
Multiary Wavelet Trees in Practice

Alex Bowe
alex.bowe@rmit.edu.au

Honours Thesis

Supervisor: Simon Puglisi

School of Computer Science and Information Technology
RMIT University

Melbourne, AUSTRALIA

November 2010

Abstract

Self-index data structures for pattern matching based on Suffix Arrays
and the Burrows-Wheeler Transform have recently grown popular. The
fundamental operation in these self-indexes is the rank query: rank(i, c)
requests the number of occurrences of symbol c before position i in a
string. The wavelet tree is currently the data structure of choice for im-
plementing rank queries. Current wavelet tree implementations encode
the Burrows-Wheeler Transform as a hierarchy of binary strings, which
they then store as RRR sequences; the RRR structure offers O(1) rank
queries and zeroth-order entropy compression for binary strings. A gener-
alisation of the RRR tecnique extends wavelet trees to have higher order
encoding, that is, increased branching, in theory making traversal faster.
To support the implementation of such a multiary wavelet tree, this thesis
investigates the generalisation of RRR to sequences over small alphabets.
We also analyse the use of concatenated bitmaps to represent sequences
over small alphabets, thus allowing continued use of the binary RRR struc-
ture. Our results show that multiary wavelet trees are faster than their
binary counterparts, but require large amounts of memory in the case of
the generalised RRR. We also show binary RRR on concatenated bitmaps
to be an effective, practical alternative.

Keywords: data structures, algorithms, string search, compression, indexes

1

Contents

1 Introduction 3
1.1 Our Contribution . 4
1.2 Roadmap . 4

2 Preliminaries 6
2.1 Background . 6
2.2 Suffix Arrays . 6
2.3 Burrows-Wheeler Transform . 7
2.4 Rank Query . 7
2.5 Backward Search . 8

3 Binary Wavelet Trees and RRR 11
3.1 Binary Wavelet Trees . 11
3.2 RRR . 13

4 Multiary Wavelet Trees and Generalised RRR 16
4.1 Multiary Wavelet Trees . 16
4.2 Variation 1 : Uncompressed . 16
4.3 Variation 2 : Multi-Binary RRR 17
4.4 Generalised RRR . 17

5 Experiments 19
5.1 Hypotheses . 19
5.2 Method . 19
5.3 Test Data . 20

6 Results 21

7 Conclusion 31

8 Future Work 31

9 Acknowledgements 33

2

1 Introduction

As collections of text grow larger, our need to find information in them and
infer patterns and rankings increases, too. Suffix arrays, first described by
Manber and Myers [18], allow a variety of complex pattern matching and pattern
discovery problems to be performed in optimal time. There are many areas
where suffix arrays are likely the most appropriate data structure for the task,
including:

• Genome analysis [1, 9];

• Searching for patterns in non-word data such as images, multimedia signals
and DNA [5];

• Searching for patterns in oriental languages; as some oriental languages
do not have spaces between certain particles, an inverted file would be
insufficient;

• Pattern discovery and visualisation using arc diagrams, as proposed by
Wattenberg [27].

Suffix Array Wavelet Tree

'bbbbsbaaa'

Burrows-Wheeler
Transform

RRR Sequence

RRR global

count table

WT nodes stored as RRR
sequences for fast binary rank

queries and compression

provides fast rank
queries over BWT

enables
backward search
and self indexing

provides fast
pattern search

operations

+

Figure 1: Overview of the key data structures and their relationship with each
other. When a Suffix Array and a Burrows-Wheeler Transform (BWT) [3] are
combined, they form an FM-Index [7]. FM-Indexes use Backward Searches on
the BWT to provide fast pattern matching, counting, and substring extraction
operations. Backward Search requires rank operations, which are best imple-
mented using a Wavelet Tree (WT) [12]. A WT encodes a string as a hierarchy of
bit vectors, which it uses to answer general rank queries using log σ binary rank
queries. Binary rank queries can be answered in O(1) time when the bit vector
is stored as a RRR sequence [25], which utilise a global table of pre-calculated
ranks. The RRR data structure also offers compression of the Wavelet Tree.
(we defer a detailed discussion of RRR to Section 3.2)

Due to its performance in these important applications, the improvement
of suffix arrays has been the focus of intensive research over the past 20 years.
Self-indexing is one of these improvements. Self indexes support fast pattern
counting (reporting the number of occurrences of a pattern in a text), fast
pattern matching (reporting the positions of each pattern occurrence) and ex-
traction of arbitrary substrings of the original text, including the original text

3

itself. These operations in some sense allow us to replace the original text with
a self index.

One such self index is known as the ‘FM-Index’, proposed by Ferragina and
Manzini [7]. An FM-Index utilises a sparse Suffix Array and the Burrows-
Wheeler Transform (BWT) [3] (the two leftmost diagrams in Figure 1) of the
original text, and supports fast pattern matching operations by using the so-
called ‘backward search’ method.

Backward searching with a BWT requires a fundamental operation called a
‘rank query’, which counts the number of occurrences of a given symbol up to
a given position in the string.

While a naive implementation of the rank query operation might inspect
every symbol of the BWT, and do so in O(N) time where N is the length of the
BWT, it is possible to improve this to O(log σ) time where σ is the size of the
alphabet. To do this, we construct a Wavelet Tree [12] over the BWT (the third
diagram in Figure 1). A Wavelet Tree is constructed by encoding the string as a
hierarchy of bit vectors. These bit vectors are then used to answer rank queries
by traversing and performing binary rank queries1. A more detailed description
of Wavelet Trees appears in Section 3.

Binary rank queries can be performed in O(1) time when the bit vectors are
stored in a RRR sequence, as proposed by Raman, Raman and Rao [25]. RRR
also offers compression of the Wavelet Tree.

The key motivation behind this project arises from the increasing number
of papers, such as Ferragina et al. 2007 [8], Yu et al. 2009 [29], and Barbay
et al. 2010 [2], which utilise Multiary Wavelet Trees as a theoretical tool, that
is, Wavelet Trees with a branching factor greater than two. However no known
implementations of Multiary Wavelet Trees exist. This thesis aims to address
this need, and bring theory closer to practice. It was expected that increasing
arity would improve the time performance of self-indexes which use a BWT.

1.1 Our Contribution

The contribution of this paper is the experimental analysis of two types of
Multiary Wavelet Tree. The first of these, to our knowledge, is the first im-
plementation of the Generalised RRR structure, which is used to support rank
queries on small alphabets, as first suggested by Ferragina et al. [8].

We also propose a new data structure, a Multiary Wavelet Tree that utilises
Binary RRR using concatenated bitmaps to represent sequences on small al-
phabets as bit vectors.

We discover that although Multiary Wavelet Trees are faster, Generalised
RRR requires significant memory for the supporting global table in its current
form, which, depending on the size of the text, may make these Multiary Wavelet
Trees impractical. We show that our new data structure, which continues to
use Binary RRR, is a practical way to make rank queries faster. Additionally,
we observe that the BWT gives rise to a sparse class list as the arity increases.

1.2 Roadmap

The rest of the thesis is organised as follows. Section 2 begins with some no-
tation, followed by background on the problem domain. We then discuss how

1Binary rank queries are also known as popcounts in other literature.

4

each data structure is built and used together.
Section 3 provides a description of Binary Wavelet Trees and their use of

the RRR structure, followed by a discussion in Section 4 of how our Multiary
Wavelet Trees are designed, including some implementation details of interest.

In Section 5 we describe how we measured the time and space performance
for each Multiary Wavelet Tree variation, and provide a rationale of our test
dataset. Our results are presented in Section 6, accompanied by a discussion of
the apparent trends.

The conclusion follows in Section 7. We discuss the practicality of each Mul-
tiary Wavelet Tree variation, and in Section 8 we consider how their performance
might be improved.

5

2 Preliminaries

m i s p $s s s pi i i

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Array representation of ‘mississippi’ string.

Throughout this paper we represent the string we are searching in as S of
length |S| = N , and the pattern we are searching for as P . S[i] represents
the symbol located at position i in S, and S[i..j] represents the substring of S
beginning at position i and ending at j inclusive. Strings are one-based, so in
Figure 2 S[1] = ‘m’, S[3] = ‘s’, and S[1..3] = ‘mis’.

The ith suffix is thus defined as S[i..N], so the 1st suffix in Figure 2 is
S[1..12] = ‘mississipi$’, and the 5th suffix is S[5..12] = ‘issippi$’. The ith prefix
is defined as S[1..i], so the 5th prefix in Figure 2 is S[1..5] = ‘missi’.

The log operation is base 2 unless otherwise stated.

2.1 Background

In 1970 Knuth, Morris and Pratt (KMP) discovered an algorithm to match
patterns in time proportional to the length of the text [14, 20]. If the text is large,
then KMP becomes ineffective for ranking and pattern discovery. Moreover,
KMP is only useful for exact matches.

One alternative to KMP for document ranking is the use of an inverted
index, but they must work with keywords and are thus inappropriate for many
applications, such as searches on certain oriental languages, and other strings
that do not have a clear definition of keywords (MIDI, for example). Suffix
arrays are also more efficient than inverted files for searching phrases or partial
patterns [13, 19]. This was originally possible with the suffix tree [20, 28] (a
precursor to the suffix array), although suffix trees require three to five times
as much space [18].

2.2 Suffix Arrays

In its simplest form, a suffix array can be constructed for a string S[1..N] like
so:

1. Construct an array of pointers to all suffixes S[1..N], S[2..N], ..., S[N..N].

2. Sort these pointers by the lexicographical (i.e. alphabetical) ordering of
their associated suffixes.

Figure 2 shows an example string, ‘mississippi’. The construction of the
corresponding suffix array is shown in Figure 3. Construction of suffix arrays is
now a well studied problem [24].

6

$12

i$11

pi$10

ppi$9

ippi$8

sippi$7

ssippi$6

mississippi$1

ississippi$2

ssissippi$3

sissippi$4

issippi$5

SA

$

i$

pi$

ppi$

ippi$

sippi$

ssippi$

mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

1

2

3

4

5

6

7

8

9

10

11

12

SA

sort

Figure 3: Construction of Suffix Array for ‘mississippi’.

$

i$

pi$

ppi$

ippi$

sippi$

ssippi$

mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

1

2

3

4

5

6

7

8

9

10

11

12

SA

i

p

p

i

s

s

i

$

m

i

s

s

BWT

Figure 4: Suffix Array and Burrows-Wheeler Transform for ‘mississippi’ string.

2.3 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a string of length N defined by the
suffix array SA and the original text S. In particular, BWT [i] = S[SA[i]− 1],
and BWT [1] = ‘$’, that is, the ith symbol of the BWT is the symbol prior to
the ith suffix in the Suffix Array SA. See Figure 4.

As proposed by Ferragina and Manzini, when a BWT is stored alongside a
Suffix Array, it is known as a FM-Index [7], which supports backwards search.

2.4 Rank Query

Munro [21] describes how to do rank queries on binary strings in O(1) time
using o(n) bits of extra space. Much of the early work on rank queries focussed
on binary strings.

A rank query on the string S is defined as rankS(i, c) = n, with n being
the number of times symbol c appears in the range S[1, i]. This paper omits
the subscript when the string we are querying is clear from the context. For
example in Figure 5, rank(9, s) = 3. If i ≤ 0 then rank(i, c) = 0.

7

i p s s is $ p sm i i

1 2 3 4 5 6 7 8 9 10 11 12

BWT

Figure 5: Rank query rank(9, s) = 3 on the Burrows-Wheeler Transform of
‘mississippi’.

2.5 Backward Search

Since any pattern P in S is a prefix of a suffix, and because the suffixes are
lexicographically ordered, all occurrences of a search pattern P lie in a contigu-
ous portion of the Suffix Array. In earlier implementations, the range that this
pattern lies on would be located by using successive binary searches. Backward
search utilises the BWT in a series of paired rank queries, improving the query
performance considerably [4, 6, 8, 10, 16, 17, 19, 22]

Backward search issues |P | pairs of rank queries, where |P | denotes the
length of the pattern. The paired rank queries are:

s′ = C[P [i]] + rank(s− 1, P [i]) + 1

e′ = C[P [i]] + rank(e, P [i])

Where s denotes the start of the range, initially at s = 1, and e is the end
of the range, initially e = N .

In Figure 7 there is a column F , which contains the first symbol for each
suffix. Note that the F column is not stored as we store it encoded as C instead.

C is an array2 containing the count of all symbols in Σ which sort lexico-
graphically before P [i], where Σ is the alphabet from our original string S, as
in Figure 6.

In the first iteration we query the final character of the pattern, so i = |P |.
For each iteration, we decrement i until i = 1. This maintains the invariant
that SA[s..e] contains all the suffixes of which P [i..|P |] is a prefix, and hence
all locations of P [i..|P |] in S. This is illustrated in Figure 8 through to Figure
10. If at any stage e < s, then the pattern does not exist in our original string.

An example is given in Figure 7 through to Figure 10, where the pattern
‘iss’ is searched for in the string ‘mississippi’, starting with i = 3, P [3] = ‘s′.
The working for each rank query is shown below each figure. We represent the
current symbol as c to avoid confusion between ‘s’ and s and s′.

1

si

0

$ pm

865C

Figure 6: Table C of number of occurrences in F of each symbol which sorts
alphabetically before the displayed symbol.

2Note that we are indexing C by a symbol P [i], so this may be implemented with a suitable
hash function.

8

1

2

3

4

5

6

7

8

9

10

11

12

SA

i

p

p

i

s

s

i

$

m

i

s

s

BWT

$

i

p

p

i

s

s

m

i

s

s

i

F

1

2

7

8

3

9

11

6

5

12

10

4

e = 12

s = 1$

i$

pi$

ppi$

ippi$

sippi$

ssippi$

mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

Figure 7: First stage of backwards search for ‘iss’ on ‘mississippi’ string - before
any rank queries have been made.

1. Starting from s = 1 and e = 12 as in Figure 7, and c = P [i] =‘s’ where
i = 3, we make our first two rank queries:

s′ = C[c] + rank(0, c) + 1 = 8 + 0 + 1 = 9

e′ = C[c] + rank(12, c) = 8 + 4 = 12

1

2

3

4

5

6

7

8

9

10

11

12

SA

i

p

p

i

s

s

i

$

m

i

s

s

BWT

$

i

p

p

i

s

s

m

i

s

s

i

F

1

2

7

8

3

9

11

6

5

12

10

4

e = 12

s = 9$

i$

pi$

ppi$

ippi$

sippi$

ssippi$

mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

Figure 8: Second stage of backwards search for ‘iss’ on ‘mississippi’ string. All
the occurrences of ‘s’ lie in SA[9..12].

9

2. From s = 9 and e = 11 as in Figure 8, and c = P [i] =‘s’ where i = 2, our
next two rank queries are:

s′′ = C[c] + rank(8, c) + 1 = 8 + 2 + 1 = 11

e′′ = C[c] + rank(12, c) = 8 + 4 = 12

1

2

3

4

5

6

7

8

9

10

11

12

SA

i

p

p

i

s

s

i

$

m

i

s

s

BWT

$

i

p

p

i

s

s

m

i

s

s

i

F

1

2

7

8

3

9

11

6

5

12

10

4

e = 12

s = 11$

i$

pi$

ppi$

ippi$

sippi$

ssippi$

mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

Figure 9: Third stage of backwards search for ‘iss’ on ‘mississippi’ string. All
the occurrences of ‘ss’ lie in SA[11..12].

3. From s = 11 and e = 12 as in Figure 9, and c = P [i] =‘i’ where i = 1, our
final two rank queries are:

s′′′ = C[c] + rank(10, c) + 1 = 1 + 2 + 1 = 4

e′′′ = C[c] + rank(12, c) = 1 + 4 = 5

1

2

3

4

5

6

7

8

9

10

11

12

SA

i

p

p

i

s

s

i

$

m

i

s

s

BWT

$

i

p

p

i

s

s

m

i

s

s

i

F

1

2

7

8

3

9

11

6

5

12

10

4

e = 5

s = 4$

i$

pi$

ppi$

ippi$

sippi$

ssippi$

mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

Figure 10: Fourth and final stage of backwards search for ‘iss’ on ‘mississippi’
string. All the occurrences of ‘iss’ lie in SA[4..5].

10

3 Binary Wavelet Trees and RRR

This section describes Binary Wavelet Trees, which provide fast rank queries
over strings with an alphabet size larger than 2, and the RRR structure, which
is used for fast binary rank queries and compression.

3.1 Binary Wavelet Trees

One of the most effective data structures for answering rank queries is the
Wavelet Tree [4, 6, 8, 12, 16].

Binary Wavelet Trees encode the BWT (or any string over which we require
fast rank queries) as a perfect binary tree of bit vectors, to enable O(log σ) time
rank queries, where σ is the size of the alphabet. The tree is defined recursively
as follows:

1. Encoding half the alphabet as 0, and half as 1, for example:

Σ = {$, i,m, p, s}

enc(Σ) = {0, 0, 0, 1, 1}

2. Group each 0-encoded symbol, {$, i,m}, as a sub-tree;

3. Group each 1-encoded symbol, {p, s}, as a sub-tree;

4. Reapply to each sub-tree recursively until there is only one symbol left.

The encoded binary Wavelet Tree root node for the ‘mississippi‘ BWT is
shown in Figure 11. For a more detailed example, showing the whole tree, see
Figure 12.

i p s s is $ p sm i i

0 1 1 1 01 0 1 10 0 0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 11: Root node of Binary Wavelet Tree encoding for ‘mississippi’ BWT.
Each symbol in the string is assigned a bit (0 or 1) depending on which half of
the alphabet it is from.

After the tree is constructed, a rank query on the Wavelet Tree can be done
with log σ binary rank queries on the bit vectors. For example, if we wanted to
know rank(6, e) in Figure 12, we use the following procedure which is illustrated
in Figure 14. We know that enc(e) = 0 at this level, so:

1. At the root node, count the number of 0s in the range [1..6], which is given
by rank(6, 0) = 4. This gives us the index to query in our 0-child.

2. Calculate rank(4, 1) = 2, as e is encoded as 1 at this child. We traverse
the 1-branch this time, with the next index as 2.

3. rank(2, 1) = 2, which we use as the index in the child on the 1-branch,
with our next index as 2.

11

4. rank(2, 0) = 2, as e is encoded as 0 here. Since the children at this point
are leaf nodes, we return 2 as our result.

Hence the result of rank(6, e) is 2. If we store these nodes in RRR, binary
rank queries can be answered in O(1) time.

013130023130321211000311202103212211031331330

Peter_Piper_picked_a_peck_of_pickled_peppers$

0110010111000110101110110

Pee_Pe_ced_a_ec_f_ced_ee$

11011100100100011111

triprpikpkopiklppprs

10100100000

P_P__a____$

11101010101011

eeecedecfcedee

00001001

iikkoikl

1000000001

trrppppprs

11111110

_______$

001

PPa

01001

cdccd

000001000

eeeeefeee

0 1

0 1 0 1

001101

iikkik

10

ol

11000001

rrpppppr

10

ts

0 1 0 1 0 1 0 1

001010011010110100000100101001101100010110110

Figure 12: Binary Wavelet Tree for ‘Peter Piper...’ where spaces are displayed
as underscores.

013130023130321211000311202103212211031331330

Peter_Piper_picked_a_peck_of_pickled_peppers$

21211311110

P_P__a____$

0 1

22202120302122

eeecedecfcedee

00113012

iikkoikl

310100000012

trprpppppprs

2 3

Figure 13: 4-ary Wavelet Tree for ‘Peter Piper...’ where spaces are displayed as
underscores.

12

001010011010110100000100101001101100010110110

Peter_Piper_picked_a_peck_of_pickled_peppers$

0110010111000110101110110

Pee_Pe_ced_a_ec_f_ced_ee$

11101010101011

eeecedecfcedee

000001000

eeeeefeee

0

1

1

123456

1234

12

12

4

2

2

rank(6,e) = 2

Figure 14: Answering rank(6, e) over the Binary Wavelet Tree for ‘Peter Piper...’
where spaces are displayed as underscores.

3.2 RRR

RRR was first proposed by Raman et al. [25]. The purpose of RRR is to encode
a bit sequence in such a way that supports O(1) time binary rank queries. It
also provides implicit (i.e. automatic) compression, requiring NH0(S) + o(N)
where H0(S) is the zeroth-order empirical entropy of S.

Zeroth-order empirical entropy is a lower bound for the average code word
size when a symbol is mapped to the same code word irrespective of the context

in which they appear. It can be calculated as H0(S) =
∑σ
i=1

Ni

N log N
Ni , for an

alphabet Σ size of σ, and N i is the number of occurrences of the ith element of
Σ in our text S[1..N].

The classical O(1) time implementation of binary rank queries required the
N bits of the original bit sequence, plus O(N log logN

logN) = o(N) additional bits

[11].

b = 5, f = 3

Superblocks

Blocks

Figure 15: Block division scheme for ‘Peter Piper...’ Wavelet Tree’s root node
bit vector.

To construct the RRR we divide the bit vector into several so-called su-
perblocks, we then divide these superblocks further, into blocks of b bits each, as

13

in Figure 15. We call the number of blocks in a superblock the superblock-factor,
f .

For each of these blocks we store a class number c, which in the binary case
is the number of 1s in the block. This is used as a lookup key in a table G,
which is a table of tables, and will be explained shortly. We also store offset o,
which is an index into the table at G[c]. Each offset value o tells us precisely
which of the possible blocks of class c a block is. See Figure 17.

G is a table having subtables G[c] for each class c. For every possible permu-
tation of c 1-bits, G[c] contains an array of cumulative sums for each position in
the block of given offset and class - this is illustrated in Figure 16. It is impor-
tant to note that the size of o varies, since the number of possible permutations
of c bits, and hence entries in G[c], is

(
b
c

)
, and can be encoded in log

(
b
c

)
bits.

The reason for grouping blocks into superblocks is to avoid iterating over
each block to answer a rank query; a query requires the sum of the ranks of
previous blocks as well, as depicted in See Figure 17. If we store the sum of all
block ranks up to a superblock boundary, then a rank query rank(i, c) can be
answered like so:

1. Calculate which block our index is in as ib = i/b.

2. Calculate which superblock our block resides in as is = ib/f .

3. Set result to the sum of previous ranks at is boundary (which is pre-
calculated).

4. Using each blocks class-offset pair (c, o) after the boundary at is, add the
rank for that entire block to result.

5. Repeat previous step until we reach ib. We then add rankib(j, c) to our
result, where j = i mod b, and is the position we are querying local to ib.
Our final answer is result.

With the superblock we also store an initial address for the variable-length
offset values. After finding the first offset address in a superblock, we calculate
the next offset address in bits according to the blocks class c as dlog

(
b
c

)
e bits,

which we add to the current address. See Figure 17, which shows what is
calculated for each superblock3.

It is possible to support Multiary Wavelet Trees using RRR with a more
extensive class allocation, which we will discuss in Section 4.4.

3We omit the first superblock, since the first offset address is easy to find, and the sum of
ranks before the first superblock is always 0.

14

1 2 2 2 2

0 0 1 1 2

0 1 2 2 2

1 1 1 2 2

0 0 0 1 2

1 1 1 1 2

0 0 1 2 2

0 1 1 2 2

0 1 1 1 2

1 1 2 2 2

1 1 0 0 0

1 0 1 0 0

0 1 1 0 0

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

5

4

3

2

1

0

classes

cumulative rank

at bit index

1 2 3 4 5block value

oc oc oc

Figure 16: Binary RRR Count Table, with example lookup for class c = 2 and
offset o = 3 in a RRR sequence.

oc oc oc oc oc oc oc oc oc

initial offset addresses
at superblock boundaries

sum of ranks for all previous blocks
before superblock boundaries

Figure 17: RRR Sequence divided into three superblocks. For each superblock
boundary, a sum of previous ranks is stored, as well as the address of the first
offset value. These allow us to reduce the amount of iteration required to answer
a rank query.

15

4 Multiary Wavelet Trees and Generalised RRR

This section discusses the design of Multiary Wavelet Trees, and three ap-
proaches to support rank queries on the nodes.

4.1 Multiary Wavelet Trees

Multiary Wavelet Trees are analogous to their binary counterparts, although
now we encode each node recursively like so:

1. Encoding one Ath of the alphabet as 0, the next Ath as 1, the next N th

as 2 and so on until A− 1. For example, with the ‘Peter Piper...’ string:

Σ = {$, , P, a, c, d, e, f, i, k, l, o, p, r, s, t}

enc(Σ) = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3}

2. Group each 0-encoded symbol as a sub-tree

3. Group each 1-encoded symbol as a sub-tree

4. Group each 2-encoded symbol as a sub-tree, and so on until A− 1

5. Reapply to each sub-tree recursively until the amount of symbols is less
than or equal to A− 1.

See Figure 13 for a Multiary Wavelet Tree constructed over the ‘Peter
Piper...’ string.

We can no longer use binary rank queries, and hence Binary RRR, the
same way as we do with a Binary Wavelet Tree. We discuss three alternative
approaches in the following sections.

4.2 Variation 1 : Uncompressed

2
3

0
1

00000000100000
11101010001011
00000100000100
00010001010000

22202120302122

eeecedecfcedee

Symbol

Figure 18: Concatenated bitmap binary encoding of multiary Wavelet Tree
Node representing ‘eeecedecfcedee’ from the ‘Peter Piper...’ string.

It is possible to represent each encoded symbol c, where c is an element
of 0, 1, ..., A− 1 and A is the arity, using A bitmaps. First we construct the
bitmaps for each symbol, as in Figure 18, then we concatenate these bitmaps
and store them as one bit-vector. A rank query then involves a ranged binary
rank query on N [cL, cL+ i] at each node N , where L is the length of the node
string before concatenation, and i is the position.

We use A bits per symbol, when they could be represented in logA bits, but
this allows us to utilise binary RRR, which we do in the ‘Multi-Binary RRR’
Wavelet Tree discussed in Section 4.3.

16

4.3 Variation 2 : Multi-Binary RRR

Like the uncompressed version, bitmaps are created for each symbol and con-
catenated, but the bit-vector is stored in a binary RRR sequence. A query then
becomes two binary rank queries4;

rank(c ∗ L− 1, 1) (1)

rank(c ∗ L+ i, 1) (2)

Where c is the symbol we are querying at position i, c > 0, and L is the
original length before concatenation. If c = 0 then we say the result of the first
binary rank query is 0. The final result of rank(i, c) is calculated as the second
binary rank query minus the first.

This variation means that we will not need to store a bigger G table to
accommodate the additional classes when increasing the arity, when compared
with a generalised RRR structure, but does not offer the same sequence com-
pression as the concatenated bitmaps take more bits than required.

Our third variation stores the symbols (without binary encoding) in a gen-
eralised RRR structure.

4.4 Generalised RRR

1 0 1 0 3

1 0 0 3 1

1 0 0 1 3

0 1 1 3 0

0 1 1 0 3

0 1 0 3 1

0 1 0 1 3

0 0 3 1 1

0 0 1 3 1

0 0 1 1 3

5

4

3

2

1

0

classes

cumulative rank
at symbol index

1 2 3 4 5

block value

oc oc oc

(2, 2, 0, 1)
symbol

1

0

2

30 0 0 0 1

0 0 0 0 0

0 1 1 2 2

1 1 2 2 2

Figure 19: 4-ary RRR Count Table, with example lookup for class c = 2, which
represents (2, 2, 0, 1), and offset o = 3 in a RRR sequence.

4In our implementation we pre-calculate the first binary rank queries for each symbol and
store it with the node.

17

The purpose of the Generalised RRR structure is to provide O(1) time rank
queries and compression of a sequence of small integers (as opposed to binary
integers) on the range [0..A− 1] for arity A. This requires these differences:

• Rather than simply being the number of 1-bits, classes are now considered
to be a tuple of (N0, N1, ..., NA−1) for a given block, where N0 is the
number of 0s, N1 is the number of 1s, and so on. The RRR sequence still
stores classes as a unique integer, though.

• Rather than having
(
b
N1

)
permutations per class for blocksize b, there are

now
(

b
N0,N1,...,NA−1

)
=
∏A
i=1

(b−∑i−1
j=1N

j

Ni

)
different permutations. Each

offset value o therefore requires dlog
(

b
N0,N1,...,NA−1

)
e bits. The number

of different permutations grows rapidly as arity increases, so our imple-
mentation only stored the classes and offsets that we encountered in an
attempt to make use of sparsity we can expect in the BWT.

• The G table must also store cumulative ranks for each symbol, per per-
mutation. See Figure 19.

• Each superblock now has A rank sums of each previous block - a rank sum
for each symbol.

18

5 Experiments

We will detail below what our expected findings were, and our method, including
the data selected for the experiments and why it was chosen.

5.1 Hypotheses

The experiments were designed to test the following hypotheses:

• Since BWTs have many runs of the same symbol, RRR classes and offsets
will not be equally distributed.

• Increasing the arity of a Wavelet Tree will make it shallower and hence
reduce the amount of nodes visited per query, resulting in faster queries.

• There is a practical limit to the order of the arity increase for Generalized
RRR, since the RRR count table will increase in size. In particular there
is tension between the size of the RRR count table and the size of the
class / offset sequences.

5.2 Method

For each Multiary Wavelet Tree variant5 (using Generalised RRR, Multi-binary
RRR, and uncompressed concatenated bitmaps to provide sequence ranking
at each node), we generated 1000 random rank queries rank(c, i). For three
runs the mean query time was recorded, and the minimum result was taken as
our result, as it is the time least influenced by external factors (e.g. Operating
System swapping). The above experiment was repeated as we doubled the arity.

The size of the Wavelet Tree (including the RRR encoded sequences at each
node) was recorded. The size of the RRR count tables was recorded for the cases
which used a variant of RRR. For the Generalized RRR, we recorded how many
unique class and offset values were encountered, and calculated the percentage
of total possible classes and offsets these were6.

We used Francisco Claude’s SPIRE 2008 implementation of binary RRR7

implementation as a base line for comparison [4]. We used the same default
block-size and super-block factor as Claude, which were 15 and 32 respectively.

The data set used for testing is described below8 in Section 5.3 with some
statistics in Table 1.

The experiments were run on an otherwise idle Mac OS X Snow Leopard
with a 2.4 GHz Intel Core 2 Duo processor, and 4GB 1067 MHz DDR3 RAM.

5All source code is available at http://github.com/alexbowe/multiary-wt.
6All raw and processed data is available at http://github.com/alexbowe/multiary-wt, and

the graphs are available at http://github.com/alexbowe/wavelet-paper/tree/thesis/.
7Claude’s compressed data structures library is available at http://libcds.recoded.cl
8The BWT files for each dataset are available at

http://bwt-corpus.s3.amazonaws.com/list.html, and are reconstructible using the scripts at
http://github.com/alexbowe/bwt-corpus.

19

5.3 Test Data

Since a prime use of Wavelet Trees is to provide faster rank queries over BWTs
(as part of an FM-Index), we constructed BWT strings over a selection of texts
taken from the Pizza&Chili Corpus website9. This is the standard corpus used
when developing compressed self indexes, and has been collected by Paolo Fer-
ragina and Gonzalo Navarro, two prominent contributors of suffix array research.

The corpus consists of source code for the Linux kernel and GNU C Compiler
(GCC), protein sequences, DNA, English texts from Project Gutenberg10, and
XML-formatted bibliographies from several major Computer Science journals.
These are considered to be representative of the sort of texts a suffix array may
be used for. In the case of the English corpus, we also took a mapping of each
unique word to an integer, allowing us to test word-based indexing.

Three data sizes were used to test the scalability: 25MB, 50MB and 75MB.
Importantly, these data sizes are much bigger than the available CPU cache,
but will not take large amounts of time for experimentation. The length and
alphabet size of these files are described in Table 1.

Data
25 MB 50 MB 75 MB

σ length σ length σ length

xml 96 26 214 400 98 52 428 804 98 78 643 208
dna 14 26 214 400 19 52 428 804 21 78 643 208

proteins 25 26 214 400 29 52 428 804 33 78 643 208
sources 116 26 214 400 229 52 428 804 229 78 643 208
english 154 26 214 400 179 52 428 804 188 78 643 208
words 83 083 5 969 593 115 754 11 860 943 164 757 17 668 587

Table 1: Text lengths and alphabet sizes for each test file.

9http://pizzachili.dcc.uchile.cl
10http://www.gutenberg.org

20

6 Results

Note that measurements for the Generalized RRR with arity 16 are missing,
since the experiments took too long due to paging. This supports our third hy-
pothesis, but there may be ways to overcome this, as detailed in Section 8.

Also Note that the Uncompressed Wavelet Tree timings have been plotted on
a different graph due to the difference in scale.

Arity Max Total Classes Max Total Permutations

2 16 32 768
4 816 1 073 741 824
8 17 0544 35 184 372 088 832

Table 2: Maximum Total Classes and Offsets possible with a blocksize of 15 for
arity values 2, 4, and 8.

From Figure 20 we can see how the number of unique classes and block
permutations increases depending on file size and arity. Table 2 shows the
maximum of each of these values, and Figure 21 plots the number of unique
classes and block permutations as a percentage of the values in Table 2.

Figure 21 indicates that in all data sets, around 100 percent of the classes
and block permutations were encountered for arity 2. In most data sets, all
classes were encountered for arity 4 as well, with the exception being DNA,
which encountered around 30 percent.

Figure 20 shows that the proteins data set had significantly more unique
block permutations than any other data set, while the words data set is the
only one to have encountered all classes for arity 8. This is because protein
data is essentially random, so its BWT will not contain long runs of the same
symbol, reducing the skew of its classes.

21

English Words

 0

 2

 4

 6

 8

 10

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 (

m
ill

io
n
s
)

Arity and File Size

Classes
Permutations

75MB50MB25MB

 0

 2

 4

 6

 8

 10

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 (

m
ill

io
n
s
)

Arity and File Size

Classes
Permutations

75MB50MB25MB

DNA Proteins

 0

 2

 4

 6

 8

 10

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 (

m
ill

io
n
s
)

Arity and File Size

Classes
Permutations

75MB50MB25MB

 0

 2

 4

 6

 8

 10

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 (

m
ill

io
n
s
)

Arity and File Size

Classes
Permutations

75MB50MB25MB

Sources XML

 0

 2

 4

 6

 8

 10

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 (

m
ill

io
n
s
)

Arity and File Size

Classes
Permutations

75MB50MB25MB

 0

 2

 4

 6

 8

 10

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 (

m
ill

io
n
s
)

Arity and File Size

Classes
Permutations

75MB50MB25MB

Figure 20: Number of unique classes and block permutations for each data file.
The vertical axis represents the total number of classes and block permutations
that were witnessed for the given file size and arity when using the Multiary
Wavelet Tree with Generalised RRR.

22

English Words

 0

 20

 40

 60

 80

 100

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 [
 %

]

Arity and File Size

Classes
Permutations

75MB50MB25MB

 0

 20

 40

 60

 80

 100

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 [
 %

]

Arity and File Size

Classes
Permutations

75MB50MB25MB

DNA Proteins

 0

 20

 40

 60

 80

 100

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 [
 %

]

Arity and File Size

Classes
Permutations

75MB50MB25MB

 0

 20

 40

 60

 80

 100

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 [
 %

]

Arity and File Size

Classes
Permutations

75MB50MB25MB

Sources XML

 0

 20

 40

 60

 80

 100

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 [
 %

]

Arity and File Size

Classes
Permutations

75MB50MB25MB

 0

 20

 40

 60

 80

 100

2 4 8 2 4 8 2 4 8

U
n
iq

u
e
 E

n
c
o
u
n
te

rs
 [
 %

]

Arity and File Size

Classes
Permutations

75MB50MB25MB

Figure 21: Sparsity measurements for each data file. The vertical axis repre-
sents the percentage of total possible classes and block permutations that were
witnessed for the given file size and arity when using the Multiary Wavelet Tree
with Generalised RRR. Note that some bars are too small to see.

23

Uncompressed Multiary Wavelet Tree query times for English files

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 4 8 16

Time
[ms]

Arity

25MB
50MB
75MB

Figure 22: Query times for Uncompressed Multiary Wavelet Tree of increasing
arity for each English file.

From Figure 22 we can see how increasing the arity affects querying an
uncompressed Wavelet Tree. It is slower for increasing file size because it is
calculating rank queries without the assistance of RRR.

From Figures 23 and 24 we are able to see that increasing the file size does
not significantly affect the time performance of the Wavelet Trees which utilise
RRR.

The Generalised RRR is slower than Claude’s. We suspect that this is due
to our use of pointers, as required to create a sparse table, whereas Claude’s
avoids dereferencing and may make better use of cache. The trend is similar to
the other Multiary Wavelet Trees, though.

The Multi-Binary RRR Wavelet Tree is faster than Claude’s when the arity
is increased. It is slower at arity 2 possibly due to optimisations in Claude’s
Wavelet Tree code, or because we need to do an extra calculation to work out
the binary rank of all previous symbols (see Section 4.3).

24

RRR Wavelet Tree query times for 75MB English file

 0

 2

 4

 6

 8

 10

 12

 14

2 4 8 16

Time
[µs]

Arity

Generalised RRR
Multi-Binary RRR

Claude RRR

Figure 23: Query times for RRR Wavelet Trees of increasing arity for the 75MB
English file.

(25MB English file) (50MB English file)

 0

 2

 4

 6

 8

 10

 12

 14

2 4 8 16

Time
[µs]

Arity

Generalised RRR
Multi-Binary RRR

Claude RRR

 0

 2

 4

 6

 8

 10

 12

 14

2 4 8 16

Time
[µs]

Arity

Generalised RRR
Multi-Binary RRR

Claude RRR

Figure 24: Query times for RRR Wavelet Trees of increasing arity for the 25MB
and 50MB English files.

25

Memory consumption for 75MB English file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2 4 8 16

Size
Coefficient

Arity

Uncompressed WT

RRR Table
Wavelet Tree
Claude RRR

2 4 8 16

Generalised RRR

2 4 8 16

Multi-Binary RRR

Figure 25: Memory consumption for Wavelet Trees of increasing arity for the
75MB English file. The memory required for each data structure is the size
coefficient multiplied by the original file size. The bar stacked on top is the
space for the supporting RRR count table. The bar underneath is the space for
the shape of the Wavelet Tree (which had negligible overhead) and each of its
nodes, as RRR sequences or not. The Uncompressed Wavelet Tree is the only
one which does not have a RRR count table.

Figure 25 shows the memory consumption of the structures for each English
file. As the smaller sized files have similar size coefficients, we only show the
graphs for the 75MB files.

Note that even though the Generalised RRR Wavelet Tree size (which in-
cludes the RRR sequences it stores) is smaller than the original text, and smaller
than the Multi-Binary RRR Wavelet Tree, the size to contain the supporting
RRR count structure is large.

The Proteins files have less classes (Figure 21) but more permutations (Fig-
ure 20) than the Words files. This may be the cause of the large table size
for the Generalised RRR Wavelet Tree in Figure 27 compared with that of the
Words file in Figure 26.

In all cases, the Generalised RRR Wavelet Tree size is less than the original
text size. It is important to note that the RRR count table can be shared among
Wavelet Trees, but this may cause it to grow to its full amount, depending on
the distribution of classes for the type of text we are indexing, as more classes
and permutations may be encountered.

The tradeoff between memory and query time for the English files can be
seen in Figure 28. All other test data follows a similar trend, so the graphs have
been omitted11, with the exception of Words (Figure 29), Proteins (Figure 30)

11The other graphs are available at http://github.com/alexbowe/honours-thesis/.

26

Memory consumption for 75MB Words file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2 4 8 16

Size
Coefficient

Arity

Uncompressed WT

RRR Table
Wavelet Tree
Claude RRR

2 4 8 16

Generalised RRR

2 4 8 16

Multi-Binary RRR

Figure 26: Memory consumption for Wavelet Trees of increasing arity for the
75MB Words file. The memory required for each data structure is the size
coefficient multiplied by the original file size. The bar stacked on top is the
space for the supporting RRR count table. The bar underneath is the space for
the shape of the Wavelet Tree (which had negligible overhead) and each of its
nodes, as RRR sequences or not. The Uncompressed Wavelet Tree is the only
one which does not have a RRR count table.

and DNA.
In Figure 29 The Generalised RRR Wavelet Trees queries slow down for arity

8. This may be due to fragmentation of the RRR count table memory; as the
Wavelet Tree becomes less shallow as its arity increases, the benefit of cache
may also diminish, since the RRR count table will become larger and possibly
dispersed throughout memory. This would not affect the other RRR Wavelet
Trees as their RRR count tables are contiguous and small, making the better
use of cache.

Figure 30 shows the query time increasing slightly for arity 4, then decreasing
again for arity 8. This may be due to the small alphabet size of the Proteins
file, meaning the Wavelet Tree would not get much shallower, and as above the
performance may be dominated by cache. This trend was seen in DNA as well,
which also has a small alphabet.

27

Memory consumption for 75MB Proteins file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2 4 8 16

Size
Coefficient

Arity

Uncompressed WT

RRR Table
Wavelet Tree
Claude RRR

2 4 8 16

Generalised RRR

2 4 8 16

Multi-Binary RRR

Figure 27: Memory consumption for Wavelet Trees of increasing arity for the
75MB Proteins file. The memory required for each data structure is the size
coefficient multiplied by the original file size. The bar stacked on top is the
space for the supporting RRR count table. The bar underneath is the space for
the shape of the Wavelet Tree (which had negligible overhead) and each of its
nodes, as RRR sequences or not. The Uncompressed Wavelet Tree is the only
one which does not have a RRR count table.

28

Memory-Time tradeoff for 75MB English file

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

Time
[µs]

Size Coefficient

Generalised RRR

2

4

8

Multi-Binary RRR

2

4 8 16

Claude RRR

2

Figure 28: Memory-Time tradeoff for RRR Wavelet Trees of increasing arity for
the 75MB English file. The memory required for each data structure is the size
coefficient multiplied by the original file size.

Memory-Time tradeoff for 75MB Words file

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10

Time
[µs]

Size Coefficient

Generalised RRR

2

4

8 Multi-Binary RRR

2

4
8 16

Claude RRR

2

Figure 29: Memory-Time tradeoff for RRR Wavelet Trees of increasing arity for
the 75MB Words file. The memory required for each data structure is the size
coefficient multiplied by the original file size.

29

Memory-Time tradeoff for 75MB Proteins file

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10

Time
[µs]

Size Coefficient

Generalised RRR

2

4

8

Multi-Binary RRR

2

4
8 16

Claude RRR

2

Figure 30: Memory-Time tradeoff for RRR Wavelet Trees of increasing arity
for the 75MB Proteins file. The memory required for each data structure is the
size coefficient multiplied by the original file size.

30

7 Conclusion

From our observations we have discovered that there is sparsity in the classes and
block permutations encountered in our test data, and it can have a significant
effect on the supporting table size, in the case of Generalised RRR. However,
making use of this sparsity dynamically requires pointers, and may be the cause
of some time overhead and cache misses while querying.

Since the RRR count table is shared among all nodes and even all Wavelet
Trees of the same or smaller arity and blocksize, it may be the case that when
documents are significantly large, or we are indexing a large collection of doc-
uments, the overhead of the RRR count table becomes negligible. For such
documents, a distributed approach may be required; we may store the RRR
table on multiple computers, or increase the arity so that the table fits in one
central server for querying by the computers that host the Wavelet Trees. It is
likely such a configuration may need the extra speed while querying, since it is
typical of a search engine to host indexes over many servers and calculate many
queries per second.

For single documents, or small collections of documents, the RRR count
table expands too rapidly to make increasing the arity worthwhile. We discuss
a possible method to curb this growth in Section 8.

However, we have shown that there are simple ways to implement Multiary
Wavelet Trees using rank structures for binary alphabets. In our ‘Multi-Binary
RRR’ Wavelet Tree rank queries become faster, while the Wavelet Tree nodes
did not grow too large. The Multi-Binary RRR Wavelet Tree was sometimes
larger than the original text, however.

8 Future Work

There are several promising avenues for future work which this thesis has helped
reveal:

1. Investigate if there is any way to make the count table for Generalized
RRR smaller. One promising idea is to only store base counts which can
generate all cyclic permutations of a block. For example, if one block is
b1 = [0, 1, 2, 2, 3] and another block is b2 = [1, 2, 2, 3, 0] (that is, a left
cyclic shift of one position applied to b1), then there may be a way to
calculate the counts for b2 from b1, and no longer store the counts for b2.

2. Similar to above, another option is to share count table entries among
different blocks which have similar positioning but for different symbols.
For example the block b1 = [0, 1, 2, 2, 3] has the same count table entry for
c = 2 as the block b2 = [0, 2, 1, 1, 0] does for c = 1.

3. Reduce the use of pointers when constructing a sparse RRR table. This
may be done by completing a full scan of the text before constructing the
table, and tracking how many unique blocks there are, then allocating
them contiguously.

4. Search for a good tradeoff between arity and block size for the Generalised
RRR; the Generalised RRR Table will grow smaller if a smaller block size
is used, but the sequences then become bigger as they have more class

31

and offset values (which require less bits, but perhaps not significantly
so). This may not be preferable since the table can be shared among
many sequences. The analysis of Ferragina et al. [8] suggests blocksize
and arity should be related, in particular blocksize b = b 12 logANc, that
is, b decreases slightly as arity A increases.

5. Implement and investigate a Multiary Huffman-Shaped Wavelet Tree (see
Mäkinen’s work for details on Huffman-Shaped Wavelet Trees [15]). This
may overcome the RRR count table memory consumption while still re-
ducing the tree depth.

6. Real world query patterns may show that there are certain blocks which
are queried more frequently, so we may only need to keep the RRR count
table entries for these blocks in memory at all times. The other RRR
count table sections may be stored on disk and loaded into memory on
the occasion that they are queried.

7. Distribute the RRR count table among nodes in a cluster, allowing it to
be held in memory as restricted by the cluster as a whole, not a single
computer. Then, increasing arity would be an issue of how many nodes are
on the cluster. There has been recent research on distributed compressed
suffix arrays by Russo et al. [26].

8. Investigate Multiary Wavelet Trees which use the bitmap concatenation
technique, but encode each node using other binary sequence structures
which answer rank queries, such as the rank index by Okanohara and
Sadakane [23].

32

9 Acknowledgements

I thank my supervisor Simon Puglisi for his patience and guidance, Juha Kärkkäinen
(University of Helsinki) for helping me to understand RRR, and Francisco
Claude (University of Waterloo) for his advice and explanation of his code.
I also thank my brothers Nikolas and James Bowe for their programming ad-
vice and motivation. Finally, I thank RMIT University for providing me with a
scholarship to complete this paper.

33

References

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[2] J. Barbay, F. Claude, and G. Navarro. Compact rich-functional binary
relation representations. In A. López-Ortiz, editor, LATIN 2010: Theoret-
ical Informatics, volume 6034 of Lecture Notes in Computer Science, pages
170–183. Springer, 2010.

[3] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, Palo
Alto, California, 1994.

[4] F. Claude and G. Navarro. Practical rank/select queries over arbitrary
sequences. In Proceedings of the 15th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 5280, pages 176–187.
Springer, 2008.

[5] J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin. Top-k ranked
document search in general text databases. In M. de Berg and U. Meyer,
editors, Proceedings of the 18th European Symposium on Algorithms (ESA
2010), to appear 2010.

[6] P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet
trees. Information and Computation, 207(8):849–866, 2009.

[7] P. Ferragina and G. Manzini. Opportunistic data structures with applica-
tions. Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science, pages 390–398, 2000.

[8] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed rep-
resentations of sequences and full-text indexes. ACM Transactions on Al-
gorithms, 3(2):20, 2007.

[9] P. Flicek and E. Birney. Sense from sequence reads: methods for alignment
and assembly. Nature Methods, 6(11s):S6–S12, October 2009.

[10] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large
alphabets: a tool for text indexing. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
368–373, New York, NY, USA, 2006. ACM.

[11] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical imple-
mentation of rank and select queries. In Poster Proceedings Volume of 4th
Workshop on Efficient and Experimental Algorithms (WEA), pages 27–38,
Greece, 2005. CTI Press and Ellinika Grammata.

[12] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text
indexes. In Proceedings of the 14th annual ACM-SIAM symposium on Dis-
crete algorithms, pages 841–850. Society for Industrial and Applied Math-
ematics, 2003.

34

[13] W.-K. Hon, R. Shah, and J. Vitter. Space-efficient framework for top-
k string retrieval problems. In Foundations of Computer Science, 2009.
FOCS ’09. 50th Annual IEEE Symposium on, pages 713 –722, October
2009.

[14] D. Knuth, J. Morris Jr, and V. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323—350, 1977.

[15] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length
encoding. Nordic Journal of Computing, 12(1):40–66, 2005.

[16] V. Mäkinen and G. Navarro. Implicit compression boosting with appli-
cations to self-indexing. In Proceedings of the 14th International Sympo-
sium on String Processing and Information Retrieval (SPIRE), LNCS 4726,
pages 214–226. Springer, 2007.

[17] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 387(3):332–347, 2007.

[18] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[19] M. Maŕın and G. Navarro. Distributed query processing using suffix arrays.
In String Processing and Information Retrieval, volume 2857 of Lecture
Notes in Computer Science, pages 311–325. Springer, 2003.

[20] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 23(2):262–272, 1976.

[21] J. Munro. Tables. In Foundations of Software Technology and Theoretical
Computer Science, pages 37–42. Springer, 1996.

[22] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput-
ing Surveys, 39(1):article 2, 2007.

[23] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select
dictionary. Arxiv Computing Research Repository, abs/cs/0610001, 2006.

[24] S. J. Puglisi, W. F. Smyth, and A. Turpin. A taxonomy of suffix array
construction algorithms. ACM Computing Surveys, 39(2):1–31, 2007.

[25] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM
Transactions on Algorithms, 3(4), 2007.

[26] L. Russo, G. Navarro, and A. Oliveira. Parallel and distributed compressed
indexes. In A. Amir and L. Parida, editors, Combinatorial Pattern Match-
ing, volume 6129 of Lecture Notes in Computer Science, pages 348–360.
Springer, 2010.

[27] M. Wattenberg. Arc diagrams: Visualizing structure in strings. In Proceed-
ings of the IEEE Symposium on Information Visualization, pages 110–116,
Washington, DC, USA, 2002. IEEE Computer Society.

35

[28] P. Weiner. Linear pattern matching algorithms. In SWAT ’73: Proceedings
of the 14th Annual Symposium on Switching and Automata Theory (swat
1973), pages 1–11, Washington, DC, USA, 1973. IEEE Computer Society.

[29] C.-C. Yu, W.-K. Hon, and B.-F. Wang. Efficient data structures for the
orthogonal range successor problem. In Computing and Combinatorics,
volume 5609 of Lecture Notes in Computer Science, pages 96–105. Springer,
2009.

36

