{ "cells": [ { "cell_type": "raw", "metadata": {}, "source": [ "---\n", "title: Exploring London Weather Data\n", "description: How to use mercury to create a web app from a Jupyter notebook\n", "show-code: False\n", "params:\n", " year:\n", " input: slider\n", " label: Select year\n", " value: 1952\n", " min: 1952\n", " max: 2018\n", "---" ] }, { "cell_type": "raw", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "year = 1962" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "# Change 'default' to the style that you want to try out\n", "matplotlib.style.use('dark_background')" ] }, { "cell_type": "markdown", "metadata": { "rise": { "theme": "sky", "transition": "zoom" } }, "source": [ "\n", "# Exploring London Weather Data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "weather=pd.read_csv('heathrowDataFiltered.csv')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Monthly maximum temperatures for 1962\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAE9CAYAAADEYFxcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA73UlEQVR4nO3dd1TUZ8LF8QsMIEgHARVFYsTeiCQaFey9JvaGYtAYuzHGmGw0baPGHo1GxA6CNfaCJYIKOgoiCEqsgEhXiiD19/6B4Y1rFGnzTLmfc56jDiN8mZyze50ZZrQASCAiIiKit6YtOoCIiIhI1XBAEREREZURBxQRERFRGXFAEREREZURBxQRERFRGXFAEREREZWRTJFfLCkpCQ8fPlTklyQiIiIqF3t7e1hbW//rxxQ6oB4+fAhnZ2dFfkkiIiKicpHL5a/9GB/CIyIiIiojDigiIiKiMuKAIiIiIiojDigiIiKiMuKAIiIiIiojDigiIiKiMuKAIiIiIiojDigiIiKiMuKAIiIiIiojhb4SORGRstKRyWBgagxDExMYmprCwMQYhqYmeJ6Vhdibt5CRlCw6kYiUCAcUEakNLS0t6BtVh+GL8WNgYvLi17+HkQkMTYxh8OJXQ9P//7i+oeEbP3d6UjLibt5CzM0oxEZEIe5mFJ49TVfQd0ZEyoYDioiUjkxPr+QeIMN/jJ2XBpGpCQxN/vl7YxiYGENbR+e1nzf/eS6y0zOQnVF80h7FIy7qNrLTM5CTkfnSr8XXy4SRhRnqNG2EOk2boE6zxmjs2h7a2sXPfkiNe4TYm7cQGxGF2IhIxEXeRm52tqJuJiISiAOKiKpcdTNT1G7c8OXx82IAGZoalwyjvweRnkG1136uoqKiV8ZOWtwjZP89fDIykPNi/Lw0iDIyUZCbW+b21Ng4PAyLKPmzfnVD2DVuiDrNigdVnaaN0apn15K25AcxxYPqZiRiIqIQf/tOub4uESk3DigiqlJ6BgaYs3c7zGysX7o8NzsHORn/P3SSH8a+ei9QRkbxdf4xiHKznkGSJEHfDZD7LBt3r4bi7tXQksuqm5nCrmlj1GnWGHWbNoZjO2e0GdAbAFCYX4CEO/cQczPyxUN/t/D4zl0UFRSK+haIqBJwQBFRlXIZNwJmNtbY8cV/8Dj6TskYKszPF51WaZ49Tcfti8G4fTG45DIT6xqo++IeqjrNGqNl9y5oN2QQgOKHEh/djn5xT9UtxEZEIvlBjNBhSERlwwFFRFWmurkZOk8YjRv+53D9xGnROQqVkZSMiLPJiDgbUHKZpV3t4of9Xgyr9wf3Q8fRwwAAz7OeIS7yVvGguln8nKq0R49F5RNRKUodUHZ2dti+fTtsbGwgSRI2btyINWvWwNzcHH5+fqhXrx4ePHiAYcOG4enTpwpIJiJV0W3SeOjq6+PYmg2iU5RCatwjpMY9KhmTWtrasHawR91mjYsfAmzaGB1HD4VMTw8A8OzJ05cGVUxEFDJTUkV+C0T0ghaAN95nbGtri5o1ayI0NBRGRka4du0aBg0ahPHjxyMtLQ1LlizBl19+CXNzc8yfP/+NX0wul8PZ2bky+4lISVnY1cKXh3wh/+Mo9n6/RHSOytCRyVDTsX7xT/01bYQ6zRrDpr4DdGTF/959mpiEuJtRiImIKnkIMCcjQ3A1kXp6024p9R6ohIQEJCQkAACysrIQFRWF2rVrY+DAgejUqRMAYNu2bfjzzz9LHVBEpDl6T5uEooJCnFrvJTpFpRQWFCAu8jbiIm8jaE/xZbrV9FG7UcOSQVWnaWM06+Ja8ndSYuNevJRCFGJvRiEu8jbycnIEfQdEmqFMz4Gyt7dH69atcfnyZdjY2JQMq4SEBNjY2FRJIBGpntqNHOHUtydOb9yKjOQU0TkqL/95Lh5cv4EH12+UXFbNqDrsmvz/oLJv2Qyte3cHUPxyCnflIfD95kc8TUgUlU2k1t56QFWvXh379u3DrFmzkJmZ+crHX/fTIx4eHpg0aRIAwMrKqpyZRKRK+s6agmdP03Fuy07RKWrredYz3LlyDXeuXCu5zMjCHHZNG8G+RTO4jBmOOXu2YdeC7xEVeElgKZH6kko7MplMOnHihDR79uySy27duiXZ2tpKACRbW1vp1q1bpX4euVxe6nV4eHhU+zRo6ywtDw+SXMaOEN6iyceqrp00Z/c2aXl4kNR31hRJW0dHeBMPj6qdN+2W4vcjKIWXlxeioqKwcuXKkssOHToENzc3AICbmxsOHjz4Np+KiNSYlpYW+s6agrRHj3HRd5/oHI2WEhOHNWM8cGn3AXSZOA5TvNbCxLqG6CwitfLG9dW+fXtJkiQpLCxMCg0NlUJDQ6XevXtLFhYW0unTp6Xo6GjJ399fMjc3r9CS4+HhUf3Tqlc3aXl4kPRev17CW3j+/zj17SH99/IZ6bvzxyTHdu8L7+HhUZXzpt1S6ssYVCa+jAGR+tKRyTDv0C7kZedgxbDxkIqKRCfRP1g72GPc8p9gU98BZzy34eRvm/jfiKgUb9otb/UQHhFRadoOHQSrOnY4uuo3/h+zEkq6/xCrR03E1YPH0H3yBEzeuBrGlhais4hUFgcUEVWYvqEhuk+egDtXruHWheDS/wIJkf88F37f/gTfb36AfYtmmLN3O+o7O4nOIlJJHFBEVGGubiNhbGmBIyt/E51Cb0F+8BhWj5qInIxMfOq5Bt0mT4CWlpboLCKVwgFFRBViZGmOTuNHIezUWcRGRIrOobeUcOceVo1wx/UTp9F72iR4rF+B6uZmorOIVAYHFBFVSPfJ7pDp6fENg1VQXk4OvOcvwp7vFuOdNq3x+Z7tcHBqKTqLSCVwQBFRuVnWsUO7IYNwed8hpDyMFZ1D5RS89yDWjPZA3vPnmOK1Fp3dx/AhPaJScEARUbn1nj4JBfn5OLVhs+gUqqD4239h5fDxCD9zHv1mT4X7r7/A0NREdBaR0uKAIqJysWvSCK17d0fADl9kpqSKzqFKkPssGzvmfoP9Py2DYztnzNmzDXVbNBWdRaSUOKCIqFz6zZ6KrLQnfMNgNXTRdx9+HTsZRYVFmLZ1A1zGjhCdRKR0OKCIqMwc272PBm3bwP/3Lch9li06h6pAXOQtrBw+HlGBFzFw3kyMX7UY1YyNRGcRKQ0OKCIqEy0tLfSbPRWpcY8QtOcP0TlUhXIyMrFl5nwcXLoaTVzaY87urbBr0kh0FpFS4IAiojJp1bs7ajd2xPFfN6IwP190DilAwA5frB3/KbR1dDB9x+9oP+Jj0UlEwnFAEdFb09HVRe/pk/EoKhrXj/uLziEFirlxEyuGuiE6WI6Pvp6Lsct+hH51Q9FZRMJwQBHRW2s3dBAs7WrhyMp1kCRJdA4pWHZ6BjZP+wJHVq5D866umO23FbUaNhCdRSQEBxQRvRX96sVvGBwdLEd00BXROSSIJEk4t3kn1k+cBr1q1TDD2xMffDxAdBaRwnFAEdFb6TR+NIwszHGUbxhMAO6HhGHFMDfcuxqKYYu+wqifF0LPwEB0FpHCcEARUamMLS3gOm4kQo/7Iy7ylugcUhJZaU/gOWUOjv/6O1r37o5Zvpth++47orOIFIIDiohK1f1Td8h0dXH8142iU0jJSJKE0xu34vdJM2FgYoyZPl5wHthHdBZRleOAIqI3srKvg7ZDBiJo7x9IjY0TnUNK6s6Va1gxZBxiwm9ixI//wfDvv4ZuNX3RWURVhgOKiN6o9/TJKMjLg//vfMNgerPM1DRs8JiBUxs2o83APpjp4wVrB3vRWURVggOKiF6rTrMmaNWzK/7c6oOs1Ceic0gFSEVFOLnOE56fzoaxpQVm+W5G6z49RGcRVToOKCJ6rX6zP0NmahrOb9slOoVUTHTQFSwf6oZHUdEYs+Q7DPn2S8j09ERnEVUaDigi+lcN27fFu++/V/yGwdl8w2Aqu4ykZKyfOA1nvbaj3dBBmLHTE5Z17ERnEVWKUgeUl5cXEhMTER4eXnJZy5YtERQUhNDQUMjlcjg7O1dpJBEpVvEbBn+GlNg4BPMNg6kCigoLcXTVemyaOhfmtWwxZ/dWtOjeWXQWUaWQ3nQ6duwotW7dWgoPDy+57OTJk1KvXr0kAFLv3r2lc+fOvfFz/H3kcvlbXY+Hh0fscerXU1oeHiS16tVNeAuP+hwzWxtp+s6N0vLwIGnwV3MkHV1d4U08PG86b9otpd4DFRgYiLS0tJcukyQJJiYmAABTU1PEx8eX9mmISEXo6Oqi97TJiI28hbCTZ0TnkBp5mpCI38Z/hvPbd6HDqKGYtn0DLGrXFJ1FVG6lLjB7e/uX7oFq1KiR9PDhQykmJkaKi4uT6tatW+Elx8PDoxyn45jh0vLwIKlBW2fhLTzqe5p1cZF+vHhK+uHiSalp547Ce3h4/u1U6B6ofzNlyhTMnj0bdevWxezZs+Hl5fXa63p4eEAul0Mul8PKyqo8X46IFKSaUXV0nzQety9dxl/BctE5pMYizgZgxfDxSI19BPc1S9F/7nRoy3REZxGVSakL7H/vgXr69OlLH09PT6/wkuPh4RF/ek2fJC0PD5JqN3YU3sKjGUdHV1cavOBzaXl4kDR9x0bJzMZaeBMPz9+n0u+Bio+Ph6urKwCgS5cu+Ouvv8rzaYhIiRhbWcJ17EiEHDuFR1HRonNIQxTm5+PAf5dj+9xvYPvuO5izdzuadXERnUX0Vt64vnx8fKT4+HgpLy9Pio2Nldzd3aX27dtLV69ela5fvy4FBwdLTk5OFV5yPDw8Ys/H/5knLQkJkCzsaglv4dHMY1XXTprlu1laHh4kffzNF5JuNX3hTTyafUrZLUoTwsPDI+jUqFdXWhoaKA2aP1t4C49mHx2ZTOo3e6q0PDxI+uKAt1TTsb7wJh7NPZX+EB4RqZfe0ycjPzcXpzduFZ1CGq6woABHVq7D75NmwNDUBDN9vNBh1BDRWUSv4IAi0nB1WzRFyx5dit8wOO2J6BwiAEB0kBzLPh6Lv4KvYvBXn2Pi2mWobm4mOouoBAcUkYbrN3sq3zCYlNKzJ0/hNW0uDvy8HA3atsHcfTvg2I5vHUbKgQOKSIM16tgO9du0xqn1XsjLyRGdQ/SvLvjsxepRE5GdkYnJG9eg35xp0JHJRGeRhuOAItJQWtra6DvrMyQ/jEXwvoOic4je6HH0XawaMQGX/Paj84TRmL5zI6zs64jOIg3GAUWkoZz69kQtx3dx/NffUVRQKDqHqFT5z3Ox78dfsGXmfFjUroU5u7fCeVBf0VmkoTigiDSQTE8PvaZ5ICYiEjdOnRWdQ1QmEWfPY/mQsYiNiMKIH77BmKXfo5qxkegs0jAcUEQa6MMRH8GiVk0cXfkbJEkSnUNUZumJydjgMQPHVm9Ai+6d8fme7ajXqoXoLNIgHFBEGqaasRG6eYzHrQvBuHPlmugconKTiopwZtM2rB03GZJUhKlbf0P3T92hrcM3JaaqxwFFpGE6TxiD6mamOLrqN9EpRJUiJjwSy4eMQ+hxf/Sa6oEpXmthZmsjOovUHAcUkQYxsa4BlzHDce3ICcTf5puAk/rIfZYNn6++g/dXi1CrUQN8vm87WnTvLDqL1BgHFJEG6THFHdoyHZxYu1F0ClGVCDlyEiuGuCH5QSzcVvwXQxfOh55BNdFZpIY4oIg0hLWDPT4Y3B+XfPcj7dFj0TlEVSY17hHWuk3Gac9teP+j/pjttxW1GzmKziI1wwFFpCF6z/gUeTnPcdpzq+gUoipXVFCI42s24HePGdA3NMQMb0+4jB0BLS0t0WmkJjigiDSAfctmaNGtE85t2YlnT56KziFSmDtXrmHZx2Nw60IQBs6biYm/LYeRpbnoLFIDHFBEGqDv7M+QkZKKgB2+olOIFC47PQNbZs7H3u+X4t02Tpi7bycatm8rOotUHAcUkZpr7NIe9d9rjVO/eSEv57noHCJhgvYcwMoRE5CZmoZJG1ZiwLyZ0NHVFZ1FKooDikiNFb9h8BQkP4jB5QOHROcQCZd49z5Wj/oEF3z2wHXsCMz02QRrB3vRWaSCOKCI1Fib/r1Qs0F9HFuzgW8YTPRCQW4uDvy8Al7TvoCZjTVm+23FBx8PEJ1FKoYDikhNyfT10WvaJDy8cRM3/M+JziFSOpHnL2DZx2Px4PoNDFv0FcYt/wkGJiais0hFcEARqakOI4fAzNYGR1euE51CpLQyklOwcfIsHF6+Fs06u2Duvu14571WorNIBXBAEakhAxNjdPUYh6jAS7h7NVR0DpFSkyQJf271xpoxHsjPzcMUr7XoNW0S35SY3qjUAeXl5YXExESEh4e/dPm0adMQFRWFiIgILFmypMoCiajsukwci2pGRji6ar3oFCKVERd5CyuHjcfVw8fRffIETN26Hua1bEVnkRKT3nQ6duwotW7dWgoPDy+5rFOnTpK/v7+kp6cnAZBq1Kjxxs/x95HL5W91PR4envIfMxtrafHVP6WRP30rvIWHR1VPq17dpB8v+Us/XvKXWvXqJryHR8x5024p9R6owMBApKWlvXTZlClTsHjxYuTl5QEAkpOTS/s0RKQgPT77BFpaWnzDYKIKuH7iNJYPGYvEu/cx9pcfMPyHr6FvaCg6i5RIuZ4D5ejoiI4dOyI4OBh//vkn2rRpU9ldRFQONvUd4DywDy7s2osnjxNE5xCptCfxCVg3fgpObdiMNv17Y/burbBr0kh0FimJcg0omUwGCwsLtG3bFl988QV279792ut6eHhALpdDLpfDysqq3KFEVLo+Mz9FbnYOznhuE51CpBaKCgtxcp0n1k+cBpmeLmbs9ETnCaP5psRUvgEVFxeH/fv3AwDkcjmKiopeO448PT3h7OwMZ2dnpKSklL+UiN7IoXULNOvsgrNeO5CdniE6h0it3Lt2HcuHjEPEuQD0mzMNk35fBWMrS9FZJFC5BtQff/yBzp07AwAaNGgAPT09jiMiwfrOnor0pGQEevuJTiFSSzkZmdj++dfYvfC/qNeqBebu24Emrh1EZ5EgpQ4oHx8fBAUFoWHDhoiNjYW7uzs2b96Md955B+Hh4fD19YWbm5siWonoNZp27giH1i1w8rdNyH+eKzqHSK1d3n8YK4ePR3piMiau/QWDv5oDmb6+6CxSMC0U/zieQsjlcjg7OyvqyxFpBG0dHXy+bwe0tbXxy+DRKCrke94RKYKOri76zv4MrmNH4NGtaKwdNxl5Oc9FZ1EletNu4SuRE6m4NgP6wLa+A46uWs/xRKRAhfn5OLR0NbZ9/jVqN3LEe/17i04iBeKAIlJhutX00XPqJ3gQFo6Is+dF5xBppBunziImIhIuY4bzp/M0CAcUkQrrMGoozGyscXTlb6JTiDRawA4/WDvYo1GHdqJTSEE4oIhUlIGJCbpOHIebf17AvWvXRecQabSwU2fwNDEJLuNGiE4hBeGAIlJRXT8ZB32j6ji2mm8YTCRaUUEhLu7aC8e2zqjpWF90DikABxSRCjKztUGHUUNw9dAxJNy5JzqHiAAE7TmIvJzncBnDe6E0AQcUkQrqOfUTAMDJdZsElxDR33IyMnD10DE49e0BI0tz0TlUxTigiFSMbYP6aDOgDy747MXThETROUT0DwE7/SDT08OHwz4SnUJVjAOKSMX0mfEpcrOe4cym7aJTiOh/JD+IQWTARXw4/CPI9PRE51AV4oAiUiHvvNcKTTt1wBmv7cjJ4BsGEymjgB1+MLa0gFOfHqJTqApxQBGpCP3qhhjwxQw8TUxCoPce0TlE9Bp/BcsRH30HHccOF51CVYgDikgFWDvYY9auzajVsAEOLlmFgly+YTCRMgvc4Ydaju+iQVu+/6u64oAiUnLNurhi5i4vGJgYY4PHDNzwPyc6iYhKEXLsFDJT0+AyhvdCqSsOKCIlpaWtjT4zp2DC6sVIvHMfK4ePx72roaKziOgtFOTl4ZLffjRxbY8a9eqKzqEqwAFFpIQMTU3gsX4Fun4yDpd2H8C6CZ8hPTFZdBYRlcGl3ftRkJeHjqOHiU6hKsABRaRkajd2xGy/rajfpjX8vv0v9v2wFIX5+aKziKiMslKfIOToKbQZ0AcGJiaic6iScUARKZH3+vfG9O0boa2jjbXjPsWVA4dFJxFRBZzf4Qt9QwO0GzpQdApVMg4oIiWgI5Nh8ILPMeq/3+JBWDhWDp+A2JtRorOIqIIS/rqL6GA52o8cAm2ZjugcqkQcUESCGVtZYorXWnQYOQTntnhj4+RZyEp7IjqLiCpJwHZfmNlYo2WPrqJTqBJxQBEJVK9VC8zZvRW1Gjlix9xvcGTFWhQVForOIqJKdOtCEJLuP4QLX1hTrXBAEQnSfsTH+GzzOuRm52DN6E9w/eQZ0UlEVAUkSULATj/UbdYEDq1biM6hSsIBRaRgMn19jPjxG3z09VzcuhiMVSPdkXDnnugsIqpC1w4fR3Z6BlzGjhCdQpVEJjqASJOY17LF+JWLUatRA5xY54nTv2+BJEmis4ioiuXlPEfw3j/QafxoWNSuibRHj0UnUQWVeg+Ul5cXEhMTER4e/srH5syZA0mSYGlpWSVxROrEsZ0zZvtthaVdLWye9gX8N2zmeCLSIBd27YVUJKEDX1hTLZQ6oLZu3YpevXq9crmdnR169OiBhw8fVkkYkTrpMnEsPNavREZyClaOcEdU4CXRSUSkYOmJyQjzP4sPBveHfnVD0TlUQaUOqMDAQKSlpb1y+cqVKzFv3jz+C5roDfQNDeG24r/oO+szhJ08gzWjP0FqbJzoLCISJGC7L6oZVcf7g/uLTqEKKteTyAcMGIBHjx7hxo0bld1DpDasHewxc5cXmnbuiINLV2PnlwuRl/NcdBYRCRR7Mwr3Q8LQcfRQaGnz57hUWZn/6xkYGGDBggX49ttv3+r6Hh4ekMvlkMvlsLKyKnMgkSpq1sUFM328YGhqgt8nzUTADl/RSUSkJM7v8IWlXW0069xRdApVQJkHVP369eHg4ICwsDDcv38fdnZ2CAkJgY2Nzb9e39PTE87OznB2dkZKSkqFg4mUmZa2NnpPn4wJq5cg6f5DrBo+AXflIaKziEiJRJwNQGpcPF/SQMWV+WUMIiIiXhpL9+/fR5s2bZCamlqpYUSqxsDEBGOWfIdGHdoieO9BHPh5BQry8kRnEZGSkYqKcMFnDwbOmwm7Jo0QF3lLdBKVQ6n3QPn4+CAoKAgNGzZEbGws3N3dFdFFpFJqNWyA2X6b8e77Tti96Gfs+W4xxxMRvdbl/YfwPOsZXMfxXihVVeo9UKNGjXrjxx0cHCothkgVOfXriaHfzkd2RgbWjZ+CmPBI0UlEpORyn2Xj8oHD6DBiCA6vWIeMpGTRSVRG/BEAonLSlulg4JezMPrnRYiJiMTK4eM5nojorV3w3g0tbS10GDlEdAqVAwcUUTkYW1rg002/wmXMcJzfvgu/T5qBrNQnorOISIWkPXqMiLMBaDd0EPQMqonOoTLigCIqI/uWzTDbbyvqNGmMnfO+xaFf1qCooFB0FhGpoIAdvjA0NcF7/XuLTqEy4oAiKoN2wwbjsy2/IT8vF2vGfILQ4/6ik4hIhd0PvYGYiEi4jBkOLS0t0TlUBhxQRG9Bpq+P4T98jSH/mYe/guVYNcIdj6Pvis4iIjUQsMMP1g72aNShnegUKgMOKKJSmNe0xbRt6/H+oH44td4LXlPnIicjU3QWEamJG6fOIj0xGS58SQOVwgFF9AYN2jpjtt8WWNWtA69pX+Dkb5v4BtpEVKkKCwpwYddeOLZ1hm2D+qJz6C1xQBG9RucJozFpw0pkpKRi1YgJiDx/QXQSEampoD1/IC/nOVzGDBedQm+JA4rof+gbGmLc8p/Qb8403PA/hzWjPZASEyc6i4jUWE5GBq4eOganvj1gZGEuOofeAgcU0T9Y2dfBDG9PNO/qisPLfsWOL/6DvJwc0VlEpAECdvpBV18fHw4bLDqF3gIHFNELTTt1wKxdm2FkYY7fJ83En9t8RCcRkQZJfhCDyICL+HDEx5Dp6YnOoVJwQJHG09LWRs+pHnD/9RckP4zByuETcOfKNdFZRKSBAnb4wdjSAq37dBedQqXggCKNZmBijIlrf0GPT91x5cARrHObgqcJiaKziEhD/RUsR3z0HbiM5UsaKDsOKNJYNR3fxSzfzWjQ1hl7vl8Cv29/QkFenugsItJwgTv8UMvxXTT4oI3oFHoDDijSSK17d8eMnZ7Q1dPHuvFTELznD9FJREQAgJBjp5CZmsZ7oZQcBxRpnDrNmmDM0u8RGxmFlcPHI+bGTdFJREQlCvLycMlvP5q4tkeNenVF59BrcECRxuk/dxoyU9Pg9dlcZKamic4hInrFpd37UZCXh46jh4lOodfggCKN0rRTB9R/rzVO/rYJudnZonOIiP5VVuoThBw9hTYD+sDAxER0Dv0LDijSGNo6Oug7eyqS7j/E5f2HROcQEb3R+R2+0Dc0QLuhA0Wn0L/ggCKN8cFHA2DzTj0cWbkORQWFonOIiN4o4a+7iA6Wo/3IIdCW6YjOof/BAUUaQd/QED2nfoJ7167j5rlA0TlERG8lYLsvzGys0bJ7F9Ep9D84oEgjdBo/CsaWFji8/FfRKUREb+3WhSAk3X/IlzRQQhxQpPZMaljB1W0Urp84jZjwSNE5RERvTZIkBHrvRt3mTVCvVQvROfQPpQ4oLy8vJCYmIjw8vOSypUuXIioqCmFhYdi/fz9MTU2rNJKoInp8NhE6ujIcW71BdAoRUZldPXQM2ekZcBk7XHQK/UOpA2rr1q3o1avXS5f5+/ujWbNmaNmyJaKjo/HVV19VWSBRRdjUd8AHg/vjku9+pMY9Ep1DRFRmeTnPEbz3DzTv6gqL2jVF59ALpQ6owMBApKW9/GKD/v7+KCws/imm4OBg2NnZVU0dUQX1nfUZcrNzcHrjFtEpRETldmHXXkhFEjqMGio6hV6o8HOg3N3dcfz48cpoIapU9du0RtNOHXBm0zY8e5ouOoeIqNzSE5MR5n8WH3w0APrVDUXnECo4oBYsWICCggJ4e3u/9joeHh6Qy+WQy+WwsrKqyJcjemtaWlroP3c6njxOQKD3HtE5REQVFrDdF9WMquP9wf1FpxAqMKDc3NzQr18/jB49+o3X8/T0hLOzM5ydnZGSklLeL0dUJq16dUOdpo1x/NeNKMjNFZ1DRFRhsTejcD8kDB1HD4WWNn+IXrRy/Rfo2bMn5s2bhwEDBiAnJ6eym4gqREdXF71nfIpHUdEIOXJCdA4RUaU5v8MXlna10axzR9EpGq/UAeXj44OgoCA0bNgQsbGxcHd3x9q1a2FsbAx/f3+EhoZi/fr1imgleisdRg6BpV0tHF6xFpIkic4hIqo0EWcDkBoXzxfWVAKy0q4watSoVy7bvHlzlcQQVZSBiQm6TR6PWxeC8VewXHQOEVGlkoqKcMFnDwbOmwm7Jo0QF3lLdJLG4oOopFa6ebihmpERjqxcKzqFiKhKXN5/CM+znvGFNQXjgCK1YV7LFh1GDcHVQ8fwOPqu6BwioiqR+ywblw8cRque3WBiXUN0jsbigCK10WfGpygqLMKJtRtFpxARVakL3ruhpa2F9iM+Fp2isTigSC3YNWkEp749EbDDF+mJyaJziIiqVNqjx4g4G4B2QwdBt5q+6ByNxAFFaqH/59OQlfYE57bsFJ1CRKQQATt8Ud3MFG369xGdopE4oEjlNe74Id59/z2c2rAZz7Oeic4hIlKI+6E3EHszCi5jh0NLS0t0jsbhgCKVpq2jg35zpiL5QQyC9hwQnUNEpFABO3xh7WCPhh3aik7ROBxQpNKcB/aB7bvv4Ojq9SgqKBSdQ0SkUGEnzyI9MRmufGFNheOAIpWlZ1ANPad64H7oDYSf/lN0DhGRwhUWFODCrr1wbPc+bBvUF52jUTigSGW5jBsJU+saOLKcL5pJRJoraM8fyMt5DpcxfGFNReKAIpVkZGmOzhNG44b/OTwICxedQ0QkTE5GBq4eOganvj1gZGEuOkdjcECRSuo55RPo6unj6Gq+kTURUcBOP+jq6+PDYYNFp2gMDihSOdYO9vjg4wEI2vsHUh7Gis4hIhIu+UEMIgMu4sMRH0Ompyc6RyNwQJHK6TtrCvKf5+LUei/RKURESiNghx+MLS3Qunc30SkagQOKVIqDU0s06+KKs1478OzJU9E5RERK469gOeKj78CFL2mgEBxQpFL6fz4dTxOTELDTV3QKEZHSCdzhh1oNG+Dd998TnaL2OKBIZbTs2RX2LZrixNqNyH+eKzqHiEjphBw7hczUNN4LpQAcUKQSdHR10Wfmp4iPvoOrh46LziEiUkoFeXm45LcfTTt1gJV9HdE5ao0DilTCh8MGw6qOHY6sWAepqEh0DhGR0rq0ez8K8vL4wppVjAOKlF41YyN0/9Qd0UFXcPtisOgcIiKllpX6BCFHT6HNgD4wMDERnaO2OKBI6XWdOBYGJsY4smKd6BQiIpUQsNMP+oYGaDtkgOgUtcUBRUrNzNYGHccMR8iRk3h0K1p0DhGRSngcfQd/BV9Fh1FDoS3TEZ2jlkodUF5eXkhMTER4+P+/35i5uTlOnTqF6OhonDp1CmZmZlXZSBqs9/TJAIDjv/4uuISISLWc3+ELMxtrtOzeRXSKWip1QG3duhW9evV66bL58+fjzJkzcHR0xJkzZzB//vwqCyTNVbuRI5z69USg9248TUgUnUNEpFJuBV5C0v2HfEmDKlLqgAoMDERaWtpLlw0cOBDbtm0DAGzbtg2DBg2qkjjSbP3mTEVOegbObNouOoWISOVIkoRA792o27wJ6rVqITpH7ZTrOVA2NjZISEgAACQkJMDGxqZSo4gatm8Lx3bvw//3LXiemSU6h4hIJV09dAzZ6RlwGcuXNKhslfIkckmSXvsxDw8PyOVyyOVyWFlZVcaXIzWnpa2NfnOmIiU2Dpf89ovOISJSWXk5zxG89w807+oK81q2onPUSrkGVGJiImxti/9D2NraIikp6bXX9fT0hLOzM5ydnZGSklK+StIobQb0Ri3Hd3Fs9QYUFhSIziEiUmkXdu2FVCShw6iholPUSrkG1KFDh+Dm5gYAcHNzw8GDBys1ijSXbjV99Jo2CQ9v3ETYyTOic4iIVF56YjLC/M/ig48GQN/QUHSO2ih1QPn4+CAoKAgNGzZEbGws3N3dsXjxYnTv3h3R0dHo1q0bFi9erIhW0gAuY0bAzMYah5f/KjqFiEhtBGz3hYGxEd4f3E90itqQlXaFUaNG/evl3bp1q/QY0mxGFuboMnEsIs6ex/2QMNE5RERqI/ZmFO6HhKHjmGEvHtLje4pWFF+JnJRG98kToFtNH0dXrRedQkSkds7v8IWlXW007dRRdIpa4IAipWBlXwfthg7G5X2HkHT/oegcIiK1E3E2AKlx8XAZx5c0qAwcUKQU+s6cgoL8PJxcv0l0ChGRWpKKinDBZw/qv9cadk0ais5ReRxQJFy9ls3RontnnNvijazUJ6JziIjU1uX9h/A86xnf3qUScECRcP3nTkdGcgrOb/MRnUJEpNZyn2Xj8oHDaNWzG0ysa4jOUWkcUCRU866uqNeqOU6s80ReznPROUREau+Czx5o6Wij/YiPRaeoNA4oEkZbpoO+sz5Dwp17kP9xVHQOEZFGSIuLR8TZALQbOgi61fRF56gsDigSpt3QwahRry6OrFiHosJC0TlERBojYIcvqpuZok3/PqJTVBYHFAmhX90QPT51x50r1xAVeEl0DhGRRrkfEobYm1FwGTscWlpaonNUEgcUCdHFfSyMLMz5li1ERIKc3+4Lawd7vr1LOXFAkcKZ2tSA67iRCDl6EnGRt0XnEBFppOvH/fFX8FUM/HIWrOraic5RORxQpHC9pk6ClrYWjq3ZIDqFiEhjSZKEXd98j8L8Aoxe/B20ZTqik1QKBxQpVE3H+mgzsA8u+OzFk/gE0TlERBotPTEZuxf9jLrNm6DHlImic1QKBxQpVL/Z0/A8MwunPbeKTiEiIgDhp//E5f2H0fUTNzg4tRSdozI4oEhhHNs5o1GHtji9cStyMjJF5xAR0Qt/LF6J1NhHGPXzQlQzNhKdoxI4oEghtLS00G/2NKTGxePCrr2ic4iI6B/ycnLgPX8RTK1r4OOv54rOUQkcUKQQTn17onZjRxz/9XcU5ueLziEiov8RGxGJU+u94NS3J5z69hCdo/Q4oKjKyfT10XvGZMTejML14/6ic4iI6DXObNqOe9eu46Ovv4BF7Zqic5QaBxRVuY6jh8K8pi0OL18LSZJE5xAR0WtIRUXwWfAdAGDUfxdCW4cvbfA6HFBUpaqbmaLrJ26IPH8Rd+UhonOIiKgUT+ITsO/HX+Dg1BJdJo4VnaO0OKCoSnWbNAH6hgY4smKt6BQiInpLocdO4dqRE+gxZSLqNm8iOkcpcUBRlbG0q40PR3yEywcOI/HeA9E5RERUBvt/Wob0xGSMXvwd9A0NRecoHQ4oqjJ9Zn6KwvwCnFy3SXQKERGV0fOsZ/BZ8B0satfEoPmzReconQoNqFmzZiEiIgLh4eHw8fGBvr5+ZXWRiqvbvAla9eqG89t8kJmSKjqHiIjK4X5IGM5s2o73B/dDi+6dRecolXIPqFq1amHGjBlo06YNmjdvDh0dHYwYMaIy20iF9ft8GjJT0/DnVh/RKUREVAGnNnjh4Y2bGLpwPkxtaojOURoVugdKJpPBwMAAOjo6MDQ0RHx8fGV1kQpr2rkj6r/XGifXbUJudrboHCIiqoCigkJ4z18EHV0ZRv70LbS0tEQnKYVyD6j4+HgsW7YMMTExePz4MdLT0+HvzxdJ1HTaMh30mz0VSfcf4vL+Q6JziIioEqTGxuGPn1eiwQdt4Oo2SnSOUij3gDIzM8PAgQPh4OCAWrVqoXr16hg9evQr1/Pw8IBcLodcLoeVlVWFYkttsrFGvZbNYV7LFjq6ulX6tejffTB4AKwd7HFk5ToUFRaKziEiokpy5Y8jCDt1Fr1nTEbtxo6ic4STlfcvduvWDffv30dKSgoAYP/+/fjwww/h7e390vU8PT3h6ekJAJDL5RVILV2LHl0wcN7Mkj9npT1BRnIK0pOSkZFU/Gt6csqL3ychIykFWWlP+OrYlUTf0BA9p36Cu9dCcfNcoOgcIiKqZHu+WwL7ls0wZsn3WDHMDfnPc0UnCVPuARUTE4O2bdvCwMAAOTk56Nq1K65evVqZbWV2/eQZJN57AFPrGjCxtoJpDauS39du5AgjSwtoa798p1thQQEyU1KR/mJgZZQMrGRkJCcjPbF4dD3PzBL0XamOThNGw9jSAl7TvhCdQkREVSAnIwO7FnyPyZ5r0P/z6dj/0zLRScKUe0BduXIFe/fuRUhICAoKChAaGoqNGzdWZluZZSQlIyMp+bUf19bRgZGlBUyta8DU+sW4qmFVPLasa6CGfR28+74TDE1MXvm7udk5xeMqOQUZScnFgys5GRmJ/7hXKzkFBbmaucZNaljBddxIXD9xGrERkaJziIioity5cg3nt+1C5wmjcetCMCLPXxCdJIQWAIU9fiWXy+Hs7KyoL1duutX0YWJlBVOb4oH1z3u0TGxqwLRGDZha14ButVdf9yo7PePFQ4bFw+rvhw8zklNK7s3KSk1Tu+cHDV04H20G9sHSASORGvdIdA4REVUhHV1dzPTeBFObGlj20RhkpqaJTqoSb9ot5b4HSp3lP89FatyjUoeAgYlxycAytbaCSY0aL40um3ffgbGlBXRkL9/MRYWFyExNe+n5WRkpqch+mo7s9AxkZ2QiOz0DORkZxb9mZkEqKqrKb7lCbOo74P3B/XDBZy/HExGRBijMz8fOL7/FnN3bMOLH/2DTZ3M07vnEHFAVkJORiZyMTCTevf/a62hpa8PIwvwfDxnWKHnI0MTaCha1a8GhVQtUNzcr9WtlZxSPq5z0jP8ZWsW/loyujAzkpBdfPy/neSV/16/qN3sqcp9lw//3zVX+tYiISDkk3X+Ig7+sxpD/zEP7kUNwwWeP6CSF4oCqYlJRETJTUpGZkoq4yNuvvZ6OTAYDU2MYmpjA0MQEBibGMDQ1gaHp///+n5eZ2doU/9nEBDq6r//PWJCX95qhVTyw/r6X638HWU5G5ls9zFjf2QlNXNvjyIq1yE7PKNdtREREqilo9wE07vgh+s2ZijtXriHhzj3RSQrD50CpAX1Dw38dXIZ/Dy9Tk1eGmYGJMQyMjd74eXMys0pGV8k9YP94aDE7IxPth38MQzMTLO4/QmOfQE9EpMmMLMwxd/9OZKamYfXIiSjIyxOdVGn4HCg1l5udjdzsbDxNSCzT39OW6cDA2PjVwWVi8uLPL48xm/oOJb+X6emVfB7v+Qs5noiINFRW2hP4fvMDPNavRJ9ZU3Bo6WrRSQrBAaXBigoK8ezJUzx78rTMf1fPoBoMTIwh09NHamxc5ccREZHKuHUhGIHeu+E6dgRuXwjG7UuXRSdVuQq9mTBprryc50hPTOZ4IiIiAMCRlb/h8V93MeLHb0r9wSh1wAFFREREFVaQmwvv+QthaGqCYYvmi86pchxQREREVCkeR9/F0VXr0ayLK9oOGSg6p0pxQBEREVGlCdzph9uXLmPgvFmwdrAXnVNlOKCIiIio0kiSBN9vfkT+8+cYtXjRK+/GoS44oIiIiKhSZSSnYPein1GnSSP0muYhOqdKcEARERFRpYs4G4CgvX+g04QxqN+mteicSscBRURERFXi0NLVSHkYi1E/L4SBibHonErFAUVERERVIi/nObznL4KxpSWGfPul6JxKxQFFREREVSYu8hZOrNuIVj27os2APqJzKg0HFBEREVWpc1u8cUcegsEL5sDSrrbonErBAUVERERVSioqwq4F30MqLMKoxQuhraMjOqnCOKCIiIioyj1NSMTe75egXsvm6DZpvOicCuOAIiIiIoW4fvIM5AePofvkCajXsrnonArhgCIiIiKFOfDzcjx5nIBRixdBv7qh6Jxy44AiIiIihcl9lg2f+d/BvKYNPlowV3ROuXFAERERkUI9CAuH/+9b0GZAb7Tq1U10TrlUaECZmppiz549iIqKQmRkJNq2bVtZXURERKTGTm/cigdh4Rjyn3kws7URnVNmFRpQq1evxokTJ9C4cWO0bNkSUVFRldVFREREaqyosBDe8xdBS0cbo35eCC1t1XpQrNy1JiYmcHFxgZeXFwAgPz8f6enplRZGRERE6i0tLh77f1qO+m1ao/OEMaJzyqTcA8rBwQHJycnYsmULQkJC4OnpCUND1X02PRERESnetcPHcf3EafSa6oE6TRuLznlr5R5QMpkMTk5OWL9+PZycnPDs2TPMnz//let5eHhALpdDLpfDysqqQrFERESkfvb+sBSZqakYvXgR9AwMROe8lXIPqLi4OMTFxeHKlSsAgL1798LJyemV63l6esLZ2RnOzs5ISUkpfykRERGppZyMTPh89R0s69phwLwZonPeSrkHVGJiImJjY+Ho6AgA6Nq1KyIjIystjIiIiDTH3auhOLd5J9oNGYRmXVxF55RKVpG/PH36dHh7e0NPTw/37t3DhAkTKquLiIiINMzJdZ5wbOeMYd99hZjwm8hIVt5Hrir0M4NhYWFwdnZGy5YtMXjwYDx9+rSSsoiIiEjTFBYUwHv+Isj09DDyp/9AS0tLdNJrqdaLLhAREZFaS34Qg0O/rIZju/fRcexw0TmvxQFFRERESiV470FEnD2PvjOnoKbju6Jz/hUHFBERESmd3Qt/RnZ6BsYs+Q4yfX3ROa/ggCIiIiKl8+xpOnZ9/QNs330H/edMFZ3zCg4oIiIiUkrRQVdwfocvOowaikYd24nOeQkHFBERESmtY6vWIz76Dkb88A2MLMxF55TggCIiIiKlVZCXB+8vF6KaUXUM//5r0TklOKCIiIhIqSXcuYcjK9aiiWt7fDj8I9E5ADigiIiISAVc8NmLqAtBGDB3BmzeqSc6hwOKiIiIVIPfNz8iNzsbo5d8Bx1dXaEtHFBERESkEjJT0+D37X9Ru5Ej2gzoLbSlQm8mTERERKRIkecv4Df3qbgrDxHawXugiIiISKWIHk8ABxQRERFRmXFAEREREZURBxQRERFRGXFAEREREZURBxQRERFRGXFAEREREZURBxQRERFRGXFAEREREZURBxQRERFRGXFAEREREZWRFgBJUV8sKSkJDx8+VNSXUylWVlZISUkRnaFReJsrFm9vxeLtrVi8vRVPEbe5vb09rK2tX/txiUf8kcvlwhs07fA25+2tzoe3N29vdT+ib3M+hEdERERURhxQRERERGXEAaUkNm7cKDpB4/A2Vyze3orF21uxeHsrnujbXKFPIiciIiJSB7wHioiIiKiMOKAEs7Ozw9mzZ3Hz5k1ERERgxowZopM0gra2NkJCQnD48GHRKWrP1NQUe/bsQVRUFCIjI9G2bVvRSWpv1qxZiIiIQHh4OHx8fKCvry86Sa14eXkhMTER4eHhJZeZm5vj1KlTiI6OxqlTp2BmZiYuUM382+29dOlSREVFISwsDPv374epqamQNuE/iqjJx9bWVmrdurUEQDIyMpJu374tNW7cWHiXup/Zs2dL3t7e0uHDh4W3qPvZunWrNHHiRAmApKurK5mamgpvUudTq1Yt6d69e1K1atUkAJKfn5/k5uYmvEudTseOHaXWrVtL4eHhJZctWbJE+vLLLyUA0pdffiktXrxYeKe6nH+7vbt37y7p6OhIAKTFixcLub15D5RgCQkJCA0NBQBkZWUhKioKtWvXFlyl3mrXro2+ffti06ZNolPUnomJCVxcXODl5QUAyM/PR3p6uuAq9SeTyWBgYAAdHR0YGhoiPj5edJJaCQwMRFpa2kuXDRw4ENu2bQMAbNu2DYMGDRJQpp7+7fb29/dHYWEhACA4OBh2dnYK7+KAUiL29vZo3bo1Ll++LDpFra1atQrz5s1DUVGR6BS15+DggOTkZGzZsgUhISHw9PSEoaGh6Cy1Fh8fj2XLliEmJgaPHz9Geno6/P39RWepPRsbGyQkJAAo/oexjY2N4CLN4e7ujuPHjyv863JAKYnq1atj3759mDVrFjIzM0XnqK2+ffsiKSkJISEholM0gkwmg5OTE9avXw8nJyc8e/YM8+fPF52l1szMzDBw4EA4ODigVq1aqF69OkaPHi06S+NIkiQ6QSMsWLAABQUF8Pb2VvjX5oBSAjKZDPv27YO3tzcOHDggOkettW/fHgMGDMD9+/fh6+uLLl26YMeOHaKz1FZcXBzi4uJw5coVAMDevXvh5OQkuEq9devWDffv30dKSgoKCgqwf/9+fPjhh6Kz1F5iYiJsbW0BALa2tkhKShJcpP7c3NzQr18/Yf9A4IBSAl5eXoiKisLKlStFp6i9BQsWoE6dOnBwcMCIESNw9uxZjB07VnSW2kpMTERsbCwcHR0BAF27dkVkZKTgKvUWExODtm3bwsDAAEDxbR4VFSW4Sv0dOnQIbm5uAIr/j/3gwYOCi9Rbz549MW/ePAwYMAA5OTnCOoQ/w16TT/v27SVJkqSwsDApNDRUCg0NlXr37i28SxOOq6srfwpPAadly5aSXC6XwsLCpAMHDkhmZmbCm9T9LFq0SIqKipLCw8Ol7du3S3p6esKb1On4+PhI8fHxUl5enhQbGyu5u7tLFhYW0unTp6Xo6GjJ399fMjc3F96pLuffbu+//vpLiomJKfn/zfXr1yu8i69ETkRERFRGfAiPiIiIqIw4oIiIiIjKiAOKiIiIqIw4oIiIiIjKiAOKiIiIqIw4oIhIKUiS9NKLmuro6CApKQmHDx8u1+czNTXFlClTSv7s6upa7s9FRPS/OKCISClkZWWhWbNmqFatGgCge/fuePToUbk/n5mZGT777LPKyiMiegkHFBEpjWPHjqFv374AgJEjR2LXrl0lHzM3N8eBAwcQFhaGoKAgNG/eHACwcOFCeHl54dy5c7h79y6mT58OAFi8eDHq16+P0NBQLF26FABgZGSEPXv2ICoqCjt37lTwd0dE6kb4q4zy8PDwZGZmSs2bN5f27Nkj6evrS6GhoS+9WvyaNWukb7/9VgIgde7cWQoNDZUASAsXLpQuXrwo6enpSZaWllJKSookk8kke3t7KTw8vOTzu7q6Sk+fPpVq164taWlpSZcuXZLat28v/Pvm4eFRzcN7oIhIaYSHh6NevXoYOXIkjh079tLHOnToUPIcqXPnzsHS0hLGxsYAgKNHjyIvLw+pqalISkqCjY3Nv37+K1eu4NGjR5AkCdevX0e9evWq9PshIvUlEx1ARPRPhw4dwrJly9CpUydYWlq+1d/Jzc0t+X1hYSFksn//n7a3vR4RUWl4DxQRKZXNmzfju+++Q0RExEuXBwYGYvTo0QCKf6IuJSUFmZmZr/08mZmZJfdQERFVNv7zi4iUyqNHj/Drr7++cvmiRYuwefNmhIWFITs7G25ubm/8PGlpabh48SLCw8Nx/PhxHD16tKqSiUgDaaH4yVBERERE9Jb4EB4RERFRGXFAEREREZURBxQRERFRGXFAEREREZURBxQRERFRGXFAEREREZURBxQRERFRGXFAEREREZXR/wGJsDlnJ202DgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "weather[weather['Year']==year].plot(y='Tmax', x='Month', legend=False, figsize=(10,5))\n", "\n", "print(f\"Monthly maximum temperatures for {year}\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.8" } }, "nbformat": 4, "nbformat_minor": 4 }