{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "809e933b", "metadata": {}, "outputs": [], "source": [ "from qutip import * \n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 42, "id": "7a00b673", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHvCAYAAADel0z6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hc1bXw4d8eadR7l6tsuXdsYzAEkKmmEwIJEEgguZeEFELCcNO+QAiXkHAnCem5BAiQ5NIJGGIw1VQbsI2bXGRZbpKsbpVRl2Z/f8yMLYzq0WjOOTPrfR49WJqj2evYaLRml7WU1hohhBBCiOM5zA5ACCGEENYkSYIQQggh+iVJghBCCCH6JUmCEEIIIfolSYIQQggh+iVJghBCCCH6FW12AFaTlZWlCwoKgvZ8ra2tJCYmBu35zBQu9xIu9wFyL1YVLvcSLvcBci+D2bhxY53WOru/xyRJOE5BQQEbNmwI2vOtXbuWoqKioD2fmcLlXsLlPkDuxarC5V7C5T5A7mUwSqkDAz0myw1CCCGE6JckCUIIIYTolyQJQgghhOiXJAlCCCGE6JckCUIIIYTolyQJQgghhOiXJAlCCCGE6JckCUIIIYTolyQJQgghhOiXJAlCCCGE6JckCUIIIYTolyQJQgghhOiXJAlCCCGE6JckCUIIIYToly2TBKXURKXUm0qpHUqpYqXUd/q5RimlfqeUKlVKbVVKLTYjViGEEMKuos0OwKAe4Fat9SalVDKwUSn1qtZ6R59rzgem+z9OAv7s/68QQgghhsGWMwla68Na603+P7cAO4Hxx112KfCo9lkPpCml8kMZZ1tXD82dOpRDCiGEEEFjyyShL6VUAXAC8MFxD40HDvX5vJxPJxJjprvXywr3Wp7d0xWqIYUQQoigUlrb952uUioJeAu4W2v97HGPvQj8Qmv9rv/z14Hva6039PM8NwI3AuTm5i55/PHHgxLfg9s6+eBwN/etSCTBqYLynGbyeDwkJSWZHcaohct9gNyLVYXLvYTLfYDcy2BWrFixUWu9tL/H7LonAaWUE3gG+OfxCYJfBTCxz+cT/F/7FK31/cD9AEuXLtVFRUVBiTFjWiOX/OE9ahOn8OVTCoLynGZau3Ytwfq7MVO43AfIvVhVuNxLuNwHyL0YZcvlBqWUAh4Edmqtfz3AZauAL/lPOZwMNGmtD4csSGDBhDSmpDj4x/oD2HnGRgghRGSyZZIAnApcB5yplNrs/7hAKfV1pdTX/desBsqAUuCvwDfMCPTMSdHsqfHwwb4GM4YXQgghDLPlcoN/n8Ggi/za99b9m6GJaGDL8qN5qtTLP9Yf4OSpmWaHI4QQQgybXWcSbCM2SnHFkomsKa6ipqXD7HCEEEKIYZMkIQS+ePIkuns1T350aOiLhRBCCIuQJCEECrOTOHVaJo99eIher2xgFEIIYQ+SJITItSdNpqKxnTd31ZgdihBCCDEskiSEyNlzcslJjuWZTeVmhyKEEEIMiyQJIeKMcrB4Ujol1S1mhyKEEEIMiyQJITQ5K4FDDe2yL0EIIYQtSJIQQlMyE+nq9VLZ2G52KEIIIcSQJEkIocmZiQDsr281ORIhhBBiaJIkhNCUrECS0GZyJEIIIcTQJEkIoZzkWOKcDg7UyUyCEEII65MkIYQcDkVBZqIsNwghhLAFSRJCbHJmgiw3CCGEsAVJEkKsIDORg/VtcgxSCCGE5UmSEGIFWb5jkIeb5BikEEIIa5MkIcQmZyYAcECWHIQQQlicJAkhFjgGuU9OOAghhLA4SRJCLDc5jthoBwfkhIMQQgiLkyQhxBwOJScchBBC2IIkCSYoyExkvyw3CCGEsDhJEkxQkJXIgYY2vHIMUgghhIVJkmCCgsxEunq8HG7uMDsUIYQQYkCSJJigIHAMUpYchBBCWJgkCSYokG6QQgghbECSBBPkpcQRE+2QRk9CCCEsTZIEEzgciskZCXLCQQghhKVJkmCSgixpGS2EEMLaJEkwSUFmAgfq5RikEEII65IkwSQFWYl09nipbpFjkEIIIaxJkgSTFGRKoychhBDWJkmCSaRltBBCCKuTJMEk41LjfccgZSZBCCGERUmSYBKHQzEpI0FOOAghhLAsSRJMFDjhIIQQQliRJAkmyk6Oo87TaXYYQgghRL8kSTBRdnIsDa1d9EqtBCGEEBYkSYKJspNi8Gqob5XZBCGEENYjSYKJspNjAahr6TI5EiGEEOLTJEkwUVaSL0molX0JQgghLEiSBBMFkoS6FkkShBBCWI8kCSYKLDfITIIQQggrkiTBRImx0cQ7o2QmQQghhCVJkmCy7ORYmUkQQghhSZIkmCwrKUYKKgkhhLAk2yYJSqmHlFI1SqntAzxepJRqUkpt9n/cHuoYhyM7OZZaWW4QQghhQbZNEoCHgZVDXPOO1nqR/+NnIYhpxLKSYqnzSJ0EIYQQ1mPbJEFr/TbQYHYcoxUozdzd6zU7FCGEEOITlNb27RuglCoAXtRaz+vnsSLgGaAcqARcWuviAZ7nRuBGgNzc3CWPP/540GL0eDwkJSUN+PgbB7t5dEcXvymKJz3O2jnbUPdiF+FyHyD3YlXhci/hch8g9zKYFStWbNRaL+33Qa21bT+AAmD7AI+lAEn+P18A7BnOcy5ZskQH05tvvjno4y9vP6wnf/9Fva28MajjjoWh7sUuwuU+tJZ7sapwuZdwuQ+t5V4GA2zQA/xOtPZb11HQWjdrrT3+P68GnEqpLJPD+hQpzSyEEMKqwjZJUErlKaWU/8/L8N1rvblRfVpOoOqinHAQQghhMdFmB2CUUuoxoAjIUkqVA3cATgCt9V+AK4CblFI9QDtwlX9axVKO9m+QmQQhhBAWY9skQWt99RCP/wH4Q4jCMSw+Joqk2GiZSRBCCGE5YbvcYCe+qotSK0EIIYS1SJJgAb6qix1mhyGEEEJ8giQJFiBVF4UQQliRJAkWIP0bhBBCWJEkCRaQlRRLU3s3nT29ZocihBBCHCVJggVk+2sl1MuSgxBCCAuRJMECpFaCEEIIK5IkwQKypeqiEEIIC5IkwQKykmIAmUkQQghhLZIkWMDRJk8ykyCEEMJCJEmwgDhnFMlx0VIrQQghhKVIkmAR2UlSK0EIIYS1SJJgEVnJsdTKngQhhBAWIkmCRWQnxVInMwlCCCEsRJIEi8iWmQQhhBAWI0mCRWQlxdDS0UNHt5RmFkIIYQ2SJFhEoKCS1EoQQghhFZIkWITUShBCCGE1kiRYxLGZBKmVIIQQwhokSbAImUkQQghhNZIkWESm9G8QQghhMZIkWERsdBSp8U5JEoQQQliGJAkWkp0spZmFEEJYhyQJFpKVFCMzCUIIISxDkgQLyU6Ok5kEIYQQliFJgoVkJsZQL0cghRBCWIQkCRaSluCkpbOH7l6v2aFYVktHN398s5SXt1eZHYoQQoS9aLMDEMekJ/iOQTa1dx+tmyB8unu9PPbhQX772h7qW7tIjo1m2ZQMMhJjzA5NCCHClswkWEhaghOAxjZZcujr7ZJazv3N29z+fDHTcpL47VWLaO3q4Q9vlJodmhBChDWZSbCQwEzCkbZukyOxjo7uXr7+j43kpcTx0PVLWTEzB6UU75fW8/f1+7nh1AImZiSYHaYQQoQlmUmwkKNJQqvMJAS8s6eOtq5e7rx0LmfOykUpBcAt50zHoRS/emW3yREKIUT4kiTBQo4tN8hMQsCa4iqS46I5aUrmJ76enxrPVz4zhec2V7K9osmk6IQQIrxJkmAhR5OEdplJAOjp9fL6zmrOmpVDTPSn/1f9+hmFpMY7uXeNzCYIIcRYkCTBQpJio4l2KNmT4PfR/iMcaevmvLl5/T6eGu/kWyum8XZJLe+V1oU4OiGECH+SJFiIUoq0hBg53eD3yo4qYqIdnD4je8Brrls+mfFp8fz29T0hjEwIISLDiE83uJW6vc+nq1xabw5iPBEvPcHJkVaZSdBa80pxNadPzyIxduD/TeOcUVx2wjj+8lYZLR3dJMc5QxilEEKENyMzCT8F7gB+DMwKajSC9IQYjshMAsWVzVQ0tnPuAEsNfZ1amEWvV/PhvoYQRCaEEJHD6HLDa0C2S+vHgxmMgNQEJ03tMpPwSnEVDgVnzcoZ8trFk9OJiXbw/t76EEQmhBCRw0iS0AL82aV1c7CDEf7lBplJYE1xNScWZJA5jPLUcc4olk5Ol82LQggRZEaShBIgbrgXu5VKcyt1uoFxIpJvuaEbrbXZoZhmf10ru6tbhrXUEHDqtCx2VbVQ75FW20IIESxGkoRHgGtHcP0S4E0D40SktIQYunq8tHf3mh2KaV7Z4evweO6c3GF/z/JCX7GldWWy5CCEEMFiJEn4I9DlVuoBt1IZwQ4o0qX7CypFcq2ENcXVzB2XMqKeDAvGp5IUG817pZIkCCFEsBhp8PQg0ARcCVzrVmojcADoGOD6fIOxRaS+nSDHp8WbHE3otXX1sOngEb69YtqIvi86ysFJUzJYt1f2JQghRLAYSRKuBzSg/J8vB04e5Hrlvz6olFIPARcBNVrref08roDfAhcAbcD1WutNwY4j2NL8TZ4itX9DSbUHrWHu+NQRf+8p07J4fVcNFY3tEZlgCSFEsBltFb0NODLMa9OB+QbHGczDwB+ARwd4/Hxguv/jJODP/v9a2rF20ZF5wqGkqgWAmbnJI/7eU6f59iW8X1rHlUsnBjUuIYSIREaThO+5tH5jOBe6lTobWGNwnAFprd9WShUMcsmlwKPad0xgvVIqTSmVr7U+HOxYginS9yTsrm4hzukY0X6EgBk5yWQmxvD+3npJEoQQIghC0buhDTgYgnGONx441Ofzcv/XLC01sCehNUJnEqpbmJ6TTJRDDX3xcRwOxfLCTN7fWxfRR0iFECJYlJ1fTP0zCS8OsCfhReAXWut3/Z+/Dnxfa72hn2tvBG4EyM3NXfL448ErJOnxeEhKShrR93zt1VaKJkRz9eyhCwmFkpF7Galb3mxjbmYU/7nA2L2vPdTNw8Vd/Pwz8YxL6j8HDsV9hIrcizWFy72Ey32A3MtgVqxYsVFrvbS/x4wuN9hBBdB3znmC/2uforW+H7gfYOnSpbqoqChoQaxdu5aRPl/W+jdIzMygqGhR0OIIBiP3MhJHWrtofPlVzlg0jaLTCw09x5T6Vh4uXktP5lSKlhf0e81Y30coyb1YU7jcS7jcB8i9GDWqJMGtVAxwJr6CSbnAr11a73crNQ3ocWm9f/QhGrYK+JZS6nF8GxabrL4fISAtwRmRpxtKqn2bFmcY2LQYMCkjgfFp8bxfWs+XBkgShBBCDI/hJMGt1DfxdYPM7PPlfwD7gbOAP7iV+htwi0vrttEE2R+l1GNAEZCllCr3x+IE0Fr/BViN7/hjKb59ETcEO4axEqmdIANJwqy8FMPPoZRvX8Ibu2rQWuM7CSuEEMIIQ0mCW6n7gG9zrFYCfLIWwgZgE/AfwFTgbKMBDkRrffUQj2vgm8EeNxTSEpxUNLabHUbI7a5uISUumtyU0e3FWDAhlac3llPV3EF+qtRLEEIIo0Z8usGt1ArgZnx1Eu4ATgPm0idhcGm90aX1ScD3gDPdSn0pOOFGhoidSajyMDMvedTv/ufk+2YidlRKo1IhhBgNI0cgbwIOA4tcWt/l0vo9oKy/C11a3we8AFxnPMTIk5bgpKm9G6/XvidPRkprze7qllHtRwiYJUmCEEIEhZEkYTnwG5fW5cO8/jnAWtv0LS4tIQatobkjcjYv1rR00tTezcy80ScJSbHRFGQmsOOwJAlCCDEaRpKEbKB4BNdXAcZ3okWgSKy6uKtq9Ccb+pozLkWSBCGEGCUjSUIrvkRhuArxdY0UwxSJ/RtKgpwkzB2XyoH6NloiaDZGCCGCzUiSsA240a3UkN/rr6PwdWCzgXEiVt920ZFid3UL2cmxZCTGBOX5ApsXdx5uCcrzCSFEJDKSJDwGnAK86FZq1kAXuZWaja+x02zgn8bCi0yR2C66pLrFUOfHgcwZF9i8KJNYQghhlJE6CQ8AXwVWAue5lSrh2B6F/+dWqhPfkciZ/q+tY+B2zqIfkbYnwevVlFS3cM2yyUF7zpzkWDITY2RfghBCjMKIZxJcWvcCF+L75a/wJQOfxVdM6ULgcmCW/7H3gEtddu4iZYKUOCcOFTnLDYeOtNHR7WVmXvAaliilZPOiEEKMkqFW0S6ta4HT8VVUfA/owZcUKKAbeBdfGeQVLq3rgxNq5HA4FKnxzojZuLg7yJsWA+bkp1BS5aG71xvU5xVCiEhhuHeDf0bhIeAht1JRHOvhUO9/TIyCr+piZCw3BHo2TA92kjAuha5eL3trPaPqByGEEJEqKK2i/UlBTTCeS/ikJjhpipAkYXe1h4kZ8STFBrdz+dxxxyovSpIghBAjN+pXZbdSCcAJQA6+fQk1wOax6PwYSdITYqhu7jA7jJAoqQruyYaAKVlJxDkdFFc2c/nioD+9EEKEvdG0ip4L/Ay4GIg67uFet1KrgDtcWo+kOqPwS0twHl2rD2ddPb7lgLNm5wT9uaMcipl5KdLDQQghDDK0cdGt1NX42kFfhi/RUMd9ROM78bDBrdRVwQk1skRKJ8jyI230eDVTs4N3sqGvOfm+Ew5ywEYIIUZuxDMJbqUW46t7EAVUAy8DO4EGfAlCOr4CSiuBXOBRt1IlLq03BSvoSJCe4KStq5fOnl5io4+fqAkfFY3tAExMjx+T558zLoXHPjxIZVMH49PGZgwhhAhXRpYbfoQvQfgJcK9L635317mVcgLfx7ck8UPgSqNBRqJA1cWmtm5yUsI3SSg/4ksSxo9RktB386IkCUIIMTJGlhtOB/7u0vrugRIEAJfW3S6t/xv4B3CG0QAjVVqEVF2sONJOlEORlxI3Js8/Ky8ZpZB9CUIIYYCRJCEZeG4E1//L/z1iBCKlE2RFYzt5KXFERxnaHjOkhJhopmQlsuOw9HAQQoiRMvLKXAGMpISdF9/eBTECkdIJsvxI25gtNQTMyU+hWGYShBBixIwkCf8Gzh/B9ecDbxgYJ6Idm0kI/+WGCWO8V2B2fgrlR9rxdPaM6ThCCBFujCQJdwEr3Up9ZagL3UrdAHze/z1iBNIjoF10d6+XquYOJozxTMK0HN/xyr01njEdRwghws2ApxvcSn1pkO/7C/A7t1K34DsCWQYEKizGA1PxHYGcB/wOOA3YF4yAI0Wc00FMtCOslxuqmjrw6rE72RAQSBL21HhYODFtTMcSQohwMtgRyIfxlVkezFz/x2Bu9v/30WHGJPC1Ok5PCO9OkEePP6YljOk4kzMScEYpSmUmQQghRmSoOgkqSONIuTsDwr0TZKCQ0ljPJERHOZiSlShJghBCjNBQScLZLq1HtenQrdTZwJrRPEekSktwhvVyQ4V/JmFc2tjUSOhrWk4SOw+Hfy8MIYQIprE5nP5JmuDNSESUcJ9JKD/SRk5ybEjKTk/LTuJAfSudPb1jPpYQQoSLwWYSVgBbgjDGRv9ziRFKS4gJ69MNFY3tY77UEFCYk4RXw7661pCMJ4QQ4WDAJMGl9VtBHEf2JBgQWG7QWqNU+E3GVDS2s2BCaE4bBE44lNZ4GJt+k0IIEX5CsdywBHgzBOOEnbR4Jz1eTWtX+E2Re72aysb2kDVdKsxOQilk86IQQoyAkS6Qn+BWKh1IZOCEI3e0Y0Sq1Hhfaeam9m6SYkf9T2UpNS2ddPfqkC03xDmjmJieQGmNh0XjQjKkEELYnqHfPG6l5gO3A+cgzZvGTKB/Q1Nbd9i1Oa5o9NXeGuuSzH1Ny0nyzSRIkiCEEMMy4iTBrdRJwOv4KisOd6Fc9iQYkNJnJiHcBAopjXVJ5r6m5STxbmkdXj32Ry6FECIcGJlJ+G8gAXgNeBbYD7QPcv1S4F4D40S81AhIEkK13AC+Y5BdPV5q2yRnFUKI4TCSJCwDnnZp/fnhXOxWKhqpk2DIsSQh/AoqVTS2k57gJCEmdHstCv0nHCpbR9LpXAghIpeR0w29wJMjuF7qJBgUzjMJFUfamZA+tj0bjhc4BnnYI0mCEEIMh5G3ceuB2OFe7NK6EQhmzYWIkRQbTZRDhWWSUH6kjek5od3zmhrvJCc5lsrW8DtSKoQQY8HITMIdwFfdSsUM52K3Ume5lZJXZQOUUqTERYddkqC1Dmm1xb6m5SRRKTMJQggxLCNOElxafwTcBTzpVupat1KT/fsOxBhIjXfS1N5jdhhB1dDaRUe315RjndNykjjc6kVr2bwohLCXXq/m5sc+Zntd6H4nGP3lXgrUAY8EvuAOw7LBVpCaEBN2MwlmHH8MmJaTRHsPVDd3kpcqRyGFEPZRfqSNVVsquWHesCbyg8JInYQpwLtAHlInYcz5ZhLCK0moaAz98ceAadnHejhIkiCEsJOyWl+DunGJoeio4GNkJuEuIB8oBlYBB4GOQa6fA7gMjCPwJQmHGtrMDiOoKgIzCWmhPd0AfRs9tfCZ6VkhH18IIYzaW+vrPZNn8SRhBb6KiytdWg+5IdGt1FnAbQbGEUBqfDSNbeFVJ6H8SBvJsdGkxId+K0t2ciwJ0VBaK42ehBD2sre2lbQEJ8kxoVveN5KOpAAPDSdB8CsGbjAwjsA3k9Dc0RNWG+0CJxvMaH+tlGJckkO6QQohbKes1sPUrMSQjmkkSSgGhr1I7tK6yqX1I0NfOTJKqZVKqd1KqVKl1A/6efx6pVStUmqz/+M/gh1DKKTGO+n1ajyd4XPCofxI6FpE9yc/0UFpTatp4wshhBFlda0U+vdVhYqRJOFXwLB/4bqVOsWtVJmBcQaklIoC/gicj2/Pw9VKqTn9XPqE1nqR/+OBYMYQKuFYdbGisd2Ukw0B45Ic1Hk6w24ZRwgRvpo7uqlt6WSq1ZMEl9ZPAW+4lXrJrdTpw6iREA9MNhTdwJYBpVrrMq11F/A4cGmQx7CEcEsSmtq7aenoMeVkQ0B+om+ZY2+tzCYIIewhcLJhanZolxuMHIEMzArkAOcCvW6laoHOAb5lLM6ZjQcO9fm8HDipn+s+p5Q6HSgBvqu1PtTPNZaWGu87DxsuSUJl4PijCScbAgI7g8tqPSyZnG5aHEIIMVxl/s3WhdlJlNeGblwj28sL+nmO/CG+x4xddy8Aj2mtO5VSX8NX+OnM/i5USt0I3AiQm5vL2rVrgxaEx+MZ1fMdbPbtD33/o810HTK3sOVo7wVga61vb0Xl3h2sbdgdhKhGLt7bRpRSrN24k2zPXlNiCJZg/JtYhdyL9YTLfYD97+XNki4cCvZv/4iOttaQ3YvR3zp/B4a7z2AqcK3BcQZSAUzs8/kE/9eO0lrX9/n0AeDegZ5Ma30/cD/A0qVLdVFRUdACXbt2LaN5vorGdm5//w0mTJ1B0bJJQYvLiNHeC0D1Rwdh4zZWnrGciRnmzCasXbuWgizoSUiiqGipKTEESzD+TaxC7sV6wuU+wP738mTFRiZntnD2mUUhvRejScIjLq3fGM6FbqXOJvhJwkfAdOWr/lgBXAVc0/cCpVS+1vqw/9NLgJ1BjiEkwm1PQk2zb1UqO3nYjUTHxNTspKNrfEIIYXV7a1pDfvwRjJ1ueAs4MoLrK4BHDYwzIK11D/AtYA2+X/5Paq2LlVI/U0pd4r/sZqVUsVJqC3AzcH0wYwiVxJiosGoXXd3SQVqCkzhnlKlxTM1O5EB9Gz290hFSCGFtvV7NvvpWCnNCe7IBDMwkuLReMcLrdzIGxZS01quB1cd97fY+f/4h8MNgjxtqSqmw6t9Q09xJjsmzCACFWUl09XopP9JOgQnZuRBCDFdlYztdPV7bzCSMiFupbLdSl4/1OOEsnJKE6pZOclPMb6wUOEZUVieVF4UQ1hYoIx/qGgkQgiQBWAA8FYJxwlZKGCUJtc0dpu9HgGM/bLIvQQhhdYHXqcIQ10gAY3USRrrFPnekY4hPSot3hkV1QK9XU2ORmYSMxBjSE5xSUEkIYXlltR5S451kJMaEfGwjpxv2Y07dg4iVGu/kQL39f5kdaeuix6stsScBAiccZLlBCGFtZbWtTM1ONKUpntHlBjXCDzEKqfFOGsNguaGmxXf80QozCQBTsxIpq7N/8iWECG97az0hb+wUYLROwq3ApgEei8dX3GgFcB7wI8Cc0nphIjXeSXN7N16vxuGwb85V3dwBYKmZhKc2ltPS0U1ynNPscIQQ4lNaOrqpaekMec+GAKNJwhaX1m8Ncc0DbqXmA08AKw2OI/AlCV4Nnq4eUmz8y8xyMwmBEw61rSycmGZyNEII8Wn7/LOdU7PMmUkwstywAtg4nAtdWm/DVxL5ZwbGEX5Hqy622XvJocY/k2CF0w1wbKewHIMUQliVmScbwFgxpaFmEI63G3CNdBxxTEqf0swTh7jWympaOkmNN7/aYsCkjESiHIq9NbIvYbSqmjr4aH8DZbWtzMhNYtGkNPJS4kzZaCXM0dbVw+GmDqqbOqhq7qChtYtlUzKYPz5V/j8Yhb21HqIcikmZ5vS6CUVbwVlARgjGCVtpCb4kodnmmxermzsssx8BICbawcT0eJlJMKi4sokH3tnHh/saqPC3AO8rJzmWxZPSuamoUJZzwtihhjZ++/oe/vVxBb3eTx98K8hM4JJF47lk4TimmVBW2O7KaluZmB5PbLQ5b67GNElwK3UKvtLIh8ZynHAXLk2erFIjoS9p9DRyXq/mwXf3ce+aXSTGRnNKYSZf+cwUTixIpzA7iZLqFrYcamRLeRPv7Knlsj9VcfWySdx27kzSTTjnLcZGZWM7v3+jlKc2HCLKobju5MksnJhKbkoceSlxJMVG8+buGp7fXMnv39jD717fw9XLJvGzS+fijApFHb/wsLfWY0qlxQAjxZSG6v6ogESgAMj0f+3PIx1HHBM2SUJzJydNsVafhKlZibxXWmf7kyOhUtPcwa1PbeGdPXWcOyeXX35uwad+8Z8wKZ0TJqUDvp3Z9722h4ff389L2w7zg/NnceWSifJ3bXP//OAAd67agUZzzUmT+OaKaf2+AfjCiZP4womTqG7u4K9vl/HAu/s4UN/Kn764mLQESRiH4vVq9tW1ctr0LNNiMDKTUISvmNJwf2t4AisAACAASURBVMqfA+4yMI7wCyQJdq6VoLWmpqWDHAvOJHT2eKlobGdihjlrfnbxQVk9N/1zE21dPfz8s/O5etnEIdeak+Oc/OSiOVyxZAK3P7+d7z+zjXV76/mfKxfKu0kb8no197y0k7++s4+imdnc/dn5jE+LH/L7clPi+H8XzWF2fgo/fHYbn/3T+zz45aWmvkO2g4rGdjp7vPaaSfB7FTg8wGMaaAMOAK+7tB6onoIYpoSYKKJt3i76SFs33b3WqbYYcKzRU6skCYPYV9fKjX/fSFZSDE9+bfmI15Zn56fw5NeW88c3S3G/UoKns5c/XHOCZTaxiqG1d/VyyxMfs6a4mi8vn8xPLppD9AgTvc8tmcCkzAS+9veNXPbH93jo+hNZWiBb1gYSKPZmViElMJ4k3OvSeqhlBxEk4dAuuqbFd/zRensSArUSPJwxI9vkaKypuaOb/3jkIxwKHr5hmeFkSinFt86cTmq8k588X8wNf/uIv355KUmxodg/LUajztPJVx/+iK0VTdxx8RxuOHWK4ec6sSCD5795Ktc9+AE3/XMTq28+zTLHoq1mb02g+6N5y7RG5vteB+qDHYgYnN2ThOpmXyGlnBRrvRhkJ8WSHBctmxcH0OvVfOexjzlQ38afvrgkKLMt1y0v4DdfWMiH+xv44l/Xc6TV/s3LwllrZw/X/+1Ddle3cP91S0eVIARMzEjgL9ctobm9m+8+sRlvP6cihK+GS2q8k0wTN/yOOElwaX2OS+stYxGMGFiKvzSzXQUKKeUmW2smQSnlO+EgxyD7de+aXby5u5afXjKX5YWZQ3/DMH32hAn85dol7Kxq4Wt/30hXjzdozy2Cp9er+db/bWJHZTN/+uJizpkTvKa+s/JSuPOSubxbWsef1pYG7XnDyd6aVgpNauwUMGiS4FbqdrdSBaEJRQwmLcHeMwmBksxWm0kAKMxKlIJK/Vi1pZL/fauMa0+exLUnTw76858zJ5f/uWIBH+5v4P89tw2t5d2klWit+fuOLt7cXct/XzafM2cFL0EI+MKJE7lk4Th+/WoJH+5rCPrz253Zxx9h6JmEO4CpoQhEDM7uyw01zR2kxEVbcqPa1OxEqpo7aO3sMTsUy2hq6+anq4o5YVIad1w8d8zGuXTReG4+cxpPbihnzX75+7eSP63dy9ryHr5RVMg1J00akzGUUvz88vlMykjg5sc+pkGWno4KNHYyc9MiDJ0kKHynFYTJ7J4kVDd3Wu74Y0AgU98nbaOPuu/1Eo60dXHXpfPG/KjiLWfP4Px5eTyxu4s3dlWP6VhieF7YUsn/rNnNyflRuM6dOaZjJcVG84drFtPQ2sVPnt8+pmPZSWCflJmbFmF4pxtec49+PUS7tJYtzKMQSBLsWvSnpqWDXAsuNcCx40V7az3MG59qcjTm21PdwqPrDnDViZNC8vfhcCh+9fmF7DhYw82PbebZb5zCjNzkMR9X9G9fXSs/eGYrSyen89WZnSF5vZk3PpWvFxXyu9f38J+nNbJIynizt9a3T8rsmYTh/OIerCbCQDKBi/p8XjnC7xfHSY13ojW0dPYcLa5kJ9XNnSybYs3z0AVZCTjUseNGkUxrzc9e3EFCTBSuc2eEbNyEmGi+sziWezZ6+cY/N/HCtz5DfIz1lqbCXWdPL9/6v004ox38/poT2P3xByEb+8bTp/J/HxzgntU7efzGkyO+KVRZbSvRDsVkkxo7BQwnSRhRTQS3UicDT3CsKuMbwNXGwhMBgU6Qze3dtksStNbUtnRactMiQGx0FJMyEtgrxyB5dUc17+yp4/aL5pCZFNp/r4w4B7/+/Hyue/BD7l69g/++bH5Ixxdwz+pdFFc288CXlpKfGs/uEI6dFBvNd86azk+eL+bN3TVjslHSTvbWepiUkWB6ZdKgju5W6hZgLTDB/6VfAOe6tK4N5jiRyM79Gxrbuunq9ZJjseOPfRVmJ1Ea4TMJHd29/Pe/dzI9J4nrlgf/NMNwnDY9mxtPn8o/1h/kleIqU2KIVGuKq3j4/f185dQpnB3Eo44jcdWySUzJSuQXL+3qt6NkJLHCyQYYOkmYArw31JO4lUpxK/UM8CsgBmgCLnNp/SOX1nIAOgjsnCQEjj9adU8CQGFOEvvqWiP6hemh9/ZxsKGN2y+eY+q7F9e5M5k7LoXvP7OVan99DTG2yo+0cdtTW1gwIZUfnD/LtDicUQ5uO28mJdUentlYblocZuv1avbXtVGYY35DvEFfCVxaH3Bp3TnYNW6lTgA2ApfhW17YAix1af1C0KIUpCXYN0kIvNBbeSZhWnYSXb1eyo+0mR2KKdq6erj/7TJWzMzmtOnmlqeOiXbw26tOoL27l1uf3CLV+MaY16v53pNb8Gr4/dUnEBNt7vT2+fPyWDQxjV+/WkJ7V6+psZil/EgbXb1eCrOsP5MwKLdSN+GbaZiKL0F4GFju0rps9KGJvmQmYWwFMvbAjuJI89SGchrbuvnGimlmhwLAtJwk7rjYV43vwXf3mR1OWHtk3X4+3NfAHRfPYXKm+e9clVL88PxZVDV38Lf3I/Pf/ujJBqvPJAzErVSiW6n/A/4AxAFdwI0urb/i0lrmB8eAvZME688kTPVn7JG4L6Gn18sD75ZxwqQ0lk5ONzuco646caKvKuMruyM2eRtr++ta+eXLu1gxM5srlkwY+htC5KSpmayYmc2D7+yjozvyZhOO1kiw40yCW6l5wAbgC/hmD/YDp7q0fiC4oYm+4p1ROKMUjW02TBKaO0mOi7b0kbb0xBgyE2Misjzzy8VVHGpo52unT7XUsTOlFHdfNo94ZxT/9fTWiN4vMha8Xs1/Pb0VZ5SDey5fYKl/e4D/PG0q9a1drNoSeSfo99Z6yEiMId3Exk4BI0oS3ErdAKwHZuBLEFYDi11abxqD2EQfdm4XXdPSQY4NWsEW5iRF3DtWrTX3v11GQWYC58zJMzucT8lJieP2i+aw8cARHl233+xwwsrD7+/nw/0N3H7RHPJSrTfLt7wwk1l5yfztvf0R19cj0NjJCoaVJLiVinMr9TfgASABXw2En7i0vsildeNYBiiOsWsnyOrmTnItWpK5r8LsyEsS1pc1sLW8if84bSpRFq3kefni8RTNzObel3dzsD4yN5YG2766Vu5ds4szZ+VYapmhL6UUN5xawM7Dzawvi6zmT2V1HtMrLQYMmSS4lZoJfAh8Cd/sQR2w0qX13cMZwK3UYrdSwy7GJAYmMwljqzA7kSNt3dR7Bj3QE1buf3svmYkxlv1FAf4mQJ+dT5RD8f1ntkbcu8pg83o133/Gt8zw88/Ot9wyQ1+XLhpPRmIMf3svcjYwNrZ1UefpMr1nQ8BQraKvAT4C5uJLENbjW154bQRjpANnGI5QHGXHJEFrbZ+ZhJxAD4fI2JdQUt3Cm7tr+dLyAkt25+xrXFo8P75wNuvK6nnsw0Nmh2NrT2w4xIf7Gvh/F8625DJDX3HOKK5ZNolXd1ZHzCxS4PXHKjMJQ5Vl/gfHukBuAG4HprqVGkn76IVGAhOflhbvPLrr1S6a23vo6vGSbYOZhGl9Gj1Ztc9EMP317TLinA7TqiuO1FUnTuSFLZXcs3onZ83OsUXiaTU1zR38fPVOTp6aweeXTjQ7nGG5bvlk/vLWXh5Zt5+fXDTH7HDGXJlFGjsFDKd3Q2AuaimwxsAY0m46SOw4k1DtP/5ohxf08WnxxEY7IqLRU1N7N6u2VHLFkglkWGAH9XAElh3Ou+9tfrqqmD9fu8TskGznzhd20NnjtfwyQ1+5KXFcuCCfJz86xHfPmUFSbHg3FN5b24ozSjEhPd7sUIDhJQm3AqM5vbAUuHcU3y/8UuOdNHfYq110TbNvfd8OexIcDsXU7CRKI2Dz4qotlXT2eLnqxElmhzIiBVmJ3HzWdP5nzW5e3VHNOSb1GLCj13ZU8+9th3GdO8MSPQFG4oZTp/D85kqe3nCI60+dYnY4Y2pvrYeCzESiTW7sFDCcJGGLS+u3jA7gViq8074QSgm0i+7oITXBHp0gaz2+mQQ7LDeAb/PilvLwP7Dz5EeHmJ2fwrzxKWaHMmI3nj6VVZsruf357SwvzAz7d5bB0NLRzU+e387M3GRuPL3Q7HBGbNHENBZPSuPRdQf48ikFtpkFMWJvrYcZOclmh3HUUKnKAaB9lGO0AwdH+RwCe1ZdrGvpAiDLJknCtJwkyo+0h3WVtx2VzWyraOLzSyfY8sXWGeXgns/Np6q5A/eaUDYztq9fvVJCVXMH93xuvum9GYy6atkkyupa2XQwfJP47l4vB+vbLHOyAYZu8DTFpfW60Qzg0vp9l9bhPT8UImkJvrVjWyUJnk5ioh0k2+TdXmF2Elr7zpGHqyc3HCImysFli8abHYphiyelc93Jk3lk3X42HwrfXxrB8PHBIzyybj/XnTyZxZOsU3Z7pC6Yn0+8M4qnw7g75MGGNnq82jKbFmGUDZ5EaNlxJqHW00l2Uqxt3rEW9jnhEI46e3p5bnMF587NtUTJ19G47byZ5CbH8YNnttLdKx3p+9Pd6+WHz24jNzmO286baXY4o5IUG8358/J4cWtl2M70BXrHBI5jW4EkCTYSSBIa27tMjmT46jxdZCXZ55fR1OxElArfRk+v7qimsa3bNsffBpMc5+Snl8xlV1WLdIocwIPv7mNXVQs/vWQuyXH22Mc0mM8tmUBLRw+v7qg2O5Qxsae6BYDpkiQII9IS7DeTUNfSSVaSPfYjgK94y4T0+LAtqPTER4cYnxbPqdOyzA4lKFbOy+PcObnc91pJxBTbGa5DDW3c91oJ58zJZeU86/XlMGL51EzGpcaF7ZJDSbWH8WnxJFpoeVaSBBux43JDncdeSQL4eziE4UxC+ZE23i2t43NLJli2T4MRd146l2iHgx8/t01KNvtprfnxc9uJUoo7L5lrdjhB43AoLl88gXf21FLd3GF2OEFXUt3CjFzrzCKAJAm2EueMIibaQZNN2kV7vZr61i6yku2z3AC+JKGszoM3zFoTP7OxAoArLdynwYj81HhuO28m7+yp4/nNkddWuD+rtlTydkktrvNmMi7NGkV5guXyxePxanju4wqzQwmqnl4vZbWtzMi1zvFHsHGSoJRaqZTarZQqVUr9oJ/HY5VST/gf/0ApVRD6KIMvzUZVFxvbu+n1atvNJEzLSaKj20tF42hP/1qH1pqnNh7i1MIsJmYkmB1O0F178mQWTUzjrhd3cKTVPnt2xsKR1i7uenEHCyek8qXlBWaHE3RTs5NYPCmNpzeWh9XM0f76Nrp6vZIkBINSKgr4I3A+MAe4Wil1fFHvrwJHtNbTgN8AvwxtlGPDTqWZ6/zdFO2WJAROOIRT5cVNBxspP9LOZSfY99jjYKIcinsun09Tezc/X73T7HBMdde/d9DY1s09ly8Iq2Wlvq5YMpE9NR62VTSZHUrQBDYtSpIQHMuAUq11mda6C3gcuPS4ay4FHvH/+WngLGWXc3iDSI130miT5Ya6FnsmCYE1wZKqFpMjCZ4Xt1YSE+3g3LnhW8Z4dn4K/3n6VJ7aWM47e2rNDscUb5XU8uymCr5+RiFzxtmvmuZwXbggn5hoB8+E0QbGkmoPSvlmMq3EOlsoR2Y80LdfbDlw0kDXaK17lFJNQCZQd/yTKaVuBG4EyM3NZe3atUEL1OPxBPX5eto6qOnQQX3O4Rrpvayv7AFg384tdB6yTj46nPtIi1W8vaWUmdrabYmHcy9erfnXhnbmZzrYtP690ARmQDB+Vk5wavISFLf88yPu/kw8cdHmvC8I9s/9cHT0aH78bjv5iYoF0ZWsXXt41M9pxn0M16IsxdMbDnBaci3Rw5gxsfK9ALy7vYOsOMUH778z5LWhvJcxTxLcSp0C/MOl9UjaS4eU1vp+4H6ApUuX6qKioqA999q1awnm862q2UxtWUNQn3O4Rnove9/dB1t3cMGZnzlaLdIKhnMf8/d+QENrF0VFp4UmKIOGcy/r9tbT2LmeG85aQNGCcaEJzIBg/axkFDZw5f+uY11rNndeOm/0gRkQ7J/74fjpqmIaOvfz1NeWs7QgOK3OzbiP4erOqeY/H91A9Pi5FM3MGfJ6K98LwN2b3mJhQQJFRScOeW0o7yUUb+/igWA3rK8A+laDmeD/Wr/XKF+TqVSgPshxhJzd9iQ4o9TRo5t2MisvmT01HnrCoJLfC1srSYiJ4sxZQ7+QhoOlBRl8eXkBj6w7wIf7GswOJyQ2HvCVXv7SyZODliBY3WnTs0iOjebfW0c/Y2K2rh4v++qsd7IBDM4kuH1r+5cAZwEFQCIw0HzPWBQL/wiYrpSagi8ZuAq45rhrVgFfBtYBVwBv6DDYCpsa78TT2UN3rxenRVqJDqSupZPMRPuUZO5rZl4KXT1eDjS0WaqO+kh193p5adthzp6dS0KMXVcXR+6282by2s5qvv/MVl76zmnEOaPMDmnMdHT38v1ntjIuNZ7bVs4yO5yQiXNGcc6cXNYUV3H3Z+3buApgf30rPV5tySRhxH+rbqVSgfeAZ4FvAhcBK4CiAT4Wjj7MT9Ja9wDfAtYAO4EntdbFSqmfKaUu8V/2IJCplCoFvgd86pikHaX535U322A2oc7TabsaCQEz/T+su22+efG90jqOtHVz8ULrLjOMhcTYaH75uQXsq2vlN6+WmB3OmPrVK7sprfHw88vnR1zb7IsW5tPc0cN7pZ/aamYrJYFyzBYrpATGZhLuAk4GvMB2oAxo8X/en3zgHEPRDUJrvRpYfdzXbu/z5w7gymCPa7bUPqWZMy1+asDXt8HaMQ5kem4SDuVLEi6Yn292OIa9sOUwyXHRnD4jPMowj8Sp07K4etlE/vpOGefOzWXJ5PCbhl9fVs8D7+7jiydN4owZ2WaHE3KfmZZNclw0L249zAobL6eVVLXgUFhy1tJIknAZvin+s1xaD5miu5U6mzFIEiKVnUoz13k6mZlnvemz4YhzRlGQmWjrmYSO7l5eKa5i5bw8YqPDd7p9MD+6YDbv7Knjlic2s/rm08KiyVFAS0c3tz65hUkZCfz4wtlmh2OKmGgH583NY01xFZ0982z7/3lJtYfJmYmWXBYzsoiTA/xiOAmCXwXwqIFxRD9S433T940WTxK01tTbeCYBfEVNdlfbN0l4q6SWls6eiFtq6Cs5zsl9X1hExZF27nxhh9nhBNVdL+7gcFM7v/78oojab3K8Cxfk09LRwzsl9l1yKKmxXs+GACNJQjWwf7gXu7Te6dL6BgPjiH6k2mRPQnN7D129Xlu1iT7ezLxk9te32rZ3/QtbKslIjOGUwkyzQzHV0oIMvrliGk9vLGf1NvvvhAdfy+8nN5RzU1EhSyaPxd5w+zi1MIvUeCf/tum/bWdPLwfq2yy5aRGMJQkvAEuGe7FbqTy3Ul8yMI7oh12WG2r9JZmzk+07kzAzLxmtYU+1/cozt3X18PrOGs6fl0e0xU/BhMLNZ01nwYRUfvSvbVQ12bt7YE1LBz98ditz8lP4zlkzzA7HdDHRDlbOzePVHdW2TOjLalvp9Wqmh1GS8FPgC26lVgzz+rnA3wyMI/oRSBKsXprZrn0b+grsp9hV1WxyJCP31u5a2rt7uXCBfTddBpMzysF9X1hEZ7cX11NbbNvhs9er+c5jm/F09vCbLyyy9bG/YLpwQT6ezh7eLrFfOe6Soz0brLncYGQh6wJ8PRH+5VZqM/AWvrLInQNcHz7NzC0gJtpBQkyU5WcSwiFJKMhMJCbacfSH2E5e2l5FeoKTZRFSWGc4pmYn8ZOL5vCjf23jj2+W8u2zppsd0oj95tUS1pXV475yoW03BY+F5YWZpCc4eXHrYc6dm2d2OCNSUt1ClEMxJSvR7FD6ZSRJeBgIpOGn+T9ECNmh6uKx5k723ZMQ5VBMz0lil81OOHT29PLGrhounJ8vSw3HuXrZRD7a38CvXyth3oRUVgyjnK9VvLmrhj+8WcoXlk7kiiUTzA7HUpxRDlbOy+P5zZV0dPda8pTAQEqqPUzJSrTsyQyjryBqhB8iiOzQCbLO00WUQ5FuoZ4NRszMS7bdTMJ7pXV4OntYOd9e76hCQSnFzz87n1l5KXznsY85UN9qdkjDUn6kje8+uZnZ+SncealMzvbngvn5tHX18s4ee51y2FNt3ZMNYDxJONultWM4H8C5wQxY+JIEq59uqPN0kpEYg8Pm/exn5SVT3dxJY1uX2aEM20vbqkiOjebUwsgroDQc8TFR/O+1S1BK8bW/b6S9y9qb3Tp7evnm/31Mb6/mz19cbKt3yaF08tRMUuKieXl7ldmhDFtHdy8HGtqYnmPdpaNQzEVqZDYhqGyx3ODptPV+hIDAsSS7LDn09Hp5dWc1Z83OkU1tg5iUmcBvr1rE7uoWfvjsVqza1sXr1dz21Fa2HGrk3isWUGDRdWsrcEY5OHtOLq/trKbbJo3ZSms8aI1ljz+CsSRhBbBpBNe/C0wxMI4YQFqCk8Z2a7+zrfV02Xo/QsCsvBQA2yw5fLCvgca2blbOk1MNQymamcOt58zguc2V/P6NUrPD6de9a3azaksl/7VyJufbuDx4qKycm0dTezfry+zR8DdQ0dXKyw0j3rjo0vqtEV7fCRwY6ThiYLaYSWjppDAM3vXkpsSSEhdtm5mEl7YfJt4ZFZF1/I34RtE09tW18etXS0hPcHLd8gKzQzrq0XX7+ctbe7n25EncdEah2eHYwukzsol3RvHy9ipOm279n4HtlU3EOR2WPdkABltF9+VWaipwCpCHb2mhCnjfpfW+0T636F9qvJOObq9ld/Fqrf0dIO2/3KCUYlZeCiU2SBK8Xs2a4mpWzMomPsZ6/19YkcOh+OXn5tPU3s3tq4pJiXdy6aLxZofFmuIq7lhVzNmzc7nzknm2bLduhjhnFCtmZbOmuJqfXTqPKIvvidpe0cSc/BRLn0IyHJlbqYVupdYCe/DVTfglcC++Pg2lbqVedyu1IChRik9I9Z8YsOrmRU9nD5099i7J3NfMPF8PB6uuWwdsOniE2pZOzrPZOXGzRUc5+MM1J3BiQQa3PrmFN3fXmBrP+3vruPmxj1k4IY3fX32C5X/RWc3KefnUeTr5+OARs0MZlNerKa5sZv74VLNDGZShJMGt1AXAOnw1EgY69rgCWO9WamVwQhUBVi/NXNti/0JKfc3IS6alo4dKi5fzfWl7FTFRDs60cctcs8Q5o3jgy0uZmZfMTf/YyLsmHaN7eXsV1z/0EZMzE3jwy0tlRsiAFTOziYly8JLFTzmU1bXS1tXLvHBLEtxK5QOPA3HAFuAO4ArgTOBs4Ep8pZs3+695wv89IkisniTUeXybKsMlSZjlr2xn5SUHrbV/HTYrrNohh1JKnJNHvrKMyRmJXP+3D3lyw6GQjv/kR4f4xj83Mnd8Ck9+bTmZYfLzE2rJcU4+Mz2Ll7dXWXr2b3tFE4DlkwQjexJuBRKAr7q0HqgnwzPAz9xKfRX4X+B7wG3GQhTHS7N4/4ZwKMncV6D87faKJlZY9F369opmKhrb+c7Z9is1bCVZSbE8ddNyvvnPTfzX01s51NDG986ZMeZ7Av7y1l5+8dIuzpiRzZ+vXRzRrZ+DYeXcPN7YVUNxZbNlfwlvq2giNtrB9BzrnmwAY8sNK4EHB0kQjnJp/SDwEHC+gXHEAKw/k+BPEpLDY09CSpyTqdmJbClvMjuUAb1cfJgoh+Kc2blmh2J7KXFOHrr+RK46cSK/f6OUW57YPGbdBZs7unE9tYVfvLSLixeO469fWioJQhCcPSeXKIeydGGl7RVNzLb4pkUwliRMBl4awfWr/d8jgsTySUJLJ0pBhs1LMve1aEIaW8obLTl9qbXmpe1VnDw1g/TE8Pk7N5MzysE9l8/ntvNm8vzmSi743TtBP3v//t46zr/vHZ7dVM63z5zGfdLVMWgyEmM4aUoGLxdbM0mwy6ZFCE3FRRFkKYHlBosmCbWeLjISYiyfIY/Eggmp1LZ0UtVsvc2LpTUeympbpYBSkCml+OaKaTzylWV093q56v71uJ7aQkPr6AqZtXX1cOcLxVzz1w+IjXbwzE2ncOu5M+UUQ5CtnJdHaY2H0hrr7SXaX9+Kp7OHeeNTzA5lSEZexQ/gW3IYrvORYkpBFeVQJMdFW/YIZLiUZO5r4cQ0ALYcajQ5kk97eXsVSsF5c2SpYSycMSObV245g5uKCnnu4wrO+tVa/rx2L1UjPO1S0djOPS/tZPk9b/C39/Zz/SkF/Pvm0zhhUvoYRR7Zzp3jOwr80jbrzSZss8mmRTC2cfFl4Dtupda5tH5ksAvdSt0AfAW4z0hwYmC+TpDWLM3sK6QUXtPes/NTiHYotpQ3We4d+8vFVSyelE5OSpzZoYSt+Jgovr9yFpctGs9PVxXzy5d3ce+aXXxmWhafPWE8pxRmkZX0ydmzzp5e9tW1UlLt4aVth1njn/peOS+Pr35mKksmS3IwlvJS41g8KY2Xi6v49lnW2tBbXNlMTLTD0j0bAowkCb8CvgY85Fbq28C/gGIgULkiA5gHXAqcALQCvx59qKKvtATrlmau83SyOMzeHcU5o5idn2K5mYTaNi/Fla38+ILZZocSEWbmJfPYjSezr66Vf31cwbObyvnek1sAUAoyE2PJTYmlvqmN2lfW0Ov17WFJjXdy4+mFXLd8MuPT4s28hYhy/rx87l69k4P1bWaH8gnbypuYnZeM0wZLskZ6Nxx2K3UV8DS+JOCEAS5VQCdwlUvrw8ZDFP2xcv+GupausFtuAN++hFWbK/F6tWVaYG+s9u26XzlPqiyG0pSsRL53zgxuOWs6mw4eYXd1CzXNndS0dFDV1EFsTytXLJvC9NwkZuQmU5idJJsSTbByXh53r97Jy8WHmWF2MH5aa7ZXNnHxwnFmhzIshs7auLT+t1upU4HfAqcOcNk7wC0urT82EdKSXwAAIABJREFUGpwYWGq8k8MWrADY2tlDe3dvWCYJCyem8c8PDlJW18o0i5xt3lDdw9xxKUzMSDA7lIjkcCiWFmSwtCDjE19fu3YtRUUzTYpKBEzMSGDuuBRe2l7FjDlmR+NzoL6Nlo4eW5xsgFE0eHJpvQk4za3UNI41eAI4jK/B094gxCcGkBofY8mNi8cKKYXXngSAhRN8mxe3ljdaIkmoae6gtNHLrSfKLIIQAzl/Xh7uV0pomGqNZZ7ApsWwTxICXFqXAtZsxh7GAssNWmtLdYg7Vkgp/GYSpuUkkRATxZZDjVy+eILZ4bBmRzUgSw1CDGblvHzcr5SwqbqXy80OBl97aGeUssWmRTCQJLiVOh3Y4tJ60PJzbqV+D1wM/AO4w6X12JQsi1Cp8U66ezVtXb0kxlqnQltti+/ERXYYLjdEORTzxqdapvLimu1V5CUqS8xqCGFV03KSmJ6TxIZqa2xe3F7RxMy8ZNvsUTES5ZvAkmFcdxCIAX4IfNfAOGIQaQnWrLpY3+qbScgMw+UGgEUT09hR2UxXj9fUOBrbulhXVs/S3GhLzSQJYUUr5+Wxu8FLvX+m0yxaa7ZX2KPSYoCRJGFYr0gurf8HmAA8DFxvYBwxCKuWZq7zzyRkJobfTAL4Tjh09XrZVdVsahxriqvo9WqW5korYSGGsnJeHhp4xb9EZ5ZDDe00tXfboohSwJjOd7i09gLPAQVjOU4kSrVoJ8g6Tyep8U7bTKWNVGDzotlLDi9uPczkzAQmp4Tn37MQwTQnP4XsePMbPm2vtNemRTCeJAyry43bNw96HtBjcBwxAMvOJHg6w/JkQ8CE9HgyE2NMLapU7+nk/b31XLQgX5YahBgGpRRL86J5f2+dqa+Zmw4cISbKHpUWA4bc8eZWqqyfL//TrdRQh/SjgCwgDnjDQGxiEIEkwWrHIOs94VlIKUApxYIJqWwtNy9JeGm7b6nhogXjqN5tvbr0QljRiblRvLSvm1eKq7hy6URTYlhXVs/iyWnEOe2zTDicmYSC4z7AVxPh+K8f/zERiAeagR+POlLxCakJgU6Q1urfEI7NnY63cGIae2o8eDrNmSB7cWslhdmJzMqzz7sRIcw2JdXBpIwEVm2pNGX8xrYudhxuZvnULFPGN2o4Z+fuPO7zO4C/A/3NMPTVCewHXnZpba2C92EgOTaaKIey3HJDraeT08J4uQF8+xK09h1lOnlqZkjHrmnu4IN9Ddx85nRZahBiBJRSXLwwjz+v3UttSyfZIa7lsr6sAa1heWFoXzNGa8gkwaX1J5IEt1J3AI+4tJYlBBMppUiJi7ZUktDR3UtLR0/YzyQsmODbdPTxwcaQJwmrtx1Ga7h4obU6UQphB5cuGs8f39zL6m2H+fIpBSEde31ZPXFOB4v8beftwsjGxTsZehZBhICvXbR1koSGVt/SRzhWW+wrMymW6TlJvFdaF/KxX9x6mFl5yUzLkaUGIUZqRm4ys/KSTVlyWLe3nhMLMmx38mvE0bq0vtOl9f4xiEWMUGpCjKVmEgIlmTMTw3u5AeD0Gdl8uL+B9q7QFRKtbGxnw4EjXLRAZhGEMOrihePYeOAIhxpCV4GxztPJ7uqWkM88BsOoUxq3UlPdSl3rVsrlVupWt1JfdCs1JRjBicGlxjstdbohnPs2HO/0Gdl09Xj5YF99yMZcvc3Xcf2iBfZoMSuEFV3ib9H8wtbQzSasL/O9Tpxis/0IMIoGT26lFuJrFX3aAI+vBb7r0nqr0THE4FLjnRyobzU7jKPqPOHbt+F4J03xTRu+XVJH0cyckIz5wpZK5o1PoSArMSTjCRGOJmYksHhSGqs2V/KNomkhGXPd3nqSYqNtVUQpwNBMglupC4B1+BIENcDHCmC9W6mVwQlVHC/N3wnSKo4uN4T56QaAOGcUJ03J4O09tSEZ71BDG1vKm2QWQYgguGThOHZVtVBS3RKS8daV1XNiQTrRUfbajwAGkgS3UvnA4/iKJG3BdyTyCuBM4GzgSuCnwGb/NU/4v0cEWWC5wesdVgHMMVfX0kVCTBQJMdbpSjmWTp+eTWmNh8rG9jEf65lN5QCyH0GIILhwwTgcClZtHvslh+rmDspqWzml0F71EQKMvJrfCiQAX3Vp/bcBrnkG+Jlbqa8C/wt8D7jNWIhiIKnxTrwaWjp7jlZgNFMkFFLq6/QZ2dy9eidvl9Ry1bJJYzZOr1fz1IZyTpuexYT0hDEbR4hIkZ0cy6nTsli1pZJbz50xpjVH1u317UewW32EACNzHyuBBwdJEI5yaf0g8BBwvoFx+qWUylBKvaqU2uP/b/oA1/UqpTb7P1YFa3wrCVRdtMrmxfrW8O7bcLwZuUnkpcTxzp6xPQr5bmkdFY3tfOFEc0rJChGOLl44joMNbXw8xn1Y1u2tJyUumtn5KWM6zlgxkiRMBl4awfWr/d8TLD8AXtdaTwde93/en3at9SL/xyVBHN8yrNYJsq4lvPs2HE8pxWnTs/5/e3ceX1dV733888vcTE3aJC2dWyjQAlKgzMJTJl8oKqAIyIMgDujjVfF6z73qo15Fvb6Ue66PXq8TV1EQtQhcBJlBWgaZ2iKttGUobWmbpDRNmyZp5mQ9f+ydNoST5ORkn2mf7/v1Oq+cnLPO3mt1pzu/rOG3eGrTbvqTOORz26ptVJcWct7iaUk7h0iuOf/o6UwqzOe257cn9TzPbG7mlAVTyc/Lzgyp2TeLAi4Ebvaf3wxclMa6pFV1qfdX+96OzNi/YXd7N1NzKEgAOOPwWvZ19rI2SRs+7W7v5pENb/KB42dRXJA9m8KIZLrKkkIuOm4Gd6+tZ1+S/tDasbeDbXs6snaoARILEt7AG3KI17v9zwRlmnOu0X++Exjpz6sSM1ttZs+aWSgDiWp/uCETgoS+/gH2dPRQm0PDDQBnHFaDGTzxanJWOdz1Qj29/Y7LNdQgErgrT5lLV+8Ad/gTg4OW7fMRILGJiw8C10XNnok4d/NoBaNm1wAfA344nhOY2aN4O00O95bdJJ1zzsxG6ued65yrN7MFwGNm9nfn3OsjnO9a4FqAadOmsXLlyvFUd1Tt7e2BHm+o1m6v6avWbmByy2tJOcdQo7VlX7fDOdjTuI2VKxtjlskUQV+TeZV53Lv6dZYUBDtT2jnHTU91clhVHvUb11C/8e1lkvnzlWpqS+YJSztg5LYcOjmP/35sIwt6twY+gXH537qoLDIaNq5h58vBHTuV1yWRIOE/gE8BN0XNPgfcBawH9vrvTwGOxhsWOA7YD/xgPCdwzp070ntm9qaZHeKcazRvaeWuEY5R73/dbF5ip+OAmEGCc+5G4EaApUuXumXLlo2nuqNauXIlQR5vqL7+AT6/4gGmzpjLsmWHJ+UcQ43Wlo2NrbDiSU47/miWHZPZy/SCviZrel7hJys2cdzJpwe6ymT11j00PvQMN1xyDMuWxu5JSObPV6qpLZknLO2Akduyp3IHX/zjWopmH8PphwW3THHP/h7WPfIoV586j7PPWhzYcSG11yWRvRsagcuBHrxfvN/CW/L4mP+4Ay9PwvF+mcsjB4cHgnAPcLX//Grg7uEFzKzazIr95zXA6cCGAOuQEQry86gsKaAlA4YbcmnfhuHOPLyWAQdPB7zh0/JV2ykvLuCCDA+6RLLZe445hOrSQm59NshRcbjnRW+o8IMnzAr0uKmW0MTFiHP34f3ifZqRMy4+CZwWce7+YKp6wPeA88zsNbzkTd8DMLOlZvZLv8wiYLWZrQVWAN9zzoUuSACoLitiTwasbsilfRuGWzK7ioqSAh7e8GZgx2zt6uXedQ2879gZlBXnRnIqkXQoKczn0qWzeXjDm+zc1xXYce94YQdHz6zM2qWPgxK++0ScewE4I2p2GHAaB+cQNAJPR0YY/58o51wzcE6M11cDn/CfPw0ck4zzZ5rq0qKM6Elo9vdtyKUlkIMK8/O4+LiZLH9+O1+9YFEg/wZ3rtlBV++AciOIpMAVJ8/hxic3s3zVNr5w7sSHbjc2tvJSfSvfeF+wwwzpMOE/USLObQI2BVAXSUB1aSG72rrTXQ2a2rsp8oc/ctFVp87jlmfeYPnz2/js2QsndKzOnn5+uvJ1Tpo/hWNnZd+GMCLZZu7UMs5cWMsfnt/GP5x1GIUT3GPhzjU7KMw3LlwyM6Aapk/S8yREzeZHzf412efJVV5PQgYMN7T1MLW8KKnpTTPZYXXlnLGwhluf3UZv/8CEjnXrs2/Q1NbNP52X3HSxInLQR06Zy5ut3Ty0fueEjtPbP8CfXmzg7CPrmBKCOVqpSKa0AG8TKEmC6rKijMiT4KVkzr2hhqGuPnUeO1u7eHh94nMT2rv7+Nnjr3PGwhpOXpC9a6tFss1ZR9ZxaG0Z0Ydeoacv8UD/iVeb2N3ezSUnhGOoMOG+4ahZPnAsMA8ow5usGMtRiZ5DxlZdWkhHTz9dvf2UFKYvI9/u9m5qczxIOOvIOmZPmcTNT2/lggR3a7z56a3s2d/DF89L/pJWETkoP8/42nsXc82vV3HLM1v5xBkLEjrOHWt2MLWsiGVH1AZbwTRJKEiImn0Gb5mj/tRJs2q/O6ulo5fpk9MYJLT1sGh6ds/inaj8POOqU+bxb/dvZENDK4tnjO/fY19nL794/HXOObKO4+bE3LdMRJLorCPqOPPwWn70l9f4wPGzxj1csHd/D49ufJOrTp034XkNmWLcrYiaXQX8GKhh5OWPwx+SJIP7N+zZn74hB+cczftzb9+GWC5dOptJhfnc/PTWcX/2V09tobWrj39UL4JI2nztgkV09PTzw0dfHfdn7/ZzI1yS5bkRhkok1LkOcMD1wBKgCsiPOJcX6wG8K8D6yjCDQUI6l0G2dvbR2+9yapvokUwuLeSi42bypxfr2TuOwG3v/h5uemoL7z56OkfP1IoGkXQ5fFoFV5w0h989t43X3myL+3NNbd3814pNLJldlfW5EYZKJEg4EvhhxLnrI86tizjXGnFutH1yHepNSJrqMi8N8J40BglNfiKl2hxMpBTL1afNpbtvgN8/vy2u8s45vvnn9ezvUS+CSCb4x/MOp7Qon+/cF2PDlBgGBhyR29fS1tXHDZe8I8m1S61EgoRuvGyKcYk49xe/R0GSYMqB7aLTtwzyQLZFDTcAcOT0Ss45so4fPvoqj8exO+T3H3yFu19s4IvnHs7h0ypSUEMRGc2UsiKuO2chj7/axIMvjb0k8jdPb+XxV5v42gWLQvd/OJFf3qsAzarKEFWDQUIa5yQc2LdBww0H/L/Ll3BYXQWf/u0aXti2d8Ryv/nrFn7++OtccfIcPnv2YSmsoYiM5qpT57HokEo+94cXuPvF+hHLbWho5XsPvMy5i+q48pS5KaxhaiQSJHwf+GzUrCSewlGzc6Jm/QmcR+JQVJBHeXFBWnMl5HJK5pFUlhRyy8dOYlplMdf8ehWv7Hz72Ob9f2/k+ns3cN7iaXz7wqOVOEkkgxQV5LH8k6dw/Jxqrlv+Ij9duYnhI+udPf18fvnfqCot5IZLjg3l/+FxL4GMOPdY1OwHwONRs58CTwA7Is6lP+1fjqoqLUxr1sXd7d3k2cFJlOKprSjmtx8/mUt+/jQf+dVz/PjDx9HTP0BTWzf1ezv58YpNHD+nmh9/+Djy88J3cxHJdpNLC7nl4ycRuX0dNzz4Cg0tnXzqzEPZ0NjKhoZWnnytiU272vntx08KRXbFWEYMEuL86/+mIeUDqZCMX3VpUVqXQO5u72ZKWbF+0cUwe0opt3zsZC79xTNcduOzb3nv6JmV/PKqpWlNgiUioysuyOdHly1hRlUJv3h8M7c+601INoMFNWV8432LOWNhOBInxTJaT0KQd/zRVj/IBFWXpXcnyN3tPVr+OIojpldw7+feybod+6itKD7wKNcW0CJZIS/P+Mq7F7F07hR2tnZx1IxKjpxeQWlR+P8Pj9XCG4D41oCMbDEQmeAxZBTVpYVs2d2etvPvbte+DWOZPaWU2VNK010NEZmA8xZPS3cVUm6sIOHhiHOPTeQEUbNzgH+eyDFkdNWlRbTsT++chLlz9AtQRCRsRlvdcDPQEMA5NuNlZ5QkqS4toq27b0I7l03E7rYe9SSIiITQiD0JEeeuCeIEEee2oCAhqab4WRdbOnuoq4hrZWpgOnr66Ozt174NIiIhFPesi6jZacCJQCGwAXhEyx4zw8GESr0pDxJ2tw3mSNDERRGRsBkzSIia1QB3Au8c9taWqNllEefWJKVmErfB9bnpSKg0uG9DjfZtEBEJnVEzLkbNCoAH8QKE4ds/LwAejprNTHYlZXRVpf5wQxqChMGUzLUabhARCZ2xehKuAo7Hy3NwJ7Aa6MRb1vi/8baJ/ibwyeRVUcYy2JOwJw0rHAZTMmvfBhGR8BkrSLgc6AfOjzj3l6FvRM2+CzwFXIKChLSqLk3fcMOBzZ3K1JMgIhI2Y23w9A7g18MDBICIc9uArwGVUbP5yaicxKekMJ9Jhflp2QlyV1sXVaWFFBVoN3ARkbAZ684+BXh6lPf/ijc/QVtHp1l1aSF707DJ067Wbuo0aVFEJJTGChIKgO2jvF8/pFxMUbOqqNmZ462YjE9VaVHaVjeketmliIikRjx9xKNtzhTPxk0nACviq44kakpZeoIE9SSIiISXBpJDoqq0MOVzEpxzNLV1U1upIEFEJIziybj4rqjZrBHeK/S/XhA1O3KEMkeNv1oyXl5PQmrnJOzr7KWnf0A5EkREQiqeIGGsHRwd3ioHSaOq0iJau3rp6x+gID81HUS72rzlj3WVmpMgIhJG8fw2GZ5pMZGHJNmU0kKc8/66T5WmwSBBcxJEREIpnp6EfwJemMA5lgI3TODzEofqA/s39KZsR8ZdbV2AggQRkbCKJ0hYG3Hu8URP4O//IEmWjqyLu1o13CAiEmZjDTfcDDRM8BwNwC0TPIaM4UCQkMIVDrvauiktyqe8WHGgiEgYjXp3jzh3zURPEHFuIzDh48joqsu8hSYp7Ulo66ZWQw0iIqGlPAkhcXC4IXUTF3e1dmk+gohIiClICInSonyK8vNSOtyglMwiIuGmICEkzIzqssKUDjc0tWq4QUQkzBQkhEh1aeqyLnb29NPW3UedUjKLiISWgoQQqS4tStlww2COBKVkFhEJLwUJIZLK4QalZBYRCT8FCSGSyuEGpWQWEQk/BQkhUl1aREtHDwMDLunn2tWqlMwiImGnICFEqsuKGHDQ2pX83oRdbd0U5NmB/AwiIhI+WRckmNmHzGy9mQ2Y2dJRyp1vZq+Y2SYz+3Iq65gu1aWDWRdTEyTUlBeTl6dNPkVEwirrggTgJeADwBMjFTCzfOAnwLuBxcCHzWxxaqqXPoM7Qe5JwQqHXW3dWv4oIhJyWRckOOc2OudeGaPYScAm59xm51wPsBy4MPm1S69UbvKklMwiIuGXdUFCnGYC24d8v8N/LdRqyr0gYXd7d9LPtbu9m1qlZBYRCbWM3OPXzB4Fpsd466vOubuTcL5rgWsBpk2bxsqVKwM7dnt7e6DHG02vv6rhuXUvM71jc+DHH2xL/4Cjub2HjuZGVq5sDvw8yZbKa5JsaktmCktbwtIOUFsSlZFBgnPu3Akeoh6YPeT7Wf5rI53vRuBGgKVLl7ply5ZN8PQHrVy5kiCPN5aqpx6mrOYQli07JvBjD7Zl574u3MN/4cRjjmDZKXMDP0+ypfqaJJPakpnC0pawtAPUlkSFdbhhFbDQzOabWRFwOXBPmuuUErXlxQcSHSXLYEpmzUkQEQm3rAsSzOxiM9sBnArcZ2YP+a/PMLP7AZxzfcBngYeAjcAfnXPr01XnVKqrLD6QMjlZdrUqJbOISC7IyOGG0Tjn7gLuivF6A/CeId/fD9yfwqplhLqKEp7fsiep52hqV0pmEZFckHU9CTK6uopimtq7cS55qZkHexJqtAOkiEioKUgImdqKYnr6Bmjt7EvaOXa1dVFdWkhRgX58RETCTHf5kKn1hwAGJxcmw662buqUI0FEJPQUJITM4C/vZK5wUEpmEZHcoCAhZA72JCQvSGhq7TpwHhERCS8FCSEz+Bd+soYbnHM0tWu4QUQkFyhICJmK4gJKCvMOrEAIWktHL739Tj0JIiI5QEFCyJgZdRUlB3IZBG1wGEM5EkREwk9BQgjVVhQnrSdBKZlFRHKHgoQQqqsoTtqcBKVkFhHJHQoSQqiuInmbPCkls4hI7lCQEEJ1lSW0dvXR1dsf+LF3tXZTWpRPWXHWbfshIiLjpCAhhGr9PRWS0ZvQuK+T6ZM11CAikgsUJIRQbRJzJdS3dDKzalLgxxURkcyjICGEBucLJKMnoX5vJ7OqFSSIiOQCBQkhlKzUzN39jub9PepJEBHJEQoSQmhqWTF5RuC5Epo7HQAz1ZMgIpITFCSEUH6eUVMe/DLI5s4BAGZWlQZ6XBERyUwKEkKqrjL4hErNXepJEBHJJQoSQqq2vDjwOQnNnY78PGOaEimJiOQEBQkhVVdREniQsLtrgOmVJRTk68dGRCQX6G4fUnWVxTS3d9M/4AI7ZnOn08oGEZEcoiAhpGorihlw0Lw/uN6E5k6n+QgiIjlEQUJIDSZUCmoZZF//AHu71ZMgIpJLFCSEVG2Ft7/C4K6NE7WztYsBp5UNIiK5REFCSB1IzRxQT0L93k4A9SSIiOQQBQkhdTA1czC5Eupb/CBBPQkiIjlDQUJIlRTmU1lSEFjWRfUkiIjkHgUJIVZXGVyuhPqWTiqLvOBDRERyg4KEEKurCC7rYn1LJ1Mn6cdFRCSX6K4fYrUVwe3fUN/SydQSC+RYIiKSHRQkhFhdhbcTpHMTy7ronKOhpZOpkxQkiIjkEgUJIVZXUUJX7wBt3X0TOk7z/h66egeoKdGPi4hILtFdP8RqA8q6OLiyQT0JIiK5RUFCiB1IqDTByYuDORIUJIiI5BYFCSFWVxlMQqXBnoQarW4QEckpuuuH2PTJXuKjwZ6ARNW3dFJeXEBpQRC1EhGRbKEgIcTKiwuoqyhmS9P+CR1nx95OZlZNwkzDDSIiuURBQsjNryljy+6JBQn1LZ3as0FEJAcpSAi5BbVlbJ5okLC3Q3s2iIjkIAUJIbegppw9+3to6ehJ6PNtXb20dvUxQ0GCiEjOUZAQcvNrygASHnJoaPFWRmi4QUQk9yhICLn5tV6QsDnByYv1LR2AtogWEclFChJCbs6UUvLzLOGehMEcCbPUkyAiknOyLkgwsw+Z2XozGzCzpaOU22pmfzezF81sdSrrmEkK8/OYM6U04SBhR0snRfl51JYXB1wzERHJdNmYHucl4APAL+Ioe5ZzbneS65Px5teU8XpTe0Kfrd/bySFVJeTlKUeCiEiuybqeBOfcRufcK+muRzaZX1PG1ub9DAyMf8vo195sZ4E/+VFERHJL1gUJ4+CAh81sjZldm+7KpNOC2jK6egfY2Tq+PRy6evvZ1NTOUTMmJ6lmIiKSycy58f91mWxm9igwPcZbX3XO3e2XWQlEnHMx5xuY2UznXL2Z1QGPAJ9zzj0xQtlrgWsBpk2bdsLy5csDaIWnvb2d8vLywI6XiI3N/Xx/VRf/vLSEo2ry4/7cln39XP9MF/+wpJgTpxdkRFuCEJZ2gNqSqcLSlrC0A9SW0Zx11llrnHOx5/g557LyAawElsZZ9pt4AcWYZU844QQXpBUrVgR6vEQ0tnS6uV+6193y9JZxfe4Pz73h5n7pXrd1d7tzLjPaEoSwtMM5tSVThaUtYWmHc2rLaIDVboTfiaEcbjCzMjOrGHwOvAtvwmNOmlZZTGlR/rjTM29obKW8uIDZ1aVJqpmIiGSyrAsSzOxiM9sBnArcZ2YP+a/PMLP7/WLTgKfMbC3wPHCfc+7B9NQ4/cyM+TVl406otL6hlUWHVGhlg4hIjsq6JZDOubuAu2K83gC8x3++GTg2xVXLaPNryli3Y1/c5QcGHBsbW/nQCbOSWCsREclkWdeTIIlZUFvOjr0ddPf1x1X+jT0ddPT0a2WDiEgOU5CQIxbUlDHgYFtzR1zl1zd4vQ6LZ1Qms1oiIpLBFCTkiMHdIOOdvLihoZWCPGPhtHAsGRIRkfFTkJAjBneDjHcPhw2NrRxWV05xQfx5FUREJFwUJOSIypJCasqL2RznHg7rG1o11CAikuMUJOSQBTVlcfUk7Grroqmtm8WHKEgQEcllChJyyILa+IKEjY1tAFrZICKS4xQk5JD5NWXsbu9hX2fvqOUOrGxQT4KISE5TkJBDBlc4jNWbsKGhlZlVk5hcWpiKaomISIZSkJBDFhxY4TD65MUNja0cpUmLIiI5T0FCDpkzpYzCfGPt9pHTM+/v7mPL7v1a2SAiIgoScklRQR7nLprGPWsb6OkbiFnm5Z1tOKf5CCIioiAh51x24mz27O/h0Y1vxnx/Q2MrAEfN1MoGEZFcpyAhx5yxsJYZk0tYvmp7zPc3NOxj8qRCZkwuSXHNREQk0yhIyDH5ecaHls7mydea2LH3rZs9dff189dNzRw1oxIzS1MNRUQkUyhIyEEfWjoLgNtX73jL6z9Z8Trb9nRw7ZkL0lEtERHJMAoSctCs6lLOWFjL7au30z/gAHj1zTZ+tnITFy2ZwbIj6tJcQxERyQQKEnLU5SfOpmFfF0++1sTAgOPLd66jvLiAr793cbqrJiIiGaIg3RWQ9Dh30TSmlBVx26rtbNvTwQvbWvjBpccytbw43VUTEZEMoSAhRxUV5PHB42fy679u5YlXmzhjYQ0XHzcz3dUSEZEMouGGHHbZibPpG3AMOPjuxcdoRYOIiLyFehJy2GF1FXzinfNZPKOS2VNK010dERHJMAoSctzXNFFRRERGoOEGERERiUlBgoiIiMSkIEFERERiUpAgIiIiMSlIEBERkZgUJIiIiEhMChJEREQkJgUJIiIiEpOCBBEREYlJQYKIiIhEzLXtAAAJvUlEQVTEpCBBREREYlKQICIiIjEpSBAREZGYFCSIiIhITAoSREREJCYFCSIiIhKTggQRERGJSUGCiIiIxGTOuXTXIaOYWRPwRoCHrAF2B3i8dApLW8LSDlBbMlVY2hKWdoDaMpq5zrnaWG8oSEgyM1vtnFua7noEISxtCUs7QG3JVGFpS1jaAWpLojTcICIiIjEpSBAREZGYFCQk343prkCAwtKWsLQD1JZMFZa2hKUdoLYkRHMSREREJCb1JIiIiEhMChICYmbnm9krZrbJzL4c4/1iM7vNf/85M5uX+lqOLY52fNTMmszsRf/xiXTUMx5mdpOZ7TKzl0Z438zsP/22rjOz41Ndx3jE0Y5lZrZvyDX511TXMV5mNtvMVpjZBjNbb2bXxSiT8dclznZkxXUxsxIze97M1vptuT5GmWy5f8XTlmy6h+Wb2d/M7N4Y76Xmmjjn9JjgA8gHXgcWAEXAWmDxsDKfAX7uP78cuC3d9U6wHR8F/ivddY2zPWcCxwMvjfD+e4AHAANOAZ5Ld50TbMcy4N501zPOthwCHO8/rwBejfEzlvHXJc52ZMV18f+dy/3nhcBzwCnDymT8/Wscbcmme9gXgd/H+jlK1TVRT0IwTgI2Oec2O+d6gOXAhcPKXAjc7D+/AzjHzCyFdYxHPO3IGs65J4A9oxS5ELjFeZ4FqszskNTULn5xtCNrOOcanXMv+M/bgI3AzGHFMv66xNmOrOD/O7f73xb6j+GT1bLh/hVvW7KCmc0CLgB+OUKRlFwTBQnBmAlsH/L9Dt5+wzhQxjnXB+wDpqakdvGLpx0AH/S7ge8ws9mpqVpSxNvebHCq38X6gJkdle7KxMPvHj0O76+9obLquozSDsiS6+J3a78I7AIecc6NeE0y+P4FxNUWyI572A+BfwEGRng/JddEQYKM15+Bec65dwCPcDCSlfR5AS+t6rHAj4E/pbk+YzKzcuBO4AvOudZ01ydRY7Qja66Lc67fObcEmAWcZGZHp7tOiYqjLRl/DzOz9wK7nHNr0l0XBQnBqAeGRqOz/NdiljGzAmAy0JyS2sVvzHY455qdc93+t78ETkhR3ZIhnuuW8ZxzrYNdrM65+4FCM6tJc7VGZGaFeL9Yf+ec+58YRbLiuozVjmy7LgDOuRZgBXD+sLey4f71FiO1JUvuYacD7zezrXjDvmeb2a3DyqTkmihICMYqYKGZzTezIrxJJPcMK3MPcLX//BLgMefPOMkgY7Zj2Njw+/HGYrPVPcBV/mz6U4B9zrnGdFdqvMxs+uBYpJmdhPf/OiNv4H49fwVsdM79YIRiGX9d4mlHtlwXM6s1syr/+STgPODlYcWy4f4VV1uy4R7mnPuKc26Wc24e3n34MefclcOKpeSaFAR9wFzknOszs88CD+GtELjJObfezL4FrHbO3YN3Q/mtmW3Cm4R2efpqHFuc7fi8mb0f6MNrx0fTVuExmNkf8GaY15jZDuAbeBOZcM79HLgfbyb9JqADuCY9NR1dHO24BPg/ZtYHdAKXZ+IN3Hc68BHg7/64McD/BeZAVl2XeNqRLdflEOBmM8vHC2T+6Jy7N9vuX7542pI197Dh0nFNlHFRREREYtJwg4iIiMSkIEFERERiUpAgIiIiMSlIEBERkZgUJIiIiEhMChJEREQkJuVJEJHARM3ygEagFpgTcW6H//qheOu4zwaOAaqB/Xi5EB4BfhpxbnvMgwZXt38HPgV8LeLcfybzXCJhoZ4EEYkparYsaub8x7w4P3Y6UAesGRIg/ApvK+XvAL3AvwIX4W2D2wl8GdgYNbs02Ba8zafxtnX+ZJLPIxIa6kkQkSBd5H8dupnR/8L7g+TrEee+M7Rw1Ow3wG142Ql/HzXbGnHu+STV7d+AjwP/nqTji4SOehJEJEgX+l+H73i4Dfju8MIR5waA64B+vFTgX0lWxSLOfS/i3MKIc7ck6xwiYaMgQUQCETU7BjgU2BRxbv2Qt/4O/M4PCN4m4lwD8Ib/7WnJraWIjIeGG0TkLaJmy/C22B1qS9Tb0HDQ9RHnvjmszOBQw11DX4w4d3Ecp20GFuBvXDWkLt/E29BqqPl4wcgXgJOAKmAncC/w7YhzO4cd4zcc3C1vsE5vaYyIxKaeBBEZbi3eFruRIa9d6b82+IjVZT8YDAwfaojHbP/rumGv3xKjLp8C7gBW480xuBbYDnwGWOf3aAx1g38MzUUQGSftAikiMQ3rUZgfcW7rKGXn4A0ZvAnMGGloYYTPHgW85H97RcS5P4xRly7g5Ihz64a8nw88gBcMvA68I+Jcx7BjfBT4NagnQSRe6kkQkSAMDjXcM54Awfdp/+tq4I9xlL9paIAAEHGun4O9DYeiZY4igVCQICJBiLX0cUxRsyV4wwftwIf9X/ZjeSDWi37gMDgB8orx1ENEYlOQICITEjWbApwBtAF/Gefn/gg44JKIc5vi/OjmUd7b6H9d4g9BiMgEKEgQkYl6H95KqQciznXH84GoWRnwZ7wVDVdGnHtoHOfrGOW9Pf7XIrxVDyIyAQoSRGSixjXUEDUrxxsyOAlvouLtAdZl6IREzcoWmSDlSRCRhEXNJgHvwtuT4f44ylfiBQgnApdFnPufBE47aZT3qv2vPUBLAscWkSEUJIjIRLwLKAUejji3b7SCUbMq4CHgWOCDEef+POz9Q4ALgPsizjWOcqgFHJx7MNwi/+vfElhlISLDKEgQkZEMnV9wYBJg1Owi4Hy8JEVxDTVEzarxtoQ+Crgo4tyDMYodAfw3cBbedtMjOR+4L8Y53gHM9b99W64FERk/BQkiMpI3hjyfjpekCODDwKV4GQzfizf2f/dIB4maTQUeBY4BPgG8FDWbFaNobZz1uiJq9ouIc4MJmIia5XEwo+LreMGGiEyQggQRiSniXEPU7Em85Y3fjpr9CDgSL/3yM3iplGuA5/xNmkayAi9AAD/j4QR9CXg0avYT4AVgCl6uhdOB3cDFQ7MtRs0WAzOAxUNeO9d/+lTEua4A6iQSSgoSRGQ0lwH/AZwL3A40ADcBXwe+6pcZa1XD8L0UJupRYA3ettKfwQsS3gR+Bnxr+AZPwL8wbIMnvKEP8DaL2hpw/URCQ3s3iEhComZbgHnAoohzLyf5XMuIcx8JEQmO8iSIyLj56ZTnAa8kO0AQkfTRcIOIJKIIuB5vToCIhJSGG0QkY0XNFuDlRTgWiPovX4k3B2FNxLm96aqbSC5QT4KIZLKrgG8Me+1W/+tZwMqU1kYkx6gnQURERGLSxEURERGJSUGCiIiIxKQgQURERGJSkCAiIiIxKUgQERGRmBQkiIiISEz/H6Wx9MhKwUAKAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "Nph = 10\n", "om_c = 1.\n", "U = 0.2\n", "\n", "a = destroy(Nph)\n", "\n", "H = om_c*a.dag()*a + U/2.*a.dag()*a.dag()*a*a\n", "\n", "alpha = 1.\n", "psi0 = coherent(Nph, alpha)\n", "tlist = np.linspace(0, 4.*2*np.pi/om_c, 100)\n", "psi_t = sesolve(H, psi0, tlist, [])\n", "Navg = expect(a.dag()*a, psi_t.states)\n", "A = expect(a+a.dag(), psi_t.states)\n", "\n", "plt.figure(figsize=(8,8))\n", "plt.plot( tlist/(2*np.pi), A )\n", "plt.grid()\n", "#plt.axis([0, range(M), 0, 10])\n", "font = {'family': 'serif',\n", " 'color': 'darkred',\n", " 'weight': 'normal',\n", " 'size': 26,\n", " }\n", "plt.xlabel('t/2pi', fontdict=font)\n", "plt.ylabel('Photon Number', fontdict=font)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "d7b2a5d3", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "70ca7952", "metadata": {}, "outputs": [], "source": [ "from matplotlib import cm\n", "from matplotlib.ticker import LinearLocator\n", "\n", "#fig, ax = plt.subplots(subplot_kw={\"projection\": \"3d\"})\n", "\n", "# Make data.\n", "Y = np.asarray(arr_omL)\n", "X = np.asarray(arr_I)\n", "X, Y = np.meshgrid(X, Y)\n", "Z = np.asarray(mat_N_avg)\n", "print(X.shape, Y.shape, Z.shape)\n", "\n", "plt.pcolor(X, Y, Z)\n", "plt.show()\n", "\n", "# Plot the surface.\n", "#surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,\n", " #linewidth=0, antialiased=False)\n", "\n", "# Customize the z axis.\n", "#ax.set_zlim(0.0, 10.)\n", "#ax.zaxis.set_major_locator(LinearLocator(10))\n", "# A StrMethodFormatter is used automatically\n", "#ax.zaxis.set_major_formatter('{x:.02f}')\n", "\n", "# Add a color bar which maps values to colors.\n", "#fig.colorbar(surf, shrink=0.5, aspect=5)\n", "\n", "#plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "4d3ac61f", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ee622db0", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ebfd50ec", "metadata": {}, "outputs": [], "source": [ " \"\"\" \n", " #Wigner function\n", " x_vec = np.arange(-5,5,.1)\n", " y_vec = x_vec\n", " Wf = wigner(rho_ph, x_vec, y_vec )\n", " wtitle = \"wdata_%d\" % countw\n", " p_w = open(\"data/wigner/%s.dat\" % (wtitle), \"w\")\n", " nx = 0\n", " for x in x_vec:\n", " ny = 0\n", " for y in y_vec:\n", " p_w.write(\"%f %f %f\\n\" % (x, y, Wf[nx,ny]) )\n", " ny += 1\n", " p_w.write(\"\\n\")\n", " p_w.flush()\n", " nx += 1\n", " p_w.close()\n", " \"\"\"\n", " \n", " \n", " #Spin Q fun\n", " n_sample = 40.\n", " phi_vec = np.arange(-np.pi, np.pi+2*np.pi/100., 2*np.pi/n_sample )\n", " theta_vec = np.arange(0, np.pi+np.pi/100., np.pi/n_sample )\n", " stitle = \"sdata_%d\" % countw\n", " p_s = open(\"data/wigner/%s.dat\" % (stitle), \"w\")\n", " for theta in theta_vec:\n", " for phi in phi_vec:\n", " state_n = spin_coherent(1./2., theta, phi, type='ket')\n", " Qfun = expect( rho_s, state_n ) \n", " p_s.write(\"%f %f %f\\n\" % (phi, theta, Qfun.real))\n", " p_s.flush()\n", " p_s.write(\"\\n\")\n", " p_s.flush()\n", " \n", "\"\"\"\n", "plt.figure(figsize=(8,8))\n", "plt.plot( arr_I, N_avg )\n", "plt.grid()\n", "#plt.axis([0, range(M), 0, 10])\n", "font = {'family': 'serif',\n", " 'color': 'darkred',\n", " 'weight': 'normal',\n", " 'size': 26,\n", " }\n", "plt.xlabel('I', fontdict=font)\n", "plt.ylabel('Photon Number', fontdict=font)\n", "plt.show()\n", "\"\"\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 5 }