{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Topic-Term shape: (20, 14567)\n", "Doc-Topic shape: (2000, 20)\n" ] } ], "source": [ "import json\n", "import numpy as np\n", "\n", "def load_R_model(filename):\n", " with open(filename, 'r') as j:\n", " data_input = json.load(j)\n", " data = {'topic_term_dists': data_input['phi'], \n", " 'doc_topic_dists': data_input['theta'],\n", " 'doc_lengths': data_input['doc.length'],\n", " 'vocab': data_input['vocab'],\n", " 'term_frequency': data_input['term.frequency']}\n", " return data\n", "\n", "movies_model_data = load_R_model('movie_reviews_input.json')\n", "\n", "print('Topic-Term shape: %s' % str(np.array(movies_model_data['topic_term_dists']).shape))\n", "print('Doc-Topic shape: %s' % str(np.array(movies_model_data['doc_topic_dists']).shape))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import pyLDAvis\n", "movies_vis_data = pyLDAvis.prepare(**movies_model_data)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\", category=DeprecationWarning)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "
\n", "" ], "text/plain": [ "