Introspection, Updatability, and Uncertainty Quantification with Transformers: Concrete Methods for AI Safety

Overview

With Transformer networks, we demonstrate introspection of the predictions against instances with known labels; updatability of the model without a full re-training; and reliable uncertainty quantification over the predictions. This is possible via KNN-based approximations and the associated VENN-ADMIT Predictor.

Background: Prediction sets for classification / Selective classifiers

- Computationally expensive blackbox (Transformer model): *F*
- Training dataset: $\mathcal{D}_{tr} = \{(X_i, Y_i)\}_{i=1}^I$ with $Y_i \in \mathcal{Y} = \{1, \dots, C\}$
- Held-out labeled calibration dataset: $\mathscr{D}_{ca} = \{(X_j, Y_j)\}_{i=I+1}^{N=I+J}$
- Seek: A prediction set $\hat{\mathscr{C}}(X_{N+1}) \in 2^C$ for a new, unseen test instance X_{N+1} from \mathcal{D}_{te} containing the true label with proportion $1 - \alpha \in (0,1)$ on average after stratifying by:
 - True label
 - Data partition \mathcal{B} (determined by distance & relative similarity to training)
 - Set membership (including top label prediction)

 \implies Singleton set coverage (a.k.a., well-calibrated selective classification), a quantity useful for typical classification settings

• VENN-ADMIT Predictor: *Approximate conditional* coverage & calibration:

$$\mathbb{P}\left\{Y_{N+1} \in \hat{\mathcal{C}}(X_{N+1}) \mid X_{N+1} \in \mathcal{B}(x), Y_{N+1} = y, \hat{\mathcal{C}} = \mathcal{A}\right\} \ge 1 - \alpha, \mathcal{A} \in 2^{C}$$

Weighted KNN approximations of the deep network encode strong signals for prediction reliability:

Predictions become less reliable at distances farther from the training set and with increased label and prediction mismatches among the nearest matches.

Decompose Transformer into human-understandable parts via instance-based metric learner approximations: Yields properties of Introspection, Updatability, and Uncertainty, with which we can prospectively re-cast neural network interpretability and deployment as a human-in-the-loop prediction task.

reexpress

Allen Schmaltz and Danielle Rasooly

- Pre-train & fine-tune Transformer using document-level labels
- 2. Introspect: Decompose the document-level predictions to the word-level for interpretability and analysis
- 3. Update: Label the word-level predictions of a held-out calibration set and those of the support set for the KNN approximation
- 4. Quantify uncertainty: Construct prediction sets or selective classifications via the **VENN-ADMIT** Predictor.
- Continually monitor and update 5.

Uncertainty Quantification: A VENN-ADMIT Predictor calibrates the output as the empirical probability of similar points via dense matching

Empirical behavior: Proof-of-concept using zero-shot sequence labeling (i.e., feature detection) in a low-accuracy, class-imbalanced, covariateshifted setting while requiring a high confidence level $(1 - \alpha = 0.95, N = 93k, y \in \{0,1\})$

Train model with document-level labels & then update via KNN with word-level labels

	y = 0		<i>y</i> = 1	
Method	$y \in \mathscr{C}$	n/N	$y \in \mathscr{C}$	n/N
KNN ACC.	0.97	0.93	0.23	0.07
CONF _{BASE}	1.00	0.66	0.16	0.03
RAPSADAPT	0.94	0.40	0.40	0.03
RAPS _{SIZE}	0.94	0.40	0.40	0.03
APS	0.94	0.40	0.40	0.03
LOCALCONF	1.00	0.72	0.17	0.04
VENN-ADMIT	0.99	< 0.01	1.00	< 0.01

Fully-supervised model

		У	= 0	
	Method	$y \in \mathscr{C}$	n/N	\overline{y}
	KNN ACC.	0.98	0.93	(
	CONF _{BASE}	0.99	0.77	(
	RAPSADAPT	0.98	0.60	(
	RAPS _{SIZE}	0.98	0.60	(
	APS	0.98	0.59	(
	LOCALCONF	1.00	0.77	(
•	VENN-ADMIT	0.99	0.02	(

 \rightarrow Well-calibrated selective classification, with a sharpness suitable even for highly imbalanced, low-accuracy settings, with robustness to covariate shifts

 \rightarrow Prospectively provides safeguard when using fewer labels (and/or weaker models, in general)

• Behavior holds for in-distribution tasks, as well, with majority of points (n/N) admitted (see https://arxiv.org/abs/2205.14310)

