
FWAM Session B: Function Approximation and
Differential Equations

Alex Barnett1 and Keaton Burns2

Wednesday afternoon, 10/30/19

1Center for Computational Mathematics, Flatiron Institute
2Center for Computational Astrophysics, Flatiron Institute, and Department of

Mathematics, MIT

LECTURE 1

interpolation, integration, differentiation, spectral methods

Goals and plan

Overall: graph of f (x) needs ∞ number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

� Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f (xj) at some xj , model f (x) at other points x?

App: cheap but accurate “look-up table” for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

� Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang’s talk)

� Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Key concepts:
convergence rate, degree of smoothness of f , global vs local,
spectral methods, adaptivity, rounding error & catastrophic cancellation

Plus: good 1D tools, pointers to codes, higher dim methods, opinions!

Goals and plan

Overall: graph of f (x) needs ∞ number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

� Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f (xj) at some xj , model f (x) at other points x?

App: cheap but accurate “look-up table” for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

� Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang’s talk)

� Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Key concepts:
convergence rate, degree of smoothness of f , global vs local,
spectral methods, adaptivity, rounding error & catastrophic cancellation

Plus: good 1D tools, pointers to codes, higher dim methods, opinions!

Goals and plan

Overall: graph of f (x) needs ∞ number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

� Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f (xj) at some xj , model f (x) at other points x?

App: cheap but accurate “look-up table” for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

� Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang’s talk)

� Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Key concepts:
convergence rate, degree of smoothness of f , global vs local,
spectral methods, adaptivity, rounding error & catastrophic cancellation

Plus: good 1D tools, pointers to codes, higher dim methods, opinions!

Goals and plan

Overall: graph of f (x) needs ∞ number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

� Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f (xj) at some xj , model f (x) at other points x?

App: cheap but accurate “look-up table” for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

� Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang’s talk)

� Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Key concepts:
convergence rate, degree of smoothness of f , global vs local,
spectral methods, adaptivity, rounding error & catastrophic cancellation

Plus: good 1D tools, pointers to codes, higher dim methods, opinions!

Interpolation in 1D (d = 1)
Say yj = f (xj) known at nodes {xj} N-pt “grid”

note: exact data, not noisy

want interpolant f̃ (x), s.t. f̃ (xj) = yj

hopeless w/o assumptions on f , eg smoothness, otherwise. . .
• extra info helps, eg f periodic, or f (x) = smooth · |x |−1/2

Simplest: use value at xj nearest to x
“snap to grid”

Error maxx |f̃ (x)− f (x)| = O(h) as h→ 0
holds if f ′ bounded; ie f can be nonsmooth but not crazy

Recap notation “O(h)”: exists C , h0 s.t. error ≤ Ch for all 0 < h < h0

Piecewise linear: “connect the dots”

max error = O(h2) as h→ 0
needs f ′′ bounded, ie smoother than before

Message: a higher order method is only higher order if f smooth enough

Interpolation in 1D (d = 1)
Say yj = f (xj) known at nodes {xj} N-pt “grid”

note: exact data, not noisy

want interpolant f̃ (x), s.t. f̃ (xj) = yj

hopeless w/o assumptions on f , eg smoothness, otherwise. . .
• extra info helps, eg f periodic, or f (x) = smooth · |x |−1/2

Simplest: use value at xj nearest to x
“snap to grid”

Error maxx |f̃ (x)− f (x)| = O(h) as h→ 0
holds if f ′ bounded; ie f can be nonsmooth but not crazy

Recap notation “O(h)”: exists C , h0 s.t. error ≤ Ch for all 0 < h < h0

Piecewise linear: “connect the dots”

max error = O(h2) as h→ 0
needs f ′′ bounded, ie smoother than before

Message: a higher order method is only higher order if f smooth enough

Interpolation in 1D (d = 1)
Say yj = f (xj) known at nodes {xj} N-pt “grid”

note: exact data, not noisy

want interpolant f̃ (x), s.t. f̃ (xj) = yj

hopeless w/o assumptions on f , eg smoothness, otherwise. . .
• extra info helps, eg f periodic, or f (x) = smooth · |x |−1/2

Simplest: use value at xj nearest to x
“snap to grid”

Error maxx |f̃ (x)− f (x)| = O(h) as h→ 0
holds if f ′ bounded; ie f can be nonsmooth but not crazy

Recap notation “O(h)”: exists C , h0 s.t. error ≤ Ch for all 0 < h < h0

Piecewise linear: “connect the dots”

max error = O(h2) as h→ 0
needs f ′′ bounded, ie smoother than before

Message: a higher order method is only higher order if f smooth enough

Interpolation in 1D (d = 1)
Say yj = f (xj) known at nodes {xj} N-pt “grid”

note: exact data, not noisy

want interpolant f̃ (x), s.t. f̃ (xj) = yj

hopeless w/o assumptions on f , eg smoothness, otherwise. . .
• extra info helps, eg f periodic, or f (x) = smooth · |x |−1/2

Simplest: use value at xj nearest to x
“snap to grid”

Error maxx |f̃ (x)− f (x)| = O(h) as h→ 0
holds if f ′ bounded; ie f can be nonsmooth but not crazy

Recap notation “O(h)”: exists C , h0 s.t. error ≤ Ch for all 0 < h < h0

Piecewise linear: “connect the dots”

max error = O(h2) as h→ 0
needs f ′′ bounded, ie smoother than before

Message: a higher order method is only higher order if f smooth enough

Interlude: convergence rates

Should know or measure convergence rate of any method you use
• “effort” parameter N eg # grid-points = 1/hd where h = grid spacing, d = dim

We just saw algebraic conv. error = O(N−p), for order p = 1, 2

There’s only one graph in numerical analysis: “relative error vs effort”

Note how spectral gets many digits for small N crucial for eg 3D prob.

“spectral” = “superalgebraic”, beats O(N−p) for any p

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
How big is prefactor C in error ≤ Chp ? Has asymp. rate even kicked in yet? :)

Interlude: convergence rates

Should know or measure convergence rate of any method you use
• “effort” parameter N eg # grid-points = 1/hd where h = grid spacing, d = dim

We just saw algebraic conv. error = O(N−p), for order p = 1, 2

There’s only one graph in numerical analysis: “relative error vs effort”

Note how spectral gets many digits for small N crucial for eg 3D prob.

“spectral” = “superalgebraic”, beats O(N−p) for any p

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
How big is prefactor C in error ≤ Chp ? Has asymp. rate even kicked in yet? :)

Interlude: convergence rates

Should know or measure convergence rate of any method you use
• “effort” parameter N eg # grid-points = 1/hd where h = grid spacing, d = dim

We just saw algebraic conv. error = O(N−p), for order p = 1, 2

There’s only one graph in numerical analysis: “relative error vs effort”

Note how spectral gets many digits for small N crucial for eg 3D prob.

“spectral” = “superalgebraic”, beats O(N−p) for any p

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
How big is prefactor C in error ≤ Chp ? Has asymp. rate even kicked in yet? :)

Interlude: convergence rates

Should know or measure convergence rate of any method you use
• “effort” parameter N eg # grid-points = 1/hd where h = grid spacing, d = dim

We just saw algebraic conv. error = O(N−p), for order p = 1, 2

There’s only one graph in numerical analysis: “relative error vs effort”

Note how spectral gets many digits for small N crucial for eg 3D prob.

“spectral” = “superalgebraic”, beats O(N−p) for any p

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
How big is prefactor C in error ≤ Chp ? Has asymp. rate even kicked in yet? :)

Interlude: convergence rates

Should know or measure convergence rate of any method you use
• “effort” parameter N eg # grid-points = 1/hd where h = grid spacing, d = dim

We just saw algebraic conv. error = O(N−p), for order p = 1, 2

There’s only one graph in numerical analysis: “relative error vs effort”

Note how spectral gets many digits for small N crucial for eg 3D prob.

“spectral” = “superalgebraic”, beats O(N−p) for any p

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
How big is prefactor C in error ≤ Chp ? Has asymp. rate even kicked in yet? :)

Higher-order interpolation for smooth f : the local idea

Pick a p, eg 6. For any target x , use only the nearest p nodes:

Exists unique degree-(p−1) poly,
∑p−1

k=0 ckx
k

which matches local data (xj , yj)
p
j=1

generalizes piecewise lin. idea

do not eval poly outside its central region!

• error O(hp), ie high order, but f̃ not continuous (f̃ /∈ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: f̃ ∈ C 2, meaning f̃ ′′ is cont.

How to find this degree-(p−1) poly?
1) crafty: solve square lin sys for coeffs

∑
k<p x

k
j ck = yj j = 1, . . . , p

ie, V c = y V =”Vandermonde” matrix, is ill-cond. but works

2) traditional: barycentric formula f̃ (x) =

∑p
j=1

yj

x−xj
wj∑p

j=1
1

x−xj
wj

wj = 1∏
i 6=j (xj−xi)

[Tre13, Ch. 5]

Either way, f̃ (x) =
∑p

j=1 yj`j (x) where `j (x) is jth Lagrange basis func:

Higher-order interpolation for smooth f : the local idea

Pick a p, eg 6. For any target x , use only the nearest p nodes:

Exists unique degree-(p−1) poly,
∑p−1

k=0 ckx
k

which matches local data (xj , yj)
p
j=1

generalizes piecewise lin. idea

do not eval poly outside its central region!

• error O(hp), ie high order, but f̃ not continuous (f̃ /∈ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: f̃ ∈ C 2, meaning f̃ ′′ is cont.

How to find this degree-(p−1) poly?
1) crafty: solve square lin sys for coeffs

∑
k<p x

k
j ck = yj j = 1, . . . , p

ie, V c = y V =”Vandermonde” matrix, is ill-cond. but works

2) traditional: barycentric formula f̃ (x) =

∑p
j=1

yj

x−xj
wj∑p

j=1
1

x−xj
wj

wj = 1∏
i 6=j (xj−xi)

[Tre13, Ch. 5]

Either way, f̃ (x) =
∑p

j=1 yj`j (x) where `j (x) is jth Lagrange basis func:

Higher-order interpolation for smooth f : the local idea

Pick a p, eg 6. For any target x , use only the nearest p nodes:

Exists unique degree-(p−1) poly,
∑p−1

k=0 ckx
k

which matches local data (xj , yj)
p
j=1

generalizes piecewise lin. idea

do not eval poly outside its central region!

• error O(hp), ie high order, but f̃ not continuous (f̃ /∈ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: f̃ ∈ C 2, meaning f̃ ′′ is cont.

How to find this degree-(p−1) poly?
1) crafty: solve square lin sys for coeffs

∑
k<p x

k
j ck = yj j = 1, . . . , p

ie, V c = y V =”Vandermonde” matrix, is ill-cond. but works

2) traditional: barycentric formula f̃ (x) =

∑p
j=1

yj

x−xj
wj∑p

j=1
1

x−xj
wj

wj = 1∏
i 6=j (xj−xi)

[Tre13, Ch. 5]

Either way, f̃ (x) =
∑p

j=1 yj`j (x) where `j (x) is jth Lagrange basis func:

Higher-order interpolation for smooth f : the local idea

Pick a p, eg 6. For any target x , use only the nearest p nodes:

Exists unique degree-(p−1) poly,
∑p−1

k=0 ckx
k

which matches local data (xj , yj)
p
j=1

generalizes piecewise lin. idea

do not eval poly outside its central region!

• error O(hp), ie high order, but f̃ not continuous (f̃ /∈ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: f̃ ∈ C 2, meaning f̃ ′′ is cont.

How to find this degree-(p−1) poly?
1) crafty: solve square lin sys for coeffs

∑
k<p x

k
j ck = yj j = 1, . . . , p

ie, V c = y V =”Vandermonde” matrix, is ill-cond. but works

2) traditional: barycentric formula f̃ (x) =

∑p
j=1

yj

x−xj
wj∑p

j=1
1

x−xj
wj

wj = 1∏
i 6=j (xj−xi)

[Tre13, Ch. 5]

Either way, f̃ (x) =
∑p

j=1 yj`j (x) where `j (x) is jth Lagrange basis func:

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single f̃ (x), so p = N? “global”

p = N = 32, smooth (analytic) f (x) = 1
1+9x2 on [−1, 1] : (Runge 1901)

• warning: unif. grid, global interp. fails → only use locally in central region

But exists good choice of nodes. . .

“Chebychev”: means non-unif. grid density ∼ 1√
1−x2

• our first spectral method
max err = O(ρ−N) exponential conv!

ρ > 1 “radius” of largest ellipse in which f analytic

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single f̃ (x), so p = N? “global”

p = N = 32, smooth (analytic) f (x) = 1
1+9x2 on [−1, 1] : (Runge 1901)

• warning: unif. grid, global interp. fails → only use locally in central region

But exists good choice of nodes. . .

“Chebychev”: means non-unif. grid density ∼ 1√
1−x2

• our first spectral method
max err = O(ρ−N) exponential conv!

ρ > 1 “radius” of largest ellipse in which f analytic

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single f̃ (x), so p = N? “global”

p = N = 32, smooth (analytic) f (x) = 1
1+9x2 on [−1, 1] : (Runge 1901)

• warning: unif. grid, global interp. fails → only use locally in central region

But exists good choice of nodes. . .

“Chebychev”: means non-unif. grid density ∼ 1√
1−x2

• our first spectral method
max err = O(ρ−N) exponential conv!

ρ > 1 “radius” of largest ellipse in which f analytic

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single f̃ (x), so p = N? “global”

p = N = 32, smooth (analytic) f (x) = 1
1+9x2 on [−1, 1] : (Runge 1901)

• warning: unif. grid, global interp. fails → only use locally in central region

But exists good choice of nodes. . .

“Chebychev”: means non-unif. grid density ∼ 1√
1−x2

• our first spectral method
max err = O(ρ−N) exponential conv!

ρ > 1 “radius” of largest ellipse in which f analytic

Node choice and adaptivity

Recap: poly approx. f (x) on [a, b]: exist good & bad node sets {xj}N
j=1

Question: Do you get to choose the set of nodes at which f known?

• data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)

use local poly (central region only!), or something stable (eg splines) [GC12]

• almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere

0 0.2 0.4 0.6 0.8 1
0

1

2

small panels big panels

automatically split
(recursively) panels
until max err ≤ ε
via test for local error

1D adaptive interpolator codes to try:
• github:dbstein/function generator py+numba, fast (Stein ’19)

• chebfun for MATLAB big-N Cheb. grids done via FFTs! (Trefethen et al.)

App.: replace nasty expensive f (x) by cheap one! optimal “look-up table”

Node choice and adaptivity

Recap: poly approx. f (x) on [a, b]: exist good & bad node sets {xj}N
j=1

Question: Do you get to choose the set of nodes at which f known?

• data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)

use local poly (central region only!), or something stable (eg splines) [GC12]

• almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere

0 0.2 0.4 0.6 0.8 1
0

1

2

small panels big panels

automatically split
(recursively) panels
until max err ≤ ε
via test for local error

1D adaptive interpolator codes to try:
• github:dbstein/function generator py+numba, fast (Stein ’19)

• chebfun for MATLAB big-N Cheb. grids done via FFTs! (Trefethen et al.)

App.: replace nasty expensive f (x) by cheap one! optimal “look-up table”

Node choice and adaptivity

Recap: poly approx. f (x) on [a, b]: exist good & bad node sets {xj}N
j=1

Question: Do you get to choose the set of nodes at which f known?

• data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)

use local poly (central region only!), or something stable (eg splines) [GC12]

• almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere

0 0.2 0.4 0.6 0.8 1
0

1

2

local rapid change, wacky big region of smooth, boring

0 0.2 0.4 0.6 0.8 1
0

1

2

small panels big panels

automatically split
(recursively) panels
until max err ≤ ε
via test for local error

1D adaptive interpolator codes to try:
• github:dbstein/function generator py+numba, fast (Stein ’19)

• chebfun for MATLAB big-N Cheb. grids done via FFTs! (Trefethen et al.)

App.: replace nasty expensive f (x) by cheap one! optimal “look-up table”

Node choice and adaptivity

Recap: poly approx. f (x) on [a, b]: exist good & bad node sets {xj}N
j=1

Question: Do you get to choose the set of nodes at which f known?

• data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)

use local poly (central region only!), or something stable (eg splines) [GC12]

• almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere

0 0.2 0.4 0.6 0.8 1
0

1

2

small panels big panels

automatically split
(recursively) panels
until max err ≤ ε
via test for local error

1D adaptive interpolator codes to try:
• github:dbstein/function generator py+numba, fast (Stein ’19)

• chebfun for MATLAB big-N Cheb. grids done via FFTs! (Trefethen et al.)

App.: replace nasty expensive f (x) by cheap one! optimal “look-up table”

Global interpolation of periodic functions I

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f (x + 2π) = f (x) for all x , f (x) =
∑

n∈Z f̂ke
ikx Fourier series

Instead of poly’s, use truncated series f̃ (x) =
∑
|k|<N/2 cke

ikx “trig. poly”

What’s best you can do?
get N coeffs right ck = f̂k

error∼ size of tail {f̂k}|k|≥N/2

How read off ck from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N3) effort

Uniform grid xj = 2πj
N , set ck = 1

N

∑N
j=1 e

ikxj f (xj) simply c = FFT [f]

easy to show ck = · · ·+ f̂k−N + f̂k + f̂k+N + f̂k+2N + . . .
= f̂k desired +

∑
m 6=0 f̂k+mN aliasing error, small if tail small

Summary: given N samples f (xj), interp. error = truncation + aliasing

a crude bound is max
x∈[0,2π)

|f̃ (x)− f (x)| ≤ 2
∑
|k|≥N/2

|f̂k |

ie error controlled by sum of tail

Global interpolation of periodic functions I

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f (x + 2π) = f (x) for all x , f (x) =
∑

n∈Z f̂ke
ikx Fourier series

Instead of poly’s, use truncated series f̃ (x) =
∑
|k|<N/2 cke

ikx “trig. poly”

What’s best you can do?
get N coeffs right ck = f̂k

error∼ size of tail {f̂k}|k|≥N/2

How read off ck from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N3) effort

Uniform grid xj = 2πj
N , set ck = 1

N

∑N
j=1 e

ikxj f (xj) simply c = FFT [f]

easy to show ck = · · ·+ f̂k−N + f̂k + f̂k+N + f̂k+2N + . . .
= f̂k desired +

∑
m 6=0 f̂k+mN aliasing error, small if tail small

Summary: given N samples f (xj), interp. error = truncation + aliasing

a crude bound is max
x∈[0,2π)

|f̃ (x)− f (x)| ≤ 2
∑
|k|≥N/2

|f̂k |

ie error controlled by sum of tail

Global interpolation of periodic functions I

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f (x + 2π) = f (x) for all x , f (x) =
∑

n∈Z f̂ke
ikx Fourier series

Instead of poly’s, use truncated series f̃ (x) =
∑
|k|<N/2 cke

ikx “trig. poly”

What’s best you can do?
get N coeffs right ck = f̂k

error∼ size of tail {f̂k}|k|≥N/2

How read off ck from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N3) effort

Uniform grid xj = 2πj
N , set ck = 1

N

∑N
j=1 e

ikxj f (xj) simply c = FFT [f]

easy to show ck = · · ·+ f̂k−N + f̂k + f̂k+N + f̂k+2N + . . .
= f̂k desired +

∑
m 6=0 f̂k+mN aliasing error, small if tail small

Summary: given N samples f (xj), interp. error = truncation + aliasing

a crude bound is max
x∈[0,2π)

|f̃ (x)− f (x)| ≤ 2
∑
|k|≥N/2

|f̂k |

ie error controlled by sum of tail

Global interpolation of periodic functions I

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f (x + 2π) = f (x) for all x , f (x) =
∑

n∈Z f̂ke
ikx Fourier series

Instead of poly’s, use truncated series f̃ (x) =
∑
|k|<N/2 cke

ikx “trig. poly”

What’s best you can do?
get N coeffs right ck = f̂k

error∼ size of tail {f̂k}|k|≥N/2

How read off ck from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N3) effort

Uniform grid xj = 2πj
N , set ck = 1

N

∑N
j=1 e

ikxj f (xj) simply c = FFT [f]

easy to show ck = · · ·+ f̂k−N + f̂k + f̂k+N + f̂k+2N + . . .
= f̂k desired +

∑
m 6=0 f̂k+mN aliasing error, small if tail small

Summary: given N samples f (xj), interp. error = truncation + aliasing

a crude bound is max
x∈[0,2π)

|f̃ (x)− f (x)| ≤ 2
∑
|k|≥N/2

|f̂k |

ie error controlled by sum of tail

Global interpolation of periodic functions I

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f (x + 2π) = f (x) for all x , f (x) =
∑

n∈Z f̂ke
ikx Fourier series

Instead of poly’s, use truncated series f̃ (x) =
∑
|k|<N/2 cke

ikx “trig. poly”

What’s best you can do?
get N coeffs right ck = f̂k

error∼ size of tail {f̂k}|k|≥N/2

How read off ck from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N3) effort

Uniform grid xj = 2πj
N , set ck = 1

N

∑N
j=1 e

ikxj f (xj) simply c = FFT [f]

easy to show ck = · · ·+ f̂k−N + f̂k + f̂k+N + f̂k+2N + . . .
= f̂k desired +

∑
m 6=0 f̂k+mN aliasing error, small if tail small

Summary: given N samples f (xj), interp. error = truncation + aliasing

a crude bound is max
x∈[0,2π)

|f̃ (x)− f (x)| ≤ 2
∑
|k|≥N/2

|f̂k |

ie error controlled by sum of tail

Global interpolation of periodic functions I

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f (x + 2π) = f (x) for all x , f (x) =
∑

n∈Z f̂ke
ikx Fourier series

Instead of poly’s, use truncated series f̃ (x) =
∑
|k|<N/2 cke

ikx “trig. poly”

What’s best you can do?
get N coeffs right ck = f̂k

error∼ size of tail {f̂k}|k|≥N/2

How read off ck from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N3) effort

Uniform grid xj = 2πj
N , set ck = 1

N

∑N
j=1 e

ikxj f (xj) simply c = FFT [f]

easy to show ck = · · ·+ f̂k−N + f̂k + f̂k+N + f̂k+2N + . . .
= f̂k desired +

∑
m 6=0 f̂k+mN aliasing error, small if tail small

Summary: given N samples f (xj), interp. error = truncation + aliasing

a crude bound is max
x∈[0,2π)

|f̃ (x)− f (x)| ≤ 2
∑
|k|≥N/2

|f̂k |

ie error controlled by sum of tail

Global interpolation of periodic functions II

As grow grid N, how accurate is it? just derived err ∼ sum of |f̂k | in tail |k| ≥ N/2

Now f̂k = 1
2π

∫ 2π
0 f (x)e−ikx dx = 1

2π

∫ 2π
0 f (p)(x) e−ikx

(ik)p dx integr. by parts p times

So for a periodic f ∈ Cp, recall first p derivs of f bounded

f̂k = O(k−p), tail sum O(N1−p) (p−1)th order acc. (better: [Tre00])

Example of: f smoother ↔ faster f̂k tail decay ↔ faster convergence

Even smoother case: f analytic, so f (x) analytic in some complex strip | Im x | ≤ α
then f̂k = O(e−α|k|), exp. conv. O(e−αN/2) (fun proof: shift the contour)

as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with f̂k = 0, |k | > kmax,
then interpolant exact once N > 2kmax

That’s theory. In real life you always measure your conv. order/rate!

Messages:
• f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
• key to spectral methods. FFT cost O(N log N) swaps from f (xj) grid to f̂k
Fourier coeffs

Global interpolation of periodic functions II

As grow grid N, how accurate is it? just derived err ∼ sum of |f̂k | in tail |k| ≥ N/2

Now f̂k = 1
2π

∫ 2π
0 f (x)e−ikx dx = 1

2π

∫ 2π
0 f (p)(x) e−ikx

(ik)p dx integr. by parts p times

So for a periodic f ∈ Cp, recall first p derivs of f bounded

f̂k = O(k−p), tail sum O(N1−p) (p−1)th order acc. (better: [Tre00])

Example of: f smoother ↔ faster f̂k tail decay ↔ faster convergence

Even smoother case: f analytic, so f (x) analytic in some complex strip | Im x | ≤ α
then f̂k = O(e−α|k|), exp. conv. O(e−αN/2) (fun proof: shift the contour)

as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with f̂k = 0, |k | > kmax,
then interpolant exact once N > 2kmax

That’s theory. In real life you always measure your conv. order/rate!

Messages:
• f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
• key to spectral methods. FFT cost O(N log N) swaps from f (xj) grid to f̂k
Fourier coeffs

Global interpolation of periodic functions II

As grow grid N, how accurate is it? just derived err ∼ sum of |f̂k | in tail |k| ≥ N/2

Now f̂k = 1
2π

∫ 2π
0 f (x)e−ikx dx = 1

2π

∫ 2π
0 f (p)(x) e−ikx

(ik)p dx integr. by parts p times

So for a periodic f ∈ Cp, recall first p derivs of f bounded

f̂k = O(k−p), tail sum O(N1−p) (p−1)th order acc. (better: [Tre00])

Example of: f smoother ↔ faster f̂k tail decay ↔ faster convergence

Even smoother case: f analytic, so f (x) analytic in some complex strip | Im x | ≤ α
then f̂k = O(e−α|k|), exp. conv. O(e−αN/2) (fun proof: shift the contour)

as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with f̂k = 0, |k | > kmax,
then interpolant exact once N > 2kmax

That’s theory. In real life you always measure your conv. order/rate!

Messages:
• f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
• key to spectral methods. FFT cost O(N log N) swaps from f (xj) grid to f̂k
Fourier coeffs

Global interpolation of periodic functions II

As grow grid N, how accurate is it? just derived err ∼ sum of |f̂k | in tail |k| ≥ N/2

Now f̂k = 1
2π

∫ 2π
0 f (x)e−ikx dx = 1

2π

∫ 2π
0 f (p)(x) e−ikx

(ik)p dx integr. by parts p times

So for a periodic f ∈ Cp, recall first p derivs of f bounded

f̂k = O(k−p), tail sum O(N1−p) (p−1)th order acc. (better: [Tre00])

Example of: f smoother ↔ faster f̂k tail decay ↔ faster convergence

Even smoother case: f analytic, so f (x) analytic in some complex strip | Im x | ≤ α
then f̂k = O(e−α|k|), exp. conv. O(e−αN/2) (fun proof: shift the contour)

as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with f̂k = 0, |k | > kmax,
then interpolant exact once N > 2kmax

That’s theory. In real life you always measure your conv. order/rate!

Messages:
• f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
• key to spectral methods. FFT cost O(N log N) swaps from f (xj) grid to f̂k
Fourier coeffs

Global interpolation of periodic functions II

As grow grid N, how accurate is it? just derived err ∼ sum of |f̂k | in tail |k| ≥ N/2

Now f̂k = 1
2π

∫ 2π
0 f (x)e−ikx dx = 1

2π

∫ 2π
0 f (p)(x) e−ikx

(ik)p dx integr. by parts p times

So for a periodic f ∈ Cp, recall first p derivs of f bounded

f̂k = O(k−p), tail sum O(N1−p) (p−1)th order acc. (better: [Tre00])

Example of: f smoother ↔ faster f̂k tail decay ↔ faster convergence

Even smoother case: f analytic, so f (x) analytic in some complex strip | Im x | ≤ α
then f̂k = O(e−α|k|), exp. conv. O(e−αN/2) (fun proof: shift the contour)

as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with f̂k = 0, |k | > kmax,
then interpolant exact once N > 2kmax

That’s theory. In real life you always measure your conv. order/rate!

Messages:
• f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
• key to spectral methods. FFT cost O(N log N) swaps from f (xj) grid to f̂k
Fourier coeffs

Flavor of interpolation in higher dims d > 1

If you can choose the nodes:

tensor product of 1D grids
either global
or adaptively refined boxes

periodic, global adaptive p = 6× 6 Cheby

If cannot choose the nodes: interp. f (x) from scattered data {xi} is hard

eg google terrain: f (x) rough → garbage:

But if know f smooth:
locally fit multivariate polynomials

If also data noisy, many methods:
kriging (Gauss. proc.), NUFFT, RBF. . .

If also high dim d � 1:
tensor train, neural networks. . .

Flavor of interpolation in higher dims d > 1

If you can choose the nodes:

tensor product of 1D grids
either global
or adaptively refined boxes

periodic, global adaptive p = 6× 6 Cheby

If cannot choose the nodes: interp. f (x) from scattered data {xi} is hard

eg google terrain: f (x) rough → garbage:

But if know f smooth:
locally fit multivariate polynomials

If also data noisy, many methods:
kriging (Gauss. proc.), NUFFT, RBF. . .

If also high dim d � 1:
tensor train, neural networks. . .

Flavor of interpolation in higher dims d > 1

If you can choose the nodes:

tensor product of 1D grids
either global
or adaptively refined boxes

periodic, global adaptive p = 6× 6 Cheby

If cannot choose the nodes: interp. f (x) from scattered data {xi} is hard

eg google terrain: f (x) rough → garbage:

But if know f smooth:
locally fit multivariate polynomials

If also data noisy, many methods:
kriging (Gauss. proc.), NUFFT, RBF. . .

If also high dim d � 1:
tensor train, neural networks. . .

Numerical integration (back to d = 1)

Task: eval.
∫ b

a f (x)dx accurately w/ least number of func. evals, N

“quadrature”: nodes {xj}, weights {wj}, s.t.
∫ b

a f (x)dx ≈
∑N

j=1 wj f (xj)

Idea: get interpolant f̃ thru data f (xj) → integrate that exactly
“intepolatory quadrature”

Examples:
• local piecewise linear → composite trapezoid rule

wj = h except h/2 at ends. low-order, err O(N−2), avoid!

• N-node global poly → gives {wj} integrating degree N−1 exactly
f analytic: err O(ρ−N) solve lin sys V Tw = {

∫ b
a xk dx}N−1

k=0 (Newton–Cotes)

• better: “Gaussian” {xj ,wj} integrates deg. 2N−1 exactly! err O(ρ−2N)

Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

• periodic case: xj = 2πj
N , wj = 2π

N excellent “periodic trap. rule”

easy to check integrates e ikx exactly for |k| < N, “Gaussian”

f analytic in | Im x | < α gives exp. conv. O(e−αN), twice as good as interp!

demo: N=14; sum(exp(cos(2*pi*(1:N)/N)))/N - besseli(0,1)

ans = 1.3e-15

Numerical integration (back to d = 1)

Task: eval.
∫ b

a f (x)dx accurately w/ least number of func. evals, N

“quadrature”: nodes {xj}, weights {wj}, s.t.
∫ b

a f (x)dx ≈
∑N

j=1 wj f (xj)

Idea: get interpolant f̃ thru data f (xj) → integrate that exactly
“intepolatory quadrature”Examples:

• local piecewise linear → composite trapezoid rule
wj = h except h/2 at ends. low-order, err O(N−2), avoid!

• N-node global poly → gives {wj} integrating degree N−1 exactly
f analytic: err O(ρ−N) solve lin sys V Tw = {

∫ b
a xk dx}N−1

k=0 (Newton–Cotes)

• better: “Gaussian” {xj ,wj} integrates deg. 2N−1 exactly! err O(ρ−2N)

Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

• periodic case: xj = 2πj
N , wj = 2π

N excellent “periodic trap. rule”

easy to check integrates e ikx exactly for |k| < N, “Gaussian”

f analytic in | Im x | < α gives exp. conv. O(e−αN), twice as good as interp!

demo: N=14; sum(exp(cos(2*pi*(1:N)/N)))/N - besseli(0,1)

ans = 1.3e-15

Numerical integration (back to d = 1)

Task: eval.
∫ b

a f (x)dx accurately w/ least number of func. evals, N

“quadrature”: nodes {xj}, weights {wj}, s.t.
∫ b

a f (x)dx ≈
∑N

j=1 wj f (xj)

Idea: get interpolant f̃ thru data f (xj) → integrate that exactly
“intepolatory quadrature”Examples:

• local piecewise linear → composite trapezoid rule
wj = h except h/2 at ends. low-order, err O(N−2), avoid!

• N-node global poly → gives {wj} integrating degree N−1 exactly
f analytic: err O(ρ−N) solve lin sys V Tw = {

∫ b
a xk dx}N−1

k=0 (Newton–Cotes)

• better: “Gaussian” {xj ,wj} integrates deg. 2N−1 exactly! err O(ρ−2N)

Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

• periodic case: xj = 2πj
N , wj = 2π

N excellent “periodic trap. rule”

easy to check integrates e ikx exactly for |k| < N, “Gaussian”

f analytic in | Im x | < α gives exp. conv. O(e−αN), twice as good as interp!

demo: N=14; sum(exp(cos(2*pi*(1:N)/N)))/N - besseli(0,1)

ans = 1.3e-15

Numerical integration (back to d = 1)

Task: eval.
∫ b

a f (x)dx accurately w/ least number of func. evals, N

“quadrature”: nodes {xj}, weights {wj}, s.t.
∫ b

a f (x)dx ≈
∑N

j=1 wj f (xj)

Idea: get interpolant f̃ thru data f (xj) → integrate that exactly
“intepolatory quadrature”Examples:

• local piecewise linear → composite trapezoid rule
wj = h except h/2 at ends. low-order, err O(N−2), avoid!

• N-node global poly → gives {wj} integrating degree N−1 exactly
f analytic: err O(ρ−N) solve lin sys V Tw = {

∫ b
a xk dx}N−1

k=0 (Newton–Cotes)

• better: “Gaussian” {xj ,wj} integrates deg. 2N−1 exactly! err O(ρ−2N)

Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

• periodic case: xj = 2πj
N , wj = 2π

N excellent “periodic trap. rule”

easy to check integrates e ikx exactly for |k| < N, “Gaussian”

f analytic in | Im x | < α gives exp. conv. O(e−αN), twice as good as interp!

demo: N=14; sum(exp(cos(2*pi*(1:N)/N)))/N - besseli(0,1)

ans = 1.3e-15

Advanced integration

• custom quadr. for singularity eg f (x) = smooth · |x |−1/2 (Rokhlin school)

or for arb. set of funcs. “generalized Gaussian quad.” (CCM: Manas Rachh)

• high-order end-corrections to uniform trap. rule (Alpert ’99)

• oscillatory functions: deform contour to C “numerical steepest descent”

. . .

Higher dimensions d > 1 code: integral2, etc, quadpy

For d . 5, tensor product quadr. of 1D n-node grids in each dim
other coord systems: eg sphere can use tensor product in (θ, φ). Or: iterate over dims.

adaptivity works: automatically refine boxes but soon enter research territory!∫
Ω f (x)dx in nasty domain Ω ⊂ Rd ? FEM meshing, blended conforming grids. . .

Much higher d � 1
tensor prod: exp. # f evals. N = nd kills you :(“curse of dim.”

• “sparse grids” scale better as N ∼ n(log n)d (Smolyak ’63)

• (quasi-)Monte Carlo:
∑N

j=1 f (xj), for random xj err O(N−1/2), slow conv!

importance sampling (Thurs am session), custom transformations. . .

Advanced integration

• custom quadr. for singularity eg f (x) = smooth · |x |−1/2 (Rokhlin school)

or for arb. set of funcs. “generalized Gaussian quad.” (CCM: Manas Rachh)

• high-order end-corrections to uniform trap. rule (Alpert ’99)

• oscillatory functions: deform contour to C “numerical steepest descent”

. . .

Higher dimensions d > 1 code: integral2, etc, quadpy

For d . 5, tensor product quadr. of 1D n-node grids in each dim
other coord systems: eg sphere can use tensor product in (θ, φ). Or: iterate over dims.

adaptivity works: automatically refine boxes but soon enter research territory!∫
Ω f (x)dx in nasty domain Ω ⊂ Rd ? FEM meshing, blended conforming grids. . .

Much higher d � 1
tensor prod: exp. # f evals. N = nd kills you :(“curse of dim.”

• “sparse grids” scale better as N ∼ n(log n)d (Smolyak ’63)

• (quasi-)Monte Carlo:
∑N

j=1 f (xj), for random xj err O(N−1/2), slow conv!

importance sampling (Thurs am session), custom transformations. . .

Advanced integration

• custom quadr. for singularity eg f (x) = smooth · |x |−1/2 (Rokhlin school)

or for arb. set of funcs. “generalized Gaussian quad.” (CCM: Manas Rachh)

• high-order end-corrections to uniform trap. rule (Alpert ’99)

• oscillatory functions: deform contour to C “numerical steepest descent”

. . .

Higher dimensions d > 1 code: integral2, etc, quadpy

For d . 5, tensor product quadr. of 1D n-node grids in each dim
other coord systems: eg sphere can use tensor product in (θ, φ). Or: iterate over dims.

adaptivity works: automatically refine boxes but soon enter research territory!∫
Ω f (x)dx in nasty domain Ω ⊂ Rd ? FEM meshing, blended conforming grids. . .

Much higher d � 1
tensor prod: exp. # f evals. N = nd kills you :(“curse of dim.”

• “sparse grids” scale better as N ∼ n(log n)d (Smolyak ’63)

• (quasi-)Monte Carlo:
∑N

j=1 f (xj), for random xj err O(N−1/2), slow conv!

importance sampling (Thurs am session), custom transformations. . .

Numerical differentiation
Task: given ability to eval. f (x) anywhere, how get ∇f (x) ? assume smooth

Finite differencing idea, 1D: f ′(x) = f (x+h)−f (x−h)
2h +O(h2) Taylor’s thm

“centered difference” formula

Want smallest error:
suggests taking h→ 0 ?

Let’s see how that goes. . .

10
-15

10
-10

10
-5

10
0

10
-10

10
-5

10
0

• shrinking O(h2) error gets swamped by a new growing error. . . what?
• CPU arithmetic done only to relative “rounding error” εmach ∼ 10−16

• subtracting v. close f (x + h) and f (x − h): “catastrophic cancellation”

• balance two error types: hbest ∼ ε1/3
mach ∼ 10−5

Essential reading: floating point, backward stability [GC12, Ch. 5–6] [TBI97, Ch. 12–15]

Numerical differentiation
Task: given ability to eval. f (x) anywhere, how get ∇f (x) ? assume smooth

Finite differencing idea, 1D: f ′(x) = f (x+h)−f (x−h)
2h +O(h2) Taylor’s thm

“centered difference” formula

Want smallest error:
suggests taking h→ 0 ?

Let’s see how that goes. . .

10
-15

10
-10

10
-5

10
0

10
-10

10
-5

10
0

• shrinking O(h2) error gets swamped by a new growing error. . . what?
• CPU arithmetic done only to relative “rounding error” εmach ∼ 10−16

• subtracting v. close f (x + h) and f (x − h): “catastrophic cancellation”

• balance two error types: hbest ∼ ε1/3
mach ∼ 10−5

Essential reading: floating point, backward stability [GC12, Ch. 5–6] [TBI97, Ch. 12–15]

Numerical differentiation
Task: given ability to eval. f (x) anywhere, how get ∇f (x) ? assume smooth

Finite differencing idea, 1D: f ′(x) = f (x+h)−f (x−h)
2h +O(h2) Taylor’s thm

“centered difference” formula

Want smallest error:
suggests taking h→ 0 ?

Let’s see how that goes. . .

10
-15

10
-10

10
-5

10
0

10
-10

10
-5

10
0

• shrinking O(h2) error gets swamped by a new growing error. . . what?

• CPU arithmetic done only to relative “rounding error” εmach ∼ 10−16

• subtracting v. close f (x + h) and f (x − h): “catastrophic cancellation”

• balance two error types: hbest ∼ ε1/3
mach ∼ 10−5

Essential reading: floating point, backward stability [GC12, Ch. 5–6] [TBI97, Ch. 12–15]

Numerical differentiation
Task: given ability to eval. f (x) anywhere, how get ∇f (x) ? assume smooth

Finite differencing idea, 1D: f ′(x) = f (x+h)−f (x−h)
2h +O(h2) Taylor’s thm

“centered difference” formula

Want smallest error:
suggests taking h→ 0 ?

Let’s see how that goes. . .

10
-15

10
-10

10
-5

10
0

10
-10

10
-5

10
0

• shrinking O(h2) error gets swamped by a new growing error. . . what?
• CPU arithmetic done only to relative “rounding error” εmach ∼ 10−16

• subtracting v. close f (x + h) and f (x − h): “catastrophic cancellation”

• balance two error types: hbest ∼ ε1/3
mach ∼ 10−5

Essential reading: floating point, backward stability [GC12, Ch. 5–6] [TBI97, Ch. 12–15]

High-order (better!) differentiation, d = 1

As w/ integration: get interpolant → differentiate it exactly [Tre00, Ch. 6]

Get N × N matrix D acting on func. values {f (xj)} to give {f ′(xj)}. Has simple formula

Examples:

N Chebychev nodes

in [−1, 1]

shown: max error in f ′

• for N large, the dense D is never formed, merely applied via FFT
spectral solvers for ODE/PDEs. codes: chebfun, PseudoPack, dedalus... Lecture II

High-order (better!) differentiation, d = 1

As w/ integration: get interpolant → differentiate it exactly [Tre00, Ch. 6]

Get N × N matrix D acting on func. values {f (xj)} to give {f ′(xj)}. Has simple formula

Examples:

N Chebychev nodes

in [−1, 1]

shown: max error in f ′

• for N large, the dense D is never formed, merely applied via FFT
spectral solvers for ODE/PDEs. codes: chebfun, PseudoPack, dedalus... Lecture II

Summary: we scratched the surface

Can integrate & differentiate smooth funcs given only point values f (xj)

Both follow from building a good (fast-converging) interpolant

For f smooth in 1D, can & should easily get many (10+) digits accuracy

Concepts:

convergence order/rate how much effort will you have to spend to get more digits?

smoothness smooth ⇔ fast convergence; nonsmooth needs custom methods

global (one interpolation formula/basis for the whole domain)

vs local (distinct formulae for x in different regions)

spectral method global, converge v. fast, even non-per. can exploit FFT

adaptivity auto split boxes to put nodes only where they need to be

rounding error & catastrophic cancellation how not shoot self in the foot

tensor products for 2D, 3D for higher dims: randomized/NN/TN (Th/Fr sessions)

See recommended books at end, and come discuss stuff!

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

� Finite Difference Methods For time & space.

� Finite Element Methods Very general

� Finite Volume Methods Fluids

� “Traditional” Finite Elements Mechanics

� “Modern” Finite Elements Higher order

� Spectral Methods Best accuracy for smooth solutions

� Boundary Integral Methods Linear problems w/ boundary data

Reminder of types and applications of diff. eq.

• ODEs: eg pendulum u′′(t) + sin(u(t)) = 0
Task: solve u(t) given initial conditions e.g. u(0) = 1, u′(0) = 0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

• Time-independent PDEs: eg Poisson eqn ∆u(x) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss’s law for conservative forces

u(x) is chemical concentration, gravitational/electric potential

∆u means Laplacian ∂2u/∂x2 + ∂2u/∂y2 + · · · = curvature of u

g(x) = volume source of chemical, mass or charge density

Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrödinger eqn for quantum systems: ∆ψ = (V − E)ψ

• Time-dependent PDEs: eg advection-diffusion ∂tc +∇ · (uc) = ∆c
Task: solve c(x, t) given initial & boundary conditions
Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike’s talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Reminder of types and applications of diff. eq.

• ODEs: eg pendulum u′′(t) + sin(u(t)) = 0
Task: solve u(t) given initial conditions e.g. u(0) = 1, u′(0) = 0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

• Time-independent PDEs: eg Poisson eqn ∆u(x) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss’s law for conservative forces

u(x) is chemical concentration, gravitational/electric potential

∆u means Laplacian ∂2u/∂x2 + ∂2u/∂y2 + · · · = curvature of u

g(x) = volume source of chemical, mass or charge density

Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrödinger eqn for quantum systems: ∆ψ = (V − E)ψ

• Time-dependent PDEs: eg advection-diffusion ∂tc +∇ · (uc) = ∆c
Task: solve c(x, t) given initial & boundary conditions
Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike’s talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Reminder of types and applications of diff. eq.

• ODEs: eg pendulum u′′(t) + sin(u(t)) = 0
Task: solve u(t) given initial conditions e.g. u(0) = 1, u′(0) = 0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

• Time-independent PDEs: eg Poisson eqn ∆u(x) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss’s law for conservative forces

u(x) is chemical concentration, gravitational/electric potential

∆u means Laplacian ∂2u/∂x2 + ∂2u/∂y2 + · · · = curvature of u

g(x) = volume source of chemical, mass or charge density

Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrödinger eqn for quantum systems: ∆ψ = (V − E)ψ

• Time-dependent PDEs: eg advection-diffusion ∂tc +∇ · (uc) = ∆c
Task: solve c(x, t) given initial & boundary conditions
Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike’s talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Reminder of types and applications of diff. eq.

• ODEs: eg pendulum u′′(t) + sin(u(t)) = 0
Task: solve u(t) given initial conditions e.g. u(0) = 1, u′(0) = 0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

• Time-independent PDEs: eg Poisson eqn ∆u(x) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss’s law for conservative forces

u(x) is chemical concentration, gravitational/electric potential

∆u means Laplacian ∂2u/∂x2 + ∂2u/∂y2 + · · · = curvature of u

g(x) = volume source of chemical, mass or charge density

Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrödinger eqn for quantum systems: ∆ψ = (V − E)ψ

• Time-dependent PDEs: eg advection-diffusion ∂tc +∇ · (uc) = ∆c
Task: solve c(x, t) given initial & boundary conditions
Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike’s talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Reminder of types and applications of diff. eq.

• ODEs: eg pendulum u′′(t) + sin(u(t)) = 0
Task: solve u(t) given initial conditions e.g. u(0) = 1, u′(0) = 0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

• Time-independent PDEs: eg Poisson eqn ∆u(x) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss’s law for conservative forces

u(x) is chemical concentration, gravitational/electric potential

∆u means Laplacian ∂2u/∂x2 + ∂2u/∂y2 + · · · = curvature of u

g(x) = volume source of chemical, mass or charge density

Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrödinger eqn for quantum systems: ∆ψ = (V − E)ψ

• Time-dependent PDEs: eg advection-diffusion ∂tc +∇ · (uc) = ∆c
Task: solve c(x, t) given initial & boundary conditions
Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike’s talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Reminder of types and applications of diff. eq.

• ODEs: eg pendulum u′′(t) + sin(u(t)) = 0
Task: solve u(t) given initial conditions e.g. u(0) = 1, u′(0) = 0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

• Time-independent PDEs: eg Poisson eqn ∆u(x) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss’s law for conservative forces

u(x) is chemical concentration, gravitational/electric potential

∆u means Laplacian ∂2u/∂x2 + ∂2u/∂y2 + · · · = curvature of u

g(x) = volume source of chemical, mass or charge density

Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrödinger eqn for quantum systems: ∆ψ = (V − E)ψ

• Time-dependent PDEs: eg advection-diffusion ∂tc +∇ · (uc) = ∆c
Task: solve c(x, t) given initial & boundary conditions
Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike’s talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Typical solution strategies

Time-independent PDEs:

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting algebraic system

Time-dependent PDEs: “method of lines”

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting coupled ODEs for evolution of coefficients

ODEs:

� Treat spatial problems as time-indep. PDEs “boundary value problems”

� Evolve temporal problems with finite differences “initial value problems”

Typical solution strategies

Time-independent PDEs:

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting algebraic system

Time-dependent PDEs: “method of lines”

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting coupled ODEs for evolution of coefficients

ODEs:

� Treat spatial problems as time-indep. PDEs “boundary value problems”

� Evolve temporal problems with finite differences “initial value problems”

Typical solution strategies

Time-independent PDEs:

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting algebraic system

Time-dependent PDEs: “method of lines”

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting coupled ODEs for evolution of coefficients

ODEs:

� Treat spatial problems as time-indep. PDEs “boundary value problems”

� Evolve temporal problems with finite differences “initial value problems”

Typical solution strategies

Time-independent PDEs:

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting algebraic system

Time-dependent PDEs: “method of lines”

1 Discretize variables (grid points, cells, basis functions)

2 Discretize operators/equations (derivatives)

3 Solve resulting coupled ODEs for evolution of coefficients

ODEs:

� Treat spatial problems as time-indep. PDEs “boundary value problems”

� Evolve temporal problems with finite differences “initial value problems”

Finite difference methods
Basic viewpoint:
• Discretize variables on a discrete grid
• Construct Taylor-series approximations to values at neighboring points
• Using N points, expand to N terms (error O(hN))
• Eliminate to get approximation to d-th derivative (error O(hN−d))

E.g. Centered differences on 3 points: x − h, x , x + h

u(x + h) = u(x) + u′(x)h + u′′(x)h2/2 +O(h3)

u(x − h) = u(x)− u′(x)h + u′′(x)h2/2 +O(h3)

To approximate u′(x), subtract to eliminate u′′(x):

u′(x) =
u(x + h)− u(x − h)

2h
+O(h2)

To approximate u′′(x), add to eliminate u′(x):

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+O(h2)

Extra order here due to symmetry

Finite difference methods
Basic viewpoint:
• Discretize variables on a discrete grid
• Construct Taylor-series approximations to values at neighboring points
• Using N points, expand to N terms (error O(hN))
• Eliminate to get approximation to d-th derivative (error O(hN−d))

E.g. Centered differences on 3 points: x − h, x , x + h

u(x + h) = u(x) + u′(x)h + u′′(x)h2/2 +O(h3)

u(x − h) = u(x)− u′(x)h + u′′(x)h2/2 +O(h3)

To approximate u′(x), subtract to eliminate u′′(x):

u′(x) =
u(x + h)− u(x − h)

2h
+O(h2)

To approximate u′′(x), add to eliminate u′(x):

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+O(h2)

Extra order here due to symmetry

Finite difference methods
Basic viewpoint:
• Discretize variables on a discrete grid
• Construct Taylor-series approximations to values at neighboring points
• Using N points, expand to N terms (error O(hN))
• Eliminate to get approximation to d-th derivative (error O(hN−d))

E.g. Centered differences on 3 points: x − h, x , x + h

u(x + h) = u(x) + u′(x)h + u′′(x)h2/2 +O(h3)

u(x − h) = u(x)− u′(x)h + u′′(x)h2/2 +O(h3)

To approximate u′(x), subtract to eliminate u′′(x):

u′(x) =
u(x + h)− u(x − h)

2h
+O(h2)

To approximate u′′(x), add to eliminate u′(x):

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+O(h2)

Extra order here due to symmetry

Finite difference methods
Basic viewpoint:
• Discretize variables on a discrete grid
• Construct Taylor-series approximations to values at neighboring points
• Using N points, expand to N terms (error O(hN))
• Eliminate to get approximation to d-th derivative (error O(hN−d))

E.g. Centered differences on 3 points: x − h, x , x + h

u(x + h) = u(x) + u′(x)h + u′′(x)h2/2 +O(h3)

u(x − h) = u(x)− u′(x)h + u′′(x)h2/2 +O(h3)

To approximate u′(x), subtract to eliminate u′′(x):

u′(x) =
u(x + h)− u(x − h)

2h
+O(h2)

To approximate u′′(x), add to eliminate u′(x):

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+O(h2)

Extra order here due to symmetry

Finite difference methods
Alternate viewpoint:
• Discretize variables on a discrete grid
• Construct interpolating polynomial on N nearest points.

Unique, degree N-1.

• Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

∆u(x) = f (x) → D2 · u = f

∂tu(x) = ∆u(x) + f (x) → ∂tu = D2 · u + f

Finite difference methods
Alternate viewpoint:
• Discretize variables on a discrete grid
• Construct interpolating polynomial on N nearest points.

Unique, degree N-1.

• Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

∆u(x) = f (x) → D2 · u = f

∂tu(x) = ∆u(x) + f (x) → ∂tu = D2 · u + f

Finite difference methods
Alternate viewpoint:
• Discretize variables on a discrete grid
• Construct interpolating polynomial on N nearest points.

Unique, degree N-1.

• Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

∆u(x) = f (x) → D2 · u = f

∂tu(x) = ∆u(x) + f (x) → ∂tu = D2 · u + f

Finite difference methods
Alternate viewpoint:
• Discretize variables on a discrete grid
• Construct interpolating polynomial on N nearest points.

Unique, degree N-1.

• Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

∆u(x) = f (x) → D2 · u = f

∂tu(x) = ∆u(x) + f (x) → ∂tu = D2 · u + f

Implicit & Explicit Timestepping

Consider temporal ODE u′(t) = f (u(t)).
Timesteppers solve using finite differences to advance un → un+1

• Explicit schemes: just need f (un). Simple but unstable for large steps

E.g. forward Euler: use 1st-order forward difference k = timestep; un := u(kn)

u′(t) = −λu(t) λ > 0

un+1 − un = −kλun

un+1 = (1− kλ)un

kλ < 2 for stability

• Implicit schemes: require inverting f (un+1) Stable but expensive

E.g. backward Euler: use 1st-order backward difference

u′(t) = −λu(t) λ > 0

un+1 − un = −kλun+1

un+1 = (1 + kλ)−1un

Implicit & Explicit Timestepping

Consider temporal ODE u′(t) = f (u(t)).
Timesteppers solve using finite differences to advance un → un+1

• Explicit schemes: just need f (un). Simple but unstable for large steps

E.g. forward Euler: use 1st-order forward difference k = timestep; un := u(kn)

u′(t) = −λu(t) λ > 0

un+1 − un = −kλun

un+1 = (1− kλ)un

kλ < 2 for stability

• Implicit schemes: require inverting f (un+1) Stable but expensive

E.g. backward Euler: use 1st-order backward difference

u′(t) = −λu(t) λ > 0

un+1 − un = −kλun+1

un+1 = (1 + kλ)−1un

Implicit & Explicit Timestepping

Consider temporal ODE u′(t) = f (u(t)).
Timesteppers solve using finite differences to advance un → un+1

• Explicit schemes: just need f (un). Simple but unstable for large steps

E.g. forward Euler: use 1st-order forward difference k = timestep; un := u(kn)

u′(t) = −λu(t) λ > 0

un+1 − un = −kλun

un+1 = (1− kλ)un

kλ < 2 for stability

• Implicit schemes: require inverting f (un+1) Stable but expensive

E.g. backward Euler: use 1st-order backward difference

u′(t) = −λu(t) λ > 0

un+1 − un = −kλun+1

un+1 = (1 + kλ)−1un

Finite difference methods

• Simple to adjust order of accuracy / directionality
• Extends to multiple dimensions with regular grids
• Some more advanced techniques:
• Conservative schemes
• Select stencils term by term “upwinding”

• Adaptive stencil selection for jumps “WENO”

• Restricted to simple geometries / well-structured grids

Resources: LeVeque “Finite Difference Methods for ODE/PDE” [LeV07]
Codes: e.g. Pencil code (magnetohydrodynamics)

Finite difference methods

• Simple to adjust order of accuracy / directionality
• Extends to multiple dimensions with regular grids
• Some more advanced techniques:
• Conservative schemes
• Select stencils term by term “upwinding”

• Adaptive stencil selection for jumps “WENO”

• Restricted to simple geometries / well-structured grids

Resources: LeVeque “Finite Difference Methods for ODE/PDE” [LeV07]
Codes: e.g. Pencil code (magnetohydrodynamics)

Finite element methods
• Partition domain into elements. Unstructured

• Represent variables with basis functions on elements:

u(x) =
N∑

n=1

unφn(x)

“Trial functions” φn usually polynomials on each element

• Solve equations using Galerkin/weighted-residual method:

∂tu(x) + Lu(x) = f (x)∫
ψm(x) [∂tu(x) + Lu(x)− f (x)] dx = 0

For all “test functions” ψm

• Solve resulting algebraic system:

M · ∂tu + S · u = M · f

“Mass matrix” M, “stiffness matrix” S

Finite element methods
• Partition domain into elements. Unstructured

• Represent variables with basis functions on elements:

u(x) =
N∑

n=1

unφn(x)

“Trial functions” φn usually polynomials on each element

• Solve equations using Galerkin/weighted-residual method:

∂tu(x) + Lu(x) = f (x)∫
ψm(x) [∂tu(x) + Lu(x)− f (x)] dx = 0

For all “test functions” ψm

• Solve resulting algebraic system:

M · ∂tu + S · u = M · f

“Mass matrix” M, “stiffness matrix” S

Finite element methods
• Partition domain into elements. Unstructured

• Represent variables with basis functions on elements:

u(x) =
N∑

n=1

unφn(x)

“Trial functions” φn usually polynomials on each element

• Solve equations using Galerkin/weighted-residual method:

∂tu(x) + Lu(x) = f (x)∫
ψm(x) [∂tu(x) + Lu(x)− f (x)] dx = 0

For all “test functions” ψm

• Solve resulting algebraic system:

M · ∂tu + S · u = M · f

“Mass matrix” M, “stiffness matrix” S

Finite volume methods
• Piecewise constants inside elements

M = I , easy explicit formulation

• Integrate flux terms by parts:∫
ψm∇ · j dx =

∫
Ωi

∇ · j dx =

∫
δΩi

n · j dS

• Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...

• Exactly conservative: good for hyperbolic PDEs. Widely used in CFD.
• Similar to finite differences on structured meshes.
• Hard to build high-order schemes on unstructured meshes.

Codes: Arepo, Athena, OpenFOAM
Many local experts in CCA!

Finite volume methods
• Piecewise constants inside elements

M = I , easy explicit formulation

• Integrate flux terms by parts:∫
ψm∇ · j dx =

∫
Ωi

∇ · j dx =

∫
δΩi

n · j dS

• Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...

• Exactly conservative: good for hyperbolic PDEs. Widely used in CFD.
• Similar to finite differences on structured meshes.
• Hard to build high-order schemes on unstructured meshes.

Codes: Arepo, Athena, OpenFOAM
Many local experts in CCA!

Finite volume methods
• Piecewise constants inside elements

M = I , easy explicit formulation

• Integrate flux terms by parts:∫
ψm∇ · j dx =

∫
Ωi

∇ · j dx =

∫
δΩi

n · j dS

• Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...

• Exactly conservative: good for hyperbolic PDEs. Widely used in CFD.
• Similar to finite differences on structured meshes.
• Hard to build high-order schemes on unstructured meshes.

Codes: Arepo, Athena, OpenFOAM
Many local experts in CCA!

Finite volume methods
• Piecewise constants inside elements

M = I , easy explicit formulation

• Integrate flux terms by parts:∫
ψm∇ · j dx =

∫
Ωi

∇ · j dx =

∫
δΩi

n · j dS

• Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...

• Exactly conservative: good for hyperbolic PDEs. Widely used in CFD.
• Similar to finite differences on structured meshes.
• Hard to build high-order schemes on unstructured meshes.

Codes: Arepo, Athena, OpenFOAM
Many local experts in CCA!

Finite element methods
Traditional FEM
• Use piecewise linear “tent” functions.

Continuous, 2nd order

• “Weak form” from integrating by parts:∫
ψm∇2u dx = −

∫
∇ψm · ∇u dx

Lowers order of derivatives, allows linear basis

• Not conservative and M 6= I , need implicit schemes or to invert M
• Easy to adjust order of accuracy. Use higher degree polynomials, “p adaptivity”

Modern research: high-order FEM
• Discontinuous Galerkin (FVM + FEM): high order inside elements,
but allow discontinuities. Need Riemann solvers again

• Spectral elements: very high order internal representations

Codes: FEniCS, deal.II

Finite element methods
Traditional FEM
• Use piecewise linear “tent” functions.

Continuous, 2nd order

• “Weak form” from integrating by parts:∫
ψm∇2u dx = −

∫
∇ψm · ∇u dx

Lowers order of derivatives, allows linear basis

• Not conservative and M 6= I , need implicit schemes or to invert M
• Easy to adjust order of accuracy. Use higher degree polynomials, “p adaptivity”

Modern research: high-order FEM
• Discontinuous Galerkin (FVM + FEM): high order inside elements,
but allow discontinuities. Need Riemann solvers again

• Spectral elements: very high order internal representations

Codes: FEniCS, deal.II

Finite element methods
Traditional FEM
• Use piecewise linear “tent” functions.

Continuous, 2nd order

• “Weak form” from integrating by parts:∫
ψm∇2u dx = −

∫
∇ψm · ∇u dx

Lowers order of derivatives, allows linear basis

• Not conservative and M 6= I , need implicit schemes or to invert M
• Easy to adjust order of accuracy. Use higher degree polynomials, “p adaptivity”

Modern research: high-order FEM
• Discontinuous Galerkin (FVM + FEM): high order inside elements,
but allow discontinuities. Need Riemann solvers again

• Spectral elements: very high order internal representations

Codes: FEniCS, deal.II

Finite element methods
Traditional FEM
• Use piecewise linear “tent” functions.

Continuous, 2nd order

• “Weak form” from integrating by parts:∫
ψm∇2u dx = −

∫
∇ψm · ∇u dx

Lowers order of derivatives, allows linear basis

• Not conservative and M 6= I , need implicit schemes or to invert M
• Easy to adjust order of accuracy. Use higher degree polynomials, “p adaptivity”

Modern research: high-order FEM
• Discontinuous Galerkin (FVM + FEM): high order inside elements,
but allow discontinuities. Need Riemann solvers again

• Spectral elements: very high order internal representations

Codes: FEniCS, deal.II

Spectral methods
• Expand variables in global basis functions (FEM with one element)
• Solve Galerkin projection of equations. But don’t integrate by parts

• Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

∇2 exp(ik · x) = −k2 exp(ik · x)

Non-periodic intervals: Chebyshev polynomials Tn(x). Fast w/ DCT

Traditional: “collocation” using values at Chebyshev nodes. Dense matrices.

Modern: M and S banded with right choice of test functions.

Ti| xTj Ui| xTj

Other geometries: other polynomials, spherical harmonics, ...

Spectral methods
• Expand variables in global basis functions (FEM with one element)
• Solve Galerkin projection of equations. But don’t integrate by parts

• Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

∇2 exp(ik · x) = −k2 exp(ik · x)

Non-periodic intervals: Chebyshev polynomials Tn(x). Fast w/ DCT

Traditional: “collocation” using values at Chebyshev nodes. Dense matrices.

Modern: M and S banded with right choice of test functions.

Ti| xTj Ui| xTj

Other geometries: other polynomials, spherical harmonics, ...

Spectral methods
• Expand variables in global basis functions (FEM with one element)
• Solve Galerkin projection of equations. But don’t integrate by parts

• Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

∇2 exp(ik · x) = −k2 exp(ik · x)

Non-periodic intervals: Chebyshev polynomials Tn(x). Fast w/ DCT

Traditional: “collocation” using values at Chebyshev nodes. Dense matrices.

Modern: M and S banded with right choice of test functions.

Ti| xTj Ui| xTj

Other geometries: other polynomials, spherical harmonics, ...

Spectral methods
• Expand variables in global basis functions (FEM with one element)
• Solve Galerkin projection of equations. But don’t integrate by parts

• Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

∇2 exp(ik · x) = −k2 exp(ik · x)

Non-periodic intervals: Chebyshev polynomials Tn(x). Fast w/ DCT

Traditional: “collocation” using values at Chebyshev nodes. Dense matrices.

Modern: M and S banded with right choice of test functions.

Ti| xTj Ui| xTj

Other geometries: other polynomials, spherical harmonics, ...

Spectral methods
• Exponential accuracy for smooth solutions. Need to regularize discontinuities

• Restricted to simple geometries. Boxes, spheres, disks, ...

• Very flexible in terms of equations.
• Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

Resources: Boyd “Chebyshev and Fourier Spectral Methods” [Boy01]
Codes: Chebfun (MATLAB), ApproxFun (julia), Dedalus (Python)

Spectral methods
• Exponential accuracy for smooth solutions. Need to regularize discontinuities

• Restricted to simple geometries. Boxes, spheres, disks, ...

• Very flexible in terms of equations.
• Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

Resources: Boyd “Chebyshev and Fourier Spectral Methods” [Boy01]
Codes: Chebfun (MATLAB), ApproxFun (julia), Dedalus (Python)

Spectral methods
• Exponential accuracy for smooth solutions. Need to regularize discontinuities

• Restricted to simple geometries. Boxes, spheres, disks, ...

• Very flexible in terms of equations.
• Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

Resources: Boyd “Chebyshev and Fourier Spectral Methods” [Boy01]
Codes: Chebfun (MATLAB), ApproxFun (julia), Dedalus (Python)

Spectral methods
• Exponential accuracy for smooth solutions. Need to regularize discontinuities

• Restricted to simple geometries. Boxes, spheres, disks, ...

• Very flexible in terms of equations.
• Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

Resources: Boyd “Chebyshev and Fourier Spectral Methods” [Boy01]
Codes: Chebfun (MATLAB), ApproxFun (julia), Dedalus (Python)

Spectral methods
• Exponential accuracy for smooth solutions. Need to regularize discontinuities

• Restricted to simple geometries. Boxes, spheres, disks, ...

• Very flexible in terms of equations.
• Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

Resources: Boyd “Chebyshev and Fourier Spectral Methods” [Boy01]
Codes: Chebfun (MATLAB), ApproxFun (julia), Dedalus (Python)

Boundary integral methods

Use knowledge of PDEs in constructing solutions:
• Linear PDEs dominated by boundary terms
• Solutions involve integrals of fundamental solution (Green’s function):

Reduced dimensionality. Improved conditioning. Low-rank iterations and fast methods.

E.g. for Poisson’s equation: ∆u(x) = f (x)

u(x) =

∫
G (x, y)f (y) dy

∆G (x, y) = δ(x− y), G (x, y) =
1

4π|x− y|

Examples: Stokes flow, Helmholtz equation, Maxwell equations
Usually homogeneous media

Many experts in CCM & CCB. See Jun Wang’s talk later today!

Summary

• Finite differences: local polynomial approximations, simple and robust
• Finite elements: local basis functions, complex geometries
• Spectral methods: global basis functions, highly accurate
• Integral methods: reduced dimensionality, linear equations

Best method often depends on multiple factors:

� Problem domain (simple vs complicated)

� Behavior of solutions (Mike’s talk next)

� Desired accuracy vs cost

� Code availability

� ...

Many local experts on different methods!

Recommended accessible reading

[Boy01] John P Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001.

[GC12] A Greenbaum and T P Chartier, Numerical methods, Princeton University Press,
2012.

[LeV07] Randall J LeVeque, Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems, vol. 98, SIAM, 2007.

[TBI97] L. N. Trefethen and D. Bau III, Numerical linear algebra, SIAM, 1997.

[Tre00] Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and
Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2000.

[Tre13] L. N. Trefethen, Approximation theory and approximation practice, SIAM, 2013,
http://www.maths.ox.ac.uk/chebfun/ATAP.

This document: https://github.com/ahbarnett/fwam-numpde

See code directory for MATLAB code used to generate figures

https://github.com/ahbarnett/fwam-numpde

