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Overview
With Transformer networks, we demonstrate introspection of the 
predictions against instances with known labels; updatability of the 
model without a full re-training; and reliable uncertainty quantification 
over the predictions. This is possible via KNN-based approximations 
and the associated VENN-ADMIT Predictor.

Background: Prediction sets for classification / Selective classifiers

Decompose Transformer into human-understandable parts via instance-based metric 
learner approximations: Yields properties of Introspection, Updatability, and 
Uncertainty, with which we can prospectively re-cast neural network interpretability 
and deployment as a human-in-the-loop prediction task.

• Computationally expensive blackbox (Transformer model):  

• Training dataset:  with  

• Held-out labeled calibration dataset:  

• Seek: A prediction set  for a new, unseen test instance  
from  containing the true label with proportion  on 
average after stratifying by: 

• True label 

• Data partition  (determined by distance & relative similarity to 
training) 

• Set membership (including top label prediction) 

 Singleton set coverage (a.k.a., well-calibrated selective 
classification), a quantity useful for typical classification settings
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Weighted KNN approximations of the deep network encode strong signals for 
prediction reliability: 

Predictions become less reliable at distances farther from the training set 
and with increased label and prediction mismatches among the nearest 
matches.

Uncertainty Quantification: A VENN-ADMIT Predictor calibrates the 
output as the empirical probability of similar points via dense matching

Empirical behavior: Proof-of-concept using zero-shot sequence labeling 
(i.e., feature detection) in a low-accuracy, class-imbalanced, covariate-

shifted setting while requiring a high confidence level 
( )1 − α = 0.95, N = 93k , y ∈ {0,1}
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• VENN-ADMIT Predictor: Approximate conditional coverage 
& calibration: 

ℙ {YN+1 ∈ �̂�(XN+1) | XN+1 ∈ ℬ(x), YN+1 = y, �̂� = 𝒜} ≥ 1 − α, 𝒜 ∈ 2C

Introspection: Decompose prediction via CNN (hard attention) 
& then approximate with a KNN over the training set

1. Pre-train & fine-tune Transformer using 
document-level labels 

2. Introspect: Decompose the document-level 
predictions to the word-level for 
interpretability and analysis 

3. Update: Label the word-level predictions 
of a held-out calibration set and those of 
the support set for the KNN approximation 

4. Quantify uncertainty: Construct prediction 
sets or selective classifications via the 
VENN-ADMIT Predictor. 

5. Continually monitor and update

Train model with document-level labels & 
then update via KNN with word-level labels Fully-supervised model

Well-calibrated selective classification, with a sharpness suitable even for highly imbalanced, 
low-accuracy settings, with robustness to covariate shifts 

Prospectively provides safeguard when using fewer labels (and/or weaker models, in general)   
• Behavior holds for in-distribution tasks, as well, with majority of points ( ) admitted (see 

https://arxiv.org/abs/2205.14310)
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y ∈ " y ∈ "
y = 0 y = 1

Method n/N n/N

KNN ACC. 0.97 0.93 0.23 0.07

CONFBASE 1.00 0.66 0.16 0.03

RAPSADAPT 0.94 0.40 0.40 0.03

RAPSSIZE 0.94 0.40 0.40 0.03

APS 0.94 0.40 0.40 0.03

LOCALCONF 1.00 0.72 0.17 0.04

VENN-ADMIT 0.99 <0.01 1.00 <0.01

y ∈ " y ∈ "
y = 0 y = 1

Method n/N n/N

KNN ACC. 0.98 0.93 0.27 0.07

CONFBASE 0.99 0.77 0.30 0.04

RAPSADAPT 0.98 0.60 0.42 0.03

RAPSSIZE 0.98 0.60 0.43 0.03

APS 0.98 0.59 0.42 0.03

LOCALCONF 1.00 0.77 0.21 0.04

VENN-ADMIT 0.99 0.02 0.97 <0.01→ →
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