the divisor | f denominator = m
» f numerator.
quotient of f» 0.
n /f m »: quotient of (n + m).
reminder of f when m is the divisor
»: (f numerator) - (m = (f denominator)).
n W\ m =: reminder of {(n + m) when m is the divisor.
reminder of n when m is the divisor = 0.

Figure 39. Quotient and remainder

Topic name is Numbers-Fractions.
PositiveFraction definition by construction: R / Rd.
PositiveFraction ~f.
NegativeFraction = nf'.
NegativeFraction = Fraction.
PositiveFraction ~ Fraction.
NegativeFraction = nf.
PositiveFraction ~ f'.
NegativeFraction definition by construction:
- PositiveFraction.

Section name is +.
f + £ = ((((f numerator)-(f denominator))
+ ((f numerator)-(f denominator)))
{ ((f denominator)-(f denominator))) as fraction.

Section name is -.
nf - nf* »: nf + (negate nf').
f = »: ((((f numerator)-(f denominator))
= ((f" numerator)-(f denominator)))
{ ((f denominator)-(f denominator))) as fraction.
negate nf » nf without first character.

Section name is -.
f % £ »: ((f numerator)-(f numerator))

+ ({f denominator)-(f* denominator)).
f- f = ((f numerator):(f numerator))

{ ((f denominator)-(f denominator)).

Section name is +.
f/ £ = (((f numerator)-(f denominator))

{ ((f denominator)-(f' numerator))) as fraction.
f = f »: (((f numerator)-(f denominator))

{ ((f denominator)-(f numerator))) as fraction.

Section name is Converting.
n as fraction » n|
f as fraction = f.
n + f as fraction =: ((n - (f denominator)) +
{f numerator)) join / join (f denominator).
z as fraction = z

Section name is Numerator & Denominator.
extract denominator from n = n.
extract numerator from w »:
extract numerator from (w without last character).
extract numerator from n » n.
f denominator » extract denominator from f.
extract denominator from w =
extract denominator from (w without first character).
f numerator » extract numerator from f.

Figure 40. Fractions.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand

Section name is Reducing.
m + ncan reduce »: (GCD mm) = 1.
m divided by n can reduce »: (GCD m m) > 1.
reduce fraction onn = n.
reduce n divided by m »:
(n divided by (GCD n m))

join / join (m divided by (GCD n m)).
n reduced » n.
reduce n / m»: (n + (GCDn m)) join / join (m + (GCD n m)).
reduce n + m»: (n + (GCD n m)) join / join (m <+ (GCD n m)).

reduce fractononn /m=: (n + (GCD n m))/ (m + (GCD n m)).

reduce fractiononn +m

p#: (n+ (GCD n m)) = (m + (GCD n m)).
phrase - f | f can reduce »: phrase - (f reduced).
reduce fraction on n divided by m >

(n dividedet‘?l (GCD nm))

divided by (m divided by (GCD n m)).

reduce fraction on f = f reduced.
f can reduce =: (GCD (f numerator) (f denominator)) = 1.
phrase + f | f can reduce »: phrase + (f reduced).
freduced =: reduce (f numerator) / (f denominator).
reduce fraction on n + phrase,

»: n + reduce fraction on phrase.
phrase - f | f can reduce »: phrase - (f reduced).
phrase + f | f can reduce »: phrase + (f reduced).

Figure 41. Simplifying fractions.

Agustin Rafael Martinez

Topic name is Numbers-Z.

>z,

Negative definition by construction: - R
Negative * neg.

Z ~integer.

£ >z

Negative ~ neg'.

Negative ~ Z.

R~ Z,

Section name is +.

neg + neg' »: - join (jneg| + |neg’|).
neg + n> n- |neg|.

n + neg > n- |neg|.

Section name is -.

n- neg > n + |neg|.
0-n>-join n.

neg - neg' » neg + |neg'|.
neg - n > - join {(|neg| + n).
m-n|m<n>:-join (n-m).
- neg = |neg|.

Section name is -.

neg - neg' = |neg| - neg'k.
n- neg > -juinafn . |neg| .
Zk ' z-2.

neg- n »n - neg.

Section name is +.

neg / n »: - join {|neg| / n).

neg + n»: negate (reduce fraction on (|neg| + n)).
neg / neg' » |neg| / |neg’|.

n/ neg »: - join (n / [neg|).

neg + neg' » |neg| <+ |neg'|.

n + neg »: negate (n + |neg|).

Section name is Construction.

- join neg = |neg)|.

== n»: - (- join n).

Section name is Module.
|neg| »» neg without first character.

Figure 42. Integers

