
Type-checking Linearity in Core:

Semantic Linearity for a Lazy Optimising Compiler

Rodrigo Mesquita
Advisor: Bernardo Toninho

i

Acknowledgements

It would not have been possible to complete this work without the support of many, to
whom I’m deeply thankful.

First and foremost, I’d like to thank my advisor, Bernardo Toninho, for mentoring
and working with me the past two years. Bernardo first introduced me to programming
language theory and Haskell, with a seemingly innocent undergraduate research project
on synthesis from linear types – catapulting me into the glorious world and community
of PLT, functional programming, and of the Glasgow Haskell Compiler. Thank you for
matching my curiosity by teaching me so much (in such a short time), for the bright
discussions, and great insights.

Second, I’m thankful to Arnaud Spiwack and Krzysztof Gogolewski for the invaluable
discussions regarding linearity in GHC out of which this work first emerged. I’d also like
to thank my GHC colleagues and friends, particularly, Ben Gamari, Matthew Pickering,
Sam Derbyshire, Andreas Klebinger, Sebastian Graf, and John Ericson, for sharing your
expertise, exchanging exciting new ideas, and teaching me in the ways of the Glorious
Glasgow Haskell Compiler. I’m very thankful to Simon Peyton Jones, who has always
inspired me in his brilliance as a computer scientist, eloquence, and good humour, besides
his mentorship in reviewing and leading my GHC patches to their best, simpler, version.
I thank also professor João Leitão for nurturing my interest in distributed systems, and
professor Mário Pereira for both helpful conversations and recommending me two books
(from Benjamin Pierce) that he let me borrow, on advanced types and category theory.

I thank my dear friends, and, namely, David Neves, Miguel Costa, Francisco Pisco,
André Costa, Guilherme Gil, Henrique Ferreira, Tomás Santos, and the Gabinete 248 crew,
for great conversations and time well-spent (both working, and not working) together; and,
of course, António Canteiro, whose prolonged deep friendship is irreplaceable.

I’m deeply grateful for my father Miguel, mother Helena, sister Catarina and brother
Tiago, my grandparents Augusto, Domingos, Eugénia, Conceição, great-grandparents Gil
and Lúısa, my aunts, uncles and cousins, and my dearest beloved Bárbara: for their
unwavering support in my every dream or need, and for their love.

iii

Abstract

Linear type systems guarantee linear resources are used exactly once. Traditionally, using
a resource is synonymous with its syntactic occurrence in the program, however, under
the lens of lazy evaluation, linearity can be further understood semantically, where a syn-
tactic occurrence of a resource does not necessarily entail using that resource when the
program is evaluated. Semantic linearity is especially necessary in optimising compilers
for languages combining linearity and laziness: optimisations leverage laziness to heavily
rewrite the source program, pushing the interaction of linearity and laziness to its limit,
regardless of the original program typing linearity conservatively. We present Linear Core,
the first type system that understands semantic linearity in the presence of laziness, suit-
able for the Core intermediate language of the Glasgow Haskell Compiler. We prove Linear
Core is both type safe and that multiple optimising transformations preserve linearity in
Linear Core while failing to do so in Core. We have implemented Linear Core as a compiler
plugin to validate the system against linearity-heavy libraries, including linear-base, in
the heart of the compiler.

v

Resumo

Num sistema de tipos linear, recursos lineares têm de ser usados exatamente uma vez.
Usar um recurso linear costuma ser equivalente a uma ocorrência sintática do mesmo no
programa, no entanto, sob a perspectiva de avaliação lazy, a linearidade pode ser também
compreendida de forma semântica, observando que uma ocorrência sintática de um recurso
não significa necessariamente que esse recurso seja usado quando o programa é avaliado.
Linearidade semântica é particularmente relevante em compiladores que optimizam lin-
guagens com linearidade e laziness: a laziness permite ao compilador transformar consid-
eravelmente o programa original, de tal forma que a interacção entre linearidade e laziness
é levada ao extremo, independentemente de como a linearidade foi tipificada no programa
original. Desenvolvemos o primeiro sistema de tipos (Linear Core) que compreende lin-
earidade semântica na presença de laziness, um sistema adequado para a linguagem in-
termédia (Core) do Glasgow Haskell Compiler. Provamos que o sistema é type safe e que
várias optimizações preservam linearidade no Linear Core, apesar de as mesmas não a
preservarem no Core. Implementamos o Linear Core como um plugin para o compilador
com o objectivo de validar o sistema em bibliotecas lineares populares.

vii

Contents

List of Figures xi

List of Theorems xiii

1 Introduction 1

2 Background 5
2.1 Linear Types . 5
2.2 Haskell . 7
2.3 Linear Haskell . 9
2.4 Evaluation Strategies . 11
2.5 Core and System FC . 13
2.6 GHC Pipeline . 15

2.6.1 Haskell to Core . 16
2.6.2 Core-To-Core Transformations . 16
2.6.3 Code Generation . 20

3 Linearity, Semantically 23
3.1 Semantic Linearity by Example . 24

3.1.1 Let bindings . 24
3.1.2 Recursive let bindings . 26
3.1.3 Case expressions . 29

4 A Type System for
Semantic Linearity in Core 35
4.1 Language Syntax and Operational Semantics 36
4.2 Typing Foundations . 38
4.3 Usage environments . 40

4.3.1 ∆-bound variables . 41
4.3.2 Lazy let bindings . 42
4.3.3 Recursive let bindings . 42

4.4 Case Expressions . 43
4.4.1 Branching on WHNF-ness . 44
4.4.2 Proof irrelevant resources . 47
4.4.3 Splitting and tagging fragments . 48

4.5 Linear Core as a GHC Plugin . 49

5 Metatheory 53
5.1 Assumptions . 53
5.2 Irrelevance . 54

ix

Contents

5.3 Type safety . 54
5.3.1 Substitution Lemmas . 55

5.4 Optimisations preserve linearity . 56
5.4.1 Inlining . 57
5.4.2 β-reduction . 57
5.4.3 Case of known constructor . 58
5.4.4 Let floating . 59
5.4.5 η-conversions . 61
5.4.6 Binder Swap . 62
5.4.7 Reverse Binder Swap Considered Harmful 63
5.4.8 Case of Case . 64

6 Conclusion 65
6.1 Related Work . 65

6.1.1 Linear Haskell . 65
6.1.2 Linear Mini-Core . 66
6.1.3 Linearity-influenced optimisations 66

6.2 Future Work . 66
6.3 Conclusion . 68

Bibliography 71

A Type Safety Proofs 75
A.1 Type Preservation . 75
A.2 Progress . 77
A.3 Irrelevance . 79
A.4 Substitution Lemmas . 80

B Optimisations preserve linearity 97
B.1 Case of Case . 97

x

List of Figures

2.1 Grammar for a linearly-typed lambda calculus 6
2.2 Typing rules for a linearly-typed lambda calculus 8
2.3 System FC ’s Terms . 15
2.4 System FC ’s Types and Coercions . 15
2.5 Example sequence of transformations . 21

4.1 Linear Core Syntax . 37
4.2 Linear Core Operational Semantics (call-by-name) 37
4.3 Linear Core Type System . 39
4.4 Linear Core Auxiliary Judgements . 40
4.5 Linear Core Plugin on Linear Libraries . 52

xi

List of Theorems

1 Assumption (1⇒ ∆) . 53
2 Assumption (∆⇒ 1) . 53
3 Assumption (x:ωσ = x:·σ) . 53
1 Lemma (Irrelevance) . 54
2 Theorem (Type preservation) . 54
3 Theorem (Progress) . 54
4 Lemma (Substitution of linear variables preserves typing) 55
5 Lemma (Substitution of linear variables on case alternatives preserves typing) 55
6 Lemma (Substitution of unrestricted variables preserves typing) 55
7 Lemma (Substitution of unrestricted variables on case alternatives preserves

typing) . 56
8 Lemma (Substitution of ∆-variables preserves typing) 56
9 Lemma (Substitution of ∆-bound variables on case alternatives preserves

typing) . 56
10 Theorem (Inlining preserves types) . 57
11 Theorem (β-reduction preserves types) . 57
12 Theorem (β-reduction with sharing preserves types) 58
13 Theorem (β-reduction on multiplicity abstractions preserves types) 58
14 Theorem (Case-of-known-constructor preserves types) 58
15 Theorem (Full-laziness preserves types) . 59
16 Theorem (commuting lets preserve types) 59
17 Theorem . 60
18 Theorem (η-expansion preserves types) . 61
19 Theorem (η-reduction preserves types) . 62
20 Theorem (Binder-swap preserves types) . 62
21 Proposition (Reverse-binder-swap preserves types) 63
22 Theorem (Case-of-case preserves types) . 64

2 Theorem (Type preservation) . 75
3 Theorem (Progress) . 77
1 Lemma (Irrelevance) . 79
23 Lemma (Substitution of linear variables preserves typing) 80
24 Lemma (Substitution of unrestricted variables preserves typing) 86
25 Lemma (Substitution of ∆-variables preserves typing) 90

26 Theorem (Case-of-case preserves types) . 97

xiii

CHAPTER 1
Introduction

Linear type systems [7, 17] add expressiveness to existing type systems by enforcing that
certain resources (e.g. a file handle) must be used exactly once. In programming languages
with a linear type system, not using certain resources or using them twice is flagged as
a type error. Linear types can thus be used to, for instance, statically guarantee that
socket descriptors are closed or heap-allocated memory is freed, exactly once (leaks and
double-frees become type errors), or guarantee channel-based communication protocols
are deadlock-free [31], among other correctness properties [43, 50, 37].

Consider the following program in which allocated memory is freed twice. Regardless
of the double-free error, a C-like type system will accept this program without any issue:

let p = malloc (4);
in free (p);
free (p);

Under the lens of a linear type system, consider the variable p to be a linear resource
created by the call to malloc. Since p is linear, it must be used exactly once. However,
the program above uses p twice, in the two calls to free. With a linear type system,
the program above does not typecheck! In this sense, linear typing effectively ensures
the program does not compile with a double-free error. In Section 2.1 we give a formal
account of linear types and provide additional examples.

Despite their promise and extensive presence in research literature [8, 23, 10], an
effective design combining linear and non-linear typing is both challenging and necessary to
bring the advantages of linear typing to mainstream languages. Consequently, few general
purpose programming languages have linear type systems. Among them are Idris 2 [46],
Rust [35], a language whose ownership types build on linear types to guarantee memory
safety without garbage collection or reference counting, and, more recently, Haskell [37],
a pure, functional, and lazy general purpose programming language. Linearity in Haskell
stands out from linearity in other languages for the following reasons, essential to our
work:

• Linear types permeate Haskell down to (its) Core, the intermediate language into
which Haskell is translated. Core is a minimal, explicitly typed, functional language,
to which multiple Core-to-Core optimising transformations are applied during com-
pilation. Due to Core’s minimal design, typechecking Core programs is very efficient
and doing so serves as a sanity check to the correction of the source transformations.

1

1. Introduction

If the resulting optimised Core program fails to typecheck, the optimising transfor-
mations are very likely to have introduced an error in the resulting program. We
present Core and its formal basis, System FC [30], in Section 2.5.

• Both Haskell and its intermediate language Core are lazily evaluated, i.e., expressions
in Haskell are only evaluated when needed, unlike C or Rust, which are eagerly
evaluated. Laziness allows an optimising compiler to aggressively transform the
source program without changing its semantics and, indeed, the Glasgow Haskell
Compiler (GHC) heavily transforms Core by leveraging its laziness. However, lazy
evaluation interacts non-trivially with linearity. Intuitively, since expressions are not
necessarily evaluated, an occurrence of a linear resource in an expression does not
necessarily entail consuming that resource (i.e., if the expression is not evaluated,
the resource is not used).

In eagerly evaluated languages, the distinction between syntactic uses of a resource
and the actual use of linear resources at runtime does not exist – an occurrence of
a variable in the program always entails consuming it. This interaction is unique to
Haskell since, as far as we know, it is the only language featuring both laziness and
linearity. We review lazy and eager evaluation strategies in Section 2.4.

Much like a typed Core ensures that the translation from Haskell (dubbed desugaring)
and the subsequent optimising transformations applied to Core are correctly implemented,
a linearly typed Core guarantees that linear resource usage in the source language is not
violated by the translation process and the compiler optimisation passes. It is crucial
that a program’s behaviour enforced by linear types is not changed by the compiler in
the desugaring or optimisation stages (optimisations should not destroy linearity!) and
a linearity aware Core type-checker is key in providing such guarantees – it would be
disastrous if the compiler, e.g., duplicated a pointer to heap-allocated memory that was
previously just used once and then freed in the original program. Even more, linearity in
Core can inform Core-to-Core optimising transformations [19, 20, 37], including inlining
and β-reduction, to produce more performant programs.

In spite of a linearly typed Core ultimately being the desired intermediate language
for the Glasgow Haskell Compiler, both in its expressiveness to completely represent a
Haskell with linear types and in enabling more extensive compiler validations plus im-
proved optimisations, linearity is effectively ignored in Core. The reason is not evidently
clear: if we can typecheck linearity in the surface level Haskell, it should also be possible,
and natural, to do so in Core.

The desugaring process from surface level Haskell to Core, and the subsequent Core-
to-Core optimising transformations, eliminate, and rearrange, most of the syntactic con-
structs through which linearity checking is performed – often resulting in programs com-
pletely different from the original, especially due to the flexibility laziness provides a com-
piler in the optimisations it may perform. Crucially, since optimisations do not destroy
linearity, the resulting program is still linear semantically, however, the current linear type
system fails to recognize it as linear. For instance, let x be a linear resource in the two
following programs, where the latter results from inlining y in the let body of the former.
Despite the result no longer looking linear (as there are now two syntactic occurrences
of the linear resource x), the program is indeed linear because the let-bound expression
freeing x is never evaluated, so x is consumed exactly once when it is freed in the let body:

let y = free x in y =⇒Inlining let y = free x in free x

2

The Core optimising transformations expose a fundamental limitation of Core’s linear
type system: it does not account for the call-by-need evaluation model of Core, and thus
a whole class of programs that are linear under the lens of lazy evaluation are rejected by
Core’s current linear type system.

In this work, we address this limitation (and its implications on validating and influenc-
ing optimising transformations) by designing a type system which understands semantic
linearity in the presence of laziness and is suitable for the intermediate language of an
optimising compiler. In detail, our contributions are:

• We explain and provide insights into semantic linearity in contrast to syntactic
linearity, in Haskell, by example (§ 3).

• We introduce Linear Core, a type system for a linear lazy language with all key
features from Core (except for type equality coercions), which, crucially, understands
semantic linearity in the presence of laziness. To the best of our knowledge, this is
the first type system to understand linearity semantically in the context of lazy
evaluation (§ 4).

• We prove Linear Core to be sound (well-typed Linear Core programs do not get
stuck) and prove that multiple optimising transformations (which currently violate
linearity in Core) preserve types and linearity in Linear Core (§ 5).

• We implement Linear Core as a GHC plugin which typechecks linearity in all in-
termediate Core programs produced during the compilation process, showing it ac-
cepts the intermediate programs resulting from (laziness-abusing) transformations
in linearity-heavy Haskell libraries, such as linear-base (§ 4.5).

We review background concepts fundamental to our work in Chapter 2, including linear
type systems, linear types in Haskell, evaluation strategies, Core’s type system, and mul-
tiple optimising transformations applied by GHC in its compilation process. We compare
our contributions to related work and discuss possible avenues for further research (high-
lighting so-called multiplicity coercions) in Chapter 6, which concludes the document.

3

CHAPTER 2
Background

In this section we review the concepts required to understand our work. In short, we
discuss linear types, the Haskell programming language, linear types as they exist in
Haskell (dubbed Linear Haskell), evaluation strategies, Haskell’s main intermediate lan-
guage (Core) and its formal foundation (System FC) and, finally, an overview of the
Glasgow Haskell Compiler (GHC) pipeline with explanations of multiple Core-to-Core
optimising transformations that we prove type-preserving in our type system.

2.1 Linear Types

Much the same way type systems can statically eliminate various kinds of programs that
would fail at runtime, such as a program that dereferences an integer value rather than
a pointer, linear type systems can guarantee that certain errors regarding resource usage
are forbidden.

In linear type systems [7, 17], so called linear resources must be used exactly once. Not
using a linear resource at all or using said resource multiple times will result in a type
error. We can model many real-world resources such as file handles, socket descriptors,
and allocated memory, as linear resources. This way, because a file handle must be used
exactly once, forgetting to close the file handle is a type error, and closing the handle
twice is also a type error. With linear types, avoiding leaks and double frees is no longer
a programmer’s worry because the compiler can guarantee the resource is used exactly
once, or linearly.

To understand how linear types are defined and used in practice, we present two exam-
ples of anonymous functions that receive a handle that must be closed before returning,
explore how the examples could be disregarded as incorrect, and work our way up to linear
types from them. The first function ignores the received file handle and returns ⋆ (read
unit), which is equivalent to C’s void:

λh. return ⋆; λh. close h; close h;

Ignoring the file handle which should have been closed by the function makes the first
function incorrect. Similarly, the second function receives the file handle and closes it
twice, which is incorrect not because it falls short of the specification, but rather because
the program will crash while executing it. Additionally, both functions share the same
type, Handle→ ⋆, i.e. a function that takes a Handle and returns ⋆. The second function

5

2. Background

also shares this type because close has type Handle → ⋆. Under a simple type system
such as C’s, both functions are type correct (the compiler will happily succeed), but both
have erroneous behaviours. The first forgets to close the handle and the second closes it
twice. Our goal is to reach a type system that rejects these two programs.

The key observation to invalidating these programs is to focus on the function type
going between Handle and ⋆ and augment it to indicate that the argument must be used
exactly once, or, in other words, that the argument of the function must be linear. We
take the function type A→ B and replace the function arrow (→) with the linear function
arrow (⊸)1 operator to denote a function that uses its argument exactly once: A ⊸ B.
Providing the more restrictive linear function signature Handle ⊸ ⋆ to the example
programs would make both of them fail to typecheck because they do not satisfy the
linearity specification that the function argument should be used exactly once.

To further better define the semantics of a linear type system, we present a linearly
typed lambda calculus [7, 17], a very simple language with linear types, whose syntactically
valid programs are given by the grammar in Fig. 2.1 and well-typed programs by the
typing rules in Fig. 2.2. The language features functions and function application (⊸),
two flavours of pairs, additive (&) and multiplicative (⊗), a disjunction operator (⊕) to
construct sum types, and the ! modality operator which constructs an unrestricted type
from a linear one, allowing values inhabiting !A to be consumed unrestrictedly. A typing
judgement for the linearly typed lambda calculus has the form

Γ;∆ ⊢M : A

where Γ is the context of resources that may be used unrestrictedly, that is, any number
of times, ∆ is the context of resources that must be used linearly (exactly once), M is
the program to type and A is its type. When resources from the linear context are used,
they are removed from the context and no longer available, since all resources in the linear
context must be used exactly once.

A,B ::= ⋆
| A ⊸ B
| A⊕B
| A⊗B
| A&B
| !A

M,N ::= ⋆ | let ⋆ = M in N
| u
| λu.M |M N
| inl M | inr M
| case M of inl u1 → N1; inr u2 → N2

| M ⊗N | let u1 ⊗ u2 = M in N
| M &N | fst M | snd M
| !M | let !u = M in N

Figure 2.1: Grammar for a linearly-typed lambda calculus

The function abstraction is typed according to the linear function introduction rule
(⊸ I). The rule states that a function abstraction, written λu.M , is a linear function (i.e.
has type A ⊸ B) given the unrestricted context Γ and the linear context ∆, if the program
M has type B given the same unrestricted context Γ and the linear context ∆, u:A. That
is, if M has type B using u of type A exactly once besides the other resources in ∆, then
the lambda abstraction has the linear function type.

Γ;∆, u:A ⊢M : B

Γ;∆ ⊢ λu.M : A ⊸ B
(⊸ I)

Γ;∆ ⊢M : A ⊸ B Γ;∆′ ⊢ N : A

Γ;∆,∆′ ⊢M N : B
(⊸ E)

1Since linear types are born from a correspondence with linear logic [7] (the Curry-Howard isomor-
phism [1, 54]), we borrow the ⊸ symbol and other linear logic connectives to describe linear types.

6

2.2. Haskell

Function application is typed according to the elimination rule for the same type (⊸ E).
To type an application M N as B, M must have type A ⊸ B and N must have type A.
To account for the linear resources that might be used while proving both that M :A ⊸ B
and N :A, the linear context must be split in two such that both typing judgments succeed
using exactly once every resource in their linear context (while the resources in Γ might
be used unrestrictedly), hence the separation of the linear context in ∆ and ∆′.

The multiplicative pair (M⊗N) is constructed from two linearly typed expressions that
can each be typed with a division of the given linear context, as we see in its introduction
rule (⊗I). Upon deconstruction, the multiplicative pair elimination rule (⊗E) requires
that both of the pair constituents be consumed exactly once.

(⊗I)
Γ;∆ ⊢M : A Γ;∆′ ⊢ N : B

Γ;∆,∆′ ⊢ (M ⊗N) : A⊗B

(⊗E)

Γ;∆ ⊢M : A⊗B Γ;∆′, u:A, v:B ⊢ N : C

Γ;∆,∆′ ⊢ let u⊗ v in N : C

On the other hand, the additive pair requires that both elements of the pair can be proved
with the same linear context, and upon deconstruction only one of the pair elements might
be used, rather than both simultaneously.

Finally, the ”of-course” operator (!) can be used to construct a resource that can be
used unrestrictedly (!M). Its introduction rule (!I) states that to construct this resource
means to add a resource to the unrestricted context, which can then be used freely. To con-
struct an unrestricted value, however, the linear context must be empty – an unrestricted
value can only be constructed if it does not depend on any linear resource.

Γ; · ⊢M : A

Γ; · ⊢!M :!A
(!I)

Γ;∆ ⊢M : !A Γ, u:A; ∆′ ⊢ N : C

Γ;∆,∆′ ⊢ let !u = M in N : C
(!E)

To utilize an unrestricted value M , we must bind it to u with let !u = M in N which can
then be used in N unrestrictedly, because u extends the unrestricted context rather than
the linear context as we have seen thus far.

In Section 2.3, we describe how linear types are defined in Haskell, a programming
language more featureful than the linearly typed lambda calculus. We will see that the
theoretical principles underlying the linear lambda calculus and linear Haskell are the
same, and, by studying them in this minimal setting, we can understand them at large.

2.2 Haskell

Haskell is a functional programming language defined by the Haskell Report [22, 32] and
whose de-facto implementation is GHC, the Glasgow Haskell Compiler [52]. Haskell is a
lazy, purely functional language, i.e., functions cannot have side effects or mutate data,
and, contrary to many programming languages, arguments are not evaluated when passed
to functions, but rather are only evaluated when its value is needed. The combination of
purity and laziness is unique to Haskell among mainstream programming languages.

Haskell is a large feature-rich language but its relatively small core is based on a
typed lambda calculus. As such, there exist no statements and computation is done
simply through the evaluation of functions. Besides functions, one can define types, data
constructors, and pattern match on said constructors. Function application is denoted by
the juxtaposition of the function expression and its arguments, which often means empty
space between terms (f a means f applied to a). Pattern matching is done with the case
keyword followed by the enumerated alternatives. All variable names start with lower case

7

2. Background

Γ;u:A ⊢ u : A
(u)

Γ, u:A; · ⊢ u : A
(u)

Γ;∆ ⊢M : A Γ;∆′ ⊢ N : B

Γ;∆,∆′ ⊢ (M ⊗N) : A⊗B
(⊗I)

Γ;∆ ⊢M : A⊗B Γ;∆′, u:A, v:B ⊢ N : C

Γ;∆,∆′ ⊢ let u⊗ v in N : C
(⊗E)

Γ;∆, u:A ⊢M : B

Γ;∆ ⊢ λu.M : A ⊸ B
(⊸ I)

Γ;∆ ⊢M : A ⊸ B Γ;∆′ ⊢ N : A

Γ;∆,∆′ ⊢M N : B
(⊸ E)

Γ;∆ ⊢M : A Γ;∆ ⊢ N : B

Γ;∆ ⊢M &N : A&B
(&I)

Γ;∆ ⊢M : A&B

Γ;∆ ⊢ fst M : A
(&EL)

Γ;∆ ⊢M : A&B

Γ;∆ ⊢ snd M : B
(&ER)

Γ;∆ ⊢M : A

Γ;∆ ⊢ inl M : A⊕B
(⊕IL)

Γ;∆ ⊢M : B

Γ;∆ ⊢ inr M : A⊕B
(⊕IR)

Γ;∆ ⊢M : A⊕B Γ;∆′, w1:A ⊢ N1 : C Γ;∆′, w2:B ⊢ N2 : C

Γ;∆,∆′ ⊢ case M of inl w1 → N1 | inr w2 → N2 : C
(⊕E)

Γ; · ⊢ ⋆ : ⋆
(⋆I)

Γ;∆ ⊢M : ⋆ Γ;∆′ ⊢ N : B

Γ;∆,∆′ ⊢ let ⋆ = M in N : B
(⋆E)

Γ; · ⊢M : A

Γ; · ⊢!M :!A
(!I)

Γ;∆ ⊢M : !A Γ, u:A; ∆′ ⊢ N : C

Γ;∆,∆′ ⊢ let !u = M in N : C
(!E)

Figure 2.2: Typing rules for a linearly-typed lambda calculus

and types start with upper case (excluding type variables). To make explicit the type of
an expression, the :: operator is used (e.g. f :: Int→ Bool is read f has type function
from Int to Bool).

Because Haskell is a pure programming language, input/output side-effects are mod-
elled at the type-level through the non-nullary2 type constructor IO. A value of type IO a

represents a computation that when executed will perform side-effects and produce a value
of type a. Computations that do I/O can be composed into larger computations using so-
called monadic operators, which are like any other operators but grouped under the same
abstraction. Some of the example programs will look though as if they had statements,
but, in reality, the sequential appearance is just syntactic sugar to an expression using
monadic operators. The main take away is that computations that do I/O may be se-
quenced together with other operations that do I/O while retaining the lack of statements
and the language purity guarantees.

As an example, consider these functions that do I/O and their types. The first opens
a file by path and returns its handle, the second gets the size of a file from its handle, and
the third closes the handle. It is important that the handle be closed exactly once, but
currently nothing in the type system enforces that usage policy.

openFile :: FilePath→ IOMode → IO Handle
hFileSize :: Handle → IO Integer
hClose :: Handle → IO ()

The following function makes use of the above definitions to return the size of a file

2IO has kind Type → Type, that is, it is only a type after another type is passed as a parameter (e.g.
IO Int, IO Bool); IO by itself is a type constructor

8

2.3. Linear Haskell

given its path. Note that the function silently leaks the handle to the file, despite compiling
successfully. In this example Haskell program, the use of linear types could eventually
prevent the handle from being leaked by requiring it to be used exactly once.

countWords :: FilePath→ IO Integer
countWords path = do
handle ← openFile path ReadMode
size ← hFileSize handle
return size

Another defining feature of Haskell is its powerful type system. In contrast to most
mainstream programming languages, such as OCaml and Java, Haskell supports a myriad
of advanced type level features, such as:

• Multiple forms of advanced polymorphism: where languages with whole program
type inference usually stick to Damas–Hindley–Milner type inference [4], Haskell
goes much further with, e.g., arbitrary-rank types [29], type-class polymorphism [18],
levity polymorphism [38], multiplicity polymorphism [37], and, more recently, im-
predicative polymorphism [44].

• Type level computation by means of type classes [14] and Haskell’s type families [27,
28, 34], which permit a direct encoding of type-level functions resembling rewrite
rules.

• Local equality constraints and existential types by using Generalized Algebraic Data
Types (GADTs). A design for first class existential types with bi-directional type
inference in Haskell has been published in [47], despite not being yet implemented
in GHC.

These advanced features have become commonplace in Haskell code, enforcing application
level invariants and program correctness through the types. As an example, consider the
definition of head in the standard library, a function which takes the first element of a list
by pattern matching on the list constructors:

head :: [a]→ a
head [] = error "List is empty!"

head (x : xs) = x

When applied to the empty list, head terminates the program with an error. This
function is unsafe – our program might crash if we use it on an invalid input. Leveraging
Haskell’s more advanced features, we can use more expressive types to assert properties
about the values and get rid of the invalid cases (e.g. we could define a NonEmpty type to
model a list that can not be empty, for which head is not partial). A well liked motto is
”make invalid states unrepresentable”.

2.3 Linear Haskell

The introduction of linear types to Haskell’s type system is originally described in Linear
Haskell [37]. While in Section 6.1.1 we discuss the reasoning and design choices behind
retrofitting linear types to Haskell, here we focus on linear types solely as they exist in the
language, and rework the file handle example seen in the previous section to make sure it
doesn’t typecheck when the handle is forgotten.

9

2. Background

A linear function (f :: A ⊸ B) guarantees that if (f x) is consumed exactly once, then
the argument x is consumed exactly once. The precise definition of consuming a value
depends on the value as follows, paraphrasing Linear Haskell [37]:

• To consume a value of atomic base type (such as Int or Ptr) exactly once, just
evaluate it.

• To consume a function value exactly once, apply it to one argument, and consume
its result exactly once.

• To consume a value of an algebraic datatype exactly once, pattern-match on it,
and consume all its linear components exactly once. For example, a linear pair
(equivalent to ⊗) is consumed exactly once if pattern-matched on and both the first
and second element are consumed once.

In Haskell, linear types are introduced through linearity on the function arrow. In
practice, this means function types are annotated with a linearity that defines whether
a function argument must be consumed exactly once or whether it can be consumed
unrestrictedly (many times). As an example, consider the function f below, which doesn’t
typecheck because it is a linear function (annotated with 1) that consumes its argument
more than once, and the function g, which is an unrestricted function (annotated with
Many) that typechecks because its type allows the argument to be consumed unrestrictedly.

f :: a% 1→ (a, a)
f x = (x , x)

g :: a%Many → (a, a)
g x = (x , x)

The function annotated with the multiplicity annotation of 1 is equivalent to the lin-
ear function type (⊸) seen in the linear lambda calculus (Section 2.1). Additionally,
algebraic data type constructors can specify whether their arguments are linear or unre-
stricted, requiring that, when pattern matched on, linear arguments be consumed once
while unrestricted arguments need not be consumed exactly once. To encode the mul-
tiplicative linear pair (⊗) we must create a pair data type with two linear components.
To consume an algebraic data type is to consume all its linear components once, so, to
consume said pair data type, we need to consume both its linear components – success-
fully encoding the multiplicative pair elimination rule (⊗E). To construct said pair data
type we must provide two linear elements, each consuming some required resources to be
constructed, thus encoding the multiplicative pair introduction rule (⊗I). As such, we
define MultPair as an algebraic data type whose constructor uses a linear arrow for each
of the arguments3.

data MultPair a b where
MkPair :: a% 1→ b % 1→ MultPair a b

The linearity annotations 1 and Many are just a specialization of the more general so-
calledmultiplicity annotations. A multiplicity of 1 entails that the function argument must
be consumed once, and a function annotated with it (→1) is called a linear function (often
written with ⊸). A function with a multiplicity of Many (→ω) is an unrestricted function,
which may consume its argument 0 or more times. Unrestricted functions are equivalent
to the standard function type and, in fact, the usual function arrow (→) implicitly has
multiplicity Many. Multiplicities naturally allow for multiplicity polymorphism.

3By default, constructors defined without GADT syntax have linear arguments. We could have written
data MultPair a b = MkPair a b to the same effect.

10

2.4. Evaluation Strategies

Consider the functions f and g which take as an argument a function from Bool to Int.
Function f expects a linear function (Bool →1 Int), whereas g expects an unrestricted
function (Bool →ω Int). Function h is a function from Bool to Int that we want to
pass as an argument to both f and g.

f :: (Bool % 1→ Int)→ Int
f c = c True

g :: (Bool → Int)→ Int
g c = c False

h :: Bool %m→ Int
h x = case x of

False → 0
True → 1

For the application of f and g to h to be well typed, the multiplicity of h (→?) should
match the multiplicity of both f (→1) and g (→ω). Multiplicity polymorphism allows us
to use multiplicity variables when annotating arrows to indicate that the function can both
be typed as linear and as an unrestricted function, much the same way type variables can
be used to define polymorphic functions. Thus, we define h as a multiplicity polymorphic
function (→m), making h a well-typed argument to both f and g (m will unify with 1 and
ω at the call sites).

2.4 Evaluation Strategies

Unlike most mainstream programming languages, Haskell has so called non-strict evalu-
ation semantics due to its lazy evaluation strategy, also known as call-by-need [5]. Call-
by-need evaluation dictates that an expression is only evaluated when it is needed (so no
work is done to evaluate expressions that are unused at runtime), and the values that are
indeed evaluated are memoized and shared across use sites. For example, the following
program will only compute factorial 2500 if expr evaluates to True, and in that case the
work to compute it is only done once, despite being used twice:

let f res = if expr then res ∗ res else 0
in f (factorial 2500)

In contrast, mainstream languages commonly use an eager evaluation strategy called
call-by-value [5], in which expressions are eagerly evaluated to a value. In the above
example, under call-by-value, factorial 2500 would always be evaluated and passed as a
value, regardless of being used in the body. It is out of the scope of this work to discuss
the merits and trade-offs of eager vs. lazy evaluation.

A third option is the call-by-name evaluation strategy [5]. In call-by-name, expressions
are only evaluated when needed, however, there is no sharing. In the above example, it
would only evaluate factorial 2500 twice if expr were True. Despite being similar to call-by-
need, in practice, language implementers prefer call-by-need over call-by-name to achieve
non-strict semantics, because the latter duplicates a lot of work, while the former only
does work once and then shares the result.

Call-by-value, call-by-name, and call-by-need are the most common evaluation strate-
gies used to describe a language’s execution model. These execution models can be rigor-
ously described through the operational semantics of the language. The so-called small-
step operational semantics define the valid evaluation steps (reductions) an expression can
use to evaluate to a value. The operational semantics of these three evaluation models pri-
marily differ in how the reduction rule for function application, also known as β-reduction,
is defined:

11

2. Background

• Under call-by-value, a function application is reduced to a value by evaluating the
function λx. b and the argument e to a value v, then substituting occurrences of the
function argument variable by the argument value:

e −→ e′

(λx. b) e −→ (λx. b) e′
(λx. b) v −→ b[v/x]

• Under call-by-name, a function application is reduced to a value by evaluating the
function to a value (a lambda), then substituting occurrences of the function argu-
ment variable by the whole argument expression:

(λx. e) e′ −→ e[e′/x]

• Under call-by-need, a function application is reduced to a value by evaluating the
function to a value, then transforming the function application into a let binding:

(λx. e) e′ −→ let x = e′ in e

The let binding introduces a suspended computation known as a thunk, whose value
is only computed when the binding is forced. After evaluating the expression, the
binding is overwritten with the result of the computation and subsequent uses of the
binding use the computed value without additional work. Evaluation then progresses
in the let body until the value of a let-bound variable is needed, being then computed
and substituted in the let body. The call-by-need lambda calculus [15] is, accordingly,
further characterized by the following evaluation axioms:

let x = V in C[x] −→ let x = V in C[V]
(let x = L in M) N −→ let x = L in M N
let y = (let x = L in M) in N −→ let x = L in let y = M in N

In essence, call-by-value gives the language strict evaluation semantics, where expres-
sions are evaluated in the order they occur, s.t. using a non-terminating computation
(e.g. f(x) = f(x), usually written ⊥) in the program text will necessarily make the pro-
gram not terminate upon reaching that expression (i.e. written g(⊥) = ⊥ for all g). In
contrast, call-by-name and call-by-need evaluation give the language non-strict semantics,
where the order in which expressions are evaluated is undefined, since they are evaluated
only when needed. Consequently, in non-strict semantics, using ⊥ only results in a non-
termination if ⊥ is evaluated, which may not be necessary for the program to reach a
result (i.e. g(⊥) ̸= ⊥, in general).

Call-by-need additionally guarantees we only do “work” to compute an expression
bound to a variable once, when it is first required, and share the result of the computation
amongst subsequent occurrences of the variable. Intuitively:

• When an expression is bound by a let, a thunk is created, representing the (sus-
pended) computation that evaluates the expression to a value

• If the let-bound variable is used in a computation, we must evaluate the thunk -
suspended computation to determine the value this variable represents.

• The thunk is overwritten with the resulting value, s.t. subsequent uses of the same
variable now refer to the already computed value instead of the suspended compu-
tation.

12

2.5. Core and System FC

The subtleties of suspending computations (i.e. creating thunks) and forcing them under
call-by-need evaluation are especially relevant in the context of our work regarding linearity
in Core, so we review laziness in that context:

In Haskell and in its intermediate language Core, applying a function to an expres-
sion, in general4, results in a let binding that suspends the evaluation of the expres-
sion/computation of the result (as per the β-reduction rule under call-by-need). Suspend-
ing a computation amounts to giving a name to the unevaluated expression. As before,
when the value associated to this name is required, then the suspended computation is
said to be forced, a result is computed by evaluating the expression, and the thunk is over-
written with the result. Beyond lambdas and let-bindings, Haskell and Core also feature
algebraic datatypes and case expressions to match on datatype constructors:

• A datatype defines a (user-defined) type through a set of constructors Ki that can
be used to build values of the type they define. A constructor applied to a set of
argument expressions, K e, is said to be in Weak Head Normal Form [55], and does
not reduce any further on its own.

• A case expression case es of ρi → ei is defined by a scrutinee es and a list of alter-
natives comprised of a pattern ρ (either a wildcard , or a constructor and a set of
variables to bind the constructor arguments K x) and a right hand side expression
ei. Case expressions are lazily evaluated by

1. Evaluating the scrutinee to Weak Head Normal Form, resulting in either a
lambda expression or a constructor of arity n applied to n unevaluated expres-
sions ei

n

2. Matching the Weak Head Normal Form of the scrutinee against the patterns,
(possibly) substituting the pattern-bound variables of a matching constructor
by the unevaluated arguments of a scrutinee constructor application in Weak
Head Normal Form, e.g.:

case K ei
n of K xi

n → e′ =⇒ e′ei/xi
n

Finally, briefly accounting for linearity in this context, we note that a linear resource
occurring in a suspended computation is only consumed if that computation is executed,
foreshadowing the distinction we will explore in Section 3 between multiple syntactic
occurrences of a linear resource and the semantic usages of the same resource, where we
may have multiple syntactic occurrences of a linear resource in suspended computations,
but semantically consume the resource exactly once as long as we run just one of them
exactly once.

2.5 Core and System FC

Haskell is a large and expressive language with many syntactic constructs and features.
However, the whole of Haskell can be desugared down to a minimal, explicitly typed,
intermediate language called Core. Desugaring allows the compiler to focus on the small
desugared language rather than on the large surface one, which can greatly simplify the
subsequent compilation passes. Core is a strongly-typed, lazy, purely functional inter-
mediate language, akin to a polymorphic lambda calculus, that GHC uses as its key

4Optimisations such as occurrence analysis, allow us to substitute some expressions in a call-by-name-
style without creating a let binding if the argument is only used once in the body.

13

2. Background

intermediate representation. To illustrate the difference in complexity, in GHC’s imple-
mentation of Haskell, the abstract syntax tree is defined through dozens of datatypes and
hundreds of constructors, while the GHC’s implementation of Core is defined in 3 main
types (expressions, types, and coercions) corresponding to 15 constructors [49]. The ex-
istence of Core and its use is a major design decision in GHC Haskell with significant
benefits which have proved themselves in the development of the compiler.

• Core allows us to reason about the entirety of Haskell in a much smaller functional
language. Performing analysis, optimising transformations, and code generation is
done on Core, not Haskell. The implementation of these compiler passes is signifi-
cantly simplified by the minimality of Core.

• Since Core is an (explicitly) typed language (c.f. System F [2, 3]), type-checking Core
serves as an internal consistency check for the desugaring and optimisation passes.
The Core typechecker provides a verification layer for the correctness of desugaring
and optimising transformations (and their implementations) because both desugar-
ing and optimising transformations must produce well-typed Core.

• Finally, Core’s expressiveness serves as a sanity-check for all the extensions to the
source language – if we can desugar a feature into Core then the feature must be
sound by reducibility. Effectively, any feature added to Haskell is only syntactic
sugar if it can be desugared to Core.

The implementation of Core’s typechecker differs significantly from the Haskell type-
checker because Core is explicitly typed and its type system is based on the System FC [30]
type system (i.e., System F extended with a notion of type coercion), while Haskell is im-
plicitly typed and its type system is based on the constraint-based type inference system
OutsideIn(X) [33]. Therefore, typechecking Core is simple, fast, and requires no type
inference, whereas Haskell’s typechecker must account for almost the entirety of Haskell’s
syntax, and must perform type-inference in the presence of arbitrary-rank polymorphism,
existential types, type-level functions, and GADTs, which are known to introduce sig-
nificant challenges for type inference algorithms [33]. Haskell is typechecked in addition
to Core to elaborate the user program. This might involve performing type inference to
make implicit types explicit and solving constraints to pass implicit dictionary arguments
explicitly. Furthermore, type-checking the source language allows us to provide mean-
ingful type errors. If Haskell wasn’t typechecked and instead we only typechecked Core,
everything (e.g. all binders) would have to be explicitly typed and type error messages
would refer to the intermediate language rather than the written program.

The Core language is based on System FC , a polymorphic lambda calculus with ex-
plicit type-equality coercions that, like types, are erased at compile time (i.e. types and
coercions alike don’t incur any cost at run-time). The syntax of System FC [30] terms is
given in Figure 2.3, which corresponds exactly to the syntax of System F [2, 3] with term
and (kind-annotated) type abstraction as well as term and type application, extended with
algebraic data types, let-bound expressions, pattern matching and coercions or casts.

Explicit type-equality coercions (or simply coercions), written σ1 ∼ σ2, serve as evi-
dence of equality between two types σ1 and σ2. A coercion σ1 ∼ σ2 can be used to safely
cast an expression e of type σ1 to type σ2, where casting e to σ2 using σ1 ∼ σ2 is written
e ▶ σ1 ∼ σ2. The syntax of coercions is given by Figure 2.4 and describes how coercions
can be constructed to justify new equalities between types (e.g. using symmetry and tran-
sitivity). For example, given τ ∼ σ, the coercion sym (τ ∼ σ) denotes a type-equality

14

2.6. GHC Pipeline

u ::= x | K Variables and data constructors
e ::= u Term atoms

| Λa:κ. e | e φ Type abstraction/application
| λx:σ. e | e1 e2 Term abstraction/application
| let x:σ = e1 in e2
| case e1 of p→ e2
| e ▶ γ Cast

p ::= K b:κ x:σ Pattern

Figure 2.3: System FC ’s Terms

coercion from σ to τ using the axiom of symmetry of equality. Through it, the expression
e:σ can be cast to e:τ , i.e. (e:σ ▶ sym τ ∼ σ) : τ .

σ, τ ::= d | τ1 τ2 | Sn τn | ∀a:κ.τ Types
γ, δ ::= g | τ | γ1 γ2 | Sn γn | ∀a:κ.γ Coercions

| sym γ | γ1 ◦ γ2 | γ@σ | left γ | right γ
φ ::= τ | γ Types and Coercions

Figure 2.4: System FC ’s Types and Coercions

System FC ’s coercions are key in desugaring advanced type-level Haskell features such
as GADTs, type families and newtypes [30]. In short, these three features are desugared
as follows:

• GADTs local equality constraints are desugared into explicit type-equality evidence
that are pattern matched on and used to cast the branch alternative’s type to the
return type.

• Newtypes such as newtype BoxI = BoxI Int introduce a global type-equality BoxI

∼ Int and construction and deconstruction of said newtype are desugared into casts.

• Type family instances such as type instance F Int = Bool introduce a global
coercion F Int ∼ Bool which can be used to cast expressions of type F Int to Bool.

Core further extends System FC with jumps and join points [39], allowing new opti-
misations to be performed which ultimately result in efficient code using labels and jumps,
and with a construct used for internal notes such as profiling information.

In the context of Linear Haskell, and recalling that Haskell is fully desugared into
Core / System FC as part of its validation and compilation strategy, we highlight the
inherent incompatibility of linearity with Core / System FC as a current flaw in GHC
that invalidates all the benefits of Core wrt linearity. Thus, we must extend System FC

(and, therefore, Core) with linearity in order to adequately validate the desugaring and
optimising transformations as linearity preserving, ensuring we can reason about Linear
Haskell in its Core representation.

2.6 GHC Pipeline

The GHC compiler processes Haskell source files in a series of phases that feed each other
in a pipeline fashion, each transforming their input before passing it on to the next stage.

15

2. Background

This pipeline is crucial in the overall design of GHC. We now give a high-level overview
of the phases.

2.6.1 Haskell to Core

Parser. The Haskell source files are first processed by the lexer and the parser. The
lexer transforms the input file into a sequence of valid Haskell tokens. The parser processes
the tokens to create an abstract syntax tree representing the original code, as long as the
input is a syntactically valid Haskell program.

Renamer. The renamer’s main tasks are to resolve names to fully qualified names, re-
solve name shadowing, and resolve namespaces (such as the types and terms namespaces),
taking into consideration both existing identifiers in the module being compiled and iden-
tifiers exported by other modules. Additionally, name ambiguity, variables out of scope,
unused bindings or imports, etc., are checked and reported as errors or warnings.

Type-checker. With the abstract syntax tree validated by the renamer and with the
names fully qualified, the Haskell program is type-checked before being desugared into
Core. Type-checking the Haskell program guarantees that the program is well-typed.
Otherwise, type-checking fails with an error reporting where in the source typing failed.
Furthermore, every identifier in the program is annotated with its type. Haskell is an
implicitly typed language and, as such, type-inference must be performed to type-check
programs. During type inference, every identifier is typed and we can use its type to
decorate said identifier in the abstract syntax tree produced by the type-checker. First,
annotating identifiers is required to desugar Haskell into Core because Core is explicitly
typed – to construct a Core abstract syntax tree the types are indispensable (i.e. we
cannot construct a Core expression without explicit types). Secondly, names annotated
with their types are useful for tools manipulating Haskell, e.g. for an IDE to report the
type of an identifier.

Desugaring. The type-checked Haskell abstract syntax tree is then transformed into
Core by the desugarer. We’ve discussed in Section 2.5 the relationship between Haskell
and Core in detail, so we refrain from repeating it here. It suffices to say that the desugarer
transforms the large Haskell language into the small Core language by simplifying all syn-
tactic constructs to their equivalent Core form (e.g. newtype constructors are transformed
into coercions).

2.6.2 Core-To-Core Transformations

The Core-to-Core transformations are the most important set of optimising transforma-
tions that GHC performs during compilation. By design, the frontend of the pipeline
(parsing, renaming, typechecking and desugaring) does not include any optimisations –
all optimisations are done in Core. The transformational approach focused on Core,
known as compilation by transformation, allows transformations to be both modular and
simple. Each transformation focuses on optimising a specific set of constructs, where
applying a transformation often exposes opportunities for other transformations to fire.
Since transformations are modular, they can be chained and iterated in order to maximize
the optimisation potential (as shown in Figure 2.5).

However, due to the destructive nature of transformations (i.e. applying a transfor-
mation is not reversible), the order in which transformations are applied determines how

16

2.6. GHC Pipeline

well the resulting program is optimised. As such, certain orderings of optimisations can
hide optimisation opportunities and block them from firing. This phase-ordering problem
is present in most optimising compilers.

Foreshadowing the fact that Core is the main object of our study, we want to type-check
linearity in Core before and after each optimising transformation is applied (Section 2.5).
In light of it, we describe below some of the individual Core-to-Core transformations,
using =⇒ to denote a program transformation. In the literature, the first set of Core-
to-Core optimisations was described in [16, 20]. These were subsequently refined and
expanded [25, 26, 39, 36, 40]. In Figure 2.5 we present an example that is optimised
by multiple transformations to highlight how the compilation by transformation process
produces performant programs.

Inlining. Inlining is an optimisation common to all compilers, but especially important
in functional languages [20]. Given Haskell’s pure and lazy semantics, inlining can be
employed in Haskell to a much larger extent because we needn’t worry about evaluation
order or side effects, contrary to most imperative and strict languages. Inlining consists
of replacing an occurrence of a let-bound variable by its right-hand side:

let x = e in e′ =⇒ let x = e in e′[e/x]

Effective inlining is crucial to optimisation because, by bringing the definition of a variable
to the context in which it is used, many other local optimisations are unlocked. The
work [25] further discusses the intricacies of inlining and provides algorithms used for
inlining in GHC.

β-reduction. β-reduction is an optimisation that consists of reducing an application of
a term λ-abstraction or type-level Λ-abstraction (Figure 2.3) by replacing the λ-bound
variable with the argument the function is applied to:

(λx:τ. e) y =⇒ e[y/x] (Λa:κ. e) φ =⇒ e[φ/a]

If the λ-bound variable is used more than once in the body of the λ-abstraction we must
be careful not to duplicate work, and we can let-bound the argument, while still removing
the λ-abstraction, to avoid doing so:

(λx:τ. e) y =⇒ let x = y in e

β-reduction is always a good optimisation because it effectively evaluates the applica-
tion at compile-time (reducing heap allocations and execution time) and unlocks other
transformations.

Case-of-known-constructor. If a case expression is scrutinizing a known constructor
K x:σ, we can simplify the case expression to the branch it would enter, substituting the
pattern-bound variables by the known constructor arguments (x:σ):

case K v1 . . . vn of
K x1 . . . xn → e
. . .

=⇒ e[vi/xi]
n
i=1

Case-of-known-constructor is an optimisation mostly unlocked by other optimisations such
as inlining and β-reduction, more so than by code written as-is by the programmer. As
β-reduction, this optimisation is also always good – it eliminates evaluations whose result
is known at compile time and further unblocks for other transformations.

17

2. Background

Let-floating. A let-binding in Core entails performing heap-allocation, therefore, let-
related transformations directly impact the performance of Haskell programs. In particu-
lar, let-floating transformations are concerned with positioning let-bindings in a program
to improve efficiency and further unblock other optimisations. Let-floating is an important
group of transformations for non-strict (lazy) languages described in detail by [19]. We
distinguish three let-floating transformations:

• Float-in consists of moving a let-binding as far inwards as possible. For example, it
could be moving a let-binding outside of a case expression into the branch alternative
that uses the let-bound variable:

let x = y + 1
in case z of
[]→ x ∗ x
(p : ps)→ 1

=⇒
case z of
[]→ let x = y + 1 in x ∗ x
(p : ps)→ 1

This can improve performance by not performing let-bindings (e.g. if the branch
the let was moved into is never executed); improving strictness analysis; and further
unlocking other optimisations described in [19]. However, care must be taken when
floating a let-binding inside a λ-abstraction because every time that abstraction is
applied the value (or thunk) of the binding will be allocated in the heap.

• Full laziness transformation, also known as float-out, consists of moving let-bindings
outside of enclosing λ-abstractions. The warning above regarding λ-abstractions
recomputing the binding every time they are applied is valid even if bindings are
not purposefully pushed inwards. In such a situation, floating the let binding out
of the enclosing lambda can make it readily available across applications of said
lambda.

λy. let x = e in e′ =⇒ let x = e in λy. e′

• The local transformations are the third type of let-floating optimisations. In this
context, the local transformations are local rewrites that improve the placement of
bindings. There are three local transformations:

1. (let v = e in b) a =⇒ let v = e in b a
2. case (let v = e in b) of . . . =⇒ let v = e in case b of . . .
3. let x = (let v = e in b) in c =⇒ let v = e in let x = b in c

These transformations do not change the number of allocations but potentially cre-
ate opportunities for other optimisations to fire, e.g. by exposing a lambda abstrac-
tion [19].

η-expansion and η-reduction. η-expansion is a transformation that expands a func-
tion expression f to (λx.f x), where x is not free in f . This transformation can improve
efficiency because it can fully apply functions which would previously be partially applied
by using the variable bound to the expanded λ. A partially applied function is often
more costly than a fully saturated one because it entails a heap allocation for the function
closure, while a fully saturated one equates to a function call. η-reduction is the inverse
transformation to η-expansion, i.e., a λ-abstraction (λx.f x) can be η-reduced to simply f .

18

2.6. GHC Pipeline

Case-of-case. The case-of-case transformation fires when a case expression is scrutiniz-
ing another case expression. In this situation, the transformation duplicates the outermost
case into each of the inner case branches:

case

case ec of
altc1 → ec1

. . .
altcn → ecn

 of

alt1 → e1
. . .
altn → en

=⇒

case ec of

altc1 →

case ec1 of
alt1 → e1

. . .
altn → en

. . .

altcn →

case ecn of
alt1 → e1

. . .
altn → en

This transformation exposes other optimisations, e.g., if ecn is a known constructor we
can readily apply the case-of-known-constructor optimisation. However, this transforma-
tion also potentially introduces significant code duplication. To this effect, we apply a
transformation that creates join points (i.e., shared bindings outside the case expressions
that are used in the branch alternatives) that are compiled to efficient code using labels
and jumps.

Common sub-expression elimination. Common sub-expression elimination (CSE)
is a transformation that is effectively inverse to inlining. This transformation factors out
expensive expressions into a shared binding. In practice, lazy functional languages don’t
benefit nearly as much as strict imperative languages from CSE and, thus, it isn’t very
important in GHC [21].

Static argument and lambda lifting. Lambda lifting is a transformation that ab-
stracts over free variables in functions by making them λ-bound arguments [6, 16]. This
allows functions to be “lifted” to the top-level of the program (because they no longer
have free variables). Lambda lifting may unlock inlining opportunities and allocate less
function closures, since the definition is then created only once at the top-level and shared
across uses. The static argument transformation identifies function arguments which are
static across calls, and eliminates said static argument to avoid passing the same fixed
value as an argument in every function call, which is especially significant in recursive
functions. To this effect, the static argument is bound outside of the function definition
and becomes a free variable in its body. It can be thought of as the transformation inverse
to lambda lifting.

Strictness analysis and worker/wrapper split. The strictness analysis, in lazy pro-
gramming languages, identifies functions that always evaluate their arguments, i.e. func-
tions with (morally) strict arguments. Arguments passed to functions that necessarily
evaluate them can be evaluated before the call and therefore avoid some heap allocations.
The strictness analysis may be used to apply the worker/wrapper split transformation [13].
This transformation creates two functions from an original one: a worker and a wrapper.
The worker receives unboxed values [9] as arguments, while the wrapper receives boxed
values, unwraps them, and simply calls the worker function (hence the wrapper being
named as such). This allows the worker to be called in expressions other than the wrap-
per, saving allocations and being possibly much faster, especially if the worker recursively
ends up calling itself rather than the wrapper.

19

2. Background

Binder-swap. The binder swap transformation applies to a case expression whose scru-
tinee is a variable x, and consists of swapping the case binder z for x in all case alternatives:

case x of z {ρi → ei} =⇒ case x of z {ρi → ei[z/x]}

By removing occurrences of x in the case alternatives we might end up with the case
scrutinee being the only occurrence of x, which allows us to inline x and possibly save an
allocation, for example:

let x = factorial y in case x of b {I# v → . . . x . . . }
=⇒Binder swap

let x = factorial y in case x of b {I# v → . . . b . . . }
=⇒Inlining

case factorial y of b {I# v → . . . b . . . }

Reverse binder-swap. The reverse binder swap is (unsurprisingly) the reverse of the
binder swap transformation. For a case whose scrutinee is a variable x, reverse binder
swaps occurrences of the case binder z by the variable x:

case x of z {ρi → ei} =⇒ case x of z {ρi → ei[x/z]}

It is not entirely obvious why this might optimise a program, however, z is bound in the
case alternative, so expressions involving z may not be floated out of the case alternative.
If z is substituted by x, which isn’t bound to the case, we might float out an expensive
operation out of the case alternatives and, for example, out of a loop:

letrec go y = case x of z {(a, b)→ . . . (expensive z) . . . } in . . . go . . .
=⇒Reverse binder swap

letrec go y = case x of z {(a, b)→ . . . (expensive x) . . . } in . . . go . . .
=⇒Float out

let t = expensive x in letrec go y = case x of z {(a, b)→ . . . t . . . } in . . . go . . .

In this example, expensive x is now computed once, instead of once per loop iteration.

2.6.3 Code Generation

The code generation needn’t be changed to account for the work we will do in the context
of this thesis, so we only briefly describe it.

After the core-to-core pipeline is run on the Core program and produces optimised
Core, the program is translated down to the Spineless Tagless G-Machine (STG) lan-
guage [12]. STG language is a small functional language that serves as the abstract
machine code for the STG abstract machine that ultimately defines the evaluation model
and compilation of Haskell through operational semantics.

From the abstract state machine, we generate C-- (read C minus minus), a C-like
language designed for native code generation, which is finally passed as input to one of
the code generation backends5, such as LLVM, x86 and x64, or (recently) JavaScript and
WebAssembly.

5GHC is not yet runtime retargetable, i.e. to use a particular native code generation backend the
compiler must be built targetting it.

20

2.6. GHC Pipeline

if (not x) then e1 else e2
Desugar
=⇒

case not x of
True→ e1
False→ e2

Inline not
=⇒

case

 λy.case y of
True→ False
False→ True

 x of

True→ e1
False→ e2

β−reduction
=⇒

case

 case x of
True→ False
False→ True

 of

True→ e1
False→ e2

Case−of−case
=⇒

case x of

True→

 case False of
True→ e1
False→ e2

False→

 case True of
True→ e1
False→ e2

Case−of−known−constructor

=⇒

case x of
True→ e2
False→ e1

□

Figure 2.5: Example sequence of transformations

21

CHAPTER 3
Linearity, Semantically

A linear type system statically guarantees that linear resources are consumed exactly once.
Consequently, whether a program is well-typed under a linear type system intrinsically
depends on the precise definition of consuming a resource. Even though consuming a re-
source is commonly regarded as synonymous with the syntactic occurrence of the resource
in the program, that is not always the case. In fact, this chapter highlights the distinc-
tion between using resources syntactically and semantically as a principal limitation of
linear type systems for non-strict languages, with examples motivated by the constructs
available in GHC Core and how they are evaluated.

Consider the following program in a functional Haskell-like language, where a compu-
tation that closes the given handle is bound to x before the handle is returned:

f : Handle ⊸ Handle
f handle = let x = close handle in handle

In this seemingly innocent example, the handle appears to be closed before returned,
whereas in fact the handle will only be closed if the let bound computation is effectively
run (i.e. evaluated). The example illustrates that consuming a resource is not necessarily
synonymous with using it syntactically, as depending on the evaluation strategy of the
language, the computation that closes the handle might or not be evaluated, and if it isn’t,
the handle in that unused computation is not consumed. Expanding on this, consider the
above example program under distinct evaluation strategies:

Call-by-value With eager evaluation semantics, the let bound expression close handle
is eagerly evaluated, and the handle will be closed before being returned. It is clear
that a linear type system should not accept such a program since the linear resource
handle is duplicated – it is used in a computation that closes it, while still being
made available to the caller of the function.

Call-by-need On the other hand, with lazy evaluation semantics, the let bound expres-
sion will only be evaluated when the binding x is needed. We return the handle right
away, and the let binding is forgotten as it cannot be used outside the scope of the
function, so the handle is not closed by f . Under the lens of call-by-need evaluation,
using a resource in a let binding only results in the resource being consumed if the
binding itself is consumed. We argue that a linear type system under call-by-need
evaluation should accept the above program, unlike a linear type system for the
same program evaluated call-by-value.

23

3. Linearity, Semantically

Intuitively, a computation that depends on a linear resource to produce a result consumes
that resource iff the result is effectively computed; in contrast, a computation that depends
on a linear resource, but is never run, will not consume that resource.

From this observation, and exploring the connection between computation and eval-
uation, it becomes clear that linearity and consuming resources, in the above example
and for programs in general, should be defined in function of the language’s evaluation
strategy. We turn our focus to linearity under call-by-need, not only because GHC Core is
call-by-need, but also because the distinction between semantically and syntactically con-
suming a resource is only exposed under non-strict semantics. Indeed, under call-by-value,
syntactic occurrences of a linear resource directly correspond to semantically using that
resource1 because all expressions are eagerly evaluated – if all computations are eagerly
run, all linear resources required by computations are eagerly consumed.

3.1 Semantic Linearity by Example

Aligned with our original motivation of typechecking linearity in GHC Core such that
optimising transformations preserve linearity, and with the goal of understanding linear-
ity in a non-strict context, this section helps the reader build an intuition for semantic
linearity through examples of Core programs that are semantically linear but rejected by
Core’s linear type system. In the examples, a light green background highlights pro-
grams that are syntactically linear and are accepted by Core’s naive linear type system.
A light yellow or light orange background mark programs that are semantically linear,
but are not seen as linear by Core’s (naive wrt laziness) linear type system. Notably, the
linear type system we develop in this work accepts all light yellow programs. A light red
background indicates that the program simply isn’t linear, not even semantically, i.e. the
program effectively discards or duplicates linear resources.

3.1.1 Let bindings

We start our discussion with non-strict (non-recursive) let bindings, i.e. let bindings whose
body is evaluated only when the binding is needed, rather than when declared. In Core,
a let binding entails the creation of a thunk that suspends the evaluation of the let body
(for background, see Section 2.4). When the binding itself is evaluated, the thunk is forced
and the evaluation is carried out. The result overwrites the thunk – the let binding now
points to the result of the evaluation.

In a linear type system, a non-strict let binding that depends on a linear resource
x doesn’t consume the resource as long as the binding isn’t evaluated – the suspended
computation only uses the resource if it is run. For this reason, we can’t naively tell
whether x is consumed just by looking at the let binding body. In the following exam-
ple, we assign a computation that depends on the resource x to a binder, which is then
returned:

f1 :: (a ⊸ b)→ a ⊸ b
f1 use x =
let y = use x
in y

1With the minor exception of trivial aliases, which don’t entail any computation even in call-by-value.
In theory, we could use in mutual exclusion any of the aliases to refer to a resource without loss of linearity

24

3.1. Semantic Linearity by Example

The linear resource x is used exactly once, since it is used exactly once in the body of
the binding and the binding is used exactly once in the let body. According to Linear
Haskell’s core calculus λq

→ [37], let bound variables are annotated with a multiplicity which
is multiplied (as per the multiplicity semiring) by the multiplicity of all variables that are
free in the binder’s body. In short, if a let binder is linear (has multiplicity 1) then the
linear variables free in its body are only used once; if the let binder is unrestricted (has
multiplicity ω) then the resources in its body are consumed many times, meaning no linear
variables can occur in that let binder’s body. Unfortunately, GHC’s implementation of
Linear Haskell doesn’t seem to infer multiplicities for lets yet, so while the above program
should typecheck in Linear Haskell, it is rejected by GHC.

The next example exposes the case in which the let binder is ignored in the let body.
Here, the linear resource x is used in y ’s body and in the let body, however, the resource
is still used semantically linearly because y isn’t used at all, thus x is consumed just once
in the let body:

f2 :: (a ⊸ a)→ a ⊸ a
f2 use x =
let y = use x
in use x

Programmers don’t often write bindings that are completely unused, yet, an optimising
compiler will produce intermediate programs with unused bindings2 from transformations
such as inlining, which can substitute out occurrences of the binder (e.g. y is inlined in
the let body).

Let bindings can also go unused if they are defined before branching on case alterna-
tives. At runtime, depending on the branch taken, the let binding will be evaluated only
if it occurs in that branch. Both optimising transformations (float-out), and programmers
used to non-strict evaluation, can produce programs with bindings that are selectively
used in the case alternatives, for instance:

f3 :: (a ⊸ a)→ Bool → a ⊸ a
f3 use bool x =
let y = use x
in case bool of

True → x
False → y

This example essentially merges f1 with f2 , using x directly in one branch and using y
in the other. Semantically, this program is linear because the linear resource x ends up
being used exactly once in both case alternatives, directly or indirectly.

Shifting our focus from not using a let binding to using it (more than once), we reiterate
that a let binding creates a thunk which is only evaluated once, and re-used subsequently.
Despite the binder body only being evaluated once, and thus its resources only used once to
compute a result, we can still only consume said result of the computation once – perhaps
surprisingly, as the perception so far is that “resources are consumed during computation”
and multiple uses of the same let binder share the result that was computed only once.
Illustratively, the following program must not typecheck:

2Unused bindings are then also dropped by the optimising compiler

25

3. Linearity, Semantically

f4 :: (a ⊸ b)→ a ⊸ (b, b)
f4 use x =
let y = use x
in (y , y)

Intuitively, the result of the computation must also be used exactly once, despite being
effectively computed just once, because said result may still contain (parts of) the linear
resource. The trivial example is f4 applied to id – the result of computing id x is x , and
x must definitely not be shared! Indeed, if the result of the computation involving the
linear resource was, e.g., an unrestricted integer, then sharing the result would not involve
consuming the resource more than once. Concretely, the result of evaluating a let binder
body using linear resources, if computed, must be consumed exactly once, or, otherwise,
we risk discarding or duplicating said resources.

Lastly, consider a program which defines two let bindings z and y , where z uses y
which in turn uses the linear resource x :

f5 :: (a ⊸ a)→ a ⊸ ()
f5 use x =
let y = use x
let z = use y
in ()

Even though the binding y is used in z , x is still never consumed because z isn’t evaluated
in the let body, and consequently y isn’t evaluated either – never consuming x . We use
this example to highlight that even for let bound variables, the syntactic occurrence of a
variable isn’t enough to determine whether it is used. Instead, we ought to think of uses
of y as implying using x , and therefore uses of z imply using x , however, if neither is used,
then x isn’t used. Since x is effectively discarded, this example also violates linearity.

The examples so far build an intuition for semantic linearity in the presence of lazy
let bindings. In essence, an unused let binding doesn’t consume any resources, and a let
binding used exactly once consumes its resources exactly once. Let binders that depend on
linear resources must be used at most once – let bound variables are affine in the let body.
Moreover, if the let binding (y) isn’t used in the let body, then the resources it depends
on (x) must still be used – the binding y is mutually exclusive with the resources x (for
the resources to be used linearly, either the binder occurs exactly once y, or the resources
x do). We’ll later see how we can encode this principle of mutual exclusivity between let
bindings and their dependencies using so called usage environments, in Section 4.3.

3.1.2 Recursive let bindings

Second, we look into recursive let bindings. For the most part, recursive let bindings
behave as non-recursive let bindings, i.e. we must use them at most once because, when
evaluated, the linear resources used in the binders bodies are consumed. The defining
property of a group of mutually recursive let bindings is that the binders bound in that
group can occur, without restrictions, in the bodies of those same binders. The same way
that, in a let body, evaluating a binding that uses some resource exactly once consumes
that resource once, using the binding in its own definition also entails using that resource
once. Consider the following program, that calls a recursive let-bound function defined in
terms of the linear resource x and itself:

26

3.1. Semantic Linearity by Example

f6 :: Bool → a ⊸ a
f6 bool x =

let go b
= case b of
True → x
False → go (¬ b)

in go bool

Function f6 is semantically linear because, iff it is consumed exactly once, then x is
consumed exactly once. We can see this by case analysis on go’s argument

• When bool is True, we’ll use the resource x

• When bool is False, we recurse by calling go on True, which in turn will use the
resource x .

In go’s body, x is used directly in one branch and indirectly in the other, by recursively
calling go (which we know will result in using x linearly). It so happens that go will termi-
nate on any input, and will always consume x . However, termination is not a requirement
for a binding to use x linearly, and we could have a similar example in which go might
never terminate but still uses x linearly if evaluated:

f7 :: Bool → a ⊸ a
f7 bool x =

let go b
= case b of
True → x
False → go b

in go bool

The key to linearity in the presence of non-termination is Linear Haskell’s definition of a
linear function: if a linear function application (f u) is consumed exactly once, then the
argument (u) is consumed exactly once. If f u doesn’t terminate, it is never consumed,
thus the claim holds vacuously; that’s why f8 typechecks:

f8 :: a ⊸ b
f8 x = f8 x

If go doesn’t terminate, we aren’t able to compute (nor consume) the result of f7 , so we
do not promise anything about x being consumed (f7 ’s linearity holds trivially). If it did
terminate, it would consume x exactly once (e.g. if go was applied to True).

Determining the linear resources used in a recursive binding might feel peculiar since
we need to know the linear resources used by the binder to determine the linear resources it
uses. The paradoxical definition is difficult to grasp, just how learning that a function can
be defined in terms of itself is perplexing when one is first introduced to general recursion.
Informally, we assume the binding will consume some linear resources exactly once, and
use that assumption when reasoning about recursive calls such that those linear resources
are used exactly once.

27

3. Linearity, Semantically

Generalizing, we need to find a set of linear resources (∆) that satisfies the recursive
equation 3 arising from given binding x, such that:

1. Occurrences of x in its own body are synonymous with using all resources in ∆
exactly once,

2. And if the binding x is fully evaluated, then all resources in ∆ are consumed exactly
once.

Finding a solution to this equation is akin to finding a (principle) type for a recursive
binding: the binding needs to be given a type such that occurrences of that binding in
its own body typecheck using that type. Foreshadowing, the core system we developed
assumes recursive let bindings to be annotated with a set of resources satisfying the
equations; but we also present an algorithm to determine this solution, and distinguish
between an inference and a checking phase, where we first determine the linear resources
used by a group of recursive bindings and only then check whether the binding is linear,
in our implementation of checking of recursive lets.

There might not be a solution to the set of equations. In this case, the binding
undoubtedly entails using a linear resource more than once. For example, if we use a
linear resource x in one case alternative, and invoke the recursive call more than once, we
might eventually consume x more than once:

f9 :: Bool → Bool ⊸ Bool
f9 bool x =

let go b
= case b of
True → x
False → go (¬ b) ∧ go True

in go bool

Note that if returned x instead of go bool in the let body, then, despite the binding using
x more than once, we would still consume x exactly once, since recursive bindings are still
lazy.

Lastly, we extend our single-binding running example to use two mutually recursive
bindings that depend a linear resource:

f10 :: Bool → a ⊸ a
f10 bool x =
let go1 b

= case b of
True → go2 b
False → go1 (¬ b)

go2 b
= case b of
True → x
False → go1 b

in go1 bool

3This set of resources will basically be the least upper bound of the sets of resources used in each
mutually recursive binding scaled by the times each binding was used

28

3.1. Semantic Linearity by Example

As before, we must find a solution to the set of equations defined by the mutually recursive
bindings to determine which resources will be consumed. In this case, go1 and go2 both
consume x exactly once if evaluated. We additionally note that a strongly connected
group of recursive bindings (i.e. all bindings are transitively reachable from any of them)
will always consume the same set of resources – if all bindings are potentially reachable,
then all linear resources are too.

Summarising, recursive let bindings behave like non-recursive let bindings in that if
they aren’t consumed, the resources they depend on aren’t consumed either. However,
recursive let bindings are defined in terms of themselves, so the set of linear resources that
will be consumed when the binder is evaluated is also defined in terms of itself (we need it
to determine what resources are used when we recurse). We can intuitively think of this
set of linear resources that will be consumed as a solution to a set of equations defined
by a group of mutually recursive bindings, which we are able to reason about without
an algorithm for simpler programs. In our work, the core type system isn’t concerned
with deriving said solution, but we present a simple algorithm for inferring it with our
implementation.

3.1.3 Case expressions

Finally, we discuss semantic linearity for case expressions, which have been purposefully
left for last as the key ingredient that brings together the semantic linearity insights
developed thus far, because, essentially, case expressions drive evaluation and semantic
linearity can only be understood in function of how expressions are evaluated.

Up until now, the example functions have always linearly transformed linear resources,
taking into consideration how expressions will be evaluated (and thus consumed) to deter-
mine if resources are being used linearly. However, there have been no examples in which
linear resources are fully consumed in the bodies of linear functions. In other words,
all example functions so far return a value that has to be itself consumed exactly once
to ensure the linear argument is, in turn, consumed exactly once – as opposed to func-
tions whose application simply needs to be evaluated to guarantee its linear argument
is consumed (functions that return an unrestricted value). For example, the entry point
to the linear array API presented in Linear Haskell takes such a function as its second
argument:

newMArray :: Int → (MArray a ⊸ Unrestricted b) ⊸ b

In short, case expressions enable us to consume resources and thus write functions
that fully consume their linear arguments. To understand exactly how, we turn to the
definition of consuming a resource from Linear Haskell [37]:

• To consume a value of atomic base type (such as Int or Ptr) exactly once, just
evaluate it.

• To consume a function value exactly once, apply it to one argument, and consume
its result exactly once.

• To consume a value of an algebraic datatype exactly once, pattern-match on it, and
consume all its linear components exactly once.

That is, we can consume a linear resource by fully evaluating it, through case expressions.

29

3. Linearity, Semantically

In Core, case expressions are of the form case es of z {ρi → ei}, where es is the case
scrutinee, z is the case binder, and ρi → ei are the case alternatives, composed of a pattern
ρi and of the corresponding expression ei. Critically:

1. The case scrutinee is always evaluated to Weak Head Normal Form (WHNF).

2. Evaluating to WHNF an expression that is already in WHNF is a no-op, that is, no
computation whatsoever occurs, unlike evaluating a e.g. function application.

3. The case binder is an alias to the result of evaluating the scrutinee to WHNF.

4. The alternative patterns are always exhaustive, i.e. there always exists a pattern
that matches the WHNF of a value resulting from evaluating the scrutinee, where a
pattern is either a wildcard that matches all expressions (), or a constructor and its
linear and non-linear component binders (K xy, with x as linearly-bound variables
and y as unrestricted ones).

To explore these case properties in the presence of linearity, we start with an example
of a program that constructs a tuple from linear resources then pattern matches on it,
then uses both linearly-bound variables from the tuple pattern match. This is well-typed
in Linear Haskell:

f11 :: a ⊸ b ⊸ (a ⊸ b ⊸ c)→ c
f11 x y use = case (x , y) of {(a, b)→ use a b}

What might be more surprising is that a similar program which discards the pattern
variables and instead uses the resources in the scrutinee is also semantically linear, despite
not being accepted by Linear Haskell:

f12 :: a ⊸ b ⊸ (a ⊸ b ⊸ c)→ c
f12 x y use = case (x , y) of z {(a, b)→ use x y }

We justify that f12 is linear by appealing to property 2 – since the expression (the tuple)
being scrutinized is already in WHNF, evaluating it will not consume neither x nor y.
Even if the tuple was constructed with two expressions using x and y respectively, no
computation would happen since we aren’t using neither a nor b (thereby never forcing
the arguments of the tuple). However, if we did use a in the case body, then x would be
unavailable:

f13 :: a ⊸ a ⊸ (a ⊸ a ⊸ c)→ c
f13 x y use = case (x , y) of z {(a, b)→ use a x }

This idea that x and a are mutually exclusive is the same behind let bindings being
mutually exclusive to the resources that define them. By forcing the pattern variable (or
the let binding), we run the computations defined in terms of the linear variables used
for that constructor argument (or let binder body), but otherwise, if we don’t use those
binders, then we don’t run the computation thus no resources are consumed.

A third option for this example is to use the case binder z instead of a, b or x, y:

f14 :: a ⊸ b ⊸ (a ⊸ b ⊸ c)→ c

30

3.1. Semantic Linearity by Example

f14 x y use = case (x , y) of z {(a, b)→ uncurry use z }

Again, z is mutually exclusive with a, b and with x, y, but at least one of the three must
occur to ensure the linear resources are consumed. In this example, we can think that
using a entails using the resource x, b the resource y, and the case binder z entails using
both a and b.

Dually, consider the scrutinee to be an expression that’s not in WHNF, s.t. evaluating
it to WHNF will require doing computation and thus consume linear resources that are
used in it:

f15 :: a ⊸ b ⊸ (a ⊸ b ⊸ (c , d))→ (c , d)
f15 x y use = case use x y of z {(a, b)→ z }

Unlike when the scrutinee was in WHNF, we can no longer use x, y in the case alternatives,
but we must still use either the case binder z or the linear pattern variables a, b, e.g. it
would be quite disastrous if any of the following typechecked:

doubleFree :: Ptr ⊸ (Ptr ⊸ Result)→ Result
doubleFree x free = case free x of z {Result v → free x }

leakPointer :: Ptr → ()
leakPointer x = case id x of z { → ()}

The result of evaluating the scrutinee must be consumed exactly to guarantee that the
resources used in the scrutinee are fully consumed, or risk them being only “almost”
consumed. Take for example use in f15 to simply be (,): it is not sufficient for use x y
to be evaluated to WHNF to consume x and y . Otherwise, if all the resources were
considered to be fully consumed after the scrutinee were evaluated in a case expression,
we could simply ignore the pattern variables, effectively discarding linear resources (for
cases such as the use = (,) example). In short, if the scrutinee is not in WHNF we must
either consume the case binder or the linear components of the pattern.

However, we must also consider pattern matches on constructors without any linear
components. If the constructor has no linear fields, it means the result can be consumed
unrestrictedly and, therefore, all linear resources used in the computation have been fully
consumed. Consequently, in a branch of a constructor without linear fields we know
the result of evaluating the scrutinee to be unrestricted, so we can use the case binder
unrestrictedly and refer to it zero or more times. For example, this program is semantically
linear:

f16 :: () ⊸ ()
f16 x = case x of z {()→ z <> z }

A second example of an unrestricted pattern, where K2 has no fields and K1 has one linear
field, seems as though it shouldn’t typecheck since the resource x must have been fully
consumed to take the K2 branch, but because the scrutinee is known to be K1 , the K2
branch is absurd, so, in reality any resource could be freely used in that branch, and the
example is semantically linear (despite not being seen as so by our system):

31

3. Linearity, Semantically

f :: a ⊸ a
f x = case K1 x of z {K2 → x ;K1 a→ x }

This particular example has a known constructor being scrutinized which might seem like
an unrealistic example, but we recall that during the transformations programs undergo in
an optimising compiler, many programs such as this naturally occur (e.g. if the definition
of a function is inlined in the scrutinee).

Further exploring that each linear field must be consumed exactly once, and that
resources in WHNF scrutinees aren’t consumed, we are able to construct more contrived
examples, the following two of which the first doesn’t typecheck because the same linear
field is used twice, but the second one does since it uses each linear field exactly once
(despite pattern matching on the same components twice)

f w = case w of z
(a, b)→

case (a, b) of z’
(c , d)→

(a, c)

f w = case w of z
(a, b)→

case (a, b) of z’
(c , d)→

(a, d)

Before last, we consider the default case alternatives, also known as wildcards (writ-
ten), in the presence of linearity: matching against the wildcard doesn’t provide new
information, so linearity is seen as before but without fully consuming the scrutinee linear
resources (in non-linear patterns) nor binding new linear resources (in linear patterns). In
short, if the scrutinee is in WHNF, we can either use the resources from the scrutinee or
the case binder in that alternative, if the scrutinee is not in WHNF, we must use the case
binder, as it’s the only way to linearly consume the result of evaluating the scrutinee.

Finally, we discuss the special case of a case expression scrutinizing a variable x:

λx. case x of → x

It might seem as though the program is linear:

• If x is in WHNF, then scrutinizing it is a no-op, and returning x just returns the
resource intact.

• If x is not in WHNF, then scrutinizing it evaluates it to WHNF, and returning x
returns the result of evaluating x that still had to be consumed exactly once.

However, in practice, it depends on the evaluation strategy. If linear function applications
are β-reduced call-by-name (a common practice, as linear functions use their argument
exactly once), and the above function is considered linear, then an application might

32

3.1. Semantic Linearity by Example

duplicate linear resources during evaluation. For example:

(λx. case x of → x) (free x)
=⇒CBN β−reduction

case free x of → free x

Therefore, the type system we present in the next section, which evaluates linear appli-
cations call-by-name, does not accept the above program as linear. Foreshadowing, this
particular interaction between evaluation and linearity comes up in the type preservation
proof of our program, and is again explored with the reverse binder swap transformation
in Section 5.4.

In summary, case expressions evaluate their scrutinees to WHNF, introduce a case
binder, and bind pattern variables. If the scrutinee is already in WHNF, all resources
occurring in it are still available in the case alternative, alongside the case binder and
the pattern-bound variables. In the case alternative, either the resources of the scrutinee,
the case binder, or the linearly bound pattern variables must be used exactly once, but
mutually exclusively. For scrutinees not in WHNF, in the case alternative, either the case
binder or the linear pattern variables need to be used, in mutual exclusion. If the pattern
doesn’t bind any linear resources, then it may be consumed unrestrictedly, and therefore
the case binder may also be used unrestrictedly.

33

CHAPTER 4
A Type System for

Semantic Linearity in Core

In this chapter, we develop a linear calculus λπ
∆, dubbed Linear Core, that combines the

linearity-in-the-arrow and multiplicity polymorphism introduced by Linear Haskell [37]
with all the key features from GHC’s Core language, except for type equality coercions1.
Specifically, our core calculus is a linear lambda calculus with algebraic datatypes, case
expressions, recursive let bindings, and multiplicity polymorphism.

Linear Core makes much more precise the various insights discussed in the previous
chapter by crystallizing them together in a linear type system for which we prove soundness
via the usual preservation and progress theorems. Crucially, the Linear Core type system
accepts all the semantically linear example programs (highlighted with light yellow) from
Section 3.1, which Core currently rejects. Besides type safety, we prove that multiple
optimising Core-to-Core transformations preserve linearity in Linear Core. These same
transformations don’t preserve linearity under Core’s current type system. As far as we
know, we are the first to prove optimisations preserve types in a non-strict linear language.

The first key idea for typing linearity semantically is to delay consuming a resource to
when a computation that depends on that resource is effectively evaluated or returned,
by annotating relevant binders with usage environments (§ 4.3). The second key idea
is to have two distinct rules for case expressions, branching on whether the scrutinee
is in Weak Head Normal Form, and using “proof irrelevance” to track resources that
are no longer available but haven’t yet been fully consumed (§ 4.4). Additionally, we
introduce tagged resources to split the resources between the pattern-bound variables
as usage environments, encoding that pattern variables jointly “finish consuming” the
scrutinee resources. We also note that despite the focus on GHC Core, the fundamental
ideas for understanding linearity in a call-by-need calculus can be readily applied to other
non-strict languages.

We present Linear Core’s syntax and type system iteratively, starting with the judge-
ments and base linear calculi rules for multiplicity and term lambdas plus the variable
rules (§ 4.2). Then, usage environments, the rule for ∆-bound variables, and rules for (re-
cursive) let bindings (§ 4.3). Finally, we introduce the rules to typecheck case expressions
and alternatives, along with the key insights to do so, namely branching on WHNF-ness
of scrutinee, proof irrelevant resources, and tagged variables (§ 4.4).

1We explain a main avenue of future work, multiplicity coercions, in Section 6.2

35

4. A Type System for Semantic Linearity in Core

4.1 Language Syntax and Operational Semantics

The complete syntax of Linear Core is given by Figure 4.1. The types of Linear Core
are algebraic datatypes, function types, and multiplicity schemes to support multiplicity
polymorphism: datatypes (T p) are parametrised by multiplicities, function types (φ→π

σ) are also annotated with a multiplicity, which can be 1, ω (read many), or a multiplicity
variable p introduced by a multiplicity universal scheme (∀p. φ).

φ, σ ::= T p Datatype
| φ→π σ Function with multiplicity
| ∀p. φ Multiplicity universal scheme

The terms are variables x, y, z, data constructors K, multiplicity abstractions Λp. e and
applications e π, term abstractions λx:πσ. e and applications e e′, where lambda binders
are annotated with a multiplicity π and a type σ. Then, there are non-recursive let
bindings let x:∆σ = e in e′, recursive let bindings let rec x:∆σ = e in e′, where the
overline denotes a set of distinct bindings x1:∆1σ1 . . . xn:∆nσn and associated expressions
e1 . . . en, and case expressions case e of z:∆σ {ρ→ e′}, where z is the case binder and
the overline denotes a set of distinct patterns ρ1 . . . ρn and corresponding right hand sides
e′1 . . . e

′
n. Notably, (recursive) let-bound binders and case-bound binders are annotated

with a so-called usage environment ∆ – a fundamental construct for type-checking se-
mantic linearity in the presence of laziness we present in Section 4.3. Case patterns ρ can
be either the default or wildcard pattern , which matches any expression, or a constructor
K and a set of variables that bind its arguments, where each field of the constructor has
an associated multiplicity denoting whether the pattern-bound variables must consumed
linearly (ultimately, in order to consume the scrutinee linearly). Additionally, the set of
patterns in a case expression is guaranteed to be exhaustive, i.e. there is always at least
one pattern which matches the scrutinized expression.

e ::= x, y, z | K Variables and data constructors
| Λp. e | e π Multiplicity abstraction/application
| λx:πσ. e | e e′ Term abstraction/application
| let x:∆σ = e in e′ Let
| let rec x:∆σ = e in e′ Recursive Let

| case e of z:∆σ {ρ→ e′} Case
ρ ::= K x:πσ | Pattern and wildcard

Linear Core takes the idea of annotating lets with usage environments from the unpub-
lished Linear Mini-Core document by Arnaud Spiwack et. all [42], which first tentatively
tackled Core’s linearity issues. We discuss this work in more detail in Section 6.1.2.

Datatype declarations data T p where K : σ →π T p involve the name of the type
being declared T parametrized over multiplicity variables p, and a set of the data construc-
tors K with signatures indicating the type and multiplicity of the constructor arguments.
Note that a linear resource is used many times when a constructor with an unrestricted
field is applied to it, since, dually, pattern matching on the same constructor with an
unrestricted field allows it to be used unrestrictedly. Programs are a set of declarations
and a top-level expression.

The (small-step) operational semantics of Linear Core are given by Figure 4.2. We use
call-by-name evaluation for Linear Core as it captures the non-strict semantics in which
our type system understands linearity, while being simpler to reason about than call-by-
need operational semantics. Furthermore, linear function applications, even in a call-by-
need system, are usually reduced call-by-name as the function argument is guaranteed to

36

4.1. Language Syntax and Operational Semantics

Types
φ, σ ::= T p Datatype

| φ→π σ Function with multiplicity
| ∀p. φ Multiplicity universal scheme

Terms
e ::= x, y, z | K Variables and data constructors

| Λp. e | e π Multiplicity abstraction/application
| λx:πσ. e | e e′ Term abstraction/application
| let x:∆σ = e in e′ Let
| let rec x:∆σ = e in e′ Recursive Let
| case e of z:∆σ {ρ→ e′} Case

ρ ::= K x:πσ | Pattern and wildcard

Environments
Γ ::= · | Γ, x:ωσ | Γ,K:σ | Γ, p | z:∆σ Unrestricted (delta-)variables
∆ ::= · | ∆, x:πσ | ∆, [x:πσ] Linear (and irrelevant) resources

Multiplicities Declarations
π, µ ::= 1 | ω | p decl ::= data T p where K : σ →π T p

Figure 4.1: Linear Core Syntax

be used exactly once (thus avoiding unnecessarily allocating memory on the heap for a
redundant thunk). Specifically, function applications are reduced by the standard call-by-
name β-reduction, substituting the argument whole by occurrences of the lambda binder
in its body, case expressions evaluate their scrutinee to WHNF, substituting the result by
the case binder and constructor arguments for pattern-bound bound variables matching
on that same constructor.

Values
v ::= Λp. e | λx. e | K v

Evaluation Contexts
e −→ e′

E[e] −→ E[e′]
E ::= □ | E e | E π | case E of z:∆σ{ρ→ e}

Expression Reductions
(Λp. e) π −→ e[π/p]
(λx. e) e′ −→ e[e′/x]
let x:∆σ = e in e′ −→ e′[e/x]

let rec xi:∆σi = ei in e′ −→ e′[let rec xi:∆σi = ei in ei/x]

case K e of z:∆σ
′{. . . ,K x:πσ → e′} −→ e′[e/x][K e/z]

case K e of z:∆σ
′{. . . , → e′} −→ e′[K e/z]

Figure 4.2: Linear Core Operational Semantics (call-by-name)

37

4. A Type System for Semantic Linearity in Core

4.2 Typing Foundations

Linear Core (λπ
∆) is a linear lambda calculus akin to Linear Haskell’s λq

→ in that both have
multiplicity polymorphism, (recursive) let bindings, case expressions, and algebraic data
types. λπ

∆ diverges from λq
→ primarily when typing lets, case expressions, and alternatives

(in its purpose to type semantic linearity). Otherwise, the base rules of the calculus
for, multiplicity and term, abstraction and application are quite similar. In this section,
we present the linear calculi’s typing rules that share much in common with λq

→, and,
in the subsequent sections, the rules encoding the novel insights from Linear Core in
typing semantic linearity, that were explored by example in Section 3. We note, however,
that we handle multiplicity polymorphism differently from Linear Haskell in ignoring the
multiplicity semiring and, instead, conservatively treating all multiplicity polymorphic
functions as linear. The full type system is given by Figure 4.3, with auxiliary judgements
given by Figure 4.4.

We start with the main typing judgement. As is customary for linear type systems,
we use two typing environments, an unrestricted Γ and a linear ∆ environment. Variables
in Γ can be freely discarded (weakened) and duplicated (contracted), while resources in ∆
must be used exactly once (hence can’t be discarded nor duplicated). Despite not having
explicit weakening and contraction rules in our system, they are available as admissible
rules for Γ (but not for ∆), since, equivalently (via [11]), resources from Γ are duplicated
for sub-derivations and may unrestrictedly exist in the variable rules. The main typing
judgement reads “expression e has type σ → φ under the unrestricted environment Γ and
linear environment ∆”:

Γ;∆ ⊢ e : σ → φ

Occurrences of unrestricted variables from Γ are well-typed as long as the linear environ-
ment is empty, while occurrences of linear variables are only well-typed when the variable
being typed is the only resource available in the linear context.

Γ, x:ωσ; · ⊢ x : σ
(V arω)

Γ;x:1σ ⊢ x : σ
(V ar1)

In both cases, the linear context must contain exactly what is required to prove the
proposition, whereas the unrestricted context may contain arbitrary variables. Variables
in contexts are annotated with their type and multiplicity, so x:πσ is a variable named x
of type σ and multiplicity π.

Linear functions are introduced via the function type (σ →π φ) with π = 1, i.e. a
function of type σ →1 φ (or, equivalently, σ ⊸ φ) introduces a linear resource of type σ
in the linear environment ∆ to then type an expression of type φ. Unrestricted functions
are introduced via the function type (σ →π φ) with π = ω, and the λ-bound variable is
introduced in Γ:

Γ;∆, x:1σ ⊢ e : φ x /∈ ∆

Γ;∆ ⊢ λx:1σ. e : σ →1 φ
(λI1)

Γ, x:ωσ; ∆ ⊢ e : φ x /∈ Γ

Γ;∆ ⊢ λx:ωσ. e : σ →ω φ
(λIω)

A linear function application is well-typed if there exists a disjoint split of the linear re-
sources into ∆,∆′ s.t. the function and argument, each under a distinct split, are both
well-typed and the argument type matches the function’s expected argument type. Con-
versely, unrestricted resources are duplicated and available whole to both sub-derivations.

Γ;∆ ⊢ e : σ →1 φ Γ;∆′ ⊢ e′ : σ

Γ;∆,∆′ ⊢ e e′ : φ
(λE1)

38

4.2. Typing Foundations

Γ;∆ ⊢ e : σ

Γ, p; ∆ ⊢ e : σ p /∈ Γ

Γ;∆ ⊢ Λp. e : ∀p. σ
(ΛI)

Γ;∆ ⊢ e : ∀p. σ Γ ⊢mult π

Γ;∆ ⊢ e π : σ[π/p]
(ΛE)

Γ;∆, x:1σ ⊢ e : φ x /∈ ∆

Γ;∆ ⊢ λx:1σ. e : σ →1 φ
(λI1)

Γ, x:ωσ; ∆ ⊢ e : φ x /∈ Γ

Γ;∆ ⊢ λx:ωσ. e : σ →ω φ
(λIω)

Γ, x:∆σ; ∆ ⊢ x : σ
(V ar∆)

(Split)

Γ;∆, x:1σ ⊢ e : φ K has n linear arguments

Γ;∆, x:1σ#Ki
n ⊢ e : σ

Γ, x:ωσ; · ⊢ x : σ
(V arω)

Γ;∆ ⊢ e : σ →1 φ Γ;∆′ ⊢ e′ : σ

Γ;∆,∆′ ⊢ e e′ : φ
(λE1)

Γ;x:1σ ⊢ x : σ
(V ar1)

Γ;∆ ⊢ e : σ →ω φ Γ; · ⊢ e′ : σ

Γ;∆ ⊢ e e′ : φ
(λEω)

Γ;∆ ⊢ e : σ Γ, x:∆σ; ∆,∆′ ⊢ e′ : φ

Γ;∆,∆′ ⊢ let x:∆σ = e in e′ : φ
(Let)

Γ, xi:∆σi; ∆ ⊢ ei : σ Γ, xi:∆σi; ∆,∆′ ⊢ e′ : φ

Γ;∆,∆′ ⊢ let rec xi:∆σi = ei in e′ : φ
(LetRec)

(CaseWHNF)

e is in WHNF Γ;∆ ⊩ e : σ ⋗∆i e matches ρj
Γ, z:∆i

σ;∆i,∆
′ ⊢alt ρj → e′ :z

∆i
σ Z⇒ φ Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e′ :z[∆] σ ⇛ φ

Γ;∆,∆′ ⊢ case e of z:∆i
σ {ρ→ e′} : φ

(CaseNot WHNF)

e is not in WHNF Γ;∆ ⊢ e : σ Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e′ :z[∆] σ ⇛ φ

Γ;∆,∆′ ⊢ case e of z:[∆]σ {ρ→ e′} : φ

Γ;∆ ⊢alt ρ→ e :z∆s
σ ⇒ φ

(AltNWHNF)

Γ, x:ωσ, yi:∆iσi
n; ∆ ⊢ e : φ

Γ;∆ ⊢alt K x:ωσ, yi:1σi
n → e :z

∆i
n σ Z⇒ φ

(AltNNot WHNF)

Γ, x:ωσ, yi:∆iσi; ∆ ⊢ e : φ ∆i = ∆s#Ki
n

Γ;∆ ⊢alt K x:ωσ, yi:1σi
n → e :z∆s

σ ⇛ φ
(Alt0)

Γ [·/∆s]z , x:ωσ; ∆ [·/∆s] ⊢ e : φ

Γ;∆ ⊢alt K x:ωσ → e :z∆s
σ ⇒ φ

(Alt)

Γ;∆ ⊢ e : φ

Γ;∆ ⊢alt → e :z∆s
σ ⇒ φ

Figure 4.3: Linear Core Type System

An unrestricted function, unlike a linear one, consumes its argument unrestrictedly (zero
or more times). Therefore, in an unrestricted function application, allowing any linear
resources to occur in the argument expression entails consuming those resources unre-
strictedly, since the variable binding the argument expression could be discarded or used
more than once in the function body. Thus, argument expressions to unrestricted functions
must also be unrestricted, i.e. no linear variables can be used to type them.

Γ;∆ ⊢ e : σ →ω φ Γ; · ⊢ e′ : σ

Γ;∆ ⊢ e e′ : φ
(λEω)

Typing linear and unrestricted function applications separately is less general than typing
applications of functions of any multiplicity π by scaling (per the multiplicity semiring)
the multiplicities of the resources used to type the argument by π, however, our objective

39

4. A Type System for Semantic Linearity in Core

Γ ⊢mult π

Γ ⊢ 1
(1)

Γ ⊢ ω
(ω)

Γ, ρ ⊢ ρ
(ρ)

Γ;∆ ⊩ e : σ ⋗∆i

(WHNFK)

Γ; · ⊢ eω : σ Γ;∆i ⊢ ei : σ ∆i = ∆

Γ;∆ ⊩ K eωei : σ ⋗∆i

(WHNFλ)

Γ;∆ ⊢ λx. e : σ

Γ;∆ ⊩ λx. e : σ ⋗∆

Figure 4.4: Linear Core Auxiliary Judgements

of typing semantic linearity does not benefit much from doing so, and by keeping the
simple approach we can have the linear and unrestricted environments be separate.

Multiplicity abstractions (Λp. e) introduce a multiplicity variable p (in the unrestricted
context), and construct expressions of type ∀p. . . . , i.e. a type universally quantified over
a multiplicity variable p. We note that, in the body of the abstraction, function types
annotated with a p variable and datatype fields with multiplicity p are typed as thought
they are linear functions and linear fields, because p can be instantiated at both ω and 1
(so types using p must be well-typed at both instantiations).

Γ, p; ∆ ⊢ e : σ p /∈ Γ

Γ;∆ ⊢ Λp. e : ∀p. σ
(ΛI)

A multiplicity application instantiates a multiplicity-polymorphic type ∀p. σ at a partic-
ular (argument) multiplicity π, resulting in an expression of type σ where occurrences of
p are substituted by π, i.e. σ[π/p].

Γ;∆ ⊢ e : ∀p. σ Γ ⊢mult π

Γ;∆ ⊢ e π : σ[π/p]
(ΛE)

The rule additionally requires that π be well-formed in order for the expression to be
well-typed, using the judgement Γ ⊢mult π, where well-formedness is given by π either
being 1, ω, or an in-scope multiplicity variable in Γ.

Γ ⊢ 1
(1)

Γ ⊢ ω
(ω)

Γ, ρ ⊢ ρ
(ρ)

These rules conclude the foundations of our linear calculi. In subsequent sections we
type (recursive) let bindings and case expressions, accounting for semantic linearity as per
the insights construed in Section 3, effectively distilling them into the key ideas of our
work – encoded as rules.

4.3 Usage environments

A usage environment ∆ is the means to encode the idea that lazy bindings don’t consume
the resources required by the bound expression when defined, but rather when the bindings
themselves are fully consumed. Specifically, we annotate so-called ∆-bound variables with

40

4.3. Usage environments

a usage environment to denote that consuming these variables equates to consuming the
resources in the usage environment ∆ they are annotated with, where a usage environment
is essentially a multiset of linear resources. ∆-bound variables are introduced by a handful
of constructs, namely, (recursive) let binders, case binders, and case pattern variables. In
the following example, as per the insights into semantic linearity developed in Section 3.1,
the resources required to typecheck the body of the binder u, x and y, are only used if
the let-var u is consumed in the let-body e. Accordingly, the usage environment of the
let-bound u is {x, y}:

f = λx:1σ. λy:1σ. let u = (x, y) in e

Furthermore, usage environments guarantee that using a ∆-bound variable is mutually
exclusive with directly using the resources it is annotated with – using the ∆-bound
variable consumes all linear resources listed in its usage environment, meaning they are
no longer available for direct usage. Dually, using the linear resources directly means
they are no longer available to consume through the usage environment of the ∆-bound
variable.

Finally, we note that usage environments bear a strong resemblance to the linear typing
environments to the right of the semicolon in the main typing judgement, i.e. the environ-
ment with the linear resources required to type an expression. In fact, usage environments
and linear typing contexts differ only in that the former are used to annotate variables,
while the latter used to type expressions. Yet, this distinction is slightly blurred after
introducing how typing environments can be moved to usage environments, or otherwise
occurs in rules relating the two.

4.3.1 ∆-bound variables

A ∆-bound variable u is a variable annotated with a usage environment ∆. Crucially, for
any ∆-bound variable u:

1. Using u is equivalent to using all the linear resources in ∆

2. Using u is mutually exclusive with using the ∆ resources it depends on elsehow

3. u can be safely discarded as long as the resources in ∆ are consumed elsehow

Fortunately, since linear resources must be linearly split across sub-derivations, (2) follows
from (1): consuming the linear resources in ∆ to type u makes them unavailable in the
context of any other derivation. Therefore, expressions using these resources a second
time, directly, or indirectly through the same (or other) usage environment, is ill-typed,
as the resources are already allocated to the derivation of u. Similarly, (3) also follows
from (1), because if the linear resources aren’t consumed in the ∆-var derivation, they
must be consumed in an alternative derivation (or otherwise the expression is ill-typed).

These observations all boil down to one typing rule for ∆-bound variables, which
fundamentally encodes (1), implying the other two bullets:

Γ, x:∆σ; ∆ ⊢ x : σ
(V ar∆)

The rule reads that an occurrence of a ∆-bound variable is well-typed if the linear envi-
ronment is exactly the resources in the usage environment of that variable.

∆-variables are always introduced in Γ since they can be discarded and duplicated,
despite multiple occurrences of the same ∆-variable not possibly being well-typed as,
ultimately, it would imply non-linear usage of linear resources.

41

4. A Type System for Semantic Linearity in Core

4.3.2 Lazy let bindings

In Section 3.1, we discussed how linear resources used in let-bound expressions are only
consumed when the same let-bound expressions are fully evaluated, i.e. linear resources
required by let-bound expressions are consumed lazily. Moreover, resources from a let-
bound expression cannot be used together with the variable binding, since said resources
would end up being consumed more than once, violating (semantic) linearity – the binder
has to be used in mutual exclusion with the linear resources required to type the expression
it binds, and either must be used, or we’d be discarding resources.

Indeed, usage environments allow us to encode mutual exclusivity between alternative
ways of consuming linear resources (between ∆-vars and direct resource usage). Let-
bound variables are the canonical example of a ∆-bound variable, that is, let-variables
bind expressions in which the resources required to type them are consumed lazily rather
than eagerly. Effectively, annotating let-bound variables with a usage environment ∆
delays the consumption of resources to when the variables themselves are used.

Summarily, let-bindings introduce ∆-variables whose usage environments are the linear
typing environments of the bindings’ bodies:

Γ;∆ ⊢ e : σ Γ, x:∆σ; ∆,∆′ ⊢ e′ : φ

Γ;∆,∆′ ⊢ let x:∆σ = e in e′ : φ
(Let)

The rule for non-recursive let bindings splits the linear environment in ∆ and ∆′. ∆
is used to type the body e of the let binding x. Perhaps surprisingly, the resources ∆
used to type e are still available in the environment to type the let body e′, alongside the
unrestricted x binding annotated with the usage environment ∆. Ultimately, the resources
being available in e′ reflects the fact that typing a lazily bound expression doesn’t consume
resources, and the binding x being ∆-bound reflects that its usage entails consuming the
resources ∆ the expression e it binds depends on.

4.3.3 Recursive let bindings

Recursive let bindings are very similar to non-recursive ones, the main exception being
that the recursive bindings may be defined in terms of themselves, and we may have more
than one binding. In our system, groups of recursive let bindings are always assumed
to be strongly connected, that is, all the bindings in a recursive let group are mutually
recursive in the sense that they all (transitively) depend on one another.

As before, recursive let bindings bind expressions lazily, so they similarly introduce
a ∆-variable for each binding, and resources required to type the let-bindings are still
available in the body of the let, to later be consumed via ∆-variables or directly, if the
let-bindings are unused. However, as shown by example in Section 3.1.2, we must consider
how recursive uses of a binder in its own definition entails consuming all resources oth-
erwise required to type the binder’s body. Extrapolating to a strongly-connected group
of recursive bindings, (mutually) recursive uses of binders entail consuming all resources
required to type those binders. By definition, those binders in turn recursively use binders
that used them, and thus all the resources otherwise required to type them. Ultimately, all
binders in a strongly-connected group of mutually recursive let bindings have to be typed
with the same linear resources (which are the least upper bound of resources needed to
type the bodies of all binders, accounting for uses of mutually-recursive binders).

The typing rule for recursive groups of bindings leverages our assumption that all
recursive let bindings are strongly connected and exactly the observation that every binder
in a strongly connected group of recursive bindings is typed with the same linear context.

42

4.4. Case Expressions

Consequently, all bindings of the recursive group are introduced as ∆-vars with the same
∆ environment – using any one of the bindings in a recursive group entails consuming all
resources required to type that same group, which is also why we can use the same linear
resources to type each binder:

Γ, xi:∆σi; ∆ ⊢ ei : σ Γ, xi:∆σi; ∆,∆′ ⊢ e′ : φ

Γ;∆,∆′ ⊢ let rec xi:∆σi = ei in e′ : φ
(LetRec)

Unfortunately, this formulation is ill-suited for a syntax-directed system (from which an
implementation is direct) because determining a particular ∆ to type and annotate all
binders is difficult. We present our system and metatheory agnostically to the challenge
of inferring this linear typing environment by assuming recursive let expressions are an-
notated with the correct typing environment.

In practice, determining this typing environment ∆ amounts to finding a least upper
bound of the resources needed to type each mutually-recursive binding that (transitively)
uses all binders in the recursive group. We propose a naive algorithm for inferring usage
environments of recursive bindings in Section 4.5 orthogonally to the theory developed in
this section. The algorithm is a O(n2) traversal over the so-called naive usage environ-
ments used to type each binding. Inference of usage environments for recursive binding
groups bears some resemblance to the inference of principle types for recursive bindings
traditionally achieved through the Hindley–Milner inference algorithm [4], there might
be an opportunity to develop a better algorithm leveraging existing inference techniques.
Despite being a seemingly useful observation, we leave exploring a potential connection
between inference of usage environments and type inference algorithms as future work.

4.4 Case Expressions

Case expressions drive evaluation – a case expression evaluates its scrutinee to Weak Head
Normal Form (WHNF) [55], then selects the case alternative corresponding to the pattern
matching the Weak Head Normal Form of the scrutinee2. An expression in Weak Head
Normal Form can either be:

• A lambda expression λx. e,

• or a datatype constructor application K e

In both cases, the sub-expressions e or e occurring in the lambda body or as construc-
tor arguments needn’t be evaluated for the lambda or constructor application to be in
weak head normal form (if otherwise all sub-expressions were fully evaluated the whole
expression would also be in normal form). Accordingly, these sub-expressions might still
depend on linear resources to be well-typed (these resources will be consumed when the
expression is evaluated). As will be made clear in later sections, we need to devise a
specialized typing judgement for scrutinees that is able to distinguish between terms in
WHNF and terms that are not in WHNF. Following the discussion on expressions in weak
head normal form, we present a typing judgement Γ;∆ ⊩ e : σ ⋗∆i, and a rule for each
of the forms given above:

(WHNFK)

Γ; · ⊢ eω : σ Γ;∆i ⊢ ei : σ ∆i = ∆

Γ;∆ ⊩ K eωei : σ ⋗∆i

(WHNFλ)

Γ;∆ ⊢ λx. e : σ

Γ;∆ ⊩ λx. e : σ ⋗∆
2In our calculus, the alternatives are always exhaustive, i.e. there always exists at least one pattern

which matches the scrutinee in its WHNF, so we’re guaranteed to have an expression to progress evaluation.

43

4. A Type System for Semantic Linearity in Core

This judgement differs from the main typing judgement in that (1) it only applies to ex-
pressions in weak head normal form, and (2) it “outputs” (to the right of ⋗) a disjoint set
of linear environments (∆i), where each environment corresponds to the linear resources
used by a sub-expression of the WHNF expression. To type a constructor application
K eωei, where eω are unrestricted arguments and ei the linear arguments of the construc-
tor, we split the resources ∆ into a disjoint set of resources ∆i required to type each linear
argument individually and return exactly that split of the resources; the unrestricted eω
expressions must be typed on an empty linear environment. A lambda expression is typed
with the main typing judgement and trivially “outputs” the whole ∆ environment, as
there is always only a single sub-expression in lambdas (the lambda body).

Recall that the operational semantics encode the evaluation of case expressions as:

case e of z {ρi → ei} −→∗ case e′ of z {ρi → ei} where e′ is in WHNF and e is not

case K e of z {K x→ ei} −→ ei[e/x][K e/z]
case e of z { → ei} −→ ei[e/z] where e is in WHNF

When a scrutinee K e matches a constructor pattern K x:πσ, evaluation proceeds in
the case alternative corresponding to the matching pattern, with occurrences of x being
substituted by e, and occurrences of the case binder z substituted by the whole scrutinee
K e. Constructors and lambda expressions otherwise match the wildcard pattern whose
alternative body is evaluated only substituting the case binder by the scrutinee.

We highlight that, when evaluating a case expression, computation only effectively
happens when a scrutinee not in WHNF is evaluated to WHNF. When the scrutinee is
already in WHNF, evaluation continues in the alternative by substituting in the appro-
priate scrutinee expressions, but without having performed any computation. In terms of
linearity, resources are consumed only if evaluation happens. Therefore, resources used to
type a scrutinee not in WHNF will be consumed when the case is evaluated, making said
resources unavailable in the case alternatives. Conversely, when the scrutinee is already
in WHNF, linear resources required to type the scrutinee are still available in the alterna-
tives. The linear resources used by an expression in WHNF are exactly those which occur
to the right of ⋗ in the WHNF judgement shown above (corresponding to the resources
required to typecheck the lambda body or the constructor arguments).

4.4.1 Branching on WHNF-ness

The dichotomy between evaluation (hence resource usage) of a case expression whose
scrutinee is in weak head normal form, or otherwise, leads to one of our key insights:
we must branch on weak head normal formed-ness to type case expressions. When the
scrutinee is already in weak head normal form, the resources are unused upon evaluation
and thus available in the alternatives. When it is not, resources will be consumed and
cannot be used in the alternative. To illustrate, consider a case expression with a scrutinee
in weak head normal form and another whose scrutinee is not:

(1) λx. case K x of → x (2) λx. case free x of → x

The first function uses x linearly, while the second does not. Alternatives may also use
the case binder or pattern variables, referring to, respectively, the whole scrutinee (and
all resources used to type the scrutinee) or constructor arguments (and the resources to
type each argument).

Linear resources must be used exactly once, but there are three competing ways to use
the resources from a scrutinee in WHNF in a case alternative: directly, via the case binder,

44

4.4. Case Expressions

or by using all the pattern-bound variables. Recall how ∆-variables can encode mutual
exclusivity between alternative ways of consuming resources – it follows that case binders
and pattern-bound variables are another instance of ∆-bound variables. Intuitively, re-
sources in a scrutinee that is already in WHNF are only properly consumed when all
(linear) fields of the pattern are used, satisfying the definition of consuming resources
given in Linear Haskell. This suggests the following rule:

(CaseWHNF)

e is in WHNF Γ;∆ ⊩ e : σ ⋗∆i Γ, z:∆i
σ;∆i,∆′ ⊢alt ρ→ e′ :z

∆i
σ Z⇒ φ

Γ;∆,∆′ ⊢ case e of z:∆i
σ {ρ→ e′} : φ

First, we assert this rule is only applicable to expressions in weak head normal form.
Second, we use the typing judgement for expressions in WHNF previously introduced to
determine the split of resources amongst the scrutinee sub-expressions. Finally, we type
all case alternatives with the same context, using the ⊢alt judgement. Specifically:

• We introduce the case binder z in the environment as a ∆-bound variable whose
usage environment is the linear resources used to type the scrutinee.

• We make all the resources ∆i used to type the scrutinee available in the linear typing
environment.

• We annotate the alt judgement with the disjoint set of linear resources ∆i used to
typecheck the scrutinee sub-expressions.

• We annotate the judgement with the name of the case binder z and use the Z⇒ arrow
in the judgement – this is of most importance when typing the alternative itself, and
will be motivated together with the alternative judgement below.

Despite the key intuitions of typing a case expressions whose scrutinee is in WHNF being
conveyed by this rule, our treatment of such a case expression is slightly more involved,
as will be presented after discussing cases of scrutinees not in WHNF.

The alternative judgement Γ;∆ ⊢alt ρ→ e :z∆ σ ⇒ φ is used to type case alternatives,
but it encompasses three “sub-judgements“, distinguished by the arrow that is used: for
alternatives of case expressions whose scrutinee is in WHNF (Z⇒), for case expressions in
which the scrutinee is not in WHNF (⇛), and for alternatives agnostic to the WHNF-ness
of the scrutinee (⇒), with ⇒ also generalizing the other two. Following the CaseWHNF

rule in which we use the Z⇒ alternative judgement, the rule for typing a case alternative
whose pattern is a constructor with n > 0 linear components is:

(AltNWHNF)

Γ, x:ωσ, yi:∆iσi
n; ∆ ⊢ e : φ

Γ;∆ ⊢alt K x:ωσ, yi:1σi
n → e :z

∆i
n σ Z⇒ φ

The rule states that, for such a pattern matching a scrutinee already in WHNF, we intro-
duce the linear components of the pattern as ∆-bound variables whose usage environment
matches the linear resources required to type the corresponding constructor argument in
the scrutinee, which comes annotated in the judgement (∆i). Unrestricted fields of the
constructor are introduced as unrestricted variables. We note that the typing environment
∆ always contains the resources ∆i in uses of the alternative judgement.

45

4. A Type System for Semantic Linearity in Core

Secondly, the rule for alternatives that match on the wildcard pattern:

(Alt)

Γ;∆ ⊢ e : φ

Γ;∆ ⊢alt → e :z∆s
σ ⇒ φ

To type a wildcard alternative we simply type the expression with the main judgement,
ignoring all annotations on the judgement; recalling that the case binder was already intro-
duced in the environment with the appropriate usage environment by the case expression,
rather than in the case alternative rule.

Finally, consider an alternative matching on a case constructor without any linear
components. According to the definition of consuming a resource from Linear Haskell, the
linear resources of a scrutinee matching such a pattern are fully consumed in the body
of the corresponding alternative, since the scrutinee must have been evaluated to a form
that does not have any linear components. This definition agrees with the intuition we
have developed by example in the previous section, and with the typing rule we devised
for alternatives matching constructors without linear components.

Taking into account that case expressions introduce the linear resources of the scrutinee
in the typing environment of all alternatives, and in the usage environment of the case
binder, we must reactively update the typing environments after matching on such a
pattern. The Alt0 rule essentially encodes this insight, and is applicable regardless of the
WHNF-ness of the scrutinee (hence the ⇒ arrow), as long as the constructor pattern has
no linear fields:

(Alt0)

Γ [·/∆s]z , x:ωσ; ∆ [·/∆s] ⊢ e : φ

Γ;∆ ⊢alt K x:ωσ → e :z∆s
σ ⇒ φ

The rule deletes the annotated scrutinee environment ∆s from two select environments:

• The linear typing environment, effectively deleting the resources from the scrutinee
made available here by the case expressions (written ∆[·/∆s], a substitution of the
scrutinee typing environment by the empty linear environment ·).

• The usage environment of the case binder z, written Γ[·/∆s]z to denote replacing
the usage environment of the variable z in Γ, which is necessarily ∆s (since we
always annotate the judgement with the environment of the scrutinee), by the empty
environment.

The rule faithfully encodes the notion that an expression matching such a pattern is unre-
stricted when evaluated to WHNF, implying that all linear resources have been consumed
to produce it, and the result is something that can be freely discarded or duplicated. It
ensures that when we match on an unrestricted pattern we no longer need to consume
the scrutinee resources. Otherwise, for example, case K1 x of {K2 → K2,K1 y → K1 y}
would not be well-typed since the resource x is not consumed in the first branch. Further-
more, since the case binder in such an alternative refers to the unrestricted expression,
the case binder too may be used unrestrictedly, which we allow by making its usage envi-
ronment empty.

It might seem as though deleting the resources from the environment in this rule is
necessary to guarantee a resource is not used after it is consumed. However, let us consider
two discrete situations – pattern matches in a case expression whose scrutinee is in WHNF,
and matches on a case expression whose scrutinee is not in WHNF:

46

4.4. Case Expressions

1. When the scrutinee is in WHNF, it is either an unrestricted expression against which
any match will only introduce unrestricted variables, or an expression that depends
on linear resources. The first case trivially allows any resource from the scrutinee in
the alternatives as well. The second is further divided:

a) The pattern is unrestricted while the scrutinee is not, so entering this branch
is impossible as long as the case expression is well-typed; by contradiction, the
linear resources from the scrutinee could occur unrestrictedly in that branch,
since from falsity anything follows (ex falso quodlibet). For uniformity, we type
such alternatives as those for scrutinees that are not in WHNF.

b) The pattern is linear and matches the scrutinee, in which case the AltNWHNF

is applicable instead of Alt0.

c) The pattern is linear but does not match the scrutinee and so, the same rea-
soning as (1) above applies: any resource could theoretically be used in such
alternatives, however, for uniformity, it is also typed as though the scrutinee
were not in WHNF.

2. However, if the scrutinee is not in WHNF, the resources occurring in the scrutinee
will be consumed when evaluation occurs. Therefore, the resources used in the
scrutinee cannot occur in the alternative body (e.g. x cannot occur in the alternative
in case close x of {K1 → x}) – regardless of the pattern. We guarantee resources
from a scrutinee that is not in weak head normal form cannot occur/directly be
used in any case alternative, in our rule for typing cases not in WHNF, which we
introduce below.

4.4.2 Proof irrelevant resources

Resources used in a scrutinee that is not in weak head normal form must definitely not
be used in the case alternatives However, it is not sufficient to evaluate the scrutinee to
weak head normal form to fully consume all resources used in the scrutinee, since sub-
expressions such as constructor arguments will be left unevaluated. To fully consume all
resources occurring in the scrutinee, the scrutinee must be evaluated either to normal
form or s.t. all linear components of the scrutinee are fully evaluated, as witnessed by the
Alt0 rule. In short, for a case expression whose scrutinee is not in WHNF:

• The scrutinee resources must not be used directly in the case alternatives;

• But the result of evaluating the scrutinee to WHNF must still be consumed, as all
sub-expressions of the scrutinee remain unevaluated and must be consumed.

• Since the scrutinee resources cannot be consumed directly, they must be consumed
indirectly through ∆-variables, namely, either the case binder, or the linear pattern-
bound variables introduced in the alternative.

We introduce proof irrelevant resources, denoted as linear resources within square
brackets [∆], to encode linear resources that cannot be directly used (the V ar rule is not
applicable). Proof irrelevant resources are linear resources in all other senses, meaning they
must be used exactly once. However, since proof irrelevant resources cannot be forgotten
neither used directly, they have to be consumed indirectly – by ∆-bound variables.

To type a case expression whose scrutinee is in weak head normal form, we type the
scrutinee with linear resources ∆ and type the case alternatives by introducing the case

47

4. A Type System for Semantic Linearity in Core

binder with a usage environment [∆], having the same proof irrelevant linear context [∆]
in the typing environment, annotating the judgement with the proof irrelevant resources,
and using the ⇛ judgement:

(CaseNot WHNF)

e is not in WHNF Γ;∆ ⊢ e : σ Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e′ :z[∆] σ ⇛ φ

Γ;∆,∆′ ⊢ case e of z:[∆]σ {ρ→ e′} : φ

Note how the rule is quite similar to the one for scrutinees in WHNF, only diverging in
that the resources in the case binder, typing environment, and judgement annotation, are
made irrelevant.

Finally, we recall the tentative CaseWHNF rule presented before and highlight its flaw:
the Γ;∆ ⊢alt ρ→ e :z∆s

σ Z⇒ φ judgement is only well-defined for patterns ρ matching the
WHNF form of the scrutinee, as the distribution of resources per constructor components
only makes sense for the constructor pattern matching the scrutinee. Essentially, if the
scrutinee is in WHNF the matching alternative is easily determined, and must be treated
with the specialized Z⇒ judgement, which only applies to the matching constructor. Al-
ternatives not matching the scrutinee, as mentioned in the discussion of the Alt0 rule,
could use resources arbitrarily as they will never be executed, however, we uniformly treat
non-matching alternatives as if the scrutinee were not in WHNF. The rule for typing case
alternatives whose scrutinee is in WHNF is thus given by:

(CaseWHNF)

e is in WHNF Γ;∆ ⊩ e : σ ⋗∆i e matches ρj
Γ, z:∆i

σ; ∆i,∆
′ ⊢alt ρj → e′ :z

∆i
σ Z⇒ φ Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e′ :z[∆] σ ⇛ φ

Γ;∆,∆′ ⊢ case e of z:∆i
σ {ρ→ e′} : φ

We note that it might seem unusual to specialize a rule for expressions in WHNF, as
programs scrutinizing an expression in WHNF are rarely written by a developer. Yet, our
system is designed to be suitable for optimising compilers in which intermediate programs
commonly scrutinize expressions in WHNF. Foreshadowing, type preservation for the case-
reduction substituting the case binder and pattern variables in the alternative is not
possible to prove without branching on WHNF-ness, since otherwise the ∆-substitution
is not well-defined.

4.4.3 Splitting and tagging fragments

Intuitively, in case alternatives whose scrutinee is not in weak head normal form, the proof-
irrelevant resources introduced by the case expression must be fully consumed, either via
the case binder z, or by using all linear pattern-bound variables (for uniformity, we also
treat alternatives that do not match a scrutinee in WHNF this way).

However, unlike with scrutinees in WHNF, the resources used by a scrutinee not in
WHNF do not necessarily match those used by each sub-expression of the expression eval-
uated to WHNF. Therefore, there is no direct mapping between the usage environments
of the linear pattern-bound variables and the resources used in the scrutinee.

We introduce tagged resources to guarantee all linearly-bound pattern variables are
jointly used to consume all resources occurring in the environment (in alternative to the
case binder), or not at all. Given linear resources [∆s] used to type a scrutinee, and a
pattern K xω, yi with i linear components, we assign a usage environment ∆i to each
linear pattern variable where, ∆i is obtained from the scrutinee environment tagged with

48

4.5. Linear Core as a GHC Plugin

the constructor name and linear-variable index ∆s#Ki, and y:∆iσ is introduced in Γ.

(AltNNot WHNF)

Γ, x:ωσ, yi:∆iσi; ∆ ⊢ e : φ ∆i = ∆s#Ki
n

Γ;∆ ⊢alt K x:ωσ, yi:1σi
n → e :z∆s

σ ⇛ φ

The tag consists of a constructor name K and an index i identifying the position of the
pattern variable among all bound variables in that pattern. The key idea is that a linear
resource x can be split into n resources at a given constructor, where n is the number of
positional linear arguments of the constructor. This is given by the rule:

(Split)

Γ;∆, x:1σ ⊢ e : φ K has n linear arguments

Γ;∆, x:1σ#Ki
n ⊢ e : σ

By assigning to each linear pattern variable a fragment of the scrutinee resources with
a tag, we guarantee that all linear pattern variables are simultaneously used to con-
sume all the scrutinee resources, since for any of scrutinee resources to be used by a
linear pattern-bound var be used, the resources must be Split for the fragments cor-
responding to that ∆-var to be consumed, and, consequently, the remaining fragments
have to be consumed through the other linear pattern-bound variables. For instance, in
λx. case x of z {K a b → (a, b)}, where x is a linear variable, the case alternatives are
typed with [x] (proof irrelevant x), z is introduced as z:[x]σ, and the pattern variables are
introduced as a:[x]#K1

σ and b:[x]#K2
σ, assuming both components of K are linear. We

note how Split can be applied both to relevant and proof irrelevant linear resources in ∆.

4.5 Linear Core as a GHC Plugin

We have implemented the Linear Core type system as a plugin for the Glasgow Haskell
Compiler. GHC plugins allow developers to inspect and modify programs being compiled
by GHC, at different stages of compilation [41]. In particular, for any given Haskell
module, Core plugins run for (and receive as input) every intermediate program produced
in the compilation process, i.e. from desugaring and after each optimising transformation.
This implementation further substantiates our claim that Linear Core is suitable for the
intermediate language of an optimising compiler.

The GHC Linear Core plugin [53] implements a typechecker for Linear Core: given a
Core program, our plugin typechecks the linearity of all expressions bound in that pro-
gram, failing if a linear resource is not used exactly once according to semantic linearity
of the (λπ

∆) system. Most notably, the plugin successfully validates linearity through-
out the (optimising) compilation of linearity-heavy libraries, namely linear-base and
linear-smc, except in expressions whose linearity depends on so-called multiplicity coer-
cions, which are an avenue of future work (§ 6.2) exploring the intersection of Linear Core
with type equality coercions.

The implementation of Linear Core as a typechecker does not follow directly from the
description of the type system because Linear Core is not syntax-directed. Specifically,
the most challenging features are splitting linear resources amongst sub-derivations and
consuming fragments of resources through pattern-bound variables. We use the following
techniques to tackle the non-syntax-directedness of Linear Core, thus making the system
more suitable to implement:

49

4. A Type System for Semantic Linearity in Core

• Instead of non-deterministically splitting linear resources amongst sub-derivations,
we thread input/output linear resources through each derivation using the resource
management for linear logic described by [24].

• Pattern variables bound in a case alternative, for a scrutinee not in WHNF, are in-
troduced as ∆-variables with usage environment [∆]#Ki, where ∆ are the scrutinee
resources and Ki the tag of that pattern variable. To use the resources through the
pattern-bound ∆-vars, they must be first Split into fragments.

We consume tagged fragments of a resource as needed, i.e., when a resource, whose
usage environment has a fragmented resource with tag Kj , is used, we Split the
matching resource according to the constructor K and consume the fragment Kj ,
rather than eagerly determining which resources need to be fragmented to do so. We
note that it is safe to destructively fragment the resource, i.e. removing the whole
resource and only leaving the split fragments, because resources are only Split when
a fragment is needed and, consequently, if a fragment is consumed, using the “whole”
resource as well violates linearity.

Furthermore, our implementation must infer the usage environments of binders in a re-
cursive let group before using them to typecheck the let body. We use a naive O(n2)
algorithm (where n is the number of let bindings) to determine these usage environments,
but discuss an avenue of further research regarding this inference challenge in Section 6.2.

The usage environments of a recursive group of binders (that is not necessarily strongly-
connected) is computed in two separate passes. First, we calculate a naive environment
by recording the linear resources semantically used in the binder bodies, while counting
uses (not syntactic occurrences) of the mutually recursive let variables. Second, the binder
names and corresponding naive environment (mapping each linear resource to 1 and the
recursive variables to the n number of times they are used) in Cartesian pairs are given
as input to Algorithm 1, which computes the actual usage environment of each binder.
Intuitively, the algorithm, for each recursive binder, iterates over the (initially naive) usage

Algorithm 1: computeRecUsages

usageEnvs← naiveUsageEnvs.map(fst);
for (bind, U) ∈ naiveUsageEnvs do

for V ∈ usageEnvs do
V ← sup(V [bind] ∗ U \ {bind}, V \ {bind})

environments and substitutes occurrences of the recursive binders by their corresponding
usage environment, scaled up by the amount of times that recursive binder is used in the
environment being updated. The result is the least upper bound of linear resources used
by each strongly-connected group of mutually recursive bindings (for each binder of such
a group), since all occurrences of the recursive binders in the usage environments will be
substituted away by the corresponding recursive usage environments. The complexity of
computing a usage environment for n recursive let binders is quadratic in n, but this is
not an issue since it is uncommon to have more than a handful of binders in the same
recursive let block.

The results of running the Linear Core GHC plugin on large established libraries
focused around linear types are given by Figure 4.5. We compiled the libraries linear-smc,
a library presented in the work [45] (1500 lines), linear-base (4000 lines), the Haskell
standard library for programming with linear types, comprised of over 100 modules, and

50

4.5. Linear Core as a GHC Plugin

priority-sesh [48] (1400 lines), a session-types library, using our plugin. We count the
number of programs accepted by our implementation, where each top-level binding in a
module counts as a program, and every such binding is typechecked once per optimisation
pass. i.e., we typecheck all intermediate programs produced by GHC. The total amount
of programs rejected by the typechecker are given in the “Total Rejected” column, but we
distil these rejections into “Unique Rejections” by removing duplicate rejections (those of
the same program and for the same linearity-violating reason, but occurring at different
stages). We further categorize the unique rejections into “Linear modulo Call-by-name”,
“Linear Rejected”, “Not Linear Rejected”, and “Unknown Rejected”. Using the plugin,
linear-base takes 35 seconds to compile, instead of 20 seconds. We note, however, that
the implementation is not performance conscious, and types every intermediate program
from scratch, instead of maintaining linearity information throughout the pipeline.

Programs “linear modulo call-by-name” are a class of programs which scrutinize a
variable, but then uses the variable in the case alternatives of the case scrutinizing it. As
will be made clear in Section 5.4.7, these programs can be understood as linear as long
as applications of linear functions binding these variables are not reduced call-by-name,
because, in doing so, linear resources are duplicated. In Core, these programs are not seen
as linear, and thus GHC does not not reduce them using a call-by-name evaluation strategy.
“Linear Rejected” programs include different kinds of programs which are rejected by the
Linear Core system, but are still semantically linear. An example is a program to which
a rewrite rule was applied, resulting in an application of unrestricted function to a linear
resource in the first argument to build :

take :: Int → Replicator a ⊸ [a]
take = λ(ds :: Int) (r :: Replicator b)→

case ds of
1→ build (λ(c :: b → a→ a) (n :: a)→ c (extract r) n)
...

We know the linear resource is still used linearly because build will always instance the
unrestricted function to (:) (read Cons), which is linear. Additionally, these include pro-
grams scrutinizing a value of a type of which all constructors have no linear components,
but only matching on the default alternative, programs where common-sub-expression
elimination substituted more than one occurrence of Ur x by y , in the body of scruti-
nizing y (a linear variable), and other programs affected by rewrite rules. “Not Linear
Rejected” indicate programs that we do not understand as linear, semantically, and are si-
multaneously rejected by Linear Core and its implementation. An example, where the last
component of HashMap, wwz , is linear, but is not being consumed in the case alternative
matching on it:

jssvi :: Ur Bool ⊸ Set Int ⊸ Ur (TestT IO ())
jssvi (a :: Ur Bool) (b :: Set Int)

= case a of
Ur ss → case b of

HashMap wwx wwy wwz →
jump wjssAd ss

Finally, “Unknown Rejected” programs are those whose validity we did not check. These
include both programs accepted by Linear Core, but not by its implementation, and
programs that are simply rejected by Linear Core, but which were not categorized.

The results indicate our mostly direct implementation of Linear Core is successful in
accepting the vast majority of the thousands of intermediate programs produced by GHC

51

4. A Type System for Semantic Linearity in Core

Library
Total

Accepted
Total

Rejected
Unique
Rejected

Linear modulo
Call-by-name

Linear
Rejected

¬ Linear
Rejected

Unknown
Rejected

linear-smc 19438 4 1 1 0 0 0
priority-
sesh

6781 19 1 0 0 0 1

linear-base 112311 538 87 10 8 2 67

Figure 4.5: Linear Core Plugin on Linear Libraries

when compiling libraries that make extensive use of linear types. The programs rejected
by the Linear Core plugin, in linear-base, besides validating that our implementation is
faithful to the λπ

∆ system of insofar as programs that should not be accepted are deemed
ill-typed, provide further insight into the remaining details required to fully typecheck
linearity in a mature optimising compiler.

52

CHAPTER 5
Metatheory

The λπ
∆ system is sound: well-typed programs in Linear Core do not get stuck. Besides

type safety (§ 5.3), we prove multiple optimising transformations preserve linearity (§ 5.4),
and prove an auxiliary result regarding proof irrelevant resources, stating that a case
alternative well-typed in a proof irrelevant context is also well-typed if proof irrelevant
resources are substituted by an arbitrary environment of relevant resources. Additionally,
we state our assumptions that outline an isomorphism between using a linear variable
x:1σ and a ∆-variable x:∆σ that consumes existing resources ∆, for any ∆.

5.1 Assumptions

We use two main assumptions in our proofs, which are dual. First, a program well-typed
with a linear variable (x:1σ) is equivalently well-typed if that same linear variable were
instead ∆-bound (x:∆σ) with usage environment ∆, ∆ were available in the linear context
instead of the linear variable.

Assumption 1 (1⇒ ∆). A linear variable can be moved to the unrestricted context as a
∆-var with usage environment ∆ by introducing ∆ in the linear resources.
If Γ;∆′, x:1σ ⊢ e : σ then Γ[∆/x], x:∆σ; ∆,∆′ ⊢ e : σ.

Second, a program well-typed with resources ∆ and ∆-bound variable (x:∆σ) is equiva-
lently well-typed, as long as ∆ is consumed through the use of x, if x is moved to the
linear context, resources ∆ are removed from the linear context, and occurrences of ∆
whole in usage environments are substituted by x (occurrences of fragments of ∆ in us-
age environments are unimportant since ∆ was consumed whole by x, not by any of the
fragment-using ∆-vars).

Assumption 2 (∆ ⇒ 1). A ∆-variable can replace its usage environment ∆ as a linear
variable if ∆ is decidedly consumed through it.
If Γ, x:∆σ; ∆,∆′ ⊢ e : σ and ∆ is consumed through x:∆σ in e then Γ[x/∆];∆′, x:1σ ⊢ e : σ.

We additionally state that unrestricted resources are equivalent to ∆-bound variables
with an empty (·) usage environment:

Assumption 3 (x:ωσ = x:·σ). An unrestricted variable is equivalent to a ∆-var with an
empty usage environment.
Γ, x:ωσ; ∆ ⊢ e : σ iff Γ, x:·σ; ∆ ⊢ e : σ

53

5. Metatheory

5.2 Irrelevance

As discussed above, proof irrelevant resources are resources that can only be consumed
indirectly, and are used to type case expressions whose scrutinee is not in WHNF, essen-
tially encoding that the scrutinee resources must be consumed through the case binder or
the linear pattern-bound variables. As a case expression is evaluated, the scrutinee will
eventually be in WHNF, which must then be typed with rule CaseWHNF. Crucially, these
rules must “work together” in the system, in the sense that case expressions typed using
the CaseNot WHNF rule must also be well-typed after the scrutinee is evaluated to WHNF,
which is then typed using the CaseWHNF rule.

The Irrelevance lemma is required to prove preservation for that evaluation case. We
need to prove that the alternatives of a case expression typed with proof irrelevant re-
sources are still well-typed when the proof irrelevant resource is substituted by the scruti-
nee resources as it is evaluated to WHNF. In this sense, the Irrelevance lemma witnesses
the soundness of typing a case alternative with proof irrelevant resources in a certain
context with respect to typing the same expression with arbitrary resources (we note,
however, typing an alternative with proof irrelevant resources is not complete wrt using
arbitrary resources – a counter example needs only to use a resource directly).

Lemma 1 (Irrelevance). If Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e :z[∆] σ ⇛ φ then Γ, z:∆†σ; ∆†,∆′ ⊢alt
ρ→ e :z

∆† σ ⇒ φ, for any ∆†

Intuitively, the lemma holds since proof irrelevant resources can only be used through
the case binder or pattern-bound variables. If we consistently replace the proof irrelevant
resources both in the typing environment and in the usage environments containing them,
the expression remains well-typed. We note that the proof irrelevant resources are always
unique when introduced in such a case alternative (we always take the scrutinee environ-
ment to make irrelevant, and allow nested “irrelevantness”), so the case binder has the
only occurrence of those resources in the Γ environment. The proof is given in Section A.3.

5.3 Type safety

We prove type safety of the Linear Core system via the standard type preservation and
progress results. As is customary, we make use of multiple substitution lemmas, one for
each kind of variable: unrestricted variables x:ωσ, linear variables x:1σ, and ∆-bound
variables x:∆σ.

Theorem 2 (Type preservation). If Γ;∆ ⊢ e : σ and e −→ e′ then Γ;∆ ⊢ e′ : σ

Type preservation states that a well-typed expression e that evaluates to e′ remains well-
typed under the same context: The proof (§ A.1) is done by structural induction on the
reductions e −→ e′ from the operational semantics. Most cases are straightforward and
usually appeal to one or more of the substitution lemmas described below. The most
interesting case is that of case expressions whose scrutinee can be further evaluated – we
branch on whether the scrutinee becomes in WHNF, and invoke the Irrelevance lemma if
so. This case guarantees that the separation of rules for treating scrutinees is consistent,
in the sense that a well-typed case expression with a scrutinee not in WHNF remains
well-typed after the scrutinee is evaluated to WHNF.

Theorem 3 (Progress). If ·; · ⊢ e : σ then e is a value or there exists e′ such that e −→ e′.

54

5.3. Type safety

Progress states that the evaluation of a well-typed term does not block: Similarly, progress
is proved by induction on typing (§ A.2).

5.3.1 Substitution Lemmas

The preservation and progress theorems depend on multiple substitution lemmas, one for
each kind of variable, as is standard.

The linear substitution lemma states that a well-typed expression e with a linear
variable x of type σ remains well-typed if occurrences of x in the e are replaced by an
expression e′ of the same type σ, and occurrences of x in the linear context and in usage
environments of ∆-bound variables are replaced by the linear context ∆′ used to type e′:

Lemma 4 (Substitution of linear variables preserves typing).

1. If Γ;∆, x:1σ ⊢ e : φ and Γ;∆′ ⊢ e : σ then Γ [∆′/x] ;∆,∆′ ⊢ e[e′/x] : φ

2. If Γ;∆, x:1σ ⊢alt ρ → e :z∆s
σ ⇒ φ and Γ;∆′ ⊢ e′ : σ and ∆s ⊆ ∆, x then

Γ [∆′/x] ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s[∆′/x] σ ⇒ φ

Where Γ[∆′/x] substitutes all occurrences of x in the usage environments of ∆-variables
in Γ by the linear variables in ∆′.

The substitution of the resource in the usage environments is illustrated by the follow-
ing example. Consider the term let y = use x in y where use and x are free variables: if
we replace occurrences of x by e′ (where Γ;∆ ⊢ e : σ), then the “real” usage environment
of y goes from {x} to ∆. If we don’t update the usage environment of y accordingly, we’ll
ultimately be typing y:{x}φ with ∆ instead of x, which is not valid.

The linear substitution lemma extends to case alternatives as well. The lemma for
substitution of linear variables in case alternatives is similar to the linear substitution
lemma, applied to the case alternative judgement.

Lemma 5 (Substitution of linear variables on case alternatives preserves typing).
If Γ;∆, x:1σ ⊢alt ρ→ e :z∆s

σ ⇒ φ and Γ;∆′ ⊢ e′ : σ and ∆s ⊆ ∆, x
then Γ [∆′/x] ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s[∆′/x] σ ⇒ φ

We further require that the environment annotated in the case alternative judgement, ∆s,
is a subset of the environment used to type the whole alternative ∆s ⊆ ∆. In all occur-
rences of the alternative judgement (in CaseWHNF and CaseNot WHNF), the environment
annotating the alternative judgement is always a subset of the alternative environment.

The substitution lemma for unrestricted variables follows the usual formulation, with
the added restriction (common to linear type systems) that the expression e′ that is going
to substitute the unrestricted variable x is typed on an empty linear environment:

Lemma 6 (Substitution of unrestricted variables preserves typing).

1. If Γ, x:ωσ; ∆ ⊢ e : φ and Γ; · ⊢ e′ : σ then Γ,∆ ⊢ e[e′/x] : φ

2. If Γ, x:ωσ; ∆ ⊢alt ρ → e :z∆s
σ′ ⇒ φ and Γ;∆ ⊢ e′ : σ then Γ;∆ ⊢alt ρ → e[e′/x] :z∆s

σ′ ⇒ φ

Similarly, we also prove the substitution of unrestricted variables preserves types on an
alternative case expression:

55

5. Metatheory

Lemma 7 (Substitution of unrestricted variables on case alternatives preserves typing).
If Γ, x:ωσ; ∆ ⊢alt ρ→ e :z∆s

σ′ ⇒ φ and Γ;∆ ⊢ e′ : σ then Γ;∆ ⊢alt ρ→ e[e′/x] :z∆s
σ′ ⇒ φ

Finally, we introduce the lemma stating that substitution of ∆-bound variables by
expressions of the same type preserves the type of the original expression. What distin-
guishes this lemma from traditional substitution lemmas is that the usage environment
∆ of the variable x being substituted by expression e′ must match exactly the typing
environment ∆ of e′ and the environment of the original expression doesn’t change with
the substitution:

Lemma 8 (Substitution of ∆-variables preserves typing).

1. If Γ, x:∆σ; ∆,∆′ ⊢ e : φ and Γ;∆ ⊢ e′ : σ then Γ;∆,∆′ ⊢ e[e′/x] : φ

2. If Γ, x:∆σ; ∆,∆′ ⊢alt ρ → e :z∆s
σ′ ⇒ φ and Γ;∆ ⊢ e′ : σ and ∆s ⊆ (∆,∆′) then

Γ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s
σ′ ⇒ φ

Intuitively, if x is well-typed with ∆ in e, substituting x by an expression e′ which is
typed in the same environment ∆ allows the distribution of resources ∆,∆′ used to type
e across sub-derivations to remain unchanged. To prove the theorems, we don’t need a
“stronger” substitution of ∆-vars lemma (allowing arbitrary resources ∆′′ to type e′, as in
other substitution lemmas), as we only ever substitute ∆-variables by expressions whose
typing environment matches the variables usage environment. However, it is not obvious
whether such a lemma is possible to prove for ∆-variables (e.g. let Γ;∆ ⊢ e : σ and
Γ;∆′ ⊢ let x = e′ in x, if we substitute e for x the resources ∆′ are no longer consumed).

The ∆-substitution lemma on case alternatives reflects again that the typing environ-
ment of the expression substitution the variable must match its usage environment. We
recall that ∆s ⊆ ∆,∆′ states that the annotated environment is always contained in the
typing environment, which is true of all occurrences of this judgement. An alternative for-
mulation of this lemma could instead explicitly list ∆s as part of the typing environment
for the same effect:

Lemma 9 (Substitution of ∆-bound variables on case alternatives preserves typing).
If Γ, x:∆σ; ∆,∆′ ⊢alt ρ → e :z∆s

σ′ ⇒ φ and Γ;∆ ⊢ e′ : σ and ∆s ⊆ (∆,∆′) then
Γ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s

σ′ ⇒ φ

The proofs for substitution lemmas of linear, unrestricted, and ∆-variables are available
in Section A.4.

5.4 Optimisations preserve linearity

One of the primary goals of the Linear Core type system is being suitable for intermediate
representations of optimising compilers for lazy languages with linear types. In light of
this goal, we prove that multiple optimising transformations are type preserving in Linear
Core, and thus preserve linearity.

The optimising transformations proved sound wrt Linear Core in this section have
been previously explained and motivated in Section 2.6.2. Transformations are described
by an arbitrary well-typed expression with a certain shape, on the left hand side (lhs) of
the arrow =⇒, resulting in an expression on the right hand side (rhs) that we prove to be
well-typed. For each transformation, we describe the intuition behind the transformation
preserving linearity in our system.

56

5.4. Optimisations preserve linearity

5.4.1 Inlining

Inlining substitutes occurrences of a let-bound ∆-variable x with the expression e it is
bound to, which determines its usage environment ∆. Intuitively, in the let body e′, x can
occur once or not at all: if x occurs, then the linear resources ∆ used indirectly through x
are used via e instead; if x does not occur, then the resources ∆ are already used linearly
in e′ and the substitution is a no-op.

Theorem 10 (Inlining preserves types).
If Γ;∆,∆′ ⊢ let x:∆σ = e in e′ : φ then Γ;∆,∆′ ⊢ let x:∆σ = e in e′[e/x] : φ

Proof.

(1) Γ;∆,∆′ ⊢ let x:∆σ = e in e′ : φ
(2) Γ,∆ ⊢ e : σ by inv. on (let)
(3) Γ, x:∆σ; ∆,∆′ ⊢ e′ : φ by inv. on (let)
(4) Γ;∆,∆′ ⊢ e′[e/x] : φ by ∆-subst. lemma (2,3)
(5) Γ, x:∆σ; ∆,∆′ ⊢ e′[e/x] : φ by (admissible) Weaken∆

(6) Γ;∆,∆′ ⊢ let x:∆σ = e in e′[e/x] : φ by (let) (2,5)

5.4.2 β-reduction

β-reduction evaluates a λ-abstraction application by substituting the λ-bound variable x
with the argument e′ in the body of the λ-abstraction e. We consider two definitions of
β-reductions, one that substitutes all occurrences of a variable by an expression, as in
call-by-name, and other which creates a lazy let binding to share the result of computing
the argument expression amongst uses of the variable, as in call-by-need.

The first kind of β-reduction on term abstractions can be seen to preserve linearity by
case analysis. When the function is linear, the binding x is used exactly once in the body
of the lambda, thus can be substituted by an expression typed with linear resources, since
the expression is guaranteed to be used exactly once in place of x. The proof is direct by
type preservation.

Theorem 11 (β-reduction preserves types).
If Γ;∆ ⊢ (λx:πσ. e) e

′ : φ then Γ;∆ ⊢ e[e′/x] : φ

Proof.

(1) Γ;∆ ⊢ (λx:πσ. e) e
′ : φ

(2) (λx:πσ. e)e
′ −→ e[e′/x]

(3) Γ;∆ ⊢ e[e′/x] : φ by type preservation theorem (1,2)

We assume the β-reduction with sharing (i.e. the one that creates a let binding) is only
applicable when the λ-abstraction has an unrestricted function type. Otherwise, the call-
by-name β-reduction is always favourable, as we know the resource to be used exactly
once and hence sharing would be counterproductive, and result in an unnecessary heap
allocation. Consequently, the argument to the function must be unrestricted (hence use

57

5. Metatheory

no linear resources) for the term to be well-typed, and so it vacuously follows that linearity
is preserved by this transformation.

Theorem 12 (β-reduction with sharing preserves types).
If Γ;∆ ⊢ (λx:ωσ. e) e

′ : φ then Γ;∆ ⊢ let x = e′ in e : φ
NB: We only apply this transformation when x is unrestricted, otherwise beta-reduction
without sharing is the optimization applied.

Proof.

(1) Γ;∆ ⊢ (λx:ωσ. e) e
′ : φ

(2) Γ;∆ ⊢ (λx:ωσ. e) : σ →ω φ by inv. on λEω

(3) Γ; · ⊢ e′ : σ by inv. on λEω

(4) Γ, x:ωσ; ∆ ⊢ e : φ by inv. on λI
(5) Γ, x:·σ; ∆ ⊢ e : φ by Lemma ??
(6) Γ,Γ′ ⊢ let x = e′ in e : φ by let (5,3)

Finally, β-reduction on multiplicity abstractions is also type preserving. The argument of
the application is a multiplicity rather than an expression, so no resources are needed to
type it, and, since the body of the lambda must treat the multiplicity p as though it were
linear, the body uses the argument linearly regardless of the instantiation of p at π.

Theorem 13 (β-reduction on multiplicity abstractions preserves types).
If Γ;∆ ⊢ (Λp. e) π : φ then Γ;∆ ⊢ e[π/p] : φ

Proof. Trivial by invoking preservation using the Λ application reduction and the assump-
tion

5.4.3 Case of known constructor

Case-of-known constructor is a transformation that essentially evaluates a case expression
of a known constructor at compile time, by substituting in the matching alternative the
case binder by the scrutinee and pattern variables by constructor arguments. Intuitively,
either the case binder is used exactly once to consume the resources of the scrutinee, or the
pattern components whose matching constructor argument uses linear resources are used
exactly once, so one of the substitutions is a no-op. If the pattern variables are substituted
by the matching scrutinee expressions, the expressions are still only used once, and if the
case binder is substituted by the scrutinee, it is still used exactly once. The proof follows
trivially from the preservation theorem.

Theorem 14 (Case-of-known-constructor preserves types).
If Γ;∆,∆′ ⊢ case K e of z:∆σ {...,K x→ ei} : φ then Γ;∆,∆′ ⊢ ei[e/x][K e/z] : φ

Proof.

(1) Γ;∆,∆′ ⊢ case K e of z:∆σ {...,K x→ ei} : φ
(2) case K e of z:∆σ {...,K x→ ei} −→ ei[e/x][K e/z]

(3) Γ;∆,∆′ ⊢ ei[e/x][K e/z] : φ by preservation theorem (1,2)

58

5.4. Optimisations preserve linearity

5.4.4 Let floating

The let floating transformations move lazy let constructs, in and out of other constructs,
to further unblock more optimisations. In essence, since let bindings consume resources
lazily (by introducing a ∆-variable with usage environment ∆, where ∆ is the typing
environment of the bound expression), we can intuitively move them around without
violating linearity. We prove let floating transformations full-laziness and three local-
transformations preserve types and linearity.

Theorem 15 (Full-laziness preserves types).
If Γ;∆,∆′ ⊢ λy:πσ. let x:∆σ = e in e′ : φ and y does not occur in e
then Γ;∆,∆′ ⊢ let x:∆σ = e in λy:πσ. e

′

Proof.

(1) Γ;∆,∆′ ⊢ λy:πσ. let x:∆σ = e in e′ : σ′ → φ
Subcase π = 1
(2) Γ;∆,∆′, y:1σ ⊢ let x:∆σ = e in e′ : φ by inv. on λI
(3) Γ;∆ ⊢ e : σ by inv. on (let)
(4) Γ, x:∆σ; ∆,∆′, y:1σ ⊢ e′ : φ by inv. on (let)
(5) Γ, x:∆σ; ∆,∆′ ⊢ λy:1σ. e

′ : σ′ → φ by (λI) (4)
(6) Γ;∆,∆′ ⊢ let x:∆σ = e in λy:1σ. e

′ : σ′ → φ by (let) (3, 5)
Subcase π = ω
As above but x is put in the unrestricted context Γ

Theorem 16 (commuting lets preserve types).

1. Γ;∆ ⊢ (let v = e in b) a : φ ⇒ Γ;∆ ⊢ let v = e in b a : φ
2. Γ;∆ ⊢ case (let v = e in b) of . . . : φ ⇒ Γ;∆ ⊢ let v = e in case b of . . . : φ
3. Γ;∆ ⊢ let x = (let v = e in b) in c : φ ⇒ Γ;∆ ⊢ let v = e in let x = b in c : φ

1. Commuting Let-app

Proof.

(1) Γ;∆,∆′,∆′′ ⊢ (let x:∆σ = e1 in e2) e3 : φ
(2) Γ;∆,∆′ ⊢ let x:∆σ = e1 in e2 : σ

′ →π φ by inv. on 1
(3) Γ;∆′′ ⊢ e3 : σ

′ by inv. on 1
(4) Γ;∆ ⊢ e1 : σ by inv. on 2
(5) Γ, x:∆σ; ∆,∆′ ⊢ e2 : σ

′ →π φ by inv. on 2
(6) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ e2 e3 : φ by λπE
(7) Γ;∆,∆′,∆′′ ⊢ let x:∆σ = e1 in e2 e3 : φ by let (4,6)

2. Commuting let-case

Proof.

59

5. Metatheory

(1) Γ;∆,∆′,∆′′ ⊢ case let x:∆σ = e1 in e2 of z:∆,∆′σ′ {ρ→ e3} : φ
(2) Γ;∆,∆′ ⊢ let x:∆σ = e1 in e2 : σ

′ by inv. on 1
(3) Γ;∆ ⊢ e1 : σ by inv. on 2
(4) Γ, x:∆σ; ∆,∆′ ⊢ e2 : σ

′ by inv. on 2
Subcase e2 is in WHNF

(5) Γ, z:∆,∆′σ′; ∆,∆′,∆′′ ⊢alt ρ→ e3 :z∆,∆′ σ′ Z⇒ φ by inv. on 1

(6) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ case e2 of z:∆,∆′σ′ {ρ→ e3} : φ by CaseWHNF (4,5)
(7) Γ;∆,∆′,∆′′ ⊢ let x:∆σ = e1 in case e2 of z:∆,∆′σ′ {ρ→ e3} : φ by Let (3,6)
Subcase e2 is not in WHNF

(5) Γ, z:[∆,∆′]σ′; [∆,∆′] ,∆′′ ⊢alt ρ→ e3 :z[∆,∆′] σ
′ ⇛ φ by inv. on 1

(6) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ case e2 of z:∆,∆′σ′ {ρ→ e3} : φ by CaseWHNF (4,5)
(7) Γ;∆,∆′,∆′′ ⊢ let x:∆σ = e1 in case e2 of z:∆,∆′σ′ {ρ→ e3} : φ by Let (3,6)

3. Commuting let-let

Proof.

(1) Γ,∆;∆′,∆′′ ⊢ let x:∆,∆′σ′ = (let y:∆σ
′ = e1 in e2) in e3 : φ

(2) Γ;∆,∆′ ⊢ let y:∆σ
′ = e1 in e2 : σ

′ by inv. on 1
(3) Γ, x:∆,∆′σ′; ∆,∆′,∆′′ ⊢ e3 by inv. on 1
(4) Γ;∆ ⊢ e1 : σ by inv. on 2
(5) Γ, y:∆σ

′; ∆,∆′ ⊢ e2 : σ
′ by inv. on 2

(6) Γ, y:∆σ
′; ∆,∆′,∆′′ ⊢ let x:∆,∆′σ′ = e2 in e3 : φ by Let (3,5) and Weaken

(7) Γ;∆,∆′,∆′′ ⊢ let y:∆σ
′ = e1 in let x:∆,∆′σ′ = e2 in e3 : φ by Let (4,6)

Theorem 17. If Γ;∆1,∆2,∆3 ⊢ case e of {ρj → ej , ρ→ E[e1], ρk → ek} : φ and e1 does
not use any pattern variables introduced by ρ, the case binder nor variables bound in context
E[−] then Γ;∆1,∆2,∆3 ⊢ let x = e1 in case e of {ρj → ej , ρ → E[x], ρk → ek} : φ, for
some fresh x.

Proof.

Subcase: e is in WHNF

(1) Γ;∆1 ⊩ e : σ ⋗∆i by inversion
(2) Γ;∆1 ⊢ e : σ by inversion and constructor rule if needed

(3) Γ, z:∆i
σ; ∆i,∆2,∆3 ⊢alt ρj → e′ :z

∆i
σ Z⇒ φ by inversion

(4) Γ, z:[∆1]σ; [∆1] ,∆2,∆3 ⊢alt ρ→ e′ :z[∆1]
σ ⇛ φ by inversion

(5) e matches ρj by inversion
Subsubcase: ρj corresponds to branch containing E[e1]
Subsubsubcase: (3) derived by AltNWHNF

Γ, z:∆i
σ, x:ωσ, yi:∆iσi

n; ∆i,∆2,∆3 ⊢ E[e1] : φ by inversion

Γ, z:∆i
σ, x:ωσ, yi:∆iσi

n; ∆′,∆2 ⊢ e1 : σ
′ by inversion, with ∆′ ⊆ ∆i ⊆ ∆1

Γ, x:∆′,∆2σ
′, z:∆i

σ, x:ωσ, yi:∆i , σi
n; ∆′,∆2 ⊢ x : σ′ by Var∆, with x fresh

Γ;∆′,∆2 ⊢ e1 : σ
′ by assumption

60

5.4. Optimisations preserve linearity

Γ, x:∆′,∆2σ
′, z:∆i

σ, x:ωσ, yi:∆iσi
n;∆i,∆2,∆3 ⊢ E[x] : φ by context instantiation

Γ, x:∆′,∆2σ
′, z:∆i

σ;∆i,∆2,∆3 ⊢alt ρj → E[x] :z
∆i

σ Z⇒ φ by AltNWHNF

Γ, x:∆′,∆2σ
′; ∆1,∆2,∆3 ⊢ case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by CaseWHNF

Γ;∆1,∆2,∆3 ⊢ let x:∆′,∆2σ = e1 in case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by Let
Subsubsubcase: (3) derived by Alt0

Γ, z:∆i
σ
[
·/∆i

]
z
, x:ωσ;∆i,∆2,∆3

[
·/∆i

]
⊢ E[e1] : φ by inversion

Γ, z:·σ, x:ωσ; ∆2 ⊢ e1 : σ
′ by inversion

Γ;∆2 ⊢ e1 : σ
′ by assumption

Γ, x:∆2σ
′, z:·σ, x:ωσ; ∆2 ⊢ x : σ′ by Var∆, with x fresh

Γ, x:∆2σ
′, z:∆i

σ
[
·/∆i

]
z
, x:ωσ; ∆i,∆2,∆3

[
·/∆i

]
⊢ E[x] : φ by context instantiation

Γ, x:∆2σ
′; ∆1,∆2,∆3 ⊢ case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by Alt0 and CaseWHNF

Γ;∆1,∆2,∆3 ⊢ let x:∆2σ = e1 in case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by Let
Subsubsubcase: (3) derived by Alt
Γ, z:∆i

σ; ∆2,∆3 ⊢ E[e1] : φ by inversion

Γ, z:∆i
σ; ∆2 ⊢ e1 : σ

′ by inversion

Γ, , z:∆i
σ, x:∆2σ

′; ∆2 ⊢ x : σ′ by Var∆, with x fresh

Γ, z:∆i
σ, x:∆2σ

′; ∆2,∆3 ⊢ E[e1] : φ by context instantiation

Γ, x:∆2σ
′; ∆1,∆2,∆3 ⊢ case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by Alt and CaseWHNF

Γ;∆1,∆2,∆3 ⊢ let x:∆2σ = e1 in case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by Let
Subsubcase: ρj does not correspond to branch containing E[e1]
(6) Γ, z:[∆1]σ; [∆1] ,∆2,∆3 ⊢alt ρ→ E[e1] :

z
[∆1]

σ ⇛ φ this subsubcase

Subsubsubcase: (6) derived by AltNNot WHNF

Γ, z:[∆1]σ, x:ωσ, yi:∆iσi; [∆1] ,∆2,∆3 ⊢ E[e1] : φ and ∆i = ∆1#Ki
n

by inversion

Γ, z:[∆1]σ, x:ωσ, yi:∆iσi; ∆2 ⊢ e1 : σ
′ by inversion

Γ, x:∆2σ
′, z:[∆1]σ, x:ωσ, yi:∆iσi; ∆2 ⊢ x : σ′ by Var∆, with x fresh

Γ, x:∆2σ
′, z:[∆1]σ, x:ωσ, yi:∆iσi; [∆1] ,∆2,∆3 ⊢ E[x] : φ and ∆i = ∆1#Ki

n
by context instantiation

Γ, x:∆2σ
′; ∆1,∆2,∆3 ⊢ case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by AltNNot WHNF and CaseWHNF

Γ;∆1,∆2,∆3 ⊢ let x:∆2σ = e1 in case e of {ρj → ej , ρ→ E[x], ρk → ek} : φ by Let
Subsubsubcase: (6) derived by Alt or Alt0
Identical to subsubsubcases above.
Subcase: e is not in WHNF
(1) Γ;∆1 ⊢ e : σ by inversion

(2) Γ, z:[∆1]σ; [∆1] ,∆2,∆3 ⊢alt ρ→ e′ :z[∆1]
σ ⇛ φ by inversion

(3) Γ, z:[∆1]σ; [∆1] ,∆2,∆3 ⊢alt ρ→ E[e1] :
z
[∆1]

σ ⇛ φ by inversion

Subsubcase: (3) derived by AltNNot WHNF, Alt or Alt0
Identical to Subsubsubcases above.

5.4.5 η-conversions

The η-conversion transformations are η-expansion and η-reduction. In both transforma-
tions, linearity is preserved since the resources used to type the function f do not change
neither when the lambda and its argument are removed, nor when we add a lambda and
apply f to the bound argument.

Theorem 18 (η-expansion preserves types).
If Γ;∆ ⊢ f : σ →π φ then Γ;∆ ⊢ λx. f x : σ →π φ

Proof.

61

5. Metatheory

Subcase f is linear
(1) Γ;∆ ⊢ f : σ ⊸ φ
(2) Γ;x:1σ ⊢ x : σ
(3) Γ;∆, x:1σ ⊢ f x : φ by λE
(4) Γ;∆ ⊢ (λx:1σ. f x) : σ ⊸ φ by λI
Subcase f is unrestricted
As above but x is introduced in Γ and functions are unrestricted

Theorem 19 (η-reduction preserves types).
If Γ;∆ ⊢ λx. f x : σ →π φ then Γ;∆ ⊢ f : σ →π φ

Proof.

(1) Γ;∆ ⊢ (λx:πσ. f x) : σ →π φ
Subcase π = 1
(2) Γ;∆, x:1σ ⊢ f x : φ by inv. on λI
(3) Γ;∆ ⊢ f : σ →1 φ by inv. on λE
Subcase π = ω
As above but x is introduced in Γ

5.4.6 Binder Swap

The binder swap transformation applies to case expressions whose scrutinee is a single
variable x, and it substitutes occurrences of x in the case alternatives for the case binder
z. If x is a linear resource, x cannot occur in the case alternatives (as we conservatively
consider variables are not in WHNF), so the substitution preserves types vacuously. Oth-
erwise, x can be freely substituted by z, since z is also an unrestricted resource (it’s usage
environment is empty because x is unrestricted).

Theorem 20 (Binder-swap preserves types).
If Γ;∆ ⊢ case x of z {ρi → ei} : φ then Γ;∆ ⊢ case x of z {ρi → ei[z/x]} : φ

Proof.

Subcase x is linear
(1) Γ;∆, x:1σ ⊢ case x of z:[x]σ {ρ→ e} : φ
(2) Γ;x:1σ ⊢ x : σ by inv. on CaseNot WHNF

(3) Γ, z:[x]σ; ∆, [x:1σ] ⊢alt ρ→ e :z[x] σ ⇛ φ by inv. on CaseNot WHNF

(4) Γ, z:[x]σ; ∆, [x:1σ] ⊢alt ρ→ e[z/x] :z[x] σ ⇛ φ

by x cannot occur in e bc it’s proof irrelevant

(5) Γ;∆, x:1σ ⊢ case x of z:[x]σ {ρ→ e[z/x]} : φ by CaseNot WHNF

Subcase x is unrestricted
(1) Γ, x:ωσ; ∆ ⊢ case x of z:·σ {ρ→ e} : φ
(2) Γ, x:ωσ; · ⊢ x : σ by inv. on CaseNot WHNF

(3) Γ, x:ωσ, z:·σ; ∆ ⊢alt ρ→ e :z· σ ⇛ φ by inv. on CaseNot WHNF

(4) Γ, z:·σ; · ⊢ z : σ by V ar∆
(5) Γ, z:·σ; ∆ ⊢alt ρ→ e[z/x] :z· σ ⇛ φ by unr. subst. lemma (3,4)

(6) Γ, x:ωσ; ∆ ⊢ case x of z:·σ {ρ→ e[z/x]} : φ by Weakenω and CaseNot WHNF

62

5.4. Optimisations preserve linearity

5.4.7 Reverse Binder Swap Considered Harmful

The reverse binder swap transformation substitutes occurrences of the case binder z in
case alternatives by the scrutinee, when the scrutinee is a variable x.

Proposition 21 (Reverse-binder-swap preserves types).
If Γ;∆ ⊢ case x of z {ρi → ei} : φ then Γ;∆ ⊢ case x of z {ρi → ei[x/z]} : φ

This is exactly reverse from what the binder swap transformation does in hope of elimi-
nating multiple uses of x so as to inline it. However, by using the scrutinee x instead of
the case binder, we might be able to float out expressions from the alternative using the
case binder. For example, we might float an expensive computation involving z out of the
case alternative, where z is out of scope but x isn’t:

λx. let rec go y = case x of z {(a, b)→ . . . (expensive z) . . . } in . . .
=⇒Reverse binder swap

λx. let rec go y = case x of z {(a, b)→ . . . (expensive x) . . . } in . . .
=⇒Float out

λx. let t = expensive x in let rec go y = case x of z {(a, b)→ . . . t . . . } in . . .

If go is a loop, by applying the reverse binder swap we now only compute expensive x
once instead of in every loop iteration.

Despite GHC applying the reverse binder swap transformation to core programs during
Core-to-Core optimisation passes, this optimisation violates linearity when considered
as a transformation on Linear Core programs. In practice, the optimisation preserves
linearity in Core when applied as part of the GHC transformation pipeline only due to
the occurrence analyser being naive with regard to semantic linearity. Initially, it might
seem as though an expression in which a variable x occurs both in the case scrutinee and
in the alternatives is linear, for example:

Γ;x:1σ ⊢ case x of → x : σ

The reasoning is done by branching on whether x refers to an expression in WHNF or an
unevaluated thunk.

• If x refers to an unevaluated expression, then scrutinizing it results in the expression
bound by x to be evaluated to WHNF. In a subsequent use of x in the alternatives,
x refers to the evaluated scrutinee in WHNF, which must be consumed. Since x is
just another name (like the case binder) for the scrutinee in WHNF, we may use it
instead of the case binder or pattern variables.

• If x already refers to an expression evaluated to WHNF, then scrutinizing it in a
case expression is a no-op, thus we may use it again (in mutual exclusion with the
case binder and pattern variables)

Even though, on its own, it makes intuitive sense that this example indeed uses x linearly,
when considered as part of a complete type system, allowing this expression to be linear
makes the system unsound.

We recall that β-reduction reduces an application of a linear function using call-by-
name – if we know the argument is used exactly once, a binding to share the result of

63

5. Metatheory

computing the argument is unnecessary, so we instead substitute the argument expression
for the linearly-bound variable in the λ-body directly.

Consider the function application

(λx. case x of → x) (use y)

where y is a free linear variable. Assuming λx. case x of → x is a linear function by the
reasoning above, β-reduction transforms the application in (case x of → x)[use y/x],
i.e. case use y of → use y. Now, y is a linear variable consumed in the scrutinee of
the case expression, yet it occurs in the body of the case alternative as well – linearity is
violated by using the linear resource y twice.

Essentially, Linear Core would be unsound, and even duplicate resources, if the above
kind of expressions, where linear variable scrutinees occur in the alternatives body, were
well-typed, because of its interaction with the call-by-name reduction of linear functions.
In this sense, the reverse binder swap is an optimisation that creates ill-typed expressions
from well-typed ones, so it is deemed an invalid optimisation that doesn’t preserve types
in our system.

The reverse binder swap is not a problem in the GHC simplifier because of the weaker
notion of linearity understood by occurrence analysis. Occurrence analysis is a static
analysis pass which can be used to determine whether a lambda application can be β-
reduced call-by-name, and case x of → x is not seen as using x linearly by the analysis.
Thus, β-reduction is done with call-by-need on such an expression. If the above example
were reduced with call-by-need:

(λx. case x of → x) (use y)
=⇒call-by-need β-reduction

let x = use y in case y of → y

Then the computation using y would be let-bound, and y used as a scrutinee variable,
which is indeed an expression semantically linear in x.

Concluding, in being able to understand more programs as linear, our type system
allows more expressions to be considered linear for β-reduction without a let-allocation,
however, it makes reverse binder swap an invalid transformation since its output, when
considered linear, might violate linearity when further optimised.

5.4.8 Case of Case

The case of case transformation applies to case expressions whose scrutinee is another case
expression, and returns the innermost case expression transformed by repeating the out-
ermost case expression in each alternative of the innermost case, scrutinizing the original
alternative body.

Intuitively, since the scrutinee of the outermost case is not in WHNF, no resources from
it can directly occur in the outermost alternatives. By moving the outermost alternatives
inwards with a different scrutinee, the alternatives remain well-typed because they are
typed using either the case binder or the pattern bound variables, which, by the Irrelevance
lemma, makes it well-typed for any scrutinee consuming arbitrary resources. The proof is
given in Section B.1.

Theorem 22 (Case-of-case preserves types).
If Γ;∆,∆′,∆′′ ⊢ case case ec of z:∆σ {ρci → eci} of w:[∆,∆′]σ

′ {ρi → ei} : φ
then Γ;∆,∆′,∆′′ ⊢ case ec of z:∆σ {ρci → case eci of w {ρi → ei}} : φ

64

CHAPTER 6
Conclusion

Linear Core is an intermediate language with a type system system that understands
(semantic) linearity in the presence of laziness, suitable for optimising compilers with these
characteristics which leverage laziness and (possibly) linearity in its transformations.

In this chapter, we compare our contributions and Linear Core to related existing
works in the literature, consider further research (notably, so-called multiplicity coercions
to handle the interaction between linearity and coercions, a key feature of Core which we
left out our system), and conclude.

6.1 Related Work

In this section we discuss related work, namely, Linear Haskell [37], Linear Mini-Core [42],
and linearity-influenced optimising transformations [19, 20, 37].

6.1.1 Linear Haskell

Haskell, contrary to most programming languages with linear types, has existed for 31
years of its life without linear types. As such, the introduction of linear types to Haskell
comes with added challenges that do not exist in languages that were designed with linear
types from the start:

• Backwards compatibility. The addition of linear types shouldn’t break all existing
Haskell code.

• Code re-usability. The linearly-typed part of Haskell’s ecosystem and its non-
linearly-typed counterpart should fit in together and it must be possible to define
functions readily usable by both sides simultaneously.

• Future-proofing. Haskell, despite being an industrial-strength language, is also a
petri-dish for experimentation and innovation in the field of programming languages.
Therefore, Linear Haskell takes care to accommodate possible future features, in
particular, its design is forwards compatible with affine and dependent types.

Linear Haskell [37] is thus concerned with retrofitting linear types in Haskell, taking
into consideration the above design goals, but is not concerned with extending Haskell’s
intermediate language(s), which presents its own challenges.

65

6. Conclusion

Nonetheless, while the Linear Haskell work keeps Core unchanged, its implementation
in GHC does modify and extend Core with linearity/multiplicity annotations. Core’s type
system is unable to type semantic linearity of programs (in contrast to syntactic linearity),
which results in Core rejecting linear programs resulting from optimising transformations
that leverage the non-strict semantics of Core. Linear Core overcomes the limitations of
Core’s linear type system derived from Linear Haskell by understanding semantic linearity
in the presence of laziness, and provably accepts multiple Core-to-Core passes. Linear
Core, ultimately, can also be seen as a system that validates the programs written in
Linear Haskell and are compiled by GHC, by guaranteeing (through typing) that linear
resources are still used exactly once throughout the optimising transformations.

6.1.2 Linear Mini-Core

Linear Mini-Core [42] is a specification of linear types in Core as they were being im-
plemented in GHC, and doubles as the (unpublished) precursor to our work. Linear
Mini-Core first observes the incapacity of Core’s type system to accept linear programs
after transformations, and first introduces usage environments for let-bound variables with
the same goal of Linear Core of specifying a linear type system for Core that accepts the
optimising transformations.

We draw from Linear Mini-Core’s the rule for non-recursive let expressions and how
let-bound variables are annotated with a usage environment, however, our work further
explores the interaction of laziness with linearity in depth, and diverges in rules for typ-
ing other constructs, notably, case expressions and case alternatives. Furthermore, unlike
Mini-Core, we prove type safety of our system and that multiple optimising transforma-
tions, when applied to Linear Core programs, preserve linearity as understood by the
system.

6.1.3 Linearity-influenced optimisations

Core-to-Core transformations appear in many works across the research literature [19,
20, 16, 25, 26, 39, 36, 40], all designed in the context of a typed language (Core) which
does not have linear types. However, [19, 20, 37] observe that certain optimisations (in
particular, let-floating and inlining) greatly benefit from linearity analysis and, in order
to improve those transformation, linear-type-inspired systems were created specifically for
the purpose of the transformation.

By fully supporting linear types in Core, these optimising transformations could be
informed by the language inherent linearity, and, consequently, avoid an ad-hoc or incom-
plete linear-type inference pass custom-built for optimisations. Additionally, the linearity
information may potentially be used to the benefit of optimising transformations that
currently don’t take any linearity into account.

6.2 Future Work

In this section we highlight some avenues of further research. Briefly, these include mul-
tiplicity coercions, optimisations leveraging linearity, resource inference for usage envi-
ronments, and ultimately using Linear Core in a mature optimising compiler with lazy
evaluation and linear types – the Glasgow Haskell Compiler. Lastly, we discuss the gen-
eralization of Linear Core to the surface Haskell language.

66

6.2. Future Work

Multiplicity Coercions. Linear Core doesn’t have type equality coercions, a flagship
feature of GHC Core’s type system. Coercions, briefly explained in Section 2.5, allow
the Core intermediate language to encode a panoply of Haskell source type-level features
such as GADTs, type families or newtypes. In Linear Haskell, multiplicities are intro-
duced as annotations to function arrows which specify the linearity of the function. In
practice, multiplicities are simply types of kind Multiplicity , where One and Many are the
type constructors of the kind Multiplicity ; multiplicity polymorphism follows from type
polymorphism, where multiplicity variables are just type variables. Encoding multiplici-
ties as types allows Haskell programs to leverage features available for types to naturally
extend to multiplicities as well. Consequently, we might define, e.g., using a GADT SBool
and a type family If , the function dep which is linear in the second argument if the first
argument is STrue and unrestricted otherwise:

data SBool :: Bool → Type where
STrue :: SBool True
SFalse :: SBool False

type family If b t f where
If True t = t
If False f = f

dep :: SBool b → Int % (If b One Many)→ Int
dep STrue x = x
dep SFalse = 0

This example is linear and should be accepted. However, the example is rejected by
the GHC’s Core type checker. Critically, Core doesn’t currently understand so-called
multiplicity coercions. Even though after matching on STrue we have access to a coercion
from the function multiplicity m to 1 (m ∼ 1), we cannot use this coercion to determine
whether the usages of the linear resources match the multiplicity. Studying the interaction
between coercions and multiplicities is a main avenue of future work for Linear Core.

Optimisations leveraging linearity. We only briefly mentioned how linearity can
inform optimisations to produce more performant programs. We leave exploring optimi-
sations unblocked by preserving linearity in the intermediate language with Linear Core
as future work. Linearity influenced optimising transformations have been also discussed
by Linear Haskell [37] and in [19, 20]. An obvious candidate is inlining, which is applied
based on heuristics from information provided by the cardinality analysis pass that counts
occurrences of bound variables. Linearity can be used to non-heuristically inform the in-
liner [37]. Additionally, we argue that in Linear Core accepting more programs as linear
there are more chances to use linearity, in contrast to a linear type system which does not
account for lazy evaluation and thus rejects more programs.

Usage environment resource inference. In Section 3, we explained that the linear
resources used by a group of recursive bindings aren’t obvious and must be consistent
with each other (i.e. considering the mutually-recursive calls) as though the resources
used by each binder are the solution to a set determined by the recursive bindings group.
In Section 4, we further likened the challenge of determining usage environments for a
recursive group of bindings to a unification problem as that solved by the Hindley-Milner
type inference algorithm [4] based on generating and solving constraints. Even though
these are useful observations, our implementation of Linear Core uses a naive algorithm

67

6. Conclusion

to determine the usage environments, thereby leaving as future work the design of a
principled algorithm to determine the usage environments of recursive group of bindings.

Linear Core in the Glasgow Haskell Compiler. Linear Core is suitable as the
intermediate language of an optimising compiler for a linear and lazy language such as
Haskell Core, in that optimising transformations in Linear Core preserve types and lin-
earity, since Linear Core understands semantic linearity in the presence of laziness, unlike
Core’s current type system under which optimisations currently violate linearity. Inte-
grating Linear Core in the Glasgow Haskell Compiler is one of the ultimate goals of our
work. Core’s current type system ignores linearity due to its limitation in understanding
semantic linearity, and our work fills this gap and would allow Core to be linearly typed all
throughout. A linearly typed Core that preserves linearity throughout the optimisation
pipeline of GHC both validates the correctness of the compiler, which is already achieved
to a great extent by preserving (non-linear) types, and informs optimisations, allowing the
compiler to generate more performant programs.

Implementing Linear Core in GHC is a challenging endeavour, since we must account
for all other Core features (e.g. strict constructor fields) and more optimisations. Despite
our initiative in this direction1, we leave this as future work.

Generalizing Linear Core to Haskell. Linear types, despite their compile-time cor-
rectness guarantees regarding resource management, impose a burden on programmers in
being a restrictive typing discipline (witnessed, e.g., by Linear Constraints [51]). Linear
Core eases the restrictions of linear typing by being more flexible in understanding linear-
ity for lazily evaluated languages such as Haskell. In this sense, it is an avenue of future
work to apply the ideas from Linear Core to the surface Haskell language.

6.3 Conclusion

Optimising compilers with a typed and lazy intermediate language with linear types (of
which GHC is the prime example) leverage laziness to heavily transform and rewrite pro-
grams into simpler forms. However, these optimising transformations push the interaction
between linearity and laziness to the limits where linearity can no longer be seen syntac-
tically, despite being maintained semantically, in the sense that linear resources are still
used exactly once when the optimised program is run.

In this work we explored linearity in the presence of laziness by example through the
interactions of linear types with lazy (recursive) let bindings and case expressions that
evaluate their scrutinee to Weak Head Normal Form. Most example programs were linear
semantically, but not syntactically. We developed a linear type system, Linear Core, for
an intermediate language akin to GHC Core, with laziness and linearity. In contrast to
GHC Core’s type system, or any other linear type system (to the best of our knowledge),
our type system understands semantic linearity, and can thus correctly type a wider range
of linear programs, as those explored in the semantic linearity examples. Crucially, we
proved soundness of the type system, and proved multiple optimising transformations pre-
serve linearity, despite most violating linearity in other linear type systems. Additionally,
we implemented Linear Core as a GHC plugin to further explore its suitability in the
intermediate language of an optimising compiler.

Concluding, Linear Core is a suitable type system for linear, lazy, intermediate lan-
guages of optimising compilers such as GHC, as it understands linearity in the presence

1https://gitlab.haskell.org/ghc/ghc/-/issues/23218

68

6.3. Conclusion

of laziness s.t. optimisations preserve types and linearity, and further unblocks optimisa-
tions influenced by linearity, e.g. inlining and call-by-name β-reduction for applications
of (semantically) linear functions.

69

Bibliography

[1] H.B. Curry. Functionality in combinatory logic. volume 20, pages 584–590. Depart-
ment of Mathematics, The Pennsylvania State College, 1934.

[2] Jean-Yves Girard. Interpretation fonctionelle et elimination des coupures dans
l’aritmetique d’ordre superieur. 1972.

[3] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Pro-
gramming Symposium, pages 408–425, Berlin, Heidelberg, 1974. Springer Berlin Hei-
delberg.

[4] Lúıs Damas and Robin Milner. Principal type-schemes for functional programs. In
Richard A. DeMillo, editor, Conference Record of the Ninth Annual ACM Symposium
on Principles of Programming Languages, Albuquerque, New Mexico, USA, January
1982, pages 207–212. ACM Press, 1982.

[5] E. Engeler. H. p. barendregt. the lambda calculus. its syntax and semantics. studies
in logic and foundations of mathematics, vol. 103. north-holland publishing company,
amsterdam, new york, and oxford, 1981, xiv 615 pp. The Journal of Symbolic Logic,
49(1):301–303, 1984.

[6] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer
Architecture, pages 190–203, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[7] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[8] Philip Wadler. Linear types can change the world! In Programming Concepts and
Methods, 1990.

[9] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens
in a non-strict functional language. In John Hughes, editor, Functional Program-
ming Languages and Computer Architecture, pages 636–666, Berlin, Heidelberg, 1991.
Springer Berlin Heidelberg.

[10] Jean-Marc Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Jour-
nal of Logic and Computation, 2(3):297–347, 06 1992.

[11] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic, 57(3):795–807, 1992.

[12] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:
the spineless tagless g-machine. Journal of Functional Programming, 2(2):127–202,
1992.

71

Bibliography

[13] Simon Peyton Jones and Will Partain. Measuring the effectiveness of a simple strict-
ness analyser, January 1993. Functional Programming, Glasgow 1993.

[14] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type
classes in haskell. In Donald Sannella, editor, Programming Languages and Systems
— ESOP ’94, pages 241–256, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[15] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip
Wadler. A call-by-need lambda calculus. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’95, page
233–246, New York, NY, USA, 1995. Association for Computing Machinery.

[16] Andre Santos and Simon Peyton Jones. Compilation by transformation for non-strict
functional languages. PhD thesis, July 1995.

[17] Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
The University of Edinburgh, 1996.

[18] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler.
Type classes in haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, mar 1996.

[19] Simon Peyton Jones and Will Partain. Let-floating: Moving bindings to give faster
programs. Proc. of ICFP’96, 31, 10 1996.

[20] Simon Peyton Jones and Andre Santos. A transformation-based optimiser for haskell.
Science of Computer Programming, 32(1), October 1997.

[21] Olaf Chitil. Common subexpressions are uncommon in lazy functional languages. In
Chris Clack, Kevin Hammond, and Tony Davie, editors, Implementation of Func-
tional Languages, pages 53–71, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[22] Simon Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, Brian Bou-
tel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, et al.
Haskell 98, 1999.

[23] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource manage-
ment for linear logic proof search. Theoretical Computer Science, 232(1):133–163,
2000.

[24] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource manage-
ment for linear logic proof search. Theor. Comput. Sci., 232(1-2):133–163, 2000.

[25] Simon Peyton Jones and Simon Marlow. Secrets of the glasgow haskell compiler
inliner. Journal of Functional Programming, 12:393–434, July 2002.

[26] Clem Baker-Finch, Kevin Glynn, and Simon Peyton Jones. Constructed product
result analysis for haskell. Journal of Functional Programming, 14(2):211–245, March
2004.

[27] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated
type synonyms. SIGPLAN Not., 40(9):241–253, sep 2005.

[28] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow.
Associated types with class. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05, page 1–13, New
York, NY, USA, 2005. Association for Computing Machinery.

72

Bibliography

[29] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields.
Practical type inference for arbitrary-rank types. J. Funct. Program., 17(1):1–82, jan
2007.

[30] Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System f with type equality coercions. In ACM SIGPLAN International Workshop
on Types in Language Design and Implementation (TLDI’07), pages 53–66. ACM,
January 2007.

[31] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
Paul Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory,
pages 222–236, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[32] Simon Marlow et al. Haskell 2010 language report. 2010.

[33] Dimitrios Vytiniotis, Simon Peyton Jones, TOM SCHRIJVERS, and Martin Sulz-
mann. Outsidein(x) modular type inference with local assumptions. Journal of Func-
tional Programming, 21(4-5):333–412, 2011.

[34] Richard A. Eisenberg and Jan Stolarek. Promoting functions to type families in
haskell. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell
’14, page 95–106, New York, NY, USA, 2014. Association for Computing Machinery.

[35] Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104,
oct 2014.

[36] Joachim Breitner. Lazy Evaluation: From natural semantics to a machine-checked
compiler transformation. PhD thesis, Karlsruher Institut für Technologie (KIT),
2016.

[37] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones,
and Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic
language. CoRR, abs/1710.09756, 2017.

[38] Richard A. Eisenberg and Simon Peyton Jones. Levity polymorphism. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, page 525–539, New York, NY, USA, 2017. Association
for Computing Machinery.

[39] Luke Maurer, Zena Ariola, Paul Downen, and Simon Peyton Jones. Compiling with-
out continuations. In ACM Conference on Programming Languages Design and Im-
plementation (PLDI’17), pages 482–494. ACM, June 2017.

[40] Ilya Sergey, Dimitrios Vytiniotis, Simon L. Peyton Jones, and Joachim Breitner. Mod-
ular, higher order cardinality analysis in theory and practice. Journal of Functional
Programming, 27:e11, 2017.

[41] Matthew Pickering, Nicolas Wu, and Boldizsár Németh. Working with source plugins.
In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell,
Haskell 2019, page 85–97, New York, NY, USA, 2019. Association for Computing
Machinery.

[42] J. Bernardy, R. Eisenberg, M. Boespflug, R. Newton, S. Peyton Jones, and
A. Spiwack. Linear mini-core. https://gitlab.haskell.org/ghc/ghc/-/wikis/

uploads/355cd9a03291a852a518b0cb42f960b4/minicore.pdf, 2020.

73

https://gitlab.haskell.org/ghc/ghc/-/wikis/uploads/355cd9a03291a852a518b0cb42f960b4/minicore.pdf
https://gitlab.haskell.org/ghc/ghc/-/wikis/uploads/355cd9a03291a852a518b0cb42f960b4/minicore.pdf

Bibliography

[43] Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent type theory for quan-
tum programming languages: Extended abstract. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, page 440–453, New
York, NY, USA, 2020. Association for Computing Machinery.

[44] Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. A
quick look at impredicativity. Proc. ACM Program. Lang., 4(ICFP), aug 2020.

[45] Jean-Philippe Bernardy and Arnaud Spiwack. Evaluating linear functions to sym-
metric monoidal categories. In Proceedings of the 14th ACM SIGPLAN International
Symposium on Haskell, page 14–26, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[46] Edwin Brady. Idris 2: Quantitative Type Theory in Practice. In Anders Møller
and Manu Sridharan, editors, 35th European Conference on Object-Oriented Pro-
gramming (ECOOP 2021), volume 194 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 9:1–9:26, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[47] Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee. An
existential crisis resolved: Type inference for first-class existential types. Proc. ACM
Program. Lang., 5(ICFP), aug 2021.

[48] Wen Kokke and Ornela Dardha. Deadlock-free session types in linear haskell. In
Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell, Haskell
2021, page 1–13, New York, NY, USA, 2021. Association for Computing Machinery.

[49] The Glasgow Haskell Compiler contributors. Glasgow haskell compiler / ghc source.
https://gitlab.haskell.org/ghc/ghc, 2022.

[50] Jialin Li, Andrea Lattuada, Yi Zhou, Jonathan Cameron, Jon Howell, Bryan Parno,
and Chris Hawblitzel. Linear types for large-scale systems verification. Proc. ACM
Program. Lang., 6(OOPSLA1), apr 2022.

[51] Arnaud Spiwack, Csongor Kiss, Jean-Philippe Bernardy, Nicolas Wu, and Richard A.
Eisenberg. Linearly qualified types: Generic inference for capabilities and uniqueness.
Proc. ACM Program. Lang., 6(ICFP), aug 2022.

[52] Simon Marlow and Simon Peyton Jones. The Glasgow Haskell Compiler. Lulu, the
architecture of open source applications, volume 2 edition, January 2012.

[53] N/A. Linear core: Theory and a ghc plugin, N/A. Omitted for anonymization
purposes.

[54] William A. Howard. The formulae-as-types notion of construction. pages 479–490.
1980 (originally circulated 1969).

[55] Simon L. Peyton Jones. The Implementation of Functional Programming Languages
(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc., USA,
1987.

74

https://gitlab.haskell.org/ghc/ghc

APPENDIX A
Type Safety Proofs

A.1 Type Preservation

Theorem 2 (Type preservation). If Γ;∆ ⊢ e : σ and e −→ e′ then Γ;∆ ⊢ e′ : σ

Proof. By structural induction on the small-step reduction.

Case: (λx:πσ. e) e
′ −→ e[e′/x]

(1) Γ;∆,∆′ ⊢ (λx:πσ. e) e
′ : φ

(2) Γ;∆ ⊢ (λx:πσ. e) : σ →π φ by inversion on (λE)
(3) Γ;∆′ ⊢ e′ : σ by inversion on (λE)
Subcase π = 1, p:
(4) Γ;∆, x:1,pσ ⊢ e : φ by inversion on (λI)
(5) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] : φ by linear subst. lemma (3,4)
(6) Γ[∆′/x] = Γ since Γ is well defined before x’s binding (1)
Subcase π = ω:
(4) ∆′ = · by inversion on (λEω)
(5) Γ, x:ωσ; ∆ ⊢ e : φ by inversion on (λI)
(6) Γ;∆, · ⊢ e[e′/x] : φ by unrestricted subst. lemma (3,4,5)

Case: (Λp. e) π −→ e[π/p]

(1) Γ;∆ ⊢ (Λp. e) π : σ[π/p]
(2) Γ;∆ ⊢ (Λp. e) : ∀p. σ by inversion on (ΛE)
(3) Γ ⊢mult π by inversion on (ΛE)
(4) Γ, p; ∆ ⊢ e : σ by inversion on (ΛI)
(5) Γ;∆ ⊢ e[π/p] : σ[π/p] by mult. subst. lemma (3,4)

Case: let x:∆σ = e in e′ −→ e′[e/x]

(1) Γ;∆,∆′ ⊢ let x:∆σ = e in e′ : φ
(2) Γ;∆ ⊢ e : σ by inversion on Let
(3) Γ, x:∆σ; ∆,∆′ ⊢ e′ : φ by inversion on Let

75

A. Type Safety Proofs

(4) Γ;∆,∆′ ⊢ e′[e/x] : φ by ∆-var subst. lemma (2,3)

Case: let rec xi:∆σi = ei in e′ −→ e′[let rec xi:∆σi = ei in ei/x]

(1) Γ;∆,∆′ ⊢ let rec xi:∆σi = ei in e′ : φ

(2) Γ, xi:∆σi; ∆ ⊢ ei : σi by inversion on LetRec
(3) Γ, xi:∆σi; ∆,∆′ ⊢ e′ : φ by inversion on LetRec

(4) Γ;∆, · ⊢ let rec xi:∆σi = ei in ei : σi by LetRec (2,2)

(6) Γ;∆,∆′ ⊢ e′[let rec xi:∆σi = ei in ei/x] : φ by ∆-var subst. (3,4)

Case: case K e of z:∆σ {. . . ,K x:πσ → e′} −→ e′[e/x][K e/z]

(1) Γ;∆,∆′ ⊢ case K eωei of z:∆σ {. . . ,K w:πσ → e′} : φ
(2) K eωei is in WHNF by def. of WHNF

(3) Γ;∆ ⊩ K eωei : σ ⋗∆i by inv. on CaseWHNF

(4) Γ;∆i ⊢ ei : σ′ by inv. on WHNFK

(5) Γ; · ⊢ eω : σ′ by inv. on WHNFK

(6) ∆ = ∆i by inv. on WHNFK

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢alt K w:πσ → e′ :z
∆i

σ Z⇒ φ by inv. on CaseWHNF

Subcase K w:πσ = K x:ωσ, yi:1σi
(8) Γ, z:∆i

σ, x:ωσ, yi:∆iσi; ∆i,∆
′ ⊢ e′ : φ by inv. on AltNWHNF

(9) Γ, z:∆i
σ, yi:∆iσi; ∆i,∆

′ ⊢ e′[eω/x] : φ by unr. subst (5,8)

(10) Γ, z:∆i
σ; ∆i,∆

′ ⊢ e′[eω/x][ei/yi] : φ by ∆-subst (4,9)

(11) Γ;∆i,∆
′ ⊢ e′[eω/x][ei/yi][K eωei/z] : φ by ∆-subst (3,10)

(12) Γ;∆,∆′ ⊢ e′[eω/x][ei/yi][K eωei/z] : φ by (6)
Subcase K w:πσ = K x:ωσ

(8) ∆ = · by ei = · ⇒ ∆i = · and 6
(9) Γ, z:·σ, x:ωσ; ∆

′ ⊢ e′ : φ by inv. on Alt0 and def. of empty subst.

(10) Γ, z:·σ; ∆
′ ⊢ e′[eω/x] : φ by unr. subst. (5,9)

(11) Γ;∆′ ⊢ e′[eω/x][K eω/z] : φ by ∆-subst (8,3,10)

(12) Γ;∆,∆′ ⊢ e′[eω/x][K eω/z] : φ by 8

Case: case K e of z:∆σ {. . . , → e′} −→ e′[K e/z]

(1) Γ;∆,∆′ ⊢ case K e of z:∆σ {. . . , → e′} : φ
(2) Γ;∆ ⊢ K e : σ
(3) K e is in WHNF
(4) Γ, z:∆σ; ∆,∆′ ⊢alt → e′ :z∆ σ ⇒ φ by inv on CaseWHNF
(5) Γ, z:∆σ; ∆,∆′ ⊢ e′ : φ by inv on Alt
(6) Γ;∆,∆′ ⊢ e′[K e/z] : φ by ∆-subst.

Case: e1 e2 −→ e′1 e2

(1) e1 −→ e′1 by inversion on β-reduction
(2) Γ;∆,∆′ ⊢ e1 e2 : φ by assumption

76

A.2. Progress

(3) Γ;∆ ⊢ e1 : σ →π φ by inversion on (λE)
(4) Γ;∆′ ⊢ e2 : σ by inversion on (λE)
(5) Γ;∆ ⊢ e′1 : σ →π φ by induction hypothesis in (3,1)
(6) Γ;∆,∆′ ⊢ e′1 e2 : φ by (λE) (4,5)

Case: e π −→ e′ π

(1) e −→ e′ by inversion on mult. β-reduction
(2) Γ;∆ ⊢ e π : σ[π/p] by assumption
(3) Γ;∆ ⊢ e : ∀p. σ by inversion on (ΛE)
(4) Γ;∆ ⊢mult π by inversion on (ΛE)
(5) Γ;∆ ⊢ e′ : ∀p. σ by induction hypothesis (3,1)
(6) Γ;∆ ⊢ e′ π : σ[π/p] by (ΛE) (5,4)

Case: case e of z:∆σ {ρi → e′′i } −→ case e′ of z:∆σ {ρi → e′′i }

(1) e −→ e′ by inversion on case reduction
(2) Γ;∆,∆′ ⊢ case e of z:∆σ {ρi → e′′i } : φ
(3) e is not in WHNF since it evaluates further by (1)

instead of a case alternative being evaluated
(4) Γ;∆ ⊢ e : σ

(5) Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e′′ :z[∆] σ ⇛ φ by inv. on CaseNotWHNF

(6) Γ;∆ ⊢ e′ : σ′ by i.h. (1,4)
Subcase e′ is not in WHNF
(7) Γ;∆,∆′ ⊢ case e′ of z:∆σ {ρi → e′i} : φ by CaseNotWHNF
Subcase e′ is in WHNF

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢alt ρj → e′′ :z
∆i

σ Z⇒ φ by Irrelevance (5) for a matching ρj

(8) ∆ = ∆i by ∆i can be any env. (7)

(9) Γ;∆ ⊩ e : σ ⋗∆i by (8) and rhs of ⋗ = ∆
(10) Γ;∆,∆′ ⊢ case e′ of z:∆σ {ρi → e′i} : φ by CaseWHNF (5,7,9)

A.2 Progress

Theorem 3 (Progress). If ·; · ⊢ e : σ then e is a value or there exists e′ such that e −→ e′.

Proof. By structural induction on the (only) typing derivation

Case: ΛI

(1) ·; · ⊢ (Λp. e) : ∀p. σ by assumption
(2) (Λp. e) is a value by definition

Case: ΛE

77

A. Type Safety Proofs

(1) ·; · ⊢ e1 π : σ[π/p] by assumption
(2) ·; · ⊢ e1 : ∀p. σ by inversion on (ΛE)
(3) ·; · ⊢mult π by inversion on (ΛE)
(4) e1 is a value or ∃e′1. e1 −→ e′1 by the induction hypothesis (2)
Subcase e1 is a value:
(5) e1 = Λp. e2 by the canonical forms lemma (2)
(6) (Λp. e2) π −→ e2[π/p] by β-reduction on multiplicity (5,3)
Subcase e1 −→ e′1:
(5) e1 π −→ e′1 π by context reduction on mult. application

Case: λI

(1) ·; · ⊢ (λx:πσ. e) : σ →π φ by assumption
(2) (λx:πσ. e) is a value by definition

Case: λE

(1) ·; · ⊢ e1 e2 : φ by assumption
(2) ·; · ⊢ e1 : σ →π φ by inversion on (λE)
(3) ·; · ⊢ e2 : σ by inversion on (λE)
(4) e1 is a value or ∃e′1. e1 −→ e′1 by the induction hypothesis (2)
Subcase e1 is a value:
(5) e1 = λx:πσ. e by the canonical forms lemma
(6) e1 e2 −→ e[e2/x] by term β-reduction (5,3)
Subcase e1 −→ e′1:
(5) e1 e2 −→ e′1 e2 by context reduction on term application

Case: Let

(1) · ⊢ let x:∆σ = e in e′ : φ by assumption
(2) let x:∆σ = e in e′ −→ e′[e/x] by definition

Case: LetRec

(1) ·; · ⊢ let rec xi:∆σi = ei in e′ : φ by assumption

(2) let rec xi:∆σi = ei in e′ −→ e′[let rec xi:∆σi = ei in ei/x] by definition

Case: CaseWHNF and CaseNotWHNF

(1) ·; · ⊢ case e of z:·σ {ρi → ei} : φ by assumption
(2) ·; · ⊢ e : σ by inversion of CaseWHNF or CaseNotWHNF

(4) ·, z:·; ·σ ⊢alt ρi → ei :z· σ ⇒ φ by inversion of CaseWHNF or CaseNotWHNF
(5) e is a value or ∃e′. e −→ e′ by induction hypothesis (2)
Subcase e is a value
(6) e1 = K e by canonical forms lemma

78

A.3. Irrelevance

(7) e is in WHNF by (6)
(8) ρi → ei is a complete pattern by coverage checker

(9) case K e of z:·σ {ρi → ei} −→ ei[e/x][K e/z]
by case reduction on pattern or wildcard

Subcase ∃e′. e −→ e′

(6) e is definitely not in WHNF
(7) case e of z:·σ {ρi → e1} −→ case e′ of z:·σ {ρi → ei} by ctx. case reduction

A.3 Irrelevance

Lemma 1 (Irrelevance). If Γ, z:[∆]σ; [∆] ,∆′ ⊢alt ρ→ e :z[∆] σ ⇛ φ then Γ, z:∆†σ; ∆†,∆′ ⊢alt
ρ→ e :z

∆† σ ⇒ φ, for any ∆†

Proof. By structural induction on the case alternative typing derivation.

Case: Alt

(1) Γ, z:[∆]σ; [∆] ,∆′ ⊢alt → e :z[∆] σ ⇒ φ

(2) Γ, z:[∆]σ; [∆] ,∆′ ⊢ e : φ

(3) [∆] is used through z since [∆] can’t otherwise be used
and is introduced in this alternative uniquely

(since we have multi-tier proof irrelevance, i.e. [[∆]] ̸= [∆])
(4) Γ[z/ [∆]]; z:1σ,∆

′ ⊢ e : φ by Lemma ?? (2,3)

(5) Γ[∆i/ [∆]], z:∆i
σ;∆i,∆

′ ⊢ e : φ by Lemma ?? (4)

(6) Γ, z:∆i
σ;∆i,∆

′ ⊢ e : φ by (3), resources in Γ with [∆] (parts) in

the usage environment cannot be used in e

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢alt → e :z
∆i

σ ⇒ φ by Alt

Case: Alt0

(1) Γ, z:[∆]σ; [∆] ,∆′ ⊢alt K x:ωσ → e :z[∆] σ ⇒ φ

(2) Γ, z:·σ, x:ωσ; ∆
′ ⊢ e : φ by inv. on Alt0 and def. of empty subst.

(3) Γ, z:∆i
σ;∆i,∆

′ ⊢alt K x:ωσ → e :z
∆i

σ ⇒ φ by Alt0 (2)

Case: AltNWHNF

Not applicable since ⇛ is only generalized by ⇒, not Z⇒.

Case: AltNNot WHNF We prove the theorem for constructing both an AltNNot WHNF and
an AltNWHNF from a proof-irrelevant AltNNot WHNF, to prove the statement holds
for any ⇒ kind for AltN , rather than just ⇛ or Z⇒.

79

A. Type Safety Proofs

(1) Γ, z:[∆]σ; [∆] ,∆′ ⊢alt K x:ωσ, yi:1σi
n → e :z[∆] σ ⇛ φ

(2) Γ, z:[∆]σ, x:ωσ, yj :∆jσj
n; [∆] ,∆′ ⊢ e : φ by inv. on AltNNot WHNF

(3) ∆j = [∆]#Kj by inv. on AltNNot WHNF

Subcase [∆] is consumed through z
(4) Γ, x:ωσ, yj :∆j [z/[∆]]σj

n; z:1σ,∆
′ ⊢ e : φ by Lemma ?? (2,subcase)

and vars in Γ with [∆] cannot be used by subcase
Subcase constructing AltNWHNF (Z⇒)
(5) Γ, x:ωσ, yj :∆iσj

n; z:1σ,∆
′ ⊢ e : φ by y is not used, and Weaken

(6) Γ, x:ωσ, yj :∆iσj
n, z:∆i

σ; ∆i,∆
′ ⊢ e : φ by Lemma ?? (5)

and Γ vars do not mention z by (4)

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢alt K x:ωσ, yi:1σi
n → e :z

∆i
σ Z⇒ φ by AltNWHNF (6)

Subcase constructing AltNNot WHNF (⇛)
(5) Γ, x:ωσ, yj :∆i#Kj

σj
n; z:1σ,∆

′ ⊢ e : φ by y does not consume resources

(6) Γ, x:ωσ, yj :∆i#Kj
σj

n, z:∆i
σ;∆i,∆

′ ⊢ e : φ by Lemma ?? (5)

and Γ vars do not mention z by (4)

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢alt K x:ωσ, yi:1σi
n → e :z

∆i
σ ⇛ φ by AltNNot WHNF (6)

Subcase [∆] is (fully) consumed by y (after splitting)
(4) Γ, z:yσ, x:ωσ; yj :1σj

n,∆′ ⊢ e : φ by Lemma ?? (2, subcase)
and vars in Γ with [∆] cannot be used by subcase

(5) Γ, z:∆i
σ, x:ωσ; yj :1σj

n,∆′ ⊢ e : φ by Weaken and z does not consume resources

Subcase constructing AltNWHNF (Z⇒)

(6) Γ, z:∆i
σ, x:ωσ, yj :∆iσj

n; ∆i,∆
′ ⊢ e : φ by Lemma ?? (5)

and vars in Γ do not mention y (4,5)

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢ K x:ωσ, yi:1σi
n → e :z

∆i
σ Z⇒ φ by AltNWHNF

Subcase constructing AltNNot WHNF (⇛)

(6) Γ, z:∆i
σ, x:ωσ, yj :∆i#Kj

σj
n; ∆i,∆

′ ⊢ e : φ by 1⇒ ∆ lemma (5)

and vars in Γ do not mention y (4,5)

(7) Γ, z:∆i
σ;∆i,∆

′ ⊢ K x:ωσ, yi:1σi
n → e :z

∆i
σ ⇛ φ by AltNNot WHNF

A.4 Substitution Lemmas

The linear substitution lemma states that a well-typed expression e with a linear variable
x of type σ remains well-typed if occurrences of x in the e are replaced by an expression e′

of the same type σ, and occurrences of x in the linear context and in usage environments
of ∆-bound variables are replaced by the linear context ∆′ used to type e′:

Lemma 23 (Substitution of linear variables preserves typing).

1. If Γ;∆, x:1σ ⊢ e : φ and Γ;∆′ ⊢ e : σ then Γ [∆′/x] ;∆,∆′ ⊢ e[e′/x] : φ

2. If Γ;∆, x:1σ ⊢alt ρ → e :z∆s
σ ⇒ φ and Γ;∆′ ⊢ e′ : σ and ∆s ⊆ ∆, x then

Γ [∆′/x] ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s[∆′/x] σ ⇒ φ

Where Γ[∆′/x] substitutes all occurrences of x in the usage environments of ∆-variables
in Γ by the linear variables in ∆′. We further require that the environment annotated in
the case alternative judgement, ∆s, is a subset of the environment used to type the whole

80

A.4. Substitution Lemmas

alternative ∆s ⊆ ∆. In all occurrences of the alternative judgement (in CaseWHNF and
CaseNot WHNF), the environment annotating the alternative judgement is always a subset
of the alternative environment.

Proof. By structural induction on the given derivation.

Statement (1):

Case: ΛI

(1) Γ;∆, x:1σ ⊢ Λp. e : ∀p. φ
(2) Γ;∆′ ⊢ e′ : σ
(3) Γ, p; ∆, x:1σ ⊢ e : φ by inversion on ΛI
(4) p /∈ Γ by inversion on ΛI
(5) Γ[∆′/x], p; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1) by (2,3)
(6) Γ[∆′/x]; ∆,∆′ ⊢ Λp. e[e′/x] : ∀p. φ by ΛI (4,5)
(7) (Λp. e)[e′/x] = (Λp. e[e′/x]) by def. of substitution

Case: ΛE

(1) Γ;∆, x:1σ ⊢ e π : φ[π/p]
(2) Γ;∆′ ⊢ e′ : σ
(3) Γ;∆, x:1σ ⊢ e : ∀p. φ by inversion on ΛE
(4) Γ ⊢mult π by inversion on ΛE
(5) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] : ∀p. φ by i.h.(1) by (2,3)
(6) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] π : φ[π/p] by ΛE (4,5)
(7) (e π)[e′/x] = e[e′/x]π by def. of substitution

Case: λI1

(1) Γ;∆, x:1σ ⊢ λy:1σ
′. e : σ′ →1 φ

(2) Γ;∆′ ⊢ e′ : σ
(3) Γ;∆, x:1σ, y:1σ

′ ⊢ e : φ by inversion on λI
(4) Γ[∆′/x]; ∆, y:1σ

′,∆′ ⊢ e[e′/x] : φ by i.h.(1) by (2,3)
(5) Γ[∆′/x]; ∆,∆′ ⊢ λy:1σ

′. e[e′/x] : σ′ →1 φ by λI (4)
(6) (λy:1σ

′. e)[e′/x] = (λy:1σ
′. e[e′/x]) by def. of substitution

Case: λIω

(1) Γ;∆, x:1σ ⊢ λy:ωσ
′. e : σ′ →ω φ

(2) Γ;∆′ ⊢ e′ : σ
(3) Γ, y:ωσ

′; ∆, x:1σ ⊢ e : φ by inversion on λI
(4) Γ[∆′/x], y:ωσ

′; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1) by (2,3)
(5) Γ[∆′/x]; ∆,∆′ ⊢ λy:ωσ

′. e[e′/x] : σ′ →1 φ by λI (4)
(6) (λy:ωσ

′. e)[e′/x] = (λy:ωσ
′. e[e′/x]) by def. of substitution

Case: V ar1

81

A. Type Safety Proofs

(1) Γ;x:1σ ⊢ x : σ
(2) Γ;∆′ ⊢ e′ : σ
(3) Γ[∆′/x]; ∆′ ⊢ e′ : σ by weaken
(4) x[e′/x] = e′ by def. of substitution
(5) Γ[∆′/x]; ∆′ ⊢ e′ : σ by (3)

Case: V arω
(1) Impossible. x:1σ can’t be in the context.

Case: V ar∆

(1) Γ, y:∆,x:1σφ; ∆, x:1σ ⊢ y : φ
(2) Γ;∆′ ⊢ e′ : σ
(3) y[e′/x] = y
(4) Γ[∆′/x], y:∆,∆′φ; ∆,∆′;⊢ y : φ by V ar∆

Case: Split

Trivial induction

Case: λE1

(1) Γ;∆,∆′′, x:1σ ⊢ e e′′ : φ
(2) Γ;∆′ ⊢ e′ : σ
Subcase x occurs in e
(3) Γ;∆, x:1σ ⊢ e : σ′ →1 φ by inversion on λE1

(4) Γ;∆′′ ⊢ e′′ : σ′ by inversion on λE1

(5) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] : σ′ →1 φ by i.h.(1) (2,3)
(6) Γ[∆′/x]; ∆,∆′,∆′′ ⊢ e[e′/x] e′′ : φ by λE1

(7) (e[e′/x] e′′) = (e e′′)[e′/x] because x does not occur in e′′

Subcase x occurs in e′′

(3) Γ;∆ ⊢ e : σ′ →1 φ by inversion on λE1

(4) Γ;∆′′, x:1σ ⊢ e′′ : σ′ by inversion on λE1

(5) Γ[∆′/x]; ∆′′,∆′ ⊢ e′′[e′/x] : σ′ by i.h.(1) (2,4)
(6) Γ[∆′/x]; ∆,∆′,∆′′ ⊢ e e′′[e′/x] : φ by λE1

(7) (e e′′[e′/x]) = (e e′′)[e′/x] because x does not occur in e

Case: λEω

(1) Γ;∆, x:1σ ⊢ e e′′ : φ
(2) Γ;∆′ ⊢ e′ : σ
(3) x does not occur in e′′ by e′′ linear context is empty
(4) Γ;∆, x:1σ ⊢ e : σ′ →ω φ by inversion on λEω

(5) Γ; · ⊢ e′′ : σ′ by inversion on λEω

(6) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] : σ′ →ω φ by i.h.(1) (2,4)
(7) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] e′′ : φ by λEω

(8) (e[e′/x] e′′) = (e e′′)[e′/x] because x does not occur in e′′

82

A.4. Substitution Lemmas

Case: Let

(1) Γ;∆′ ⊢ e′ : σ
Subcase x occurs in e
(2) Γ;∆, x:1σ,∆

′′ ⊢ let y:∆,x:1σσ
′ = e in e′′ : φ

(3) Γ, y:∆,x:1σσ
′; ∆, x:1σ,∆

′′ ⊢ e′′ : vp by inversion on Let
(4) Γ;∆, x:1σ ⊢ e : σ′ by inversion on Let
(5) Γ[∆′/x], y:∆,∆′σ′; ∆,∆′,∆′′ ⊢ e′′[e′/x] by i.h.(1) (1, 3)
(6) Γ[∆′/x]; ∆,∆′ ⊢ e[e′/x] : σ′ by i.h.(1) (1, 4)
(7) Γ[∆′/x]; ∆,∆′,∆′′ ⊢ let y:∆,∆′σ′ = e[e′/x] in e′′[e′/x] : φ (5,6) by Let
(8) (let y:∆,∆′σ′ = e[e′/x] in e′′[e′/x]) = (let y:∆,∆′σ′ = e in e′′)[e′/x] by subst.
Subcase x does not occur in e
(2) Γ;∆,∆′′, x:1σ ⊢ let y:∆σ

′ = e in e′′ : φ
(3) Γ, y:∆σ

′; ∆,∆′′, x:1σ ⊢ e′′ : φ by inversion on Let
(4) Γ;∆ ⊢ e : σ′ by inversion on Let
(5) Γ[∆′/x], y:∆σ

′; ∆,∆′,∆′′ ⊢ e′′[e′/x] : φ by i.h.(1) (1,3)
(6) Γ[∆′/x]; ∆,∆′,∆′′ ⊢ let y:∆σ

′ = e in e′′[e′/x] : φ by Let (2,5,6)
(7) let y:∆σ

′ = e in e′′[e′/x] = (let y:∆σ
′ = e in e′′)[e′/x] by x does not occur in e

Case: LetRec

(1) Γ;∆′ ⊢ e′ : σ
Subcase x:1σ occurs in some ei
(2) Γ;∆, x:1σ,∆

′′ ⊢ let rec yi:∆,x:1σσi = ei in e′′ : φ
(3) Γ, yi:∆,x:1σσi; ∆, x:1σ,∆

′′ ⊢ e′′ : φ by inversion on LetRec

(4) Γ, yi:∆,x:1σσi; ∆, x:1σ ⊢ ei : σi by inversion on LetRec
(5) Γ[∆′/x], yi:∆,∆′σi; ∆,∆′,∆′′ ⊢ e′′[e′/x] : φ by i.h.(1) (1,3)

(6) Γ, yi:∆,∆′σi; ∆,∆′ ⊢ ei[e′/x] : σi by i.h.(1) (1,4)

(7) Γ[∆′/x]; ∆,∆′,∆′′ ⊢ let rec yi:∆,Γ′
1
σi = ei[e′/x] in e′′[e′/x] : φ by LetRec

(8) (let rec yi:∆,∆′σi = ei in e′′)[e′/x] = let rec yi:∆,∆′σi = ei[e′/x] in e′′[e′/x]
Subcase x:1σ does not occur in any ei
(2) Γ;∆, x:1σ,∆

′′ ⊢ let rec yi:∆σi = ei in e′′ : φ
(3) Γ, yi:∆σi; ∆, x:1σ,∆

′′ ⊢ e′′ : φ by inversion on LetRec

(4) Γ, yi:∆σi; ∆ ⊢ ei : σi by inversion on LetRec
(5) Γ[∆′/x], yi:∆σi; ∆,∆′,∆′′ ⊢ e′′[e′/x] : φ by i.h.(1) (1,3)
(6) Γ[∆′/x]; ∆,∆′,∆′′ ⊢ let rec yi:∆σi = ei in e′′[e′/x] : φ by LetRec
(7) let rec yi:∆σi = ei in e′′[e′/x] = (let rec yi:∆σi = ei in e′′)[e′/x] by subcase

Case: CaseWHNF

(1) Γ;∆′ ⊢ e′ : σ
Subcase x occurs in e

(2) Γ;∆, x:1σ,∆
′′ ⊢ case e of z:∆,x:1σσ

′ {ρ→ e′′} : φ
(3) e is in WHNF
(4) Γ;∆, x:1σ ⊢ e : σ′

(5) ρj matches e (6) Γ, z:∆,x:1σσ
′; ∆, x:1σ,∆

′′ ⊢alt ρj → e′′ :z∆,x:1σ
σ′ Z⇒ φ

(7) Γ, z:[∆,x:1σ]σ
′; [∆, x:1σ] ,∆′′ ⊢alt ρ→ e′′ :z[∆,x:1σ]

σ′ ⇛ φ by inv.

83

A. Type Safety Proofs

(8) Γ [∆′/x] ;∆,∆′ ⊢ e[e′/x] : φ by i.h.(1)
(9) Γ [∆′/x] , z:∆,∆′σ′; ∆,∆′,∆′′ ⊢alt ρj → e′′[e′/x] :z∆,∆′ σ′ Z⇒ φ by i.h.(2)

(10) Γ [∆′/x] , z:[∆,∆′]σ′; [∆,∆′] ,∆′′ ⊢alt ρ→ e′′[e′/x] :z[∆,∆′] σ
′ ⇛ φ by Irrelevance

(11) Γ [∆′/x] ;∆,∆′,∆′′ ⊢ case e[e′/x] of z:∆,∆′σ′ {ρ→ e′′[e′/x]} : φ
Subcase x occurs in e′′

(2) Γ;∆,∆′′, x:1σ ⊢ case e of z:∆σ
′ {ρ→ e′′} : φ

(3) e is in WHNF
(4) ρj matches e
(5) Γ;∆ ⊢ e : σ′

(6) Γ, z:∆σ
′; ∆,∆′′, x:1σ ⊢alt ρj → e′′ :z∆ σ′ Z⇒ φ

(7) Γ, z:[∆]σ′; [∆] ,∆′′, x:1σ ⊢alt ρ→ e′′ :z[∆] σ
′ ⇛ φ by inv.

(8) e[e′/x] = e by x does not occur in e
(9) Γ [∆′/x] , z:∆σ

′; ∆,∆′′,∆′ ⊢alt ρj → e′′[e′/x] :z∆ σ′ Z⇒ φ by i.h.(2)

(10) Γ [∆′/x] , z:[∆]σ′; [∆] ,∆′′,∆′ ⊢alt ρ→ e′′[e′/x] :z[∆] σ
′ ⇛ φ by i.h.(2)

(11) Γ [∆′/x] ;∆,∆′′,∆′ ⊢ case e of z:∆σ
′ {ρ→ e′′[e′/x]} : φ

Case: CaseNotWHNF

(1) Γ;∆′ ⊢ e′ : σ
Subcase x occurs in e

(2) Γ;∆, x:1σ,∆
′′ ⊢ case e of z:[∆,x:1σ]σ

′ {ρ→ e′′} : φ
(3) e is definitely not in WHNF
(4) Γ;∆, x:1σ ⊢ e : σ′ by inv.

(5) Γ, z:[∆,x:1σ]σ
′; [∆, x:1σ] ,∆′′ ⊢alt ρ→ e′′ :z[∆,x:1σ]

σ′ ⇛ φ by inv.

(6) Γ [∆′/x] ;∆,∆′ ⊢ e[e′/x] : φ by i.h.(1)

(7) Γ [∆′/x] , z:[∆,∆′]σ′; [∆,∆′] ,∆′′ ⊢alt ρ→ e′′[e′/x] :z[∆,∆′] σ
′ ⇛ φ by Irrelevance

(8) Γ [∆′/x] ;∆,∆′,∆′′ ⊢ case e[e′/x] of z:∆,∆′σ′ {ρ→ e′′[e′/x]} : φ
Subcase x occurs in e′′

(2) Γ;∆,∆′′, x:1σ ⊢ case e of z:[∆]σ
′ {ρ→ e′′} : φ

(3) e is definitely not in WHNF
(4) Γ;∆ ⊢ e : σ′ by inv.

(5) Γ, z:[∆]σ′; [∆] ,∆′′, x:1σ ⊢alt ρ→ e′′ :z[∆] σ
′ ⇛ φ by inv.

(6) e[e′/x] = e by x does not occur in e

(7) Γ [∆′/x] , z:[∆]σ′; [∆] ,∆′′,∆′ ⊢alt ρ→ e′′[e′/x] :z[∆] σ
′ ⇛ φ by i.h.(2)

(8) Γ [∆′/x] ;∆,∆′′,∆′ ⊢ case e of z:[∆]σ
′ {ρ→ e′′[e′/x]} : φ

Statement (2):

Case: AltNWHNF

(1) Γ;∆′ ⊢ e′ : σ
(2) Γ;∆, x:1σ ⊢alt K x:ωσ, yi:1σi

n → e :z∆s
σ′ Z⇒ φ[†]

(3) Γ, x:ωσ, yi:∆iσi; ∆, x:1σ ⊢ e : φ by inv.
(4) Γ [∆′/x] , x:ωσ, yi:∆i[∆′/x]σi; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1)

(5) Γ [∆′/x] ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s[∆′/x] σ
′ Z⇒ φ[†] by (4)

84

A.4. Substitution Lemmas

Case: AltNNotWHNF

(1) Γ;∆′ ⊢ e′ : σ
(2) Γ;∆, x:1σ ⊢alt K x:ωσ, yi:1σi

n → e :z∆s
σ′ ⇛ φ[‡]

(3) ∆i = ∆s#Kj
n

by inv.
(4) Γ, x:ωσ, yi:∆iσi; ∆, x:1σ ⊢ e : φ by inv.
(5) Γ [∆′/x] , x:ωσ, yi:∆i[∆′/x]σi; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1)

(6) ∆i[∆′/x] = ∆s[∆′/x]#Kj
n

by (3) and cong.
(7) Γ [∆′/x] ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s[∆′/x] σ

′ ⇛ φ[‡] by (5,6)

Case: Alt0 This is one of the most interesting proof cases, and challenging to prove.

• The first insight is to divide the proof into two subcases, accounting for when
the scrutinee (and hence ∆s) contains the linear resource and when it does not.

• The second insight is to recall that ∆ and ∆′ are disjoint to be able to prove
the subcase in which x does not occur in the scrutinee

• The third insight is to create linear resources seemingly out of nowhere under a
substitution that removes them. We see this happen in the case where x occurs
in the scrutinee, for both the linear and affine contexts (see (5,6)). We must
also see that we can swap x for ∆′ if neither can occur (see (7)).

(1) Γ;∆′ ⊢ e′ : σ
Subcase x occurs in scrutinee
(2) Γ;∆, x:1σ ⊢alt K x:ωσ → e :z∆s,x:1σ

σ′ ⇒ φ

(2.5) Γ [·/∆s, x]z , x:ωσ; (∆, x:1σ) [·/∆s, x] ⊢ e : φ by inv.
(3) Γ [·/∆s, x]z , x:ωσ; ∆ [·/∆s] ⊢ e : φ
(4) e[e′/x] = e since x cannot occur in e (erased from cx)
(5) ∆[·/∆s] = (∆,∆′)[·/∆s,∆

′] by cong. of subst.
(6) Γ[·/∆s, x]z[∆

′/x] = Γ[∆′/x][·/∆s,∆
′]z by cong. of subst.

(7) ∀x,∆,∆′,Γ : x /∈ ∆ ∧∆′ ̸⊂ ∆ ∧ Γ;∆ ⊢ e : σ ⇒ Γ[∆′/x]; ∆ ⊢ e : σ by Weaken
and variables in Γ cannot occur in e if they mention x nor if they mention ∆′

(8) Γ [∆′/x] [·/∆s,∆
′]z , x:ωσ; (∆,∆′) [·/∆s,∆

′] ⊢ e[e′x] : φ by (4,5,6,7)
and x and ∆′ are erased from ctx

(9) Γ [∆′/x] ;∆,∆′ ⊢alt K x:ωσ → e[e′/x] :z∆s,∆′ σ′ ⇒ φ by Alt0

Subcase x does not occur in scrutinee
(2) Γ;∆, x:1σ ⊢alt K x:ωσ → e :z∆s

σ′ ⇒ φ

(3) Γ [·/∆s]z , x:ωσ; ∆ [·/∆s] , x:1σ ⊢ e : φ by x does not occur in ∆s and inv.
(4) Γ [∆′/x] [·/∆s]z , x:ωσ; ∆ [·/∆s] ,∆

′ ⊢ e[e′/x] : φ
by i.h.(1) and x does not occur in ∆s

(5) Γ [∆′/x] [·/∆s]z , x:ωσ; (∆,∆′) [·/∆s] ⊢ e[e′/x] : φ
by ∆ and ∆′ being disjoint by hypothesis,

and ∆s being a subset of ∆
(6) ∆s[∆

′/x] = ∆s by x does not occur in ∆s

(7) Γ [∆′/x] ;∆,∆′ ⊢alt K x:ωσ → e[e′/x] :z∆s[∆′/x] σ
′ ⇒ φ

Case: Alt (trivial induction)

85

A. Type Safety Proofs

(1) Γ;∆′ ⊢ e′ : σ
(2) Γ;∆, x:1σ ⊢alt → e :z∆s

σ′ ⇒ φ

(3) Γ;∆, x:1σ ⊢ e : φ
(4) Γ [∆′/x] ;∆,∆′ ⊢ e[e′/x] : φ
(5) Γ [∆′/x] ;∆,∆′ ⊢alt → e[e′/x] :z∆s,∆′ σ′ ⇒ φ

The substitution lemma for unrestricted variables follows the usual formulation, with
the added restriction (common to linear type systems) that the expression e′ that is going
to substitute the unrestricted variable x is typed on an empty linear environment:

Lemma 24 (Substitution of unrestricted variables preserves typing).

1. If Γ, x:ωσ; ∆ ⊢ e : φ and Γ; · ⊢ e′ : σ then Γ,∆ ⊢ e[e′/x] : φ

2. If Γ, x:ωσ; ∆ ⊢alt ρ → e :z∆s
σ′ ⇒ φ and Γ;∆ ⊢ e′ : σ then Γ;∆ ⊢alt ρ → e[e′/x] :z∆s

σ′ ⇒ φ

Proof. By structural induction on the given derivation.
Statement (1):

Case: ΛI

(1) Γ, x:ωσ; ∆ ⊢ Λp. e : ∀p. φ
(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ, p; ∆ ⊢ e : φ by inversion on ΛI
(4) p /∈ Γ by inversion on ΛI
(5) Γ, p; ∆ ⊢ e[e′/x] : φ by i.h.(1) by (2,3)
(6) Γ;∆ ⊢ Λp. e[e′/x] : ∀p. φ by ΛI (4,5)
(7) (Λp. e)[e′/x] = (Λp. e[e′/x]) by def. of substitution

Case: ΛE

(1) Γ, x:ωσ; ∆ ⊢ e π : φ[π/p]
(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ; ∆ ⊢ e : ∀p. φ by inversion on ΛE
(4) Γ ⊢mult π by inversion on ΛE
(5) Γ;∆ ⊢ e[e′/x]∀p. φ by i.h.(1) by (2,3)
(6) Γ;∆ ⊢ e[e′/x] π : φ[π/p] by ΛE (4,5)
(7) (e π)[e′/x] = e[e′/x] π by def. of substitution

Case: λI1

(1) Γ, x:ωσ; ∆ ⊢ λy:1σ
′. e : σ′ →1 φ

(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ; ∆, y:1σ

′ ⊢ e : φ by inversion on λI1
(4) Γ;∆, y:1σ

′ ⊢ e[e′/x] : φ by i.h.(1) (2,3)

86

A.4. Substitution Lemmas

(5) Γ;∆ ⊢ λy:1σ
′. e[e′/x] : σ′ →1 φ by λI1

(6) (λy:πσ
′. e)[e′/x] = (λy:πσ

′. e[e′/x]) by def. of subst.

Case: λIω

(1) Γ, x:ωσ; ∆ ⊢ λy:ωσ
′. e : σ′ →ω φ

(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ, y:ωσ

′; ∆ ⊢ e : φ by inversion on λIω
(4) Γ, y:ωσ

′; ∆,⊢ e[e′/x] : φ by i.h.(1) (2,3)
(5) Γ;∆ ⊢ λy:ωσ

′. e[e′/x] : σ′ →ω φ by λIω
(6) (λy:πσ

′. e)[e′/x] = (λy:πσ
′. e[e′/x]) by def. of subst.

Case: V arω

(1) Γ, x:ω; ·σ ⊢ x : σ
(2) Γ; · ⊢ e′ : σ
(4) x[e′/x] = e′ by def. of substitution
(5) Γ; · ⊢ e′ : σ by (2)

Case: V arω

(1) Γ, x:ωσ; · ⊢ y : φ
(2) Γ; · ⊢ e′ : σ
(3) y[e′/x] = y by def. of substitution
(4) Γ; · ⊢ y : φ by inversion on Weakenω (1)

Case: V ar1

(1) Impossible. The context in V ar1 is empty.

Case: V ar∆

(1) Impossible. The context in V ar∆ only contains linear variables.

Case: Split

Trivial induction

Case: λE1,p

(1) Γ, x:ωσ; ∆,∆′ ⊢ e e′′ : φ
(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ; ∆ ⊢ e : σ′ →1,p φ by inversion on λE1,p

(4) Γ, x:ωσ; ∆
′ ⊢ e′′ : σ′ by inversion on λE1,p

(5) Γ;∆ ⊢ e[e′/x] : σ′ →1,p φ by i.h.(1) (2,3)
(6) Γ;∆′ ⊢ e′′[e′/x] : σ′ by i.h.(1) (2,4)
(7) Γ;∆,∆′ ⊢ e[e′/x] e′′[e′/x] : φ by λE1,p (5,6)
(8) (e e′′)[e′/x] = (e[e′/x] e′′[e′/x]) by def. of subst.

87

A. Type Safety Proofs

Case: λEω

(1) Γ, x:ωσ; ∆ ⊢ e e′′ : φ
(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ; ∆ ⊢ e : σ′ →ω φ by inversion on λEω

(4) Γ, x:ωσ; · ⊢ e′′ : σ′ by inversion on λEω

(5) Γ;∆ ⊢ e[e′/x] : σ′ →1 φ by i.h.(1) (2,3)
(6) Γ; · ⊢ e′′[e′/x] : σ′ by i.h.(1) (2,4)
(7) Γ;∆ ⊢ e[e′/x] e′′[e′/x] : φ by λEω (5,6)
(8) (e e′′)[e′/x] = (e[e′/x] e′′[e′/x]) by def. of subst.

Case: Let

(1) Γ, x:ωσ; ∆,∆′ ⊢ let y:∆σ
′ = e in e′′ : φ

(2) Γ; · ⊢ e′ : σ
(3) Γ, x:ωσ, y:∆σ

′; ∆,∆′ ⊢ e′′φ by inversion on Let
(4) Γ, x:ωσ; ∆ ⊢ e : σ′ by inversion on Let
(5) Γ, y:∆σ

′; ∆ ⊢ e′′[e′/x] : φ by i.h.(1) (2,3)
(6) Γ;∆ ⊢ e[e′/x] : σ′ by i.h.(1) (2,4)
(7) Γ;∆,∆′ ⊢ let y:∆σ

′ = e[e′/x] in e′′[e′/x] by Let (5,6)
(8) (let y:∆σ

′ = e in e′′)[e′/x] = (let y:∆σ
′ = e[e′/x] in e′′[e′/x])

Case: LetRec

(1) Γ, x:ωσ; ∆,∆′ ⊢ let rec y:∆σ′ = e in e′′ : φ
(2) Γ′; · ⊢ e′ : σ

(3) Γ, x:ωσ, y:∆σ′; ∆,∆′ ⊢ e′′ : φ by inversion on LetRec

(4) Γ, x:ωσ, y:∆σ′; ∆ ⊢ e : σ′ by inversion on LetRec

(5) Γ, y:∆σ′; ∆,∆′ ⊢ e′′[e′/x] : φ by i.h.(1) (2,3)

(6) Γ, y:∆σ′; ∆ ⊢ e[e′/x] : σ′ by i.h.(1) (2,4)

(7) Γ;∆,∆′ ⊢ let rec y:∆σ′ = e[e′/x] in e′′[e′/x] : φ by LetRec (5,6)

(8) (let rec y:∆σ′ = e in e′′)[e′/x] = (let rec y:∆σ′ = e[e′/x] in e′′[e′/x])

Case: CaseWHNF

(1) Γ; · ⊢ e′ : σ

(2) Γ, x:ωσ; ∆,∆′ ⊢ case e of z:∆σ
′ {ρ→ e′′} : φ

(3) Γ, x:ωσ; ∆ ⊢ e : σ
(4) Γ;∆ ⊢ e[e′/x] : σ′ by i.h.(1)
(5) e is in WHNF

(6) Γ, x:ωσ, z:∆σ′; ∆,∆′ ⊢ ρ→ e′′ :∆ σ′ ⇒ φ

(7) Γ, z:∆σ′; ∆,∆′ ⊢ ρ→ e′′[e′/x] :∆ σ′ ⇒ φ by i.h.(2)

(8) Γ;∆,∆′ ⊢ case e[e′/x] of z:∆σ
′ {ρ→ e′′[e′/x]} : φ

Case: CaseNotWHNF

88

A.4. Substitution Lemmas

(1) Γ; · ⊢ e′ : σ

(2) Γ, x:ωσ; ∆,∆′ ⊢ case e of z:[∆]σ
′ {ρ→ e′′} : φ

(3) Γ, x:ωσ; ∆ ⊢ e : σ
(4) Γ;∆ ⊢ e[e′/x] : σ′ by i.h.(1)
(5) e is definitely not in WHNF

(6) Γ, x:ωσ, z:[∆]σ′; [∆] ,∆′ ⊢ ρ→ e′′ :[∆] σ′ ⇛ φ

(6) Γ, z:[∆]σ′; [∆] ,∆′ ⊢ ρ→ e′′[e′/x] :[∆] σ′ ⇛ φ by i.h.(2)

(8) Γ;∆,∆′ ⊢ case e[e′/x] of z:[∆]σ
′ {ρ→ e′′[e′/x]} : φ

Statement (2):

Case: AltNWHNF (trivial induction)

(1) Γ; · ⊢ e : σ

(2) Γ, x:ωσ; ∆ ⊢alt K x:ωσ, yi:1σi
n → e †:z

∆i
nσ′ Z⇒ φ

(3) Γ, x:ωσ, x:ωσ, yi:∆iσi; ∆ ⊢ e : φ
(4) Γ, x:ωσ, yi:∆iσi; ∆ ⊢ e[e′/x] : φ by i.h.(1)

(5) Γ;∆ ⊢alt K x:ωσ, yi:1σi
n → e[e′/x] †:z

∆i
nσ′ Z⇒ φ by AltN

Case: AltNNotWHNF (trivial induction)

(1) Γ; · ⊢ e : σ

(2) Γ, x:ωσ; ∆ ⊢alt K x:ωσ, yi:1σi
n → e ‡:z∆s

σ′ ⇛ φ

(3) ∆i = ∆s#Kj
n

(4) Γ, x:ωσ, x:ωσ, yi:∆iσi; ∆ ⊢ e : φ by inv.
(5) Γ, x:ωσ, yi:∆iσi; ∆ ⊢ e[e′/x] : φ by i.h.(1)

(6) Γ;∆ ⊢alt K x:ωσ, yi:1σi
n → e[e′/x] ‡:z∆s

σ′ ⇛ φ by AltN

Case: Alt0

(1) Γ; · ⊢ e′ : σ
(2) Γ, x:ωσ; ∆ ⊢alt K x:ωσ → e :z∆s

σ′ ⇒ φ

(3) Γ[·/∆s]z, x:ωσ, x:ωσ; ∆[·/∆s] ⊢ e : φ by inv.
(4) Γ[·/∆s]z, x:ωσ; ∆[·/∆s] ⊢ e[e′/x] : φ by i.h.(1)
(5) Γ;∆ ⊢alt K x:ωσ → e :z∆s

σ′ ⇒ φ by Alt0

Case: Alt (trivial induction)

(1) Γ; · ⊢ e : σ
(2) Γ, x:ωσ; ∆ ⊢alt → e :∆s σ

′ ⇒ φ
(3) Γ, x:ωσ; ∆ ⊢ e : φ
(4) Γ;∆ ⊢ e[e′/x] : φ by i.h.(1)
(5) Γ;∆ ⊢alt → e[e′/x] :z∆s

σ′ ⇒ φ by Alt

89

A. Type Safety Proofs

Finally, we introduce the lemma stating that substitution of ∆-bound variables by
expressions of the same type preserves the type of the original expression. What distin-
guishes this lemma from traditional substitution lemmas is that the usage environment
∆ of the variable x being substituted by expression e′ must match exactly the typing
environment ∆ of e′ and the environment of the original expression doesn’t change with
the substitution:

Lemma 25 (Substitution of ∆-variables preserves typing).

1. If Γ, x:∆σ; ∆,∆′ ⊢ e : φ and Γ;∆ ⊢ e′ : σ then Γ;∆,∆′ ⊢ e[e′/x] : φ

2. If Γ, x:∆σ; ∆,∆′ ⊢alt ρ → e :z∆s
σ′ ⇒ φ and Γ;∆ ⊢ e′ : σ and ∆s ⊆ (∆,∆′) then

Γ;∆,∆′ ⊢alt ρ→ e[e′/x] :z∆s
σ′ ⇒ φ

Intuitively, if x is well-typed with ∆ in e, substituting x by an expression e′ which is
typed in the same environment ∆ allows the distribution of resources ∆,∆′ used to type
e across sub-derivations to remain unchanged. To prove the theorems, we don’t need a
“stronger” substitution of ∆-vars lemma (allowing arbitrary resources ∆′′ to type e′, as in
other substitution lemmas), as we only ever substitute ∆-variables by expressions whose
typing environment matches the variables usage environment. However, it is not obvious
whether such a lemma is possible to prove for ∆-variables (e.g. let Γ;∆ ⊢ e : σ and
Γ;∆′ ⊢ let x = e′ in x, if we substitute e for x the resources ∆′ are no longer consumed).

Proof. By structural induction on the given derivation.

Statement (1):

Case: ΛI

(1) Γ, x:∆σ; ∆,∆′ ⊢ Λp. e : ∀p. φ
(2) Γ;∆ ⊢ e′ : σ
(3) Γ, p, x:∆σ; ∆,∆′ ⊢ e : φ by inversion on ΛI
(4) Γ, p; ∆,∆′ ⊢ e[e′/x] by i.h.(1) (2,3)
(5) Γ;∆,∆′ ⊢ Λp. e[e′/x] : ∀p. φ by ΛI
(6) (Λp. e)[e′/x] = (Λp. e[e′/x]) by def. of subst.
(7) Γ;∆,∆′ ⊢ (Λp. e)[e′/x] : ∀p. φ by (5,6)

Case: ΛE

(1) Γ, x:∆σ; ∆,∆′ ⊢ e π : φ
(2) Γ;∆ ⊢ e′ : σ
(3) Γ, x:∆σ; ∆,∆′ ⊢ e : ∀p. φ by inversion on ΛE
(4) Γ ⊢mult π by inversion on ΛE
(5) Γ;∆,∆′ ⊢ e[e′/x] : ∀p. φ by i.h.(1) (2,3)
(6) Γ;∆,∆′ ⊢ e[e′/x] π : φ by ΛE
(7) (e π)[e′/x] = (e[e′/x] π) by def. of subst.
(6) Γ;∆,∆′ ⊢ (e π)[e′/x] : φ by (5,6)

Case: λI1

90

A.4. Substitution Lemmas

(1) Γ, x:∆σ; ∆,∆′ ⊢ λy:1σ
′. e : σ′ →1 φ

(2) Γ;∆ ⊢ e′ : σ
(3) Γ, x:∆σ; ∆, y:1σ

′,∆′ ⊢ e : φ by inversion on λI
(4) Γ;∆, y:1σ

′,∆′ ⊢ e[e′/x] : φ by i.h.(1) (2,3)
(5) Γ;∆,∆′ ⊢ λy:1σ

′. e[e′/x] : σ′ →1 φ by λI
(6) (λy:1σ

′. e[e′/x]) = (λy:1σ
′. e)[e′/x] by def. of subst.

(7) Γ;∆,∆′ ⊢ λ(y:1σ
′. e)[e′/x] : σ′ →1 φ by (4,5)

Case: λIω

(1) Γ, x:∆σ; ∆,∆′ ⊢ λy:ωσ
′. e : σ′ →ω φ

(2) Γ;∆ ⊢ e′ : σ
(3) Γ, x:∆σ, y:ωσ

′; ∆,∆′ ⊢ e : φ by inversion on λI
(4) Γ, y:ωσ

′; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1) (2,3)
(5) Γ;∆,∆′ ⊢ λy:ωσ

′. e[e′/x] : σ′ →ω φ by λI
(6) (λy:ωσ

′. e[e′/x]) = (λy:ωσ
′. e)[e′/x] by def. of subst.

(7) Γ;∆,∆′ ⊢ λ(y:ωσ
′. e)[e′/x] : σ′ →ω φ by (4,5)

Case: V arω

(1) Γ, y:ωσ
′, x:·σ; · ⊢ y : σ′

(2) Γ; · ⊢ e′ : σ
(3) y[e′/x] = y
(4) Γ, y:ωσ

′; · ⊢ y : σ′ by (1) and Weaken∆

Case: V ar1

(1) Γ, x:y:1σσ; y:1σ ⊢ y : σ
(2) Γ; y:1σ ⊢ e′ : σ
(3) y[e′/x] = y
(4) Γ, x:y:1σσ; y:1σ ⊢ y : σ by 1
(5) Γ; y:1σ ⊢ y : σ by Weaken∆

Case: V ar∆

(1) Γ, x:∆σ; ∆ ⊢ y : σ
(2) Γ′; ∆ ⊢ e′ : σ
(3) x[e′/x] = e′

(4) Γ′; ∆ ⊢ e′ : σ by (2)

Case: Split

Trivial induction

Case: λE1,p

91

A. Type Safety Proofs

(1) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ e e′′ : φ
(2) Γ;∆ ⊢ e′ : σ
Subcase ∆ occurs in e
(3) Γ, x:∆σ; ∆,∆′ ⊢ e : σ′ →1,p φ
(4) Γ, x:∆σ; ∆

′′ ⊢ e′′ : σ′

(5) Γ;∆′′ ⊢ e′′ : σ′ by Weaken∆

(6) Γ;∆,∆′ ⊢ e[e′/x] : σ′ →1,p φ by i.h.(1)
(7) Γ;∆,∆′,∆′′ ⊢ e[e′/x] e′′ : φ by (λE1,p)
(8) (e[e′/x] e′′) = (e e′′)[e′/x] since x cannot occur in e′′

Subcase ∆ occurs in e′′

(3) Γ, x:∆σ; ∆
′ ⊢ e : σ′ →1,p φ

(4) Γ;∆′ ⊢ e : σ′ →1,p φ by Weaken∆

(5) Γ, x:∆σ; ∆,∆′′ ⊢ e′′ : σ′

(6) Γ;∆,∆′′ ⊢ e′′[e′/x] : σ′ by i.h.(1)
(7) Γ;∆,∆′,∆′′ ⊢ (e e′′[e′/x]) : φ by (λE1,p)
(8) e e′′[e′/x] = (e e′′)[e′/x] since x does not occur in e
Subcase ∆ is split between e and e′′

x cannot occur in either, so the substitution is trivial, and x can be weakened.

Case: λEω

(1) Γ, x:∆σ; ∆,∆′ ⊢ e e′′ : φ
(2) Γ;∆ ⊢ e′ : σ
(3) ∆ cannot occur in e′′

(4) Γ, x:∆σ; ∆,∆′ ⊢ e : σ′ →ω φ by inv. on λEω

(5) Γ; · ⊢ e′′ : σ′ by inv. on λEω

(6) Γ;∆,∆′ ⊢ e[e′/x] : σ′ →ω φ by i.h.(1) (2,4)
(7) Γ;∆,∆′ ⊢ e[e′/x] e′′ : φ by λEω (5,6)
(8) e[e′/x] e′′ = (e e′′)[e′/x] x does not occur in e′′ by (3)

Case: Let

(1) Γ;∆ ⊢ e′ : σ
Subcase ∆ occurs in e
(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ let y:∆,∆′σ′ = e in e′′ : φ
(3) Γ, x:∆σ; ∆,∆′ ⊢ e : σ′ by inversion on (let)
(4) Γ, x:∆σ, y:∆,∆′σ′; ∆,∆′,∆′′ ⊢ e′′ : φ by inversion on (let)
(5) Γ, y:∆,∆′σ′; ∆,∆′,∆′′ ⊢ e′′ : φ by Weaken∆ (admissible)
(6) Γ;∆,∆′ ⊢ e[e′/x] : σ′ by i.h.(1) (1,3)
(7) Γ;∆,∆′,∆′′ ⊢ let y:∆,∆′σ′ = e[e′/x] in e′′ : φ by (let) (5,6)
(8) let y:∆,∆′σ′ = e[e′/x] in e′′ = (let y:∆,∆′σ′ = e in e′′)[e′/x]

since x cannot occur in e′′

Subcase ∆ occurs in e′′

(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ let y:∆′σ′ = e in e′′ : φ
(3) Γ, x:∆σ; ∆

′ ⊢ e : σ′ by inversion on (let)
(4) Γ;∆′ ⊢ e : σ′ by Weaken∆

(5) Γ, x:∆σ, y:∆′σ′; ∆,∆′,∆′′ ⊢ e′′ : φ by inversion on (let)
(6) Γ, y:∆′σ′; ∆,∆′,∆′′ ⊢ e′′[e′/x] : φ by i.h.(1) (1,5)
(7) Γ;∆,∆′,∆′′ ⊢ let y:∆′σ′ = e in e′′[e′/x] : φ by (let)

92

A.4. Substitution Lemmas

(8) let y:∆′σ′ = e in e′′[e′/x] = (let y:∆′σ′ = e in e′′)[e′/x]
since x cannot occur in e

Subcase ∆ is split between e and e′′

x cannot occur in either, so the substitution is trivial, and x can be weakened.

Case: LetRec

(1) Γ;∆ ⊢ e′ : σ
Subcase ∆ occurs in ei
(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ let rec yi:∆,∆′σ′

i = ei in e′′ : φ

(3) Γ, x:∆σ, yi:∆,∆′σ′
i; ∆,∆′,∆′′ ⊢ e′′ : φ by inversion on (let)

(4) Γ, yi:∆,∆′σ′
i; ∆,∆′,∆′′ ⊢ e′′ : φ by Weaken∆

(5) Γ, x:∆σ, yi:∆,∆′σ′
i; ∆,∆′ ⊢ ei : σ′

i by inversion on (let)

(6) Γ, yi:∆,∆′σ′
i; ∆,∆′ ⊢ ei[e′/x] : σ′

i by i.h.(1) (1,5)
(7) e′′[e′/x] = e′′ since x cannot occur in e′′

(8) Γ;∆,∆′,∆′′ ⊢ let rec yi:∆,∆′σ′
i = ei[e′/x] in e′′ : φ by (let) (4,6)

Subcase ∆ occurs in e′′

(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ let rec yi:∆′σ′
i = ei in e′′ : φ

(3) Γ, x:∆σ, yi:∆′σ′
i; ∆

′ ⊢ ei : σ′
i by inversion on (let)

(4) Γ, yi:∆′σ′
i; ∆

′ ⊢ ei : σ′
i by Weaken∆

(6) Γ, x:∆σ, yi:∆′σ′
i; ∆,∆′,∆′′ ⊢ e′′ : φ by inversion on (let)

(7) Γ, yi:∆′σ′
i; ∆,∆′,∆′′ ⊢ e′′[e′/x] : φ by i.h.(1) (1,6)

(8) ei[e′/x] = ei since x cannot occur in ei
(9) Γ;∆,∆′,∆′′ ⊢ let rec yi:∆′σ′

i = ei in e′′[e′/x] : φ by (let)
Subcase ∆ is split between e and e′′

x cannot occur in either, so the substitution is trivial, and x can be weakened.

Case: CaseWHNF

(1) Γ;∆ ⊢ e′ : σ
Subcase ∆ occurs in e

(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ case e of z:∆,∆′σ′ {ρ→ e′′} : φ
(3) e is in WHNF
(4) ρj matches e
(5) Γ, x:∆σ; ∆,∆′ ⊢ e : σ′

(6) Γ, x:∆σ, z:∆,∆′σ′; ∆,∆′,∆′′ ⊢alt ρj → e′′ :z∆,∆′ : σ′ Z⇒ φ

(7) Γ, x:∆σ, z:[∆,∆′]σ′; [∆,∆′],∆′′ ⊢alt ρ→ e′′ :z[∆,∆′] σ
′ ⇛ φ by inv.

(8) Γ;∆,∆′ ⊢ e[e′/x] : σ′ by i.h.(1)
(9) Γ, z:∆,∆′σ′; ∆,∆′,∆′′ ⊢alt ρj → e′′[e′/x] :z∆,∆′ σ′ ⇒ φ by i.h.(2)

(10) Γ, z:[∆,∆′]σ′; [∆,∆′],∆′′ ⊢alt ρ→ e′′ :z[∆,∆′] σ
′ ⇛ φ by (7) and proof steps below

from case CaseNotWHNF

(11) Γ;∆,∆′,∆′′ ⊢ case e[e′/x] of z:∆,∆′σ′ {ρ→ e′′[e′/x]} : φ by CaseWHNF
Subcase ∆ does not occur in e

(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ case e of z:∆′σ′ {ρ→ e′′} : φ
(3) e is in WHNF
(4) ρj matches e
(5) Γ, x:∆σ; ∆

′ ⊢ e : σ′

(6) Γ;∆′ ⊢ e : σ′ by (admissible) Weaken∆

93

A. Type Safety Proofs

(7) e[e′/x] = e by x cannot occur in e
(8) Γ, x:∆σ, z:∆′σ′; ∆,∆′,∆′′ ⊢alt ρj → e′′ :z∆′ : σ′ Z⇒ φ

(9) Γ, x:∆σ, z:[∆′]σ′; ∆, [∆′],∆′′ ⊢alt ρ→ e′′ :z[∆′] σ
′ ⇛ φ by inv.

(10) Γ, z:∆′σ′; ∆,∆′,∆′′ ⊢alt ρj → e′′[e′/x] :z∆′ σ′ Z⇒ φ by i.h.(2)

(11) Γ, z:[∆′]σ′; ∆, [∆′],∆′′ ⊢alt ρ→ e′′[e′/x] :z[∆′] σ
′ ⇛ φ

by i.h.(2)

(12) Γ;∆,∆′,∆′′ ⊢ case e[e′/x] of z:∆′σ′ {ρ→ e′′[e′/x]} : φ by CaseWHNF
Subcase ∆ is partially used in e
This is like the subcase above, but consider ∆′

to contain some of part of ∆ and ∆ to refer to the other part only.

Case: CaseNotWHNF

(1) Γ;∆ ⊢ e′ : σ
Subcase ∆ occurs in e

(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ case e of z:[∆,∆′]σ
′ {ρ→ e′′}

(3) Γ, x:∆σ; ∆,∆′ ⊢ e : σ′ by inv.
(4) Γ;∆,∆′ ⊢ e[e′/x] : σ′ by i.h.(1)

(5) Γ, x:∆σ, z:[∆,∆′]σ′; [∆,∆′],∆′′ ⊢alt ρ→ e′′ :z[∆,∆′] σ
′ ⇛ φ by inv.

(6) e′′[e′/x] = e by x cannot occur in e′′ since ∆ is not available (only [∆])

(7) Γ, z:[∆,∆′]σ′; [∆,∆′],∆′′ ⊢alt ρ→ e′′ :z[∆,∆′] σ
′ ⇛ φ by (admissible) Weaken∆

(8) Γ;∆,∆′,∆′′ ⊢ case e[e′/x] of z:[∆,∆′]σ
′ {ρ→ e′′} by CaseNotWHNF

Subcase ∆ does not occur in e

(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢ case e of z:[∆′]σ
′ {ρ→ e′′}

(3) Γ, x:∆σ; ∆
′ ⊢ e : σ′ by inv.

(4) Γ;∆′ ⊢ e : σ′ by weaken
(5) e[e′/x] = e by x cannot occur in e

(5) Γ, x:∆σ, z:[∆′]σ′; ∆, [∆′],∆′′ ⊢alt ρ→ e′′ :z[∆′] σ
′ ⇛ φ by inv.

(7) Γ, z:[∆′]σ′; ∆, [∆′],∆′′ ⊢alt ρ→ e′′[e′/x] :z[∆′] σ
′ ⇛ φ

by i.h.(2)

(8) Γ;∆,∆′,∆′′ ⊢ case e of z:[∆,∆′]σ
′ {ρ→ e′′[e′/x]} by CaseNotWHNF

Subcase ∆ is partially used in e
This is like the subcase above, but consider ∆′

to contain some of part of ∆ and ∆ to refer to the other part only.

Statement (2):

Case: AltNWHNF (trivial induction)

(1) Γ;∆ ⊢ e′ : σ

(2) Γ, x:∆σ; ∆,∆′ ⊢alt K x:ωσ, yi:1σi
n → e †:z

∆i
nσ′ Z⇒ φ

(3) Γ, x:∆σ, x:ωσ, yi:∆iσi; ∆,∆′ ⊢ e : φ by inv.
(4) Γ, x:ωσ, yi:∆iσi; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1)

(5) Γ;∆,∆′ ⊢alt K x:ωσ, yi:1σi
n → e[e′/x] †:z

∆i
nσ′ Z⇒ φ by AltN

Case: AltNNotWHNF (trivial induction)

94

A.4. Substitution Lemmas

(1) Γ;∆ ⊢ e′ : σ

(2) Γ, x:∆σ; ∆,∆′ ⊢alt K x:ωσ, yi:1σi
n → e ‡:z∆s

σ′ ⇛ φ

(3) ∆i = ∆s#Kj by inv.
(4) Γ, x:∆σ, x:ωσ, yi:∆iσi; ∆,∆′ ⊢ e : φ by inv.
(5) Γ, x:ωσ, yi:∆iσi; ∆,∆′ ⊢ e[e′/x] : φ by i.h.(1)

(6) Γ;∆,∆′ ⊢alt K x:ωσ, yi:1σi
n → e[e′/x] ‡:z∆s

σ′ ⇛ φ by AltN

Case: Alt0

(1) Γ;∆ ⊢ e′ : σ
Subcase ∆ occurs in scrutinee
(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢alt K x:1σ → e :z∆,∆′ σ′ ⇒ φ

(3) (Γ, x:∆σ)[·/∆,∆′]z; (∆,∆′,∆′′)[·/∆,∆′] ⊢ e : φ
(4) Γ[·/∆,∆′]z, x:∆σ; ∆

′′ ⊢ e : φ
by def. of []z subst. and [] subst.

(5) Γ[·/∆,∆′]z, x:∆σ; ∆
′′ ⊢ e[e′/x] : φ

by x cannot occur in e by ∆ not available
(6) Γ[·/∆,∆′]z; ∆

′′ ⊢ e[e′/x] : φ
by (admissible) Weaken∆

(7) · = (∆,∆′)[·/∆,∆′]
(8) Γ[·/∆,∆′]z; (∆,∆′,∆′′)[·/∆,∆′] ⊢ e[e′/x] : φ

by (6,7)
(9) Γ;∆,∆′,∆′′ ⊢alt e[e′/x] :z∆,∆′ σ′ ⇒ φ

Subcase ∆ does not occur in the scrutinee
(2) Γ, x:∆σ; ∆,∆′,∆′′ ⊢alt K x:1σ → e :z∆′ σ′ ⇒ φ
(3) (Γ, x:∆σ)[·/∆′]z; (∆,∆′,∆′′)[·/∆′] ⊢ e : φ
(4) Γ[·/∆′]z, x:∆σ; ∆,∆′′ ⊢ e : φ

by def. of []z subst. and [] subst.
(5) Γ[·/∆′]z; ∆,∆′′ ⊢ e[e′/x] : φ by i.h.(1)
(6) · = ∆′[·/∆′]
(7) Γ[·/∆′]z; (∆,∆′,∆′′)[·/∆′] ⊢ e[e′/x] : φ by (5,6)
(8) Γ;∆,∆′,∆′′ ⊢alt⊢ e[e′/x] :z∆′ σ′ ⇒ φ by Alt0
Subcase ∆ is partially used in the scrutinee
This is like the subcase above, but consider ∆′

to contain some of part of ∆ and ∆ to refer to the other part only.

Case: Alt (trivial induction)

(1) Γ;∆ ⊢ e′ : σ
(2) Γ, x:∆σ; ∆,∆′ ⊢alt → e :z∆s

σ′ ⇒ φ

(3) Γ, x:∆σ; ∆,∆′ ⊢ e : φ by inv.
(4) Γ;∆,∆′ ⊢ e[e′/x]] : φ by i.h.(1)
(5) Γ;∆,∆′ ⊢alt → e[e′/x] :z∆s

σ′ ⇒ φ by Alt

95

APPENDIX B
Optimisations preserve linearity

Proofs are given inline in Chapter 5.4, with the exception of the proof that case-of-case
preserves types, which is lengthier than the others.

B.1 Case of Case

Theorem 26 (Case-of-case preserves types).
If Γ;∆,∆′,∆′′ ⊢ case case ec of z:∆σ {ρci → eci} of w:[∆,∆′]σ

′ {ρi → ei} : φ
then Γ;∆,∆′,∆′′ ⊢ case ec of z:∆σ {ρci → case eci of w {ρi → ei}} : φ

Proof.

(1) Γ;∆,∆′,∆′′ ⊢ case case ec of z:∆σ {ρci → eci} of w:σ′ {ρi → ei} : φ
(2) Γ;∆,∆′ ⊢ case ec of z:∆σ {ρci → eci} : σ′ by inv.

(3) Γ, w:[∆,∆′]σ′; [∆,∆′] ,∆′′ ⊢alt ρ→ ei :w[∆,∆′] σ
′ ⇒ φ by inv.

Subcase ec is not in WHNF
(4) Γ;∆ ⊢ ec : σ

(5) Γ, z:[∆]σ; [∆] ,∆′ ⊢ ρci → eci :
z
[∆] σ ⇛ σ′ by inv. (2)

For all alternatives
Subcase ρci =
(6) Γ, z:[∆]σ; [∆] ,∆′ ⊢ eci : σ

′ by inv. on Alt (5)

(7) Γ, w:[[∆],∆′]σ′,∆′′; [∆,∆′] ,∆′′ ⊢alt ρ→ ei :w[[∆],∆′] σ
′ ⇒ φ by irrelevance (3)

Subcase eci is not in WHNF
(8) Γ, z:[∆]σ; [∆] ,∆′,∆′′ ⊢ case eci of w:[[∆],∆′]σ

′ {ρi → ei} : φ
by (6,7) CaseNotWHNF

Subcase eci is in WHNF

(8) Γ, z:[∆]σ; [∆] ,∆′ ⊩ eci : σ
′ ⋗∆i for some ∆i in this subcase

(9) Γ, w:∆i
σ′;∆i,∆

′′ ⊢alt ρj → ei :
w
∆i

σ′ Z⇒ φ by irrelevance (3)

for some matching ρj
(10) Γ, z:[∆]σ; [∆] ,∆′,∆′′ ⊢ case eci of w:∆i

σ′ {ρi → ei} : φ by (7,8,9) CaseWHNF

Subcase ρci = K x:ωσ
(6) Γ, z:·σ, x:ωσ; ·,∆′ ⊢ eci : σ

′ by inv. on Alt0 (5)

(7) Γ;w:[∆′]σ′; [∆′] ,∆′′ ⊢alt ρi → ei :w[∆′] σ
′ ⇛ φ by irrelevance (3)

97

B. Optimisations preserve linearity

Subcase eci is not in WHNF
(8) Γ, z:·σ, x:ωσ; ∆

′,∆′′ ⊢ case eci of w:[∆′]σ
′ {ρi → ei} : φ by (6,7) CaseNotWHNF

Subcase eci is in WHNF

(8) Γ, z:·σ, x:ωσ; ·,∆′ ⊩ eci : σ
′ ⋗∆i by (6) in subcase

(9) Γ, w:∆i
σ′;∆i,∆

′′ ⊢alt ρi → ei :
w
∆i

σ′ Z⇒ φ by irrelevance (3)

(10) Γ, z:·σ, x:ωσ; ∆i,∆
′′ ⊢ case eci of w:∆i

σ′ {ρi → ei} : φ by (7,8,9) CaseWHNF

Subcase ρci = K x:ωσy:1σ, recalling that ec is not in WHNF
(6) Γ, z:[∆]σ, x:ωσ, y:[∆]#Ki

σ; [∆] ,∆′ ⊢ eci : σ
′ by inv. on AltNNot WHNF (5)

(7) Γ, w:[[∆],∆′]σ
′; [[∆] ,∆′] ,∆′′ ⊢alt ρi → ei :

w
[[∆],∆′] σ

′ ⇛ φ by irrelevance (3)

Subcase eci is not in WHNF
(8) Γ, z:[∆]σ, x:ωσ, y:[∆]#Ki

σ; [∆] ,∆′,∆′′ ⊢ case eci of w:[[∆],∆′]σ
′ {ρi → ei} : φ

Subcase eci is in WHNF

(8) Γ, z:[∆]σ, x:ωσ, y:[∆]#Ki
σ; [∆] ,∆′ ⊩ eci : σ

′ ⋗∆i by (6) in subcase

(9) Γ, w:[∆],∆′σ′; [∆] ,∆′,∆′′ ⊢alt ρi → ei :
w
[∆],∆′ σ′ Z⇒ φ by irrelevance (3)

(10) Γ, z:[∆]σ, x:ωσ, y:[∆]#Ki
σ; [∆] ,∆′,∆′′ ⊢ case eci of w:[∆],∆′σ′ {ρi → ei} : φ

Commonly to all alternatives subcases:
(11) Γ;∆,∆′,∆′′ ⊢ case ec of alternatives from (8) or (10) : φ
Subcase ec is in WHNF
(4) Γ;∆ ⊩ ec : σ ⋗∆
(5) Γ, z:∆σ; ∆,∆′ ⊢ ρcj → eci :

z
∆ σ Z⇒ φ for ρcj matches ec

(5) Γ, z:[D]σ; [∆] ,∆′ ⊢ ρci → eci :
z
[∆] σ ⇛ φ

Continue as in the previous subcase, but with ∆ instead of [∆]

98

	Abstract
	Resumo
	Contents
	List of Figures
	List of Theorems
	Introduction
	Background
	Linear Types
	Haskell
	Linear Haskell
	Evaluation Strategies
	Core and System FC
	GHC Pipeline
	Haskell to Core
	Core-To-Core Transformations
	Code Generation

	Linearity, Semantically
	Semantic Linearity by Example
	Let bindings
	Recursive let bindings
	Case expressions

	A Type System for Semantic Linearity in Core
	Language Syntax and Operational Semantics
	Typing Foundations
	Usage environments
	Delta-bound variables
	Lazy let bindings
	Recursive let bindings

	Case Expressions
	Branching on WHNF-ness
	Proof irrelevant resources
	Splitting and tagging fragments

	Linear Core as a GHC Plugin

	Metatheory
	Assumptions
	Irrelevance
	Type safety
	Substitution Lemmas

	Optimisations preserve linearity
	Inlining
	Beta-reduction
	Case of known constructor
	Let floating
	Eta-conversions
	Binder Swap
	Reverse Binder Swap Considered Harmful
	Case of Case

	Conclusion
	Related Work
	Linear Haskell
	Linear Mini-Core
	Linearity-influenced optimisations

	Future Work
	Conclusion

	Bibliography
	Type Safety Proofs
	Type Preservation
	Progress
	Irrelevance
	Substitution Lemmas

	Optimisations preserve linearity
	Case of Case

