
Deep Networks as hidden Metric Learners
•  training instances:  

• Ground truth training labels:  

• Seek a function, , to predict  for a new, unseen instance , with minimal distance between  and 
  

• New view: Back-out a metric learner from the parametric deep network: 
 

• Sense in which:   

• Enables interpretable/introspectable decision rules & various analyses (hence, “auditing”): E.g., only admit true 
positive (TP) matches:

  

• Enables updatability/adaptability:  

• Label changes:  

• Data additions (a.k.a., continual/lifelong learning): 
 

• New lightweight models over representations (e.g., using data additions): 

N x1, …, xn, …, xN

y1, …, yn, …, yN

f : 𝕏 → 𝕐 ̂yN+1 xN+1 ̂yN+1
yN+1

f = c ∘ g, where g : 𝕏 → ℝM, c : ℝM → 𝕐, and r ∈ ℝM is a dense representation of the input under the parametric model

f (xN+1) ≈ β +
N

∑
n=1

(tanh( f (xn)) + γ ⋅ yn) ⋅ w ( | |rn − rN+1 | |2 )

̂yN+1 = f (xN+1) ⋅ [f (xN+1) = f (xn) ∧ f (xn) = yn] + NULL ⋅ [f (xN+1) ≠ f (xn) ∨ f (xn) ≠ yn], where n = arg min
n∈{1,…,N}

| |rn − rN+1 | |2

y′ n = yn + Δn

𝔻N = {(x1, y1), …, (xN, yN)} becomes 𝔻N′ = {(x1, y1), …, (xN, yN), …, (xN′ , yN′ )}
c′ : ℝM → 𝕐′ 

I.e., a test prediction is approx. a distance-
weighting (between “exemplar” 

representations) over the training set (model 
predictions & associated labels)

Allen Schmaltz

  
(Relatable to instance-based learning, kernel methods, …) 
w( ⋅ ) is a function of the distance between representations



Transformer LM

rn

CNN

r1 rN

r Linear Bias

x1 xNxn… …

enwordenBERT

s+−
1 s+−

Ns+−
n… …

̂Y

× + × −−

… …

……

ReLU

max-pool

Sequence Labeling via a Convolutional Decomposition K-NN Approximation

s+−
1 s+−

Ns+−
n… …

ReLU rn

r1̃
r 2̃

r 3̃

Support set:

d3 = | |rn − r3̃ | |2 ∈ ℝ

d2

d1

s+−
n ≈ βs+−
n +w1 ⋅ (tanh(s+−

1 ) + γ ⋅ Y (1))
+w2 ⋅ (tanh(s+−

2 ) + γ ⋅ Y (2))
+w3 ⋅ (tanh(s+−

3 ) + γ ⋅ Y (3))

Y (1̃)s+−
1̃

Y (2̃)s+−
2̃

Y (3̃)s+−
3̃

𝕊 = {( rñ , x(ñ), s+−
ñ , Y (ñ)) |1 ≤ ñ ≤ 𝕊 }Y (ñ)s+−
ñrñ

wk =
exp(−dk /τ)

∑3
k′ =1 exp(−dk′ /τ)

Horizontal (across the input) & Vertical (across the support set) 
Model Decompositions
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K-NN Approximation
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Support set:

d3 = | |rn − r3̃ | |2 ∈ ℝ

d2

d1

s+−
n ≈ βs+−
n +w1 ⋅ (tanh(s+−

1 ) + γ ⋅ Y (1))
+w2 ⋅ (tanh(s+−

2 ) + γ ⋅ Y (2))
+w3 ⋅ (tanh(s+−

3 ) + γ ⋅ Y (3))
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2̃

Y (3̃)s+−
3̃

𝕊 = {( rñ , x(ñ), s+−
ñ , Y (ñ)) |1 ≤ ñ ≤ 𝕊 }Y (ñ)s+−
ñrñ

wk =
exp(−dk /τ)

∑3
k′ =1 exp(−dk′ /τ)

Leveraging Model Approximations for Prediction Reliability 
Heuristics & Screening Input Dissimilar to the Support Set

Allen Schmaltz

Model uncertainty: This bounded 
value reaches its min/max when 

 

agree, for all  (assuming ).

tanh(s+−
k ) & Y (k)

(or yk, with token-level labels)
k γ > 0

Data uncertainty: Distance to 
1st match , an exogenous 
factor, captures uncertainty 

w.r.t. data (training data 
compared to test data).

(d1)



Exemplar Auditing Lifecycle

Update database

Eval uncertainty on 
unseen, held-out test

Deploy

Introspect &  
update 

database

Train
Static 
Model

Introspect dev set 
(model & data)

Build exemplar  
database & KNN 

approximation

Exemplar 
Database
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Out-of-Domain Settings
• Pre-train with as much data as possible 

• Add as much data as possible to the database, including data not seen in training 

• Corral the in-domain space, around the ball of the observed data 

• Never predict over out-of-domain data in high-risk settings. Instead: Rearrange the 
deployment to handle non-admitted predictions.

Observed data (via 
existing datasets)

Unobserved data

Data distribution for task (partially observed)

Observed data (placed in 
exemplar auditing database)

Predictions on data sufficiently distant/
different from database are rejected

Data distribution for task (partially observed)

Allen Schmaltz

Uncertainty is but a distance to what is known…



Unique side effect: Binary Sequence 
labeling: f : 𝕏 → {0,1}1, …, {0,1} x

Implementations
• Binary classification:  

• “Detecting Local Insights from Global Labels: 
Supervised & Zero-Shot Sequence Labeling via a 
Convolutional Decomposition” 

• Multi-label classification:  

• “Exemplar Auditing for Multi-Label Biomedical 
Text Classification” 

• Retrieval-classification:  

• “Coarse-to-Fine Memory Matching for Joint 
Retrieval and Classification”

f : 𝕏 → {0,1}

f : 𝕏 → 2 𝕐

f : 𝕏 × 𝒟 → ⟨{0,1,2}, 2 𝔻 ⟩

Multi-label sequence labeling: 
f : 𝕏 → 2 𝕐

1 , …,2 𝕐
x

Allen Schmaltz



Memory Matching Search
• Approach (high-level): Run the same shared network, , over all of Wikipedia, , caching 

the representations, & then perform search by matching the query representation with 
progressively built-up support sequences

g 𝔻

Query sequenceq =

g (q) = rq ∈ ℝM si ∈ 𝔻g (s1) = rs1
∈ ℝM

…

g (s 𝔻 ) = rs 𝔻
∈ ℝM

A Wikipedia sentenceSupport sequences =

s′ k ∈ arg K min
si

| |rq − rsi
| |2

Set of K nearest 
Wikipedia sentences

̂y = arg min
y∈{Supports, Refutes, Unverifiable}

| |rq − r(y,q,s′ ′ 1,…,s′ ′ Z) | |2

Search Level 1

Search Level 3

 is the label prediction̂y
 is the set of Wikipedia support sentences{s′ ′ 1, …, s′ ′ Z}

s′ ′ z ∈ arg Z min
s′ k

| |rq − r(q,s′ k) | |2

Set of Z nearest Wikipedia 
sentences from Search Level 2

g ((q, s′ 1)) = r(q,s′ 1) ∈ ℝM

…
g ((q, s′ K)) = r(q,s′ K) ∈ ℝM

Search Level 2 rq

Allen Schmaltz

 can be cachedrs1
, …, rs 𝔻



An End-to-End Retrieval-Classification Model via a Coarse-to-Fine 
Search over Dense Representations

Shared Transformer LM

Seq Q

CNN

min L2 distance

Shared Transformer LM

Seq S∀ S :

CNN
Initial, coarse bi-encoder search

Subsequent search levels employ 
cross-encoder search, over the 

winnowed sequences from  
earlier levels

Shared Transformer LM

Seq Q

CNN

min L2 distance

Shared Transformer LM

concat(Seq Q, Seq S)

CNN

∀ S from
previous

level }
Allen Schmaltz



Joint Retrieval and Classification Training

Iterative freezing
Backprop 
through  

all search levels
Shared Transformer LM

Seq Q

CNN

Shared Transformer LM

Seq S

CNN

δL = gq − gs ∈ ℝM

The training set is dynamically created 
via coarse-to-fine search to find hard 

negatives, as well as prediction 
sequences that emulate inference

Minimize/maximize difference 
to 

correct/incorrect matches 

Yields a single model 
for both retrieval and 

classification

Allen Schmaltz



Multi-Sequence Representation Composition for Exemplar Auditing 

Final composed 
representation: 
concat(δL2

, δL3
)

Search levels

Shared Transformer LM

Seq Q

CNN

Shared Transformer LM

concat(Seq Q, Seq S)

CNN

δL2
= gq − gs ∈ ℝM

Dense representation of 
query sequence: 

gq ∈ ℝ1000 =

gq
1

gq
2

⋮
gq

1000

Dense representation of 
support sequence: 

gs ∈ ℝ1000 =

gs
1

gs
2

⋮
gs

1000

Shared Transformer LM

Seq Q

CNN

Shared Transformer LM

concat(Label, Seq Q, Seq S*)

CNN

δL3
= gq − gs ∈ ℝM

Exemplar 
Database

Allen Schmaltz



Token-Level Representations for Exemplar Auditing 

Identify the dense representation of a 
token-level feature using [multi-] 

binary labeling via a convolutional 
decomposition (optionally, with 
priors to encourage/discourage 

particular features)

Shared Transformer LM

Seq C

CNN

Linear

Exemplar 
Database

Allen Schmaltz



Extractive, Comparative (Feature-wise) Summarization

With facility over features, relating a 
global prediction to individual 

sequence elements, we can readily 
score, examine, & compare salient 

subsequences across correct & 
incorrect predictions for each class

Allen Schmaltz



In summary, exemplar representations (& model approximations) can be effectively 
constructed across input modalities/tasks, at a resolution suitable for the task

Note: To reiterate, retrieval is distinct from the matching of the exemplar representations and KNN approximations. 
These two mechanisms can be used in conjunction, but serve distinct roles. An end-to-end dense model can be 

constructed that has a retrieval component for classification (e.g., retrieving relevant Wikipedia documents in a bi- 
and/or cross-encoded manner); the exemplar representations and KNN approximations are then used for 

interpretability and uncertainty quantification (as with VENN-ADMIT Predictors) of that underlying retrieval model.
Allen Schmaltz

Loss (                                 ,                   )Training label

Kernel-width 1 CNN

SEQUENCE LABELING:

Loss (                                 ,                   )Training label

Max-pool

DOCUMENT CLASSIFICATION (WITH SPARSITY CONSTRAINTS):

RETRIEVAL-CLASSIFICATION (SEARCH GRAPH):

Loss (                                     ,                  )Training labelabs(diff)

Semi-supervised feature detection can 
be useful as part of an analysis 
pipeline with mechanisms for 

matching into the support set and 
uncertainty quantification.



A template for analyzing high-dimensional data with neural networks

Allen Schmaltz

q = 0

d

f (x)

q = K

̂y = 1

̂y = |𝒴 |

a = 1

a = |𝒜 |

(constraining the black box)

‣ Model output:  
‣ Distance to nearest training instance:  
‣ Count of consecutive matches of nearest 

training instances with the same sign (true 
label + predictions):  

‣ Predicted label:  
‣ Known attributes (if available): 

f (x)
d

q ∈ {0,…, K}
̂y ∈ {1,…, |𝒴 |}

a ∈ 𝒜

The key signals for analyzing high-
dimensional data with neural 
networks (e.g., large language 

models). With these constraints, we 
can then divide the data into 

partitions over which we can reliably 
calculate uncertainty, relating new, 
unseen test points to the points with 

known labels (e.g., from calibration).



Train deep neural network model

Train memory layer (1-D CNN over hidden layers)

Store exemplar vectors & associated meta data for training, calibration, & eval sets

Construct ADMIT Prediction sets

Construct Venn-ADMIT Predictor

Train KNN approximation of deep network: f (x)KNN
tr

Optional: Train KNN localizer (for category weight, ): 
1
ψ′ 

f (x) ̂KNN
ca

Present as selective 
classifications; prediction sets; 
and/or calibrated probabilities 

Uncertainty Quantification: VENN-ADMIT Predictor Overview

Allen Schmaltz



qN+1
K

dN+1

More reliable predictions and prediction sets: higher q, lower d

0

qj
K

dj

0

xN+1 ∈ 𝒟te ∀ xj ∈ 𝒟ca

ℬ(xN+1, ω, qN+1, dN+1; 𝒟ca)
K + 1

̂yKNN
N+1 = ̂yKNN

j

�̂�(xN+1) = �̂�(xj)
∧xN+1

 distance to nearest training instanceL2

Count of consecutive 
matches of nearest training 

instances with the same sign 
(true label + predictions)

[ ̂yKNN
N+1 = ̂ytr

1 ] ∧ [ ̂ytr
1 = ytr

1 ]

[ ̂yKNN
N+1 = ̂ytr

K] ∧ [ ̂ytr
K = ytr

K ]

[ ̂yKNN
N+1 ≠ ̂ytr

K+1] ∨ [ ̂ytr
K+1 ≠ ytr

K+1]

[ ̂yKNN
j = ̂ytr

1] ∧ [ ̂ytr
1 = ytr

1 ]

[ ̂yKNN
j = ̂ytr

K] ∧ [ ̂ytr
K = ytr

K ]

[ ̂yKNN
j ≠ ̂ytr

K+1] ∨ [ ̂ytr
K+1 ≠ ytr

K+1]

 distance to nearest training instanceL2

}  nearest matches 
into training for test 

and calibration

L2 {
Uncertainty Quantification: Visualization of a Category Assignment 

with the VENN-ADMIT Taxonomy

Allen Schmaltz

Model behavior in the most reliable data partitions is 
remarkably stable across covariate shifts, providing a 
degree of uncertainty quantification robustness not 
typically otherwise observed with neural networks.



Prospective Outlook: Interlocking distance constraints across 
input modalities and tasks via  

a single, shared model and a dense database…

DB

Neural 
Model

Myoglobin (image from Wikipedia)

Neural 
Model

Neural 
Model

Neural 
Model

Neural 
Model

Neural 
Model

Productive multi-task outlook, 
since we get practical models & 

data analyses along the way

Allen Schmaltz


