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Probabilities
• Using probabilities enables to model uncertainty that may result of

incomplete information or imprecise measurements

A random variable (or stochastic variable) is, roughly speaking, a
variable whose value results from a measurement (or an observation)
You can think of it as a small box:
• Every time you open the box, you get a different value.
• I will use this box analogy throughout the whole lecture and I

encourage you to ask yourself what the box can be in your own studies
• Formally a probability space is defined by (Ω,F ,P) where:

• Ω, the sample space, is the set of all possible outcomes
• E.g., all the possible combinations of your DNA with the one of your

{girl|boy}friend
• You may or may not be able to observe directly the outcome.

• F if the set of events where an event is a set containing zero or more
outcomes

• E.g., the event of "the DNA corresponds to a girl with blue eyes"
• An event is somehow more tangible and can generally be observed

• The probability measure P : F → [0, 1] is a function returning an
event’s probability (P("having a brown-eyed baby girl") = 0.0005)
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Continuous random variable

• A random variable associates a numerical value to outcomes

X : Ω→ R
• E.g., the weight of the baby at birth (assuming it solely depends on

DNA, which is quite false but it’s for the sake of the example)
• Since many computer science experiments are based on time

measurements, we focus on continuous variables
• Note: To distinguish random variables, which are complex objects,

from other mathematical objects, they will always be written in blue
capital letters in this set of slides (e.g., X )
• The probability measure on Ω induces probabilities on the values of X

• P(X = 0.5213) is generally 0 as the outcome never exactly matches
• P(0.5213 ≤ X ≤ 0.5214) may however be non-zero
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Probability distribution
A probability distribution (a.k.a. probability density function or p.d.f.) is
used to describe the probabilities of different values occurring
• A random variable X has density fX , where fX is a non-negative and

integrable function, if: P[a ≤ X ≤ b] =
∫ b

a
fX (w) dw

●

●

P(1 ≤ X ≤ 6) = 0.8577298P(1 ≤ X ≤ 6) = 0.8577298

0.0
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0.2

0.3

−2.5 0.0 2.5 5.0 7.5 10.0
w

f X
(w

)

Note: the X in 1 ≤ X ≤ 6
should be in blue...

• Note: people often confuse the sample space with the random
variable. Try to make the difference when modeling your system, it
will help you
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Characterizing a random variable
The probability density function fully characterizes the random variable but
it is also complex object
• It may be symmetrical or not
• It may have one or several modes
• It may have a bounded support or not, hence the random variable

may have a minimal and/or a maximal value
• The median cuts the probabilities in half

0.0

0.1

0.2

0.3

−2.5 0.0 2.5 5.0 7.5 10.0

x

f(
x)

expected value

max

median

min

mode

These are interesting aspects of fX but they barely summarize it 5 / 30



Expected value and variance

• When one speaks of the "expected price", "expected height", etc. one
means the expected value of a random variable that is a price, a
height, etc.

E[X ] = x1p1 + x2p2 + . . .+ xkpk =
∫ ∞
−∞

xfX (x) dx

The expected value of X is the “average value” of X .
It is not the most probable value. The mean is one aspect of the
distribution of X . The median or the mode are other interesting
aspects.
• The variance is a measure of how far the values of a random variable
are spread out from each other.
If a random variable X has the expected value (mean) µ = E[X ], then
the variance of X is given by:

Var(X ) = E
[
(X − µ)2

]
=
∫ ∞
−∞

(x − µ)2fX (x) dx

• The standard deviation σ is the square root of the variance. This
normalization allows to compare it with the expected value 6 / 30
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Definition

Working with the density function is not always convenient, especially
when summing random variables (it implies convolving the pdf). We need
an alternate representation.

How could we summarize a random variable ?
• By its mean, its variance, its skewness, . . . by its moments
µk = E(X k)

• It is not clear that it would be sufficient although we would know a
lot about fX .

Let’s define the moment generating function MX (t) as follows:

MX (t) = E
(
etX

)
= E

 ∞∑
k=0

tkX k

k!

 = E

 ∞∑
k=0

tkX k

k!

 =
∞∑

k=0
µk

tk

k!

=
∫

etx fX (x)dx
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Deriving moments with the mgf

Remember we have MX (t) =
∞∑

k=0
µk

tk

k!

Therefore dn MX
dtn (0) = µn

All the moments of X are encoded in MX (t). Is there more ?
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Characterization of a distribution through the mgf

Let’s assume that X is discrete
(
(x1, p1), . . . , (xn, pn)

)
with x1 < · · · < xn

• Then MX (t) = E
(
etX

)
=
∑n

j=1 pjetxj =
∑n

j=1 pj(et)xj

• Therefore MX (t) ∼
t→∞

pnetxn and M′X (t) ∼
t→∞

pnxnetxn .

 M′X (t)
MX (t) −−−→t→∞

xn

• Hence, we can determine xn, then pn, substract pnetxn from MX (t)
and proceed to find xn−1.

X is fully characterized by its mgf MX

Proving the same results when X is continuous, requires to go through
Fourier transform.
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Convenient properties

MaX+b(t) = E
(
et(aX+b)

)
= E

(
ebteatX

)
= ebt MX (at)

MX+Y (t) = E
(
et(X+Y )

)
= E

(
etX+tY

)
= E

(
etX etY

)
= E

(
etX

)
E
(
etY

)
= MX (t).MY (t)
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Mgf of usual laws

• Uniform law: MX (t) =


etb−eta

t(b−a) for t 6= 0
1 for t = 0

• Exponential law: f (x ;λ) =

λe−λx x ≥ 0,
0 x < 0.

MX (t) = E
(
etX

)
=
∫ ∞

0
etxλe−λxdx = λ

∫ ∞
0

e(t−λ)xdx

= λ

[
e(t−λ)x

t − λ

]∞
0

= λ

λ− t (for t < λ)

This allows to easily compute moments and sum random variables.
The moment generating function is somehow similar to the Fourier
transform on periodic signals.
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How to estimate the Expected value?

To empirically estimate the expected value of a random variable X , one
repeatedly measures observations of the variable and computes the
arithmetic mean of the results

This is called the sample mean and it intuitively converges to the expected
value

Unfortunately, if you repeat the estimation, you may get a different value
since X is a random variable . . .

What can we really say ?
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On the way to the Law of Large Numbers

Chebyshev Inequality
Let X be a random variable with expected value µ = E(X ), and let ε > 0
be any positive real number. Then P(|X − µ| ≥ ε) ≤ Var(X)

ε2 .

Proof

Var(X ) =
∫

(x − µ)2f (x).dx ≥
∫
|x−µ|≥ε

(x − µ)2f (x).dx

≥
∫
|x−µ|≥ε

ε2f (x).dx = ε2
∫
|x−µ|≥ε

f (x).dx︸ ︷︷ ︸
P(|X−µ|≥ε)
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Law of Large Numbers

Law of Large Numbers
Let X1, X2, . . . , Xn be a sequence of identical and independent random
variables with finite expected value µ = E(Xi ) and finite variance
σ2 = Var(Xi ). Let Sn = X1 + X2 + · · ·+ Xn.
Then for any ε > 0, P(|Sn/n − µ| ≥ ε) −−−→

n→∞
0.

Proof
The Xi are i.i.d, hence:
• Var(Sn) = n.σ2  Var(Sn/n) = σ2/n.
• E(Sn/n) = µ.

Using Chebyshev’s inequality:

P(|Sn/n − µ| ≥ ε) ≤ σ2

nε2 −−−→n→∞
0 (for a fixed ε)
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Illustration: convergence in probability

1 10 100 1000 10000

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

2500

5000

7500

10000

Sn

co
un

t

So we do converge to a spike, but how ?
Assume σ = 1 and we aim at having a precision of ε = .1. For n = 500,
the previous formula only gives us
P(|Sn/n − µ| ≥ ε) ≤ σ2

nε2 = 100
n = 0.5

In general, for an α confidence interval (i.e., P(|Sn/n − µ| ≤ δ) ≤ α), we
get δ = 1√

1−α .
σ√
n

α Chebyshev’s Range CLT range
.95 4.47 σ√

n 1.95 σ√
n

.999 31.6 σ√
n 6.58 σ√

n 18 / 30
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Central Limit Theorem [CLT]

• Let {X1,X2, . . . ,Xn} be a random sample of size n (i.e., a sequence
of independent and identically distributed random variables with
expected values µ and variances σ2)

• We know that E(Sn/n) = µ and Var(Sn) = nσ2.
• Let’s define the standardized mean of these random variables as:

S∗n = Sn − nµ√
nσ2

We have E(S∗n ) = 0 and Var(S∗n ) = 1.
• For large n, the distribution of S∗n is approximately normal

S∗n −−−→n→∞
N (0, 1)

Or equivalently
Sn
n −−−→n→∞

N
(
µ,
σ2

n

)
20 / 30



CLT Illustration: the mean smooths distributions
Start with an arbitrary distribution and compute the distribution of Sn for
increasing values of n.
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unif
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0
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0

5
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15
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5
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The Normal distribution

0.0

0.5

1.0

1.5

−5.0 −2.5 0.0 2.5 5.0
x

f(
x)

mu=0, sigma^2=0.1

mu=0, sigma^2=1

mu=0, sigma^2=5

mu=−2, sigma^2=0.5

Density: fµ,σ(x) = 1
σ
√

2π e−
(x−µ)2

2σ2

The smaller the variance the more “spiky” the distribution.

• Dark blue is less than one standard deviation from the mean≈ 68% of
the set.
• Two standard deviations from the mean (medium and dark
blue)≈95%
• Three standard deviations (light, medium, and dark blue)≈99.7%
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The Normal distribution
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The Normal distribution (property 1)

The family of normal distributions is closed under linear transformations: if
X is normally distributed with mean µ and standard deviation σ, then the
variable Y = aX + b is also normally distributed, with mean aµ+ b and
standard deviation |a|σ.

Histogram of rnorm(10000, mean = 0, sd = 1)
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Histogram of 3 * rnorm(10000, mean = 0, sd = 1) + 10
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The Normal distribution (property 2)
Convolution: if X1 and X2 are two independent normal random variables,
with means µ1, µ2 and standard deviations σ1, σ2, then their sum X1 + X2
will also be normally distributed, with mean µ1 + µ2 and variance σ2

1 + σ2
2.

Histogram of rnorm(10000, mean = 2, sd = 3) + rnorm(10000, mean = 3, sd = 4)

rnorm(10000, mean = 2, sd = 3) + rnorm(10000, mean = 3, sd = 4)
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Intuitively, if S∗n converges to something (say L), it "has to" be a normal
distribution:

1
2(S∗1...n︸ ︷︷ ︸
∼L

+ S∗n+1...2n︸ ︷︷ ︸
∼L

) = S∗2n︸︷︷︸
∼L
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Moment generating function of the normal distribution

Let’s assume X ∼ N (0, 1).

MX (t) =
∫

etx fN (x).dx =
∫

etx e− x2
2

√
2π

dx =
∫ e 1

2 (−x2+2tx)
√
2π

dx

=
∫ e 1

2 (−(x−t)2+t2)
√
2π

dx = e
t2
2

∫ e
−(x−t)2

2
√
2π

dx = e
t2
2

∫ e
−x2

2
√
2π

dx

= e
t2
2

Actually, if we assume X ∼ N (µ, σ2), one can easily prove in the same
way that:

MX (t) = eµt+ 1
2σ

2t2
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Proof of the CLT

MX (t) = E(etX ) ≈ 1 + µt + σ2 t2

2 + o(t2)
 log(MX−µ(t)) ≈ σ2 t2

2 + o(t2)

Sn = X1 + · · ·+ Xn

S∗n = Sn−nµ
σ
√

n

We have:

MS∗n (t) = E(etS∗n ) = E(et Sn−nµ
σ
√

n ) = E(e
t

σ
√

n (Sn−nµ)) = MSn−nµ

(
t

σ
√

n

)

=

MX−µ

( t
σ
√

n︸ ︷︷ ︸
−−−→

n→∞
0

)n

(since MX+Y (t) = MX (t) MY (t))

= exp

n log

MX−µ

(
t

σ
√

n

)
 = exp

n

σ2 t2

2nσ2 + o
(

t2

n2

)


= exp
(

t2

2 + o(t2/n)
)
−−−→
n→∞

et2/2, which is the mgf of N (0, 1)

26 / 30



CLT = convergence of laws

The law of S∗n converges to N (0, 1). In other words, whatever the initial
law of X :

lim
n→∞

P[a < S∗n < b] =
∫ b

a

1
σ
√
2π

e−x2/2dx

It provides a reasonable approximation when close to the peak of the
normal distribution.

(it requires a very large number of observations to stretch into the tails)
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Confidence interval
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When n is large:

P

µ ∈ [Sn − 2 σ√
n ,Sn + 2 σ√

n

] = P

Sn ∈
[
µ− 2 σ√

n , µ+ 2 σ√
n

] ≈ 95%

There is 95% of chance that the true mean lies within 2 σ√
n of the sample

mean.
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When n is large:

P
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n

] = P

Sn ∈
[
µ− 2 σ√

n , µ+ 2 σ√
n

] ≈ 95%

There is 95% of chance that the true mean lies within 2 σ√
n of the sample

mean.
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Without any particular hypothesis

• Assume, you have evaluated two alternatives A and B on n different
setups

• You therefore consider the associated random variables A and B and
try to estimate their expected values µA and µB

BA Alternative

Execution Time

The two 95% confidence intervals do not overlap
 µA < µB with more than 90% of confidence
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Without any particular hypothesis

• Assume, you have evaluated two alternatives A and B on n different
setups

• You therefore consider the associated random variables A and B and
try to estimate their expected values µA and µB

BA Alternative

Execution Time

The two 95% confidence intervals do overlap
 Nothing can be concluded

Reduce C.I?
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Without any particular hypothesis

• Assume, you have evaluated two alternatives A and B on n different
setups

• You therefore consider the associated random variables A and B and
try to estimate their expected values µA and µB

BA Alternative

Execution Time

The two 70% confidence intervals do not overlap
 µA < µB with less than 50% of confidence  more experiments...
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Without any particular hypothesis

• Assume, you have evaluated two alternatives A and B on n different
setups

• You therefore consider the associated random variables A and B and
try to estimate their expected values µA and µB

BA Alternative

Execution Time

The width of the confidence interval is proportional to σ√
n

You can estimate how much more experiments you need
4 times more to halve it! Try to reduce variance if you can...
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