{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CS 20 : TensorFlow for Deep Learning Research\n", "## Lecture 04 : Eager execution\n", "### Automatic differentiation and gradient tape\n", "* Reference\n", " + https://www.tensorflow.org/tutorials/eager/automatic_differentiation?hl=ko" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setup" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.12.0\n" ] } ], "source": [ "from __future__ import absolute_import, division, print_function\n", "import numpy as np\n", "import tensorflow as tf\n", "\n", "tf.enable_eager_execution()\n", "\n", "print(tf.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Gradient tapes\n", "\n", "TensorFlow provides the `tf.GradientTape` API for automatic differentiation - ***computing the gradient of a computation with respect to its input variables. Tensorflow \"records\" all operations executed inside the context of a `tf.GradientTape` onto a \"tape\". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a \"recorded\" computation using reverse mode differentiation.***" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(8.0, shape=(), dtype=float32)\n" ] } ], "source": [ "# Trainable variables (created by `tf.Variable` or `tf.get_variable`, where\n", "# `trainable=True` is default in both cases) are automatically watched. Tensors\n", "# can be manually watched by invoking the `watch` method on this context\n", "# manager.\n", "\n", "x = tf.constant(1, dtype = tf.float32)\n", "\n", "# z = y^2, y = 2x, z = (2x)^2\n", "with tf.GradientTape() as tape:\n", " tape.watch(x)\n", " y = tf.add(x, x)\n", " z = tf.multiply(y, y)\n", " \n", "# Derivative of z with respect to the original input tensor x\n", "dz_dx = tape.gradient(target = z, sources = x)\n", "print(dz_dx)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also request gradients of the output with respect to intermediate values computed during a \"recorded\" `tf.GradientTape` context." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(4.0, shape=(), dtype=float32)\n" ] } ], "source": [ "x = tf.constant(1, dtype = tf.float32)\n", "\n", "# z = y^2, y = 2x, z = (2x)^2\n", "with tf.GradientTape() as tape:\n", " tape.watch(x)\n", " y = tf.add(x, x)\n", " z = tf.multiply(y, y)\n", " \n", "# Use the tape to compute the derivative of z with respect to the\n", "# intermediate value y.\n", "dz_dy = tape.gradient(target = z, sources = y)\n", "print(dz_dy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a persistent gradient tape. This allows multiple calls to the `gradient()` method. as resources are released when the tape object is garbage collected. For example:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(4.0, shape=(), dtype=float32) tf.Tensor(2.0, shape=(), dtype=float32) tf.Tensor(8.0, shape=(), dtype=float32)\n" ] } ], "source": [ "x = tf.constant(1, dtype = tf.float32)\n", "\n", "# z = y^2, y = 2x, z = (2x)^2\n", "with tf.GradientTape(persistent = True) as tape:\n", " tape.watch(x)\n", " y = tf.add(x, x)\n", " z = tf.multiply(y, y)\n", " \n", "dz_dy = tape.gradient(target = z, sources = y)\n", "dy_dx = tape.gradient(target = y, sources = x)\n", "dz_dx = tape.gradient(target = z, sources = x)\n", "\n", "print(dz_dy, dy_dx, dz_dx)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Recording control flow\n", "Because tapes record operations as they are executed, Python control flow (using `if`s and `while`s for example) is naturally handled:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(12.0, shape=(), dtype=float32)\n", "tf.Tensor(12.0, shape=(), dtype=float32)\n", "tf.Tensor(4.0, shape=(), dtype=float32)\n" ] } ], "source": [ "def f(x, y):\n", " output = 1.0\n", " for i in range(y):\n", " if i > 1 and i < 5:\n", " output = tf.multiply(output, x)\n", " return output\n", "\n", "def grad(x, y):\n", " with tf.GradientTape() as tape:\n", " tape.watch(x)\n", " out = f(x, y)\n", " return tape.gradient(out, x) \n", "\n", "x = tf.convert_to_tensor(2.0)\n", "\n", "print(grad(x, 6)) # out = x^3\n", "print(grad(x, 5)) # out = x^3\n", "print(grad(x, 4)) # out = x^2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Higher-order gradients" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Operations inside of the `GradientTape` context manager are recorded for automatic differentiation. If gradients are computed in that context, then the gradient computation is recorded as well. As a result, the exact same API works for higher-order gradients as well. For example:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tf.Tensor(3.0, shape=(), dtype=float32)\n", "tf.Tensor(6.0, shape=(), dtype=float32)\n" ] } ], "source": [ "x = tf.Variable(1.0) # Create a Tensorflow variable initialized to 1.0\n", "\n", "with tf.GradientTape() as t:\n", " with tf.GradientTape() as t2:\n", " y = x * x * x\n", " # Compute the gradient inside the 't' context manager\n", " # which means the gradient computation is differentiable as well.\n", " dy_dx = t2.gradient(y, x)\n", "d2y_dx2 = t.gradient(dy_dx, x)\n", "\n", "print(dy_dx)\n", "print(d2y_dx2)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }