= FLATIRON

..........

FWAM Session B: Function Approximation and
Differential Equations

Alex Barnett! and Keaton Burns?

Wednesday afternoon, 10/30/19

!Center for Computational Mathematics, Flatiron Institute
2Center for Computational Astrophysics, Flatiron Institute, and Department of
Mathematics, MIT

LECTURE 1

interpolation, integration, differentiation, spectral methods

ﬁ- FLATIRON

NS TLLTE

Goals and plan

Overall: graph of f(x) needs oo number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

Goals and plan

Overall: graph of f(x) needs oo number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

¢ Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f(x;) at some x;, model f(x) at other points x7?

App: cheap but accurate “look-up table” for possibly expensive func.
Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

o Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.
App: integral equation methods for PDEs (Jun Wang's talk)

o Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture 1)
App: get gradient Vf, eg for optimization (cf adjoint methods)

Goals and plan

Overall: graph of f(x) needs oo number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

¢ Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f(x;) at some x;, model f(x) at other points x7?

App: cheap but accurate “look-up table” for possibly expensive func.
Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

o Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.
App: integral equation methods for PDEs (Jun Wang's talk)

o Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture 1)
App: get gradient Vf, eg for optimization (cf adjoint methods)

Key concepts:
convergence rate, degree of smoothness of f, global vs local,
spectral methods, adaptivity, rounding error & catastrophic cancellation

Overall: graph of f(x) needs co number of points to describe, so how
handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)
Interpolation: also key to numerical ODE/PDEs. . .
task: given exact f(x;) at some x;, model f(x) at other points x?
App: cheap but accurate “look-up table” for possibly expensive func.
Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior
Numerical integration:
App: computing expectation values, given a pdf or quantum wavefunc.
App: integral equation methods for PDEs (Jun Wang's talk)
Numerical differentiation:
App: build a matrix (linear system) to approximate an ODE/PDE (Lecture 1)
App: get gradient Vf, eg for optimization (cf adjoint methods)

Key concepts:
convergence rate, degree of smoothness of f, global vs local,

spectral methods, adaptivity, rounding error & catastrophic cancellation

Plus: good 1D tools, pointers to codes, higher dim methods, opinions!

Interpolation in 1D (d = 1)
Say y; = f(x;) known at nodes {x;} N-pt “grid” 4y | .,
note: exact data, not noisy ‘g“') S L s i

S > x

want interpolant f(x), s.t. f(x;) = y; X %

Interpolation in 1D (d = 1)

Say y; = f(x;) known at nodes {x;} N-pt “grid” €6yl

v

note: exact data, not noisy 'W") 4 L s [
want interpolant f(x), s.t. f(x;) =y; xia G W
, : 1)
hopeless w/o assumptions on f, eg smoothness, otherwise. .. ;{L/\L\ K(x)
e extra info helps, eg f periodic, or f(x) = smooth - x| ~1/2 i

Interpolation in 1D (d = 1)
Say y; = f(x;) known at nodes {x;} N-pt “grid” ARy
note: exact data, not noisy 'g"') 4 L s [

v

want interpolant f(x), s.t. f(x;) = y; K a A
hopeless w/o assumptions on f, eg smoothness, otherwise. .. ;j?y/\ 4,\\{(‘)
e extra info helps, eg f periodic, or f(x) = smooth - x| ~1/2 i

Simplest: use value at x; nearest to x FBepor g

~ “snap to grid”] A'(_“%/‘,Ai
Error maxy |f(x) — f(x)| =O(h)ash—0 " o

B
holds if f’ bounded; ie f can be nonsmooth but not crazy g 7

Recap notation “O(h)": exists C, hy s.t. error < Ch for all 0 < h < hg

Interpolation in 1D (d = 1)
Say y; = f(x;) known at nodes {x;} N-pt “grid” 6.

note: exact data, not noisy ‘g"') 4 L s l
want interpolant f(x), s.t. f(xj) = y; A
hopeless w/o assumptions on f, eg smoothness, otherwise. .. w\ LV’EM
e extra info helps, eg f periodic, or f(x) = smooth - x| ~1/2 I

Simplest: use value at x; nearest to x o ey y

“snap to grid” i 1—*_ L
Error max, |f(x) — f(x)] = O(h) as h — 0 i
48 m‘ 9
holds if f’ bounded; ie f can be nonsmooth but not crazy ‘76} ekt

Recap notation “O(h)": exists C, hy s.t. error < Ch for all 0 < h < hg

Piecewise linear: “connect the dots” ‘?J*)

/// A
max error = O(h?) as h — 0 A8 -

needs f” bounded, ie smoother than before 1

Message: a higher order method is only higher order if f smooth enough

Interlude: convergence rates

Should know or measure convergence rate of any method you use
o ‘“effort” parameter N eg # grid-points = 1/h? where h = grid spacing, d = dim
We just saw algebraic conv. error = O(N~P), for order p = 1,2

Interlude: convergence rates

Should know or measure convergence rate of any method you use

o ‘effort” parameter N eg # grid-points = 1/h? where h = grid spacing, d = dim
We just saw algebraic conv. error = O(N~P), for order p = 1,2

There's only one graph in numerical analysis: | “relative error vs effort” |

slope ~ I - VR

) oW=0C)
AL b Sobpe 20 24,
W= s O oK

10 10% (ot

Interlude: convergence rates

Should know or measure convergence rate of any method you use

o ‘effort” parameter N eg # grid-points = 1/h? where h = grid spacing, d = dim
We just saw algebraic conv. error = O(N~P), for order p = 1,2

There's only one graph in numerical analysis: | “relative error vs effort” |

err;\r (lva[fﬂ qxey) erar (ln‘w—lv axes)
10° | 10’ il 15hed
l(o{;,"L (slor,e *—(B lf ,Zr’{y\ — zuﬁ(%

B = / —N
) : oW=0 /m) Vo \— ex(ow%T'“I Q(c)
[bﬂjsl slpe -2 204, N eremtle of spectnl

= Gk AN T o) o —/a~_’_"____’_4i% 1

10> 10° (ot) (A> 8 0o 200 300 b h

Interlude: convergence rates

Should know or measure convergence rate of any method you use

o ‘effort” parameter N eg # grid-points = 1/h? where h = grid spacing, d = dim
We just saw algebraic conv. error = O(N~P), for order p = 1,2

There's only one graph in numerical analysis: | “relative error vs effort” |

emy (lzg-(@ 4:«35) err (I l‘w—|aJ axes)

\O (Oo Siles jr;*r(i

! slope -1 - 1";,;(”\ i&: Z"'*

(% o('/) s i

1073 S \0 N ex(owén i EJ(

IO:;,_L_ Spq‘m ‘Sla()é -7 g ﬂ;(‘f, N e)fawnfle or «:I ec t.m(‘
19 S 7 ’,’ =\ O(W): O(/{<f> 10—/0__,_-;———{———#—/ N=

1o° 10> (0% 0o 200 300

Note how spectral gets many digits for small N crucial for eg 3D prob.
“spectral” = “superalgebraic”, beats O(N~P) for any p

e how many digits to you want? for 1-digit (10% error), low order ok, easier to code

Interlude: convergence rates

Should know or measure convergence rate of any method you use
o ‘effort” parameter N eg # grid-points = 1/hY where h = grid spacing, d = dim
We just saw algebraic conv. error = O(N~P), for order p = 1,2

There's only one graph in numerical analysis: ‘ “relative error vs effort”

a2 (127-(@ 4:«35) erar (1 .‘wJaJ axes)

1o’ (0’ e sk

S Ntk —

9

1073 N 9 10’ N exfonénti il O

l()’;ﬂL 5plc(‘m a{)é *2 2 g ﬂ?(m N C)q.w."e or «:I e t.m(
i 5 D 'S N OG- oK) T SR PR R £

1o" 10 (ot 0o 200 300 h

Note how spectral gets many digits for small N crucial for eg 3D prob.
“spectral” = “superalgebraic”, beats O(N~P) for any p

e how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>

How big is prefactor C in error < Ch? ? Has asymp. rate even kicked in yet? :)

Higher-order interpolation for smooth f: the local idea

Pick a p, eg 6. For any target x, use only the nearest p nodeS'

H H p— k - o e
Exists unique degree-(p—1) poly, >} 0ckx N f(x\ -]
which matches local data (xj,yJ-)J:1 . /50
generalizes piecewise lin. idea '
do not eval poly outside its central region! LN % "‘*"'L) 'TV ®
1’

q_ FLATIRON

TUTE

Higher-order interpolation for smooth f: the local idea

Pick a p, eg 6. For any target x, use only the nearest p nodes:

: : p— k el S -
Exists unique degree-(p—1) poly, >} 0ckx e f(x\ here 0k

which matches local data (x;, y;)7_; e

generalizes piecewise lin. idea '

do not eval poly outside its central region! '; ()

e error O(hP), ie high order, but not continuous (f ¢ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: fece meaning " is cont.

q_ FLATIRON

TUTE

Higher-order interpolation for smooth f: the local idea

Pick a p, eg 6. For any target x, use only the nearest p nodes:

)) b ﬁon&
Exists unique degree-(p—1) poly, >-7_; ckxk Cod Y jcm ;M Toed

which matches local data (xj,yj)J:1 o e

generalizes piecewise lin. idea

L . v % ey ~
do not eval poly outside its central region! ¥ YK "ul*.;)ﬁ(ARG
)

e error O(hP), ie high order, but not continuous (f ¢ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: fec? meaning ' is cont.

How to find this degree-(p—1) poly?
1) crafty: solve square lin sys for coeffs Zk<px Ck =Y i=1...,p
ie, Ve = V="Vandermonde" matrix, is ill-cond. but works

i]_ FLATIRON

Higher-order interpolation for smooth f: the local idea

Pick a p, eg 6. For any target x, use onIy the nearest p nodes:
Oﬁ&

H : p— k R Dt R
Exists unique degree-(p—1) poly, >} 0 CkX v o e JC(A here b4
which matches local data (xj,yj)J:1 e
generalizes piecewise lin. idea '
do not eval poly outside its central region! i :~1¥"X ""\(“i‘ S %'\"('f)
)

e error O(hP), ie high order, but not continuous (f ¢ C) has small jumps

if must have cont, recommend splines, eg cubic p = 3: fec? meaning ' is cont.

How to find this degree-(p—1) poly?

1) crafty: solve square lin sys for coeffs Zk<p xkck Yj i=1...,p
ie, Ve = V="Vandermonde" matrix, is ill-cond. but works
P Yi - 1
X W; w; =
.. . ~ j=1 x—x; "J S g g —xi)
2) traditional: barycentric formula f(x) = —;——"— Y
j=1 x—x; Wi [Trel3, Ch. 5]

Either way, f(x) = > 7_1 ¥iti(x) where £;(x) is jth Lagrange basis func:

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single ?(x), sop=N? ‘“global

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single ?(x) so p= N7 “global’
p = N = 32, smooth (analytic) f(x) = ﬁ on [—1,1]: (Runge 1901)

uniform nodes: z; =2(j —1)/(N -1)—1

1
0.5
0 . . .
-1 -0.5 0 0.5 1
error f(x) - f(x)
6
4
2 bad okay bad
0

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single ?(x) so p= N7 “global’

p = N = 32, smooth (analytic) f(x) = 1+9X2 on [—1,1]: (Runge 1901)

uniform nodes: x; =2(j — 1)/(N -1)—1 Chebychev nodes: @; = cosw(j — 1)/(N — 1)

1 1 1

0.5 05 A
0 ‘ : ‘ 0 ‘ : ‘

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

error_f(a) — 1(2) 105 emor (@) (@)

6 > 1

4 0 unun\/\/\ /\f\f\u‘"

2 bad okay bad 5 ' ’ |

0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

e warning: unif. grid, g|0b3| interp. fails — only use locally in central region

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single ?(X) so p= N7 “global’

p = N = 32, smooth (analytic) f(x) = 1+9X2 on [—1,1]: (Runge 1901)
uniform nodes: x; =2(j — 1)/(N -1)—1 Chebychev nodes: @; = cosw(j — 1)/(N — 1)
1 1 1
0.5 0.5
0 - - - 0 - - -
-1 -0.5 0 0.5 1 -1 -0 1
error_f(a) — 1(2) ot)
6 5
4 0 -mu’\/\/\ /\f\f\u‘"
2 bad okay bad 5
0
-1 -0.5 0 0.5 1 -1 1

e warning: unif. grid, gIobaI interp. fails — only use locally in central region

But exists good choice of nodes. .. f(x\w T le{'{‘?f’u

" " (sia MQNPJ “Hipse
Chebychev . means non-unif. grid density ~ 17X2 7 f(’f/:s 3 Rex

: + = A

e our first spectral method e e

max err = O(p~N) i ! T e R
= P exponential conv! i S

p > 1 “radius” of largest ellipse in which f analytic for IZI=(-) -

Node choice and adaptivity
Recap: poly approx. f(x) on [a, b]: exist good & bad node sets {XJ}J’V:1
Question: Do you get to choose the set of nodes at which f known?

e data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
use local poly (central region only!), or something stable (eg splines) [GC12]
e almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Node choice and adaptivity
Recap: poly approx. f(x) on [a, b]: exist good & bad node sets {XJ}J’V:1
Question: Do you get to choose the set of nodes at which f known?

e data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
use local poly (central region only!), or something stable (eg splines) [GC12]
e almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere

Node choice and adaptivity
Recap: poly approx. f(x) on [a, b]: exist good & bad node sets {XJ}J’V:1
Question: Do you get to choose the set of nodes at which f known?

e data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
use local poly (central region only!), or something stable (eg splines) [GC12]
e almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere
2

f(z) Say want to interpolate (approximate) to user tolerance, eg e = 107!

logal rapid change, wacky big region of smooth, boring
| \ .

0 0.2 0.4 0.6 0.8 1

Recap: poly approx. f(x) on [a, b]: exist good & bad node sets {XJ}J’V:1
Question: Do you get to choose the set of nodes at which £ known?

e data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
use local poly (central region only!), or something stable (eg splines) [GC12]
e almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere
2 o

automatically split

cach “panel” is its own p = 16 Chebychev grid .
(recursively) panels

ceeteeccremes e o o o o o o o eeed until maxerr <e
T big panels
00 0.2 o.‘4 o.‘e 0,‘3 1 via test for local error

1D adaptive interpolator codes to try:
e github:dbstein/function_generator py+numba, fast (Stein '19)
e chebfun for MATLAB big-N Cheb. grids done via FFTs! (Trefethen et al.)

App.: replace nasty expensive f(x) by cheap onel! optimal “look-up table”

Global interpolation of periodic functions |

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f(X + 271') = f(X) for all x, f(X) ZneZ ’kX Fourier series

q- FLATIRON

TUTE

Global interpolation of periodic functions |

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f(X + 271') = f(X) for all x, f(X) ZnGZ frekx Fourier series
Instead of poly’s, use truncated series f(x) = D lkl<N/2 k€™ “trig. poly”

q_ FLATIRON

TUTE

Global interpolation of periodic functions |

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!
Periodic: f(x + 27) = f(x) for all x, f(x) ZnGZ fi e
Instead of poly’s, use truncated series f(x) =

Fourier series
ikx ., - ”
= Z|k|<N/2 Ck€ trig. poly

cartures N loweast fra s

What's best you can do? e Wi

get N coeffs right ¢, = Fi »(;;nf{f;rm) ,r .Ta’f_kl O Comnsy copbird) &

. N J.d L
error ~ size of tail {fxbj>npp — %y i1

kN K k4l (insing)

q_ FLATIRON

TUTE

Global interpolation of periodic functions |

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!
Periodic: f(X + 27T) = f(X) for all x, (X) ZnGZ frekx Fourier series
Instead of poly’s, use truncated series f(x) =>_j<n/2 k€™ “trig. poly”

What's best you can do? o Ee T o AL :
get N coeffs right ¢, = fi »(};M\i}?fm ’ { TTJ (s apbed &
R
error ~ size of tail {fk}|k|>,\,/2 i ,’N/ll' el i
- N Kk k4l (tissing

How read off ¢, from samples of f on a grid?
uniform grid best (unlike for poly’s!); non uniform needs linear solve, slow O(N3) effort

Uniform grid x; = 2%1 set cxk = ZJ 1 e f(x i) simply ¢ = FFTf]

i]_ FLATIRON

Global interpolation of periodic functions |

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: f(X + 27T) = f(X) for all x, f(X) = ZnGZ fkeikx Fourier series
Instead of poly’s, use truncated series f(x) =>_j<n/2 k€™ “trig. poly”
What's best you can do? r

. ~ o= fail —
get N coeffs right ¢, = f ; (mmfm,}fm r {
|

(
; N7 A i 1 [
error ~ size of tail {f} >y — % it
- k-N K kil

How read off ¢, from samples of f on a grid?
uniform grid best (unlike for poly’s!); non-uniform needs linear solve, slow O(N?) effort
Uniform grid x; = 2%1 set ¢k = % ZJN:1 e f(x;) simply ¢ = FFTf]
easy to show ¢, = --- + ?k—N + ?k + ?k—i-N + ?k+2N + ...
= ?k desired —+ Zm;éo lf\-k+m/\/ aliasing error, small if tail small

i_ FLATIRON

Global interpolation of periodic functions |

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!
Periodic: f(X + 27[') = f(X) for all x, f(X) = ZnGZ ?keikx Fourier series
Instead of poly’s, use truncated series f(x) =>_j<n/2 k€™ “trig. poly”

WPh'Pes N lowest freqs,
What's best you can do? Al —= : ;
H 7z CG-=— T Y-S
get N coeffs right ¢, = fj Gh ks i TT-K‘
2 1 11 foe
error ~ size of tail {fk}|k|>/v/2 e
B I Kk

How read off ¢, from samples of f on a grid?
uniform grid best (unlike for poly’s!); non- unlform needs linear solve, slow O(N3) effort
Uniform grid x; = 2%1 set ¢, = N ZJ L e®9f(x;) simply ¢ = FFTf]
easy to show ¢, = e + fk—N + fk + fk/—\i—N + fk+2N + ...
= fk desired —+ Zm;éo fk—i—mN aliasing error, small if tail small
Summary: given N samples f(x;), interp. error = truncation + aliasing

a crude bound is max |F(x) — f(x)[<2 > |f

Xe 2 N1 F RO
[) |k|2N/2 \ FLATIRON
ie error controlled by sum of tail N\ puta

Global interpolation of periodic functions Il

As grow grid N, how accurate is it? just derived err ~ sum of |#| in tail |k| > N/2

—ikx

Now F = 2 02” f(x)e dx = L 02” f(P)(x)de integr. by parts p times

So for a periodic f e CP, recall first p derivs of f bounded
f = O(k_p), tail sum O(Nl_p) (p—1)th order acc. (better: [Tre00])

Global interpolation of periodic functions Il

As grow grid N, how accurate is it? just derived err ~ sum of |#| in tail |k| > N/2

e—ikx

Now i = o= [27 f(x)e *dx = L 27 f(P)(x)de integr. by parts p times

27 Jo 2w

So for a periodic f e CP, recall first p derivs of f bounded
fr = (’)(k—P), tail sum O(Nl_p) (p—1)th order acc. (better: [Tre00])

Example of: | f smoother <> faster #i tail decay <« faster convergence

Global interpolation of periodic functions Il

As grow grid N, how accurate is it? just derived err ~ sum of |#| in tail |k| > N/2

—ikx

Now F = 2 02Tr f(x)e dx = L OZTF f(F’)(x)e(,.k)p dx integr. by parts p times

So for a periodic f e CP, recall first p derivs of f bounded
fr = O(k_p), tail sum O(Nl_p) (p—1)th order acc. (better: [Tre00])

Example of: | f smoother <> faster #i tail decay <« faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip |Im x| < «
then f = O(e~ k1), exp. conv. O(e=*N/2 fun proof: shift the contour
k p

as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Global interpolation of periodic functions Il

As grow grid N, how accurate is it? just derived err ~ sum of |#| in tail |k| > N/2

Now f = ﬁ . 02” f(x)e *dx = ﬁ) 02” £(P)(x) e(;l)k: dx integr. by parts p times
o for a periodic , recall first p derivs o ounde
So f periodic f € CP Imf d f f bounded
fr = O(k_p), tail sum O(Nl_p) (p—1)th order acc. (better: [Tre00])

Example of: | f smoother <> faster #i tail decay <« faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip |Im x| < «
then f = O(e k), exp. conv. O(e=*N/2) (fun proof: shift the contour)
as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with f, = 0, |k| > k.,
then interpolant exact once N > 2k...,

As grow grld N, how accurate is it? just derived err ~ sum of |7 | in tail [k| > N/2

e—ikx

Now = f27— f(x)e~*dx = f27— flp Ty Ax integr. by parts p times

So for a periodic fe Cp, recall first p derivs of f bounded
fr = O(k_p), tail sum O(Nl_P) (p—1)th order acc. (better: [Tre00])

Example of: | f smoother < faster f tail decay <> faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip |Im x| <
then f, = O(e‘O"k'), exp. conv. (’)(e‘aN/z) (fun proof: shift the contour)
as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: “band-limited” f with fx =0, |k| > Kya,
then interpolant exact once N > 2k,,..

That's theory. In real life you always your conv. order/rate!
Messages:

e f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
e key to spectral methods. FFT cost O(Nlog V) swaps from f(x;) grid to Fi

Flavor of interpolation in higher dims d > 1

If you can choose the nodes:

tensor product of 1D grids
either global
or adaptively refined boxes

0
periodic, global

adaptive p = 6 x 6 Cheby

Flavor of interpolation in higher dims d > 1

If you can choose the nodes:

tensor product of 1D grids
either global
or adaptively refined boxes

periodic, global adaptive p = 6 x 6 Cheby

If cannot choose the nodes: interp. f(x) from scattered data {x;} is hard

“.

L o)
eg google terrain: f(x) rough — garbage: - M

height f(x}
interp from
unstructured
points in 2D,
kernel method

pock—marks!

interp from
Cartesian grid,
more accurate

Flavor of interpolation in higher dims d > 1

If you can choose the nodes:

LI

tensor product of 1D grids
either global
or adaptively refined boxes

>

n
.
.

o o o ofe o o 30 s o

Sieoves s s v

0
periodic, global adaptive p = 6 x 6 Cheby

If cannot choose the nodes: interp. f(x) from scattered data {x;} is hard

E AT A
eg google terrain: f(x) rough — garbage: ' ' 73 F .

But if know f smooth:

locally fit multivariate polynomials

If also data noisy, many methods: v
kriging (Gauss. proc.), NUFFT, RBF... P

If also high dim d > 1:

tensor train, neural networks. ..

height f(x)
interp from
unstructured
points in 2D,
kernel method

pock—marks!

interp from
Cartesian grid,
more accurate

Numerical integration (back to d = 1)
Task: eval. fab f(x)dx accurately w/ least number of func. evals, N
“quadrature”: nodes {x;}, weights {w;}, s.t. fab f(x)dx ~ ZJN:1 wif (X))

Idea: get interpolant f thru data f(x;) — integrate that exactly

“intepolatory quadrature”

Task: eval. fab f(x)dx accurately w/ least number of func. evals, N
“quadrature”: nodes {x;}, weights {w;}, s.t. fab f(x)dx ~ Zszl wif (X))

Idea: get interpolant f thru data f(xj) — integrate that exactly

“intepolatol adrature”
Examples: intep AR el

e local piecewise linear — composite trapezoid rule | 7 A

{ K

w; = h except h/2 at ends. low-order, err O(N~2), avoid! TRy -
e N-node global poly — gives {w;} integrating degree N—1 exactly
f analytic: err O(p~N) solve lin sys VTw = {fab Xkdx}ivjol (Newton—Cotes)

e better: “Gaussian” {x;, w;} integrates deg. 2N—1 exactly! err O(p?")
Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

Task: eval. fab f(x)dx accurately w/ least number of func. evals, N
“quadrature”: nodes {x;}, weights {w;}, s.t. fab f(x)dx ~ Zszl wif (X))

Idea: get interpolant f thru data f(xj) — integrate that exactly

ExampIeS' “intepolatory quadrature”
e local piecewise linear — composite trapezoid rule \l f A
wj = h except h/2 at ends. low-order, err O(N~2), avoid! L2 The °

e N-node global poly — gives {w;} integrating degree N—1 exactly

f analytic: err O(p~N) solve lin sys VTw = {fab Xkdx}ivjol (Newton—Cotes)

e better: “Gaussian” {x;, w;} integrates deg. 2N—1 exactly! err O(p?")
Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

e periodic case: xj = 2”, w; = %’T excellent “periodic trap. rule”

easy to check integrates e’ exactly for |k| < N, “Gaussian”

f analytic in | Im x| < a gives exp. conv. O(e~*N), twice as good as interp!

Task: eval. fab f(x)dx accurately w/ least number of func. evals, N
“quadrature”: nodes {x;}, weights {w;}, s.t. fab f(x)dx ~ Zszl wif (X))

Idea: get interpolant f thru data f(xj) — integrate that exactly

ExampIeS' “intepolatory quadrature”
e local piecewise linear — composite trapezoid rule \l f A
wj = h except h/2 at ends. low-order, err O(N~2), avoid! L2 The °

e N-node global poly — gives {w;} integrating degree N—1 exactly

f analytic: err O(p~N) solve lin sys VTw = {fab Xkdx}ivjol (Newton—Cotes)

e better: “Gaussian” {x;, w;} integrates deg. 2N—1 exactly! err O(p?")
Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

. . 21 .
e periodic case: x; = 5, wj = %’T excellent “periodic trap. rule”
easy to check integrates e’ exactly for |k| < N, “Gaussian”
f analytic in | Im x| < a gives exp. conv. O(e~*N), twice as good as interp!

demo: N=14; sum(exp(cos(2*pi*(1:N)/N)))/N - besseli(0,1)
ans = 1.3e-15

Advanced integration

e custom quadr. for singularity eg f(x) = smooth - [x| 1/2 (Rokhlin school)
or for arb. set of funcs. “generalized Gaussian quad.” (CCM: Manas Rachh)
e high-order end-corrections to uniform trap. rule (Alpert '99)

e oscillatory functions: deform contour to C “numerical steepest descent”

q_ FLATIRON

UTE

Advanced integration

e custom quadr. for singularity eg f(x) = smooth - [x| 1/2 (Rokhlin school)
or for arb. set of funcs. “generalized Gaussian quad.” (CCM: Manas Rachh)
e high-order end-corrections to uniform trap. rule (Alpert '99)

e oscillatory functions: deform contour to C “numerical steepest descent”

Higher dimensions d > 1 code: integral2, etc, quadpy
For d < 5, tensor product quadr. of 1D n-node grids in each dim

other coord systems: eg sphere can use tensor product in (6,¢). Or: iterate over dims.
adaptivity works: automatically refine boxes but soon enter research territory!
fQ dX In nasty domain Q C Rd ?7 FEM meshing, blended conforming grids. . .

i_ FLATIRON
\

Advanced integration

e custom quadr. for singularity eg f(x) = smooth - [x| 1/2 (Rokhlin school)
or for arb. set of funcs. “generalized Gaussian quad.” (CCM: Manas Rachh)
e high-order end-corrections to uniform trap. rule (Alpert '99)

e oscillatory functions: deform contour to C “numerical steepest descent”

Higher dimensions d > 1 code: integral2, etc, quadpy
For d < 5, tensor product quadr. of 1D n-node grids in each dim

other coord systems: eg sphere can use tensor product in (6,¢). Or: iterate over dims.
adaptivity works: automatically refine boxes but soon enter research territory!
fQ dX In nasty domain Q C Rd ?7 FEM meshing, blended conforming grids. . .

Much higher d > 1
tensor prod: exp. # f evals. N = n9 kills you :(“curse of dim.”
e ‘sparse grids" scale better as N ~ n(log n)¢ (Smolyak '63)

e (quasi-)Monte Carlo: ZJN:1 f(x;), for random x; err O(N=1/?), slow conv!

importance sampling (Thurs am session), custom transformations. . . Q™ FLATIRON

Numerical differentiation
Task: given ability to eval. f(x) anywhere, how get V£(x) ? assume smooth

Numerical differentiation

Task: given ability to eval. f(x) anywhere, how get V£(x) ? assume smooth

Finite differencing idea, 1D: f/(x) = W + O(h?) Taylor's thm

“centered difference” formula

Want smallest error:
suggests taking h — 0 7

Let's see how that goes. ..

Numerical differentiation
Task: given ability to eval. f(x) anywhere, how get V£(x) ? assume smooth

Finite differencing idea, 1D: f/(x) = W + O(h?) Taylor's thm

“centered difference” formula *

Rt slope = -1 slope = 2

o(h?)
Want smallest error: '

suggests taking h — 0 7

Sath)—f(z—h)
2h

Let's see how that goes. ..

error |f'(z) —

10710 +

10715 10710 107 100
h

e shrinking O(h?) error gets swamped by a new growing error. .. what?

Task: given ability to eval. f(x) anywhere, how get Vf(x) ? assume smooth

Finite differencing idea, 1D: f/(x) = W + O(h?) Taylor's thm

“centered difference” formula - 100* ‘
Want smallest error: Ts
suggests taking h — 0 ? 2 s

|

o
Let's see how that goes. .. =

g

s 10—10 L

10715 10710 107 100
h

e shrinking O(h?) error gets swamped by a new growing error. . . what?
e CPU arithmetic done only to relative “rounding error” €., ~ 10710

e subtracting v. close f(x+ h) and f(x — h): “catastrophic cancellation”
e balance two error types: hpey ~ 61/3 ~ 1075

mach

Essential reading: floating point, backward stability [GC12, Ch. 5-6] [TBI97, Ch. 12-15]

High-order (better!) differentiation, d =1

As w/ integration: get interpolant — differentiate it exactly [Tre00, Ch. 6]
Get N x N matrix D acting on func. values {f(x;)} to give {f’(x;)}. Has simple formula

High-order (better!) differentiation, d =1

As w/ integration: get interpolant — differentiate it exactly [Tre00, Ch. 6]

Get N x N matrix D acting on func. values {f(x;)} to give {f’(x;)}. Has simple formula

b exp(-x)
Examples: : PR =
N Chebychev nodes e : : _ 10 : :
in [-1,1] % fonly C% % fisC smooth',
’ 107°f- - lew—order donv.: ™| super—algebraic
. . / ; s conv. (spectral}
shown: max error in f o] (s8-splititup..) | pect
0 10 2 30 40 50 0 10 20 30 40 50
N
11 +3%) X'
10’ ;__;;analyt{c m”ja : 10" ™, f polynomial,
. ernstein ellipse, . Yexact" fbr N%10
510 exp. conv. 510 (not real life)
g C 5 : :
10 10
o : T Pelunk!
1w i 107
0 10 2 30 40 50 0 10 20 30 40 50

N N
e for N large, the dense D is never formed, merely applied via FFT

spectral solvers for ODE/PDEs. codes: chebfun, PseudoPack, dedalus... Lecture Il

Summary: we scratched the surface

Can integrate & differentiate smooth funcs given only point values f(x;)
Both follow from building a good (fast-converging) interpolant

For f smooth in 1D, can & should easily get many (10+) digits accuracy

Concepts:

convergence order/rate how much effort will you have to spend to get more digits?

smoothness smooth < fast convergence; nonsmooth needs custom methods
global (one interpolation formula/basis for the whole domain)

vs local (distinct formulae for x in different regions)
spectral method global, converge v. fast, even non-per. can exploit FFT
adaptivity auto split boxes to put nodes only where they need to be

rounding error & catastrophic cancellation how not shoot self in the foot
tensor products for 2D, 3D for higher dims: randomized/NN/TN (Th/Fr sessions)

See recommended books at end, and come discuss stuff! i_ SN

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

i_ FLATIRON
\

LECTURE II: numerical differential equations

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

o Finite Difference Methods For time & space.

Q™ FLATIRON

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

Finite Difference Methods For time & space.
Finite Element Methods Very general

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

Finite Difference Methods For time & space.
Finite Element Methods Very general
Finite Volume Methods Fluids

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

Finite Difference Methods For time & space.
Finite Element Methods Very general

Finite Volume Methods Fluids
“Traditional” Finite Elements Mechanics

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

Finite Difference Methods For time & space.
Finite Element Methods Very general

Finite Volume Methods Fluids
“Traditional” Finite Elements Mechanics
“Modern” Finite Elements Higher order

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

Finite Difference Methods For time & space.
Finite Element Methods Very general
Finite Volume Methods Fluids
“Traditional” Finite Elements Mechanics

“Modern” Finite Elements Higher order
Spectral Methods Best accuracy for smooth solutions

Motivation
Produce numerical approximations to the solutions of ODEs/PDEs.

Goals for today
Basic overview of how different methods work.
Understand error properties and suitability for different equations.

Families of methods:

Finite Difference Methods For time & space.
Finite Element Methods Very general

Finite Volume Methods Fluids

“Traditional” Finite Elements Mechanics
“Modern” Finite Elements Higher order

Spectral Methods Best accuracy for smooth solutions

Boundary Integral Methods Linear problems w/ boundary data

Reminder of types and applications of diff. eq.

e ODEs: eg pendulum u”(t) + sin(u(t)) =0
Task: solve u(t) given initial conditions eg. u(0) =1, v/(0) =0

Reminder of types and applications of diff. eq.

e ODEs: eg pendulum U”(t) + sin(u(t)) =0
Task: solve u(t) given initial conditions eg. u(0) =1, v/(0) =0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

Reminder of types and applications of diff. eq.

e ODEs: eg pendulum U”(t) + sin(u(t)) =0
Task: solve u(t) given initial conditions eg. u(0) =1, v/(0) =0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

e Time-independent PDEs: eg Poisson eqn AU(X) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss's law for conservative forces
u(x) is chemical concentration, gravitational/electric potential
Au means Laplacian 8%u/9x? + 9?u/dy? + - - - = curvature of u

g(x) = volume source of chemical, mass or charge density

Reminder of types and applications of diff. eq.

e ODEs: eg pendulum U”(t) + sin(u(t)) =0
Task: solve u(t) given initial conditions eg. u(0) =1, v/(0) =0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

e Time-independent PDEs: eg Poisson eqn AU(X) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss's law for conservative forces
u(x) is chemical concentration, gravitational/electric potential
Au means Laplacian 8%u/9x? + 9?u/dy? + - - - = curvature of u
g(x) = volume source of chemical, mass or charge density
Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrddinger eqn for quantum systems: Ay = (V — E)y

Reminder of types and applications of diff. eq.

e ODEs: eg pendulum U”(t) + sin(u(t)) =0
Task: solve u(t) given initial conditions eg. u(0) =1, v/(0) =0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

e Time-independent PDEs: eg Poisson eqn AU(X) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss's law for conservative forces
u(x) is chemical concentration, gravitational/electric potential
Au means Laplacian 82u/8><2 + (‘)2u/8y2 + .-+ = curvature of u
g(x) = volume source of chemical, mass or charge density
Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrddinger eqn for quantum systems: Ay = (V — E)y

) Time—dependent PDEs: eg advection-diffusion (9tC +V- (UC) = Ac
Task: solve c(x, t) given initial & boundary conditions

Others: Navier-Stokes, magnetohydrodynamics, ...

Reminder of types and applications of diff. eq.

e ODEs: eg pendulum U”(t) + sin(u(t)) =0
Task: solve u(t) given initial conditions eg. u(0) =1, v/(0) =0

Others: local chemical/nuclear reactions (u(t) is vector of multiple components)

e Time-independent PDEs: eg Poisson eqn AU(X) = g(x)
Task: solve u(x) given forcing, boundary conditions
Steady state of heat/diffusion, Gauss's law for conservative forces
u(x) is chemical concentration, gravitational/electric potential
Au means Laplacian 9%u/0x? + 0?u/dy? + - - - = curvature of u
g(x) = volume source of chemical, mass or charge density
Others: Stokes eqn for velocity field u in viscous fluid

Others: t-indep. Schrddinger eqn for quantum systems: Ay = (V — E)y

) Time—dependent PDEs: eg advection-diffusion (9tC +V- (UC) = Ac
Task: solve c(x, t) given initial & boundary conditions

Others: Navier-Stokes, magnetohydrodynamics, ...

Choose method based on solution behavior (Mike's talk next)
Or boundary conditions: simple (periodic box) vs complicated domain

Typical solution strategies

Time-independent PDEs:
@ Discretize variables (grid points, cells, basis functions)
@ Discretize operators/equations (derivatives)

© Solve resulting algebraic system

N

= FLATIRON
\ N IE

Time-independent PDEs:
Discretize variables (grid points, cells, basis functions)
Discretize operators/equations (derivatives)

Solve resulting algebraic system

Time-dependent PDEs: “method of lines”
Discretize variables (grid points, cells, basis functions)
Discretize operators/equations (derivatives)

Solve resulting coupled ODEs for evolution of coefficients

Time-independent PDEs:
Discretize variables (grid points, cells, basis functions)
Discretize operators/equations (derivatives)

Solve resulting algebraic system

Time-dependent PDEs: “method of lines”
Discretize variables (grid points, cells, basis functions)
Discretize operators/equations (derivatives)

Solve resulting coupled ODEs for evolution of coefficients

ODEs:

Treat spatial problems as time-indep. PDEs “boundary value problems”

Time-independent PDEs:
Discretize variables (grid points, cells, basis functions)
Discretize operators/equations (derivatives)

Solve resulting algebraic system

Time-dependent PDEs: “method of lines”
Discretize variables (grid points, cells, basis functions)
Discretize operators/equations (derivatives)

Solve resulting coupled ODEs for evolution of coefficients

ODEs:
Treat spatial problems as time-indep. PDEs “boundary value problems”

Evolve temporal problems with finite differences “initial value problems”

Basic viewpoint:

Discretize variables on a discrete grid

Construct Taylor-series approximations to values at neighboring points
Using N points, expand to N terms (error O(h"))

Eliminate to get approximation to d-th derivative (error O(hV=9))

Basic viewpoint:

e Discretize variables on a discrete grid

e Construct Taylor-series approximations to values at neighboring points
e Using N points, expand to N terms (error O(hV))

e Eliminate to get approximation to d-th derivative (error O(hN=9))

E.g. Centered differences on 3 points: x — h, x, x+ h
u(x 4+ h) = u(x) + ' (x)h + u" (x)h? /2 + O(h®)
u(x — h) = u(x) — u'(x)h + u"(x)h? /2 + O(h*)

Basic viewpoint:

e Discretize variables on a discrete grid

e Construct Taylor-series approximations to values at neighboring points
e Using N points, expand to N terms (error O(hV))

e Eliminate to get approximation to d-th derivative (error O(hN=9))

E.g. Centered differences on 3 points: x — h, x, x+ h
u(x 4+ h) = u(x) + ' (x)h + u" (x)h? /2 + O(h®)
u(x — h) = u(x) — u'(x)h + u"(x)h? /2 + O(h*)
To approximate u/(x), subtract to eliminate u”/(x):
x4+ h) — u(x — h)

) = 2h

+ O(h?)

Basic viewpoint:

e Discretize variables on a discrete grid

e Construct Taylor-series approximations to values at neighboring points
e Using N points, expand to N terms (error O(hV))

e Eliminate to get approximation to d-th derivative (error O(hN=9))

E.g. Centered differences on 3 points: x — h, x, x+ h
u(x 4+ h) = u(x) + ' (x)h + u" (x)h? /2 + O(h®)
u(x — h) = u(x) — u'(x)h + u"(x)h? /2 + O(h*)

To approximate u/(x), subtract to eliminate u”/(x):

o (x) = S ”)2*/7“(X =B L o)
To approximate u”’(x), add to eliminate v/(x):
h)—2 —h
U”(X) _ U(X +) ”;7(2)() + U(X) 4 O(hz)

Extra order here due to symmetry

Finite difference methods

Alternate viewpoint:

e Discretize variables on a discrete grid

e Construct interpolating polynomial on N nearest points.
Unique, degree N-1.

e Differentiate this local interpolant to approximate derivatives.

i_ FLATIRON

Finite difference methods

Alternate viewpoint:

e Discretize variables on a discrete grid

e Construct interpolating polynomial on N nearest points.
Unique, degree N-1.

e Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

Q™ FLATIRON
N EAR

Finite difference methods

Alternate viewpoint:

e Discretize variables on a discrete grid

e Construct interpolating polynomial on N nearest points.
Unique, degree N-1.

e Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

Q™ FLATIRON

Finite difference methods

Alternate viewpoint:

e Discretize variables on a discrete grid

e Construct interpolating polynomial on N nearest points.
Unique, degree N-1.

e Differentiate this local interpolant to approximate derivatives.

E.g. Centered differences using 3 points:

Au(x)=f(x) — Dy-u=f

Oru(x) =Au(x)+f(x) — du=D,-u+f
Q~ FLATIRON
N L

Implicit & Explicit Timestepping

Consider temporal ODE /(t) = f(u(t)).
Timesteppers solve using finite differences to advance u, — upy1

q_ FLATIRON

\ NST TU‘TE

Implicit & Explicit Timestepping
Consider temporal ODE /(t) = f(u(t)).
Timesteppers solve using finite differences to advance u, — upy1

° Explicit schemes: just need f(u,,). Simple but unstable for large steps
E.g. forward Euler: use 1st-order forward difference k = timestep; u, := u(kn)

u(t)=-Xu(t) A>0
Upt1 — Up = —kAu,

Upy1 = (1 — kN)u,

kA < 2 for stability

i_ FLATIRON
N\

Consider temporal ODE /(t) = f(u(t)).
Timesteppers solve using finite differences to advance u, — up11

° EXp“Cit schemes: just need f(u,,). Simple but unstable for large steps
E.g. forward Euler: use 1st-order forward difference k = timestep; u, := u(kn)
u(t)=-Xu(t) A>0
Upt1 — Up = —kAu,
Upy1 = (1 — kN)u,

kX < 2 for stability
e Implicit schemes: require inverting f(u™"1) Stable but expensive
E.g. backward Euler: use 1st-order backward difference
u(t)=—-Xu(t) A>0
Upy1l — Up = —KAUpy1
Unp1 = (1 + kX)L,

Simple to adjust order of accuracy / directionality
Extends to multiple dimensions with regular grids
Some more advanced techniques:

e Conservative schemes

e Select stencils term by term “upwinding”

e Adaptive stencil selection for jumps “wWENO”
Restricted to simple geometries / well-structured grids

H
i

Simple to adjust order of accuracy / directionality
Extends to multiple dimensions with regular grids
e Some more advanced techniques:

e Conservative schemes

e Select stencils term by term “upwinding”

e Adaptive stencil selection for jumps “WENO"
Restricted to simple geometries / well-structured grids

H
i

Y,
A
T

Resources: LeVeque “Finite Difference Methods for ODE/PDE" [LeV07]
Codes: e.g. Pencil code (magnetohydrodynamics)

Finite element methods
e Partition domain into elements. Unstructured

e Represent variables with basis functions on elements:

N

U(X) = Z Un¢n(x)

n=1

“Trial functions” ¢, usually polynomials on each element

q_ FLATIRON

TUTE

Finite element methods
e Partition domain into elements. Unstructured

e Represent variables with basis functions on elements:

N

U(X) = Z Un¢n(x)

n=1

“Trial functions” ¢, usually polynomials on each element

e Solve equations using Galerkin/weighted-residual method:

Oru(x) + Lu(x) = f(x)

/ VYm(x) [Oru(x) + Lu(x) — f(x)] dx =0

For all “test functions” ¥m

Q™ FLATIRON

Finite element methods
e Partition domain into elements. Unstructured

e Represent variables with basis functions on elements:

N

U(X) = Z Un¢n(x)

n=1

“Trial functions” ¢, usually polynomials on each element

e Solve equations using Galerkin/weighted-residual method:

Oru(x) + Lu(x) = f(x)

/¢m(x) [Oru(x) + Lu(x) — f(x)] dx =0

For all “test functions” ¥m

e Solve resulting algebraic system:
M-Ou+S-u=M-f

Mass matrix” M, “stiffness matrix’ S i_ FLATIRON

N o

Finite volume methods

e Piecewise constants inside elements

M = |, easy explicit formulation

ﬂ- FLATIRON

Finite volume methods

e Piecewise constants inside elements
M = I, easy explicit formulation

e Integrate flux terms by parts:

/wmvjdxzf V-jdx:/ n.jds
Q 5Q;

1

e Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...

i]_ FLATIRON

Piecewise constants inside elements
M = I, easy explicit formulation

Integrate flux terms by parts:

/wmvjdxzf V-jdxz/ n.jds
Q 5Q;

!

Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...
Exactly conservative: good for hyperbolic PDEs. Widely used in CFD.

e Similar to finite differences on structured meshes.

Hard to build high-order schemes on unstructured meshes.

e Piecewise constants inside elements
M = I, easy explicit formulation

e Integrate flux terms by parts:

/wmvjdxzf V-jdxz/ n.jds
Q 5Q;

!

e Requires integrating fluxes at cell interfaces (usually 2nd order)
Many methods for Riemann solvers/flux reconstruction: TVD, ENO, WENO, ...
Exactly conservative: good for hyperbolic PDEs. Widely used in CFD.
e Similar to finite differences on structured meshes.
e Hard to build high-order schemes on unstructured meshes.

Codes: Arepo, Athena, OpenFOAM

Many local experts in CCA!

Finite element methods

Traditional FEM
e Use piecewise linear “tent” functions.
Continuous, 2nd order

e “Weak form” from integrating by parts:

/l/)szUdXZ—/VlZJm-Vudx

Lowers order of derivatives, allows linear basis

N

= FLATIRON
\ UTE

Finite element methods

Traditional FEM
e Use piecewise linear “tent” functions.
Continuous, 2nd order

e “Weak form” from integrating by parts:

/l/)szUdXZ—/VlZJm-Vudx

Lowers order of derivatives, allows linear basis

e Not conservative and M # [, need implicit schemes or to invert M
e Easy to adjust order of accuracy. Use higher degree polynomials, “p adaptivity”

Q™ FLATIRON

Traditional FEM
e Use piecewise linear “tent” functions.
Continuous, 2nd order

o “Weak form” from integrating by parts:

/¢mV2UdX=—/V¢m-Vde

Lowers order of derivatives, allows linear basis
e Not conservative and M # I, need implicit schemes or to invert M
° Easy to adjust order of aACcuracy. Use higher degree polynomials, “p adaptivity”

Modern research: high-order FEM

e Discontinuous Galerkin (FVM + FEM): high order inside elements,
but allow discontinuities. Need Riemann solvers again

e Spectral elements: very high order internal representations

Traditional FEM
e Use piecewise linear “tent” functions.
Continuous, 2nd order

o “Weak form” from integrating by parts:

/¢mV2UdX=—/V¢m-Vde

Lowers order of derivatives, allows linear basis
e Not conservative and M # I, need implicit schemes or to invert M
° Easy to adjust order of aACcuracy. Use higher degree polynomials, “p adaptivity”

Modern research: high-order FEM

e Discontinuous Galerkin (FVM + FEM): high order inside elements,
but allow discontinuities. Need Riemann solvers again

e Spectral elements: very high order internal representations

Codes: FEniCS, deal.ll

Spectral methods

e Expand variables in global basis functions (FEM with one element)
e Solve Galerkin projection of equations. But don't integrate by parts
e Exponential accuracy for smooth solutions

q_ FLATIRON
UTE
\

Spectral methods

e Expand variables in global basis functions (FEM with one element)
e Solve Galerkin projection of equations. But don't integrate by parts
e Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

V2 exp(ik - x) = —k? exp(ik - x)

Q™ FLATIRON

Spectral methods

e Expand variables in global basis functions (FEM with one element)
e Solve Galerkin projection of equations. But don't integrate by parts
e Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

V2 exp(ik - x) = —k? exp(ik - x)

Non-periodic intervals: Chebyshev polynomials T,(x). Fast w/ DCT
Traditional: “collocation” using values at Chebyshev nodes. Dense matrices.
Modern: M and S banded with right choice of test functions.

(Tho.T;) (Ulo.T;)
l.l.
l:l. | |
e "
mn "
|| |

i_ FLATIRON
\

Spectral methods

e Expand variables in global basis functions (FEM with one element)
e Solve Galerkin projection of equations. But don't integrate by parts
e Exponential accuracy for smooth solutions

Periodic intervals: Fourier series for test/trial functions. Fast w/ FFT

M and S matrices typically diagonal, even in multiple dimensions!

V2 exp(ik - x) = —k? exp(ik - x)

Non-periodic intervals: Chebyshev polynomials T,(x). Fast w/ DCT
Traditional: “collocation” using values at Chebyshev nodes. Dense matrices.
Modern: M and S banded with right choice of test functions.

(To,T}) (UJo,T})

_ . . ' Q™ FLATIRON
Other geometries: other polynomials, spherical harmonics, ... \

Spectral methods

e Exponential accuracy for smooth solutions. Need to regularize discontinuities

= FLATIRON
\ INSTITUTE

Center for Computational
o

Spectral methods

e Exponential accuracy for smooth solutions. Need to regularize discontinuities

10

0.50
0.45
0.40
0.35
0.30
0.25
0.20

= FLATIRON
\ INSTITUTE

Spectral methods

e Exponential accuracy for smooth solutions. Need to regularize discontinuities

0.50
0.45
0.40
0.35
0.30
0.25
0.20

e Restricted to simple geometries. Boxes, spheres, disks, ...
e Very flexible in terms of equations.
e Not exactly conservative... but very accurate. Use conservation as a diagnostic!

= FLATIRON
q\ NSTITUTE

np

Spectral methods

e Exponential accuracy for smooth solutions. Need to regularize discontinuities

10

e Restricted to simple geometries. Boxes, spheres, disks, ...
e Very flexible in terms of equations.
e Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

q_ FLATIRON

Spectral methods
e Exponential accuracy for smooth solutions. Need to regularize discontinuities

1.0

0.8

0.6

e Restricted to simple geometries. Boxes, spheres, disks, ...
e Very flexible in terms of equations.
e Not exactly conservative... but very accurate. Use conservation as a diagnostic!

Modern research: sparse methods for arbitrary equations in more geometries.

Resources: Boyd “Chebyshev and Fourier Spectral Methods” [Boy01]
Codes: Chebfun (MATLAB), ApproxFun (julia), Dedalus (Python)
i’_ FLATIRON

Use knowledge of PDEs in constructing solutions:
e Linear PDEs dominated by boundary terms
e Solutions involve integrals of fundamental solution (Green's function):

Reduced dimensionality. Improved conditioning. Low-rank iterations and fast methods.

E.g. for Poisson's equation: Au(x) = f(x) i
A
UQ%=/GQJVWMN L
! N
1 Iy /
AG(x,y) =4d(x—y), G(x,y)= i R

4r(x —yl

Examples: Stokes flow, Helmholtz equation, Maxwell equations

Usually homogeneous media

Many experts in CCM & CCB. See Jun Wang's talk later today!

Finite differences: local polynomial approximations, simple and robust
Finite elements: local basis functions, complex geometries
Spectral methods: global basis functions, highly accurate
Integral methods: reduced dimensionality, linear equations

Best method often depends on multiple factors:

Problem domain (simple vs complicated)
Behavior of solutions (Mike's talk next)
Desired accuracy vs cost

Code availability

Many local experts on different methods!

Recommended accessible reading

[Boy01] John P Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001.

[GC12] A Greenbaum and T P Chartier, Numerical methods, Princeton University Press,
2012.

[LeVO7] Randall J LeVeque, Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems, vol. 98, SIAM, 2007.

[TBI97] L. N. Trefethen and D. Bau Ill, Numerical linear algebra, SIAM, 1997.

[Tre00] Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and
Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2000.

[Trel3] L. N. Trefethen, Approximation theory and approximation practice, SIAM, 2013,
http://www.maths.ox.ac.uk/chebfun/ATAP.

This document: https://github.com/ahbarnett/fwam-numpde
See code directory for MATLAB code used to generate figures

:]_ FLATIRON

https://github.com/ahbarnett/fwam-numpde

