Alice Seaborn

May 9, 2020

Final Project: Traffic Light Controller

§1 Project Statement

Use system verilog to develop a controller unit for a simple two street intersection complete with
corresponding lights and traffic sensors. Given that the configuration of the lights is finite, a state-
machine approach is logical to describe the intersection’s behavior. The lights will remain in their
current state until the sensors on the opposing street trigger a change in traffic flow. In such a case,

a transient state occurs which slows the current traffic prior to introducing opposing traffic.

§2 State Diagram

Given the sensory inputs and the procedural flow of some states logically into other states (e.g.

green through red cycle) the following state truth table can be derived:

Present state | Next state Output
state0 (0,0) — statel | greenl =1, red2 =1
(0,1) — state2 N-S street open
(1,0) — state0
(1,1) — statel
statel state2 greenl =1, red2 =1
state2 state3 greenl =1, red2 =1
state3 stated yellowl =1, red2 =1
Unprotected left
stated (0,0) — stateb | redl =1, green2 =1
(0,1) — stated
(1,0) — state6
(1,1) — state4
stateb stateb redl =1, green2 =1
state6 state7 redl =1, green2 =1
state7 state0 redl =1, yellow2 =1

From this truth table, a more detailed flow diagram has been produced below.

Figure 1: State truth table.

STATE 1

¢

s1 s2

1l

STATE 2

g

S1 s2

0,0),(1,1)

(0,1)

(1,0

Figure 2:

ECE 482

STATE 3

STATE 5

eCO

(1, 1) ©,0)

STATE 4

(1,0

S1

STATE 7

s2

0,1)

Traffic Light Controller flow diagram.



gt W N =

B > S L B VI N

0o N O O ks W N

© W N O s W N

== e
N o= O

Alice Seaborn May 9, 2020

§3 Solution Approach

In order to describe the behavior of the controller, a local variable was used to define the current
state. This variable is a customized enumeration that lists the possible states for the controller
unit.

typedef enum {stateO, statel, state2, state3, state4,
stateb, state6, state7} state_t;

state_t state, next_state;

System Verilog allows for switch case statements to be applied to enumeration variables. Ergo,
the remainder of the solution can be solved in a single large switch case against the current state. To
prevent against confusing the system, the nextstate variable is used to delay updating the current
state until the next switch case iteration like so:

always_ff @(posedge clk, posedge reset)

begin
if (reset)
state = statel;
else
state = next_state;
end

From there, the switch case explicitly defines the logic described by both the flow diagram as
well as the state truth table. When simulating the controller, the clock must be modified to slow
the system. Rather than adjusting the time signature, a clock divider can be implemented where
T is a finite local parameter|

always
begin
clk = 1;
#(T/2);
clk = 0;
#(T/2);
end

Then the testbench can iterate between signal configurations by explicitly changing the sensory
input and waiting for the states to change, again as a function of the local parameter 7"

senl = 0;
sen2 = 0;
#(T*5);
senl = 1;
sen2 = 0;
#(T*5);
senl = 0;
sen2 = 1;
#(T*5);

!Similar to a #define statement in C-languages.

ECE 482 Page 2



Alice Seaborn May 9, 2020

The code is then loaded into EDA Playground in an environment which can be accessed through
the link included below. The Mentor Questa simulator is used and the wave output is included in
the figure below.

https://www.edaplayground.com/x/6NwQ

Figure 3: EPWave output from TLC simulation.

ECE 482 Page 3


https://www.edaplayground.com/x/6NwQ

	Project Statement
	State Diagram
	Solution Approach

