Demo: A Functional EDSL for Mathematics
Visualization That Compiles to JavaScript

Allister Beharry

ab796@student.london.ac.uk

University of London

United Kingdom
A
9| supply and demand
84 { demand intercept = 8.00
7| Odemand slope = -2.00
6 0 supply intercept = 2.00
| fx}=a+b*x
5| —0 ; . + supply slope = 1.00
| pe
T N S ——
L}
: L}
al 1(x)=c +1d *x
|]
|]
|]
2 i
| 1
1
1
1 '
L}
| '
price rQf _
guantity 1 2 3 4 5 6 7 8 — o * 8 | 1 —

Figure 1. Visualization of basic supply and demand functions in economics

Abstract

Visualizations are a critical part of mathematics practice and
education, and computers and open-source web technologies
provide accessible ways to create high-quality mathematics
visualizations at virtually no cost. However libraries and lan-
guages to create visualizations for mathematics are typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM °23, September 8, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0295-2/23/09...$15.00
https://doi.org/10.1145/3609023.3609808

fine-grained, low-level, and targeted to vector graphics do-
main experts or web developers, not mathematics students
or teachers or end-users. We present demos of Sylvester: a
functional domain-specific language interface to the JSX-
Graph visualization library embedded in F# that emphasizes
readability, composability, and the ability of end-users to
easily create and manipulate elements of high-quality inter-
active mathematics visualizations without needing vector
graphics or web development domain knowledge.

CCS Concepts: - Human-centered computing — Scien-
tific visualization; - Computing methodologies — Com-
puter graphics; Software and its engineering — Domain
specific languages.

Keywords: dsl, f#, mathematics, visualization, javascript

ACM Reference Format:

Allister Beharry. 2023. Demo: A Functional EDSL for Mathematics
Visualization That Compiles to JavaScript. In Proceedings of the 11th
ACM SIGPLAN International Workshop on Functional Art, Music,

https://orcid.org/0009-0009-5296-354X
https://doi.org/10.1145/3609023.3609808

FARM 23, September 8, 2023, Seattle, WA, USA

Modelling, and Design (FARM °23), September 8, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3609023.3609808

1 Introduction
1.1 Motivation

There are several ways to create computer-based mathemat-
ics visualizations today including interactive point-and-click
applications like GeoGebra[7]. However programming lan-
guages provide a powerful abstraction that allows the user
to instantly move between different levels of detail and ag-
gregation in a visualization, from zooming in to modify the
specifics of one element or attribute of the visualization, to
grouping several related elements and modifying them to-
gether, to zooming out to modify the high-level composition
and design and properties of the entire visualization. Follow-
ing Hudak[4] if the ideal abstraction for a particular com-
puter application is a programming language designed for
that application, we’d expect domain-specific programming
languages to offer a more effective and usable interface to
the complex tasks of creating computer-based visualizations
for mathematics.

The target audience for these visualization programming
languages should be kept in mind however. Existing pro-
gramming languages and libraries like PGF/TikZ[8] and
MetaPost[3] are powerful tools for creating sophisticated
vector-graphics based mathematical visualizations, but in-
herit syntactic and semantic language features which may
make them hard to understand and use by people who are
not experienced programmers. For instance drawing a line
in TikZ looks like:

Listing 1. Example TikZ code

\coordinate [label=left:A] (A) at
(0,0);

\coordinate [label=right:B] (B) at
(1.25,0.25);

\draw (A) -- (B);

The syntax of these languages can be intimidating and
the possibilities for composite data types which makes it eas-
ier for end-users to simplify and reuse both their own code
and existing code in libraries can be limited. The contrast be-
tween the power and level of detail afforded by programming
languages for diagramming and their difficulty of use has
been observed e.g. [5, pg. 5]. In addition, interactivity is an
important component of mathematics visualizations which
can enhance both diagramming and learning processes as it
gives the diagram programmer a constrained way to dynami-
cally control and adapt their diagrams to different parameters
without having to change the code.

JSXGraph [9] is a client-side JavaScript library for con-
structing advanced vector graphics visualizations in a web

Allister Beharry

browser. JSXGraph has evolved from a library for display-
ing geometric constructions in different file formats to a
powerful and comprehensive set of primitives for creating
interactive visualizations in the browser over several areas
of mathematics from calculus to statistics, using Scalable
Vector Graphics (SVG). The JSXGraph library contains more
than 60 high-level elements of mathematics visualizations
from primitives and simple shapes like angles, lines, poly-
gons, to much more complex constructions like Riemann
integration diagrams. JSXGraph has certainly raised the bar
for beautiful and detailed mathematics visualizations that
are open-source and accessible to anyone.

But JSXGraph is a JavaScript library targeted at web devel-
opers and designed to be embedded in web applications,
not directly used by mathematics educators or students.
JavaScript is a language that inherits from the C syntax fam-
ily and was intended to be used inside editors and IDEs to
build applications, not used interactively or in an ad-hoc
way.

1.2 About

Sylvester[1] is an F# embedded DSL for mathematical com-
puting that supports an integrated approach to applications
like computer algebra, theorem proving, and visualization.
Sylvester contains a functional interface to the JSXGraph
library that is intended to expose the power of JSXGraph to
end-users for interactive iterative development of mathemat-
ical visualizations in web-based interactive environments
for mathematical computing like Jupyter notebooks.

The visualization component of the Sylvester language
tries to provide the ideal abstraction level for a programming
language tool for mathematics visualization and diagram-
ming. It supports high-level manipulation of vector graphics
primitives without burdening the user with unfamiliar syn-
tax and providing all the power and ease-of-use of a modern
functional programming language.

2 Examples
2.1 Basics

Figure 2. Visualization of construction of an equilateral
triangle using 2 points in Sylvester.

https://doi.org/10.1145/3609023.3609808
https://doi.org/10.1145/3609023.3609808

Demo: A Functional EDSL for Mathematics Visualization That Compiles to JavaScript

The best way to introduce visualization in Sylvester is
to look at some examples. The code in listing 2 creates the
simple geometric visualization above:

Listing 2. Visualization of construction of an equilateral
triangle using two points

let layout = {]
boundingbox = area 6. 6. 0.
showNavigation = true
showCopyright = false
keepAspectRatio = true

I}

let board = board layout

let A = point -2. -2. noface board

let B = point 1. ©@. noface board

let C1 = circle A B defaults board

let C2 = circle B A defaults board

let C = intersection C1 C2 1 {|size =
@ |} board

let ABC = polygon [|A; B; C|] defaults
board |> withFillColor red

board

Some characteristics of the Sylvester visualization lan-
guage syntax should be apparent from this short example,
especially in contrast to TikZ and JavaScript code:

e The code is mostly plain English with a minimum of
block, statement, and variable delimiters.

e Diagrams consist of a single board on which are drawn
primitives or elements like points, lines, and circles.

o Element properties can be set through attributes on
construction, like setting the size of the circles’ inter-
section points to 0.

o Elements are drawn and properties set using regular F#
functions and function results can be piped backwards
and forwards as normal e.g. creating a polygon and
then piping it to a function that sets the fill color to
red.

e Element dependencies are specified by simply using
variables pointing to reference elements e.g. the circle
C1 is drawn using the point A as its radius and the
point B as a circumference point.

2.2 Economics

Economics is a mathematical discipline that is naturally ori-
ented around functions of one or more real variables and con-
sequently relies heavily on graphs and other mathematical
visualizations for teaching and exposition of concepts, and
for modelling and interpretations of empirical data. Mathe-
matical computing environments like Wolfram Mathematica
[10] and and Maple[6] and wxMaxima[11] that support visu-
alizations have therefore been heavily utilized for exposition
and visualization of both economic concepts and models of

FARM 23, September 8, 2023, Seattle, WA, USA

economic data, using the DSLs for mathematics visualiza-
tions provided by these environments.

The figure below is a simple economics visualization [2]
created using Wolfram Mathematica.

Basic Supply and Demand

demand intercept]

demand slope -1 supply and demand

price

supply imerospt

supply slope 1

quantity

Download to Desktop Copy to Clipboard ‘ Source ‘

Figure 3. Wolfram Demonstrations Project - Basic Supply
and Demand.

For the major part of our demo we’ll see how the different
aspects of the language are used to create the different parts
of the economics visualization on the first page and com-
pare to the Mathematica code. Sylvester allows us to create
this visualization with a lot less verbosity and complexity
and with more features and reusability, compared to using
JavaScript or Mathematica.

Listing 3. Visualization of basic supply and demand func-
tions in Sylvester
let grid = {|
boundingbox = bbox -0.5 10. 10.
-0.5
showNavigation = true
showCopyright = false
keepAspectRatio = false

axis = true
|3
let xaxis = {]
name = "price"
withLabel = true
offset = []10; 10]|]
|3

let yaxis = {]
name = "quantity"
withLabel = true

FARM 23, September 8, 2023, Seattle, WA, USA

offset = [|10; 10]]
[}
let graph = {|
strokeWidth = 3
withLabel = true
label = autoPosition
[3
let normal = {]
size = 0
dash = 2
|3
let board = board grid

setAttrs board.defaultAxes.x xaxis
setAttrs board.defaultAxes.y yaxis

let sliderx, sliderw = 6., 2.

let a = slider sliderx 8. sliderw 2.
10. 8. {|name = "demand intercept"
|} board

let b = slider sliderx 7. sliderw -4.
-2.0 -1. {|name = "demand slope" |}

board

let ¢ = slider sliderx 6. sliderw 0.

5. 2. {|Iname = "supply intercept"”
|} board

let d = slider sliderx 5. sliderw 0.2
4. 1. {|name = "supply slope" |}
board

let demand x = a.Value() + b.Value() x*

X
let supply x = c.Value() + d.Value() =
X

let dg =

functiongraph demand @. 4. graph
board

|> withName "f(x)=a + b * x"

|> withStrokeColor blue

let sg =
functiongraph supply 0. 5. graph

board
|> withName "f(x)=c + d * x"
|> withStrokeColor orange

Allister Beharry

let eq = intersection dg sg © nolabel
board |> withFillColor white
let ex = perp_segment board.

defaultAxes.x eq normal board
let ey = perp_segment board.
defaultAxes.y eq normal board

draw board []
ge.intersection ey board.

defaultAxes.y @ {|name = "P"e";
size = 0|}

ge.intersection ex board.
defaultAxes.x @ {|name = "Q"e";

size = 0|3}
ge.text 4.5 9. "supply and demand"
{|fontSize=16]|}
[]

References

[1

[2

[3

[4

(5

[6
[7
[8

[9

[10

[11

] Allister Beharry. 2023. Sylvester: Unified, typed, notation for

symbolic mathematics and proofs (short talk) (ML 2021) - ICFP

2021. https://icfp21.sigplan.org/details/mlfamilyworkshop-

2021-papers/6/Sylvester-Unified-typed-notation-for-symbolic-

mathematics-and-proofs-short-talk- [Online; accessed 9. Jun. 2021].

Mark Gillis. 2011. Basic Supply and Demand. https://demonstrations.

wolfram.com/BasicSupplyAndDemand/ [Online; accessed 18. Jul.

2023].

] John Hobby. 2014. MetaPost. https://www.tug.org/docs/metapost/
mpman.pdf

] Paul Hudak. 1996. Building Domain-Specific Embedded Languages.

ACM Comput. Surv. 28, 4es (dec 1996), 196—es. https://doi.org/10.1145/

242224.242477

Dor Ma’ayan, Wode Ni, Katherine Ye, Chinmay Kulkarni, and Joshua

Sunshine. 2020. How Domain Experts Create Conceptual Diagrams

and Implications for Tool Design. In Proceedings of the 2020 CHI Con-

ference on Human Factors in Computing Systems (Honolulu, HI, USA)

(CHI ’20). Association for Computing Machinery, New York, NY, USA,

1-14. https://doi.org/10.1145/3313831.3376253

] Maplesoft, a division of Waterloo Maple Inc.. [n.d.]. Maple. Waterloo,
Ontario. https://www.maplesoft.com/products/Maple/

] Markus Hohenwarter, GeoGebra Team. 2001. GeoGebra. https://www.
geogebra.org/

] Till Tantau. 2023. PGF/TikZ. https://pgf-tikz.github.io/pgf/pgfmanual.
pdf

] Bianca Valentin and Michael Gerhiuser. 2009. Interactive SVG with
JSXGraph. Retrieved June 7, 2023 from https://jsxgraph.uni-bayreuth.
de/talks/svgopen09/jsxgraph.pdf

] Wolfram Research, Inc. 2023. Mathematica. https://www.wolfram.
com/mathematica

] wxMaxima authors. 2023. wxMaxima. https://wxmaxima-developers.
github.io/wxmaxima/wxmaxima.pdf

—

—

Received 2023-06-01; accepted 2023-07-01

https://icfp21.sigplan.org/details/mlfamilyworkshop-2021-papers/6/Sylvester-Unified-typed-notation-for-symbolic-mathematics-and-proofs-short-talk-
https://icfp21.sigplan.org/details/mlfamilyworkshop-2021-papers/6/Sylvester-Unified-typed-notation-for-symbolic-mathematics-and-proofs-short-talk-
https://icfp21.sigplan.org/details/mlfamilyworkshop-2021-papers/6/Sylvester-Unified-typed-notation-for-symbolic-mathematics-and-proofs-short-talk-
https://demonstrations.wolfram.com/BasicSupplyAndDemand/
https://demonstrations.wolfram.com/BasicSupplyAndDemand/
https://www.tug.org/docs/metapost/mpman.pdf
https://www.tug.org/docs/metapost/mpman.pdf
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/3313831.3376253
https://www.maplesoft.com/products/Maple/
https://www.geogebra.org/
https://www.geogebra.org/
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://jsxgraph.uni-bayreuth.de/talks/svgopen09/jsxgraph.pdf
https://jsxgraph.uni-bayreuth.de/talks/svgopen09/jsxgraph.pdf
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://wxmaxima-developers.github.io/wxmaxima/wxmaxima.pdf
https://wxmaxima-developers.github.io/wxmaxima/wxmaxima.pdf

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 About

	2 Examples
	2.1 Basics
	2.2 Economics

	References

