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1 Categories and diagrams

Definition 1.1 (Quiver). A quiver1 is a directed graph that may have multiple arrows with
the same source and target vertices. A quiver J consists of:

1. A collection of vertices |J |.
Individual vertices are denoted by A,B,X, Y, Z, where A :J stresses that A is in |J |.

2. For every pair of vertices X,Y a family of arrows J [X,Y ].

Individual arrows f, g, h in J [X,Y ] are denoted by f :X → Y . ♦

Quivers are depicted graphically as dots connected by arrows where a dot represents exactly
one vertex and a depicted arrow represents exactly one arrow of the quiver.

• •
•

��
• // •

•

��

// •

•

• //// •

Definition 1.2 (Category). A category is a quiver with additional structure. In a category,
vertices X,Y are called objects and arrows f :X → Y are called morphisms. A category C is a
quiver along with:

3. For every object A : C a designated identity morphism idA :A→ A.

4. A composition operator ◦ that maps a pair of morphisms f :X → Y and g : Y → Z
to a morphism (g ◦ f) :X → Z such that the following conditions are satisfied.

idZ ◦ g = g (f ◦ g) ◦h = f ◦(g ◦h) f ◦ idX = f ♦

For a morphism f :A→ B we call A the domain of f and B the codomain of f . The collection
of morphisms of C with domain A is denoted by C[A, ] and the collection of morphisms with
codomain B is denoted by C[ , B]. The collection of all morphisms of C is denoted by C[ , ].

Quivers that do not contain any arrows are said to be discrete. Likewise, a discrete category is
a category that has no morphisms other than the identity morphisms.

Definition 1.3 (Diagram). A diagram is a labelled quiver. Specifically, if J is a quiver then a
diagram of shape J in a category C is a labelling L :J → C which assigns to every vertex A :J
an object (LA) : C and to every arrow f :A→ B of J a morphism Lf :LA→ LB of C. ♦

Intuitively it is clear that L is a labelled quiver if one thinks of L as a set of ordered pairs
of type (A,LA) and (f, Lf). As one would expect, diagrams in a category C are depicted as
quivers with labels added to the dots and arrows. As an example let X,Y, Z be objects of C and
let f :X → Y , h :Z → Y and g :X → Y be morphisms of C. Below are examples of diagrams
in C based on the quivers depicted previously.

X Y

Z

h
��

X
f
// Y

X

f

��

g // Y

Y

X
f //
g
// Y

1In real life, A quiver is a container of arrows, typically carried by archers.
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Definition 1.4 (Commutative diagram). A diagram L :J → C is commutative if for any two
paths with the same start and end object of J , the labels on arrows compose to the same
morphism of C.

For all LA
Lf1−−→LX

Lf2−−→ · · · Lfn−−→LB and LA
Lg1−−→LY

Lg2−−→ · · · Lgm−−→LB,

LA
Lfn ◦... ◦Lf2 ◦Lf1−−−−−−−−−−−−→LB = LA

Lgm ◦... ◦Lg2 ◦Lg1−−−−−−−−−−−−→LB. ♦

A few words on the n and m–ary compositions above are required. For any composition
f1 ◦ . . . ◦ fn we have that f1 ◦ . . . ◦ fn = idX ◦ f1 ◦ . . . ◦ fn ◦ idY for suitable X and Y . Whenever
we specify a morphism as a composition (f1 ◦ . . . ◦ fn) :X → Y we define the case n = 0 to be
idX in which case, of course, X = Y .

As an example of commutative diagrams, note that in the rightmost diagram depicted previ-
ously, to state that it commutes implies that f = g whereas this is not the case in the second
rightmost diagram.

Given a quiver J and a category C, one particular family of commutative diagrams is the family
of diagonal diagrams.

Definition 1.5 (Diagonal diagram). For an object A : C the diagonal diagram ∆A :J → C of
shape J assigns to any vertex of J the object A : C and to any arrow of J the morphism idA
of C. ♦

In some sense, a diagonal diagram represents just an object. The fact that it can be of any
shape however, makes them a useful tool and we will soon see an example of this.
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2 Morphisms

Definition 2.1 (Monomorphism and epimorphism).

1. A monomorphism m : Y � Z is a morphism m : Y → Z such that for any pair of mor-
phisms g :X → Y and h :X → Y , if m ◦ g = m ◦h then g = h. In diagrams, if the
diagram on the left commutes, then so does the diagram on the right.

Y

X Z =⇒ X Y

Y

g >>
m

  

h   m

>>
g //
h
//

2. An epimorphism e :X � Y is a morphism e :X → Y such that for any pair g : Y → Z
and h : Y → Z, if g ◦ e = h ◦ e then g = h.

Y

X Z =⇒ Y Z

Y

e
>> g

  

e   h

>>
g //
h
//

♦

Identity morphisms are monomorphisms. If id ◦ g = id ◦h then obviously g = h. Likewise, if
g ◦ id = h ◦ id then g = h thus identity morphisms are epimorphisms, too Moreover, monomor-
phisms of any category C are closed under composition, as are epimorphisms. For let e1 :X � Y
and e2 : Y � Z be epimorphisms. Consider two arbitrary morphisms f :Z → A and g :Z → A
and assume that f ◦ e2 ◦ e1 = g ◦ e2 ◦ e1. Then f ◦ e2 = g ◦ e2 because e1 is an epimorphism and
subsequently f = g because e2 is an epimorphism. Therefore e2 ◦ e1 is an epimorphism. With
this in mind it makes sense to define the categories MonoC and EpiC as follows.

Definition 2.2 (Category of monos, epis). Let C be a category.

1. The category MonoC consists of all objects of C and all monomorphisms between them.

Identities and compositions are defined as in C.
2. The category EpiC consists of all objects of C and all epimorphisms between them.

Identities and compositions are defined as in C. ♦

Recall that identity morphisms are monomorphisms. Another instance of a monomorphism is
a morphism m :X → Y that can be ‘undone’ by a morphism e : Y → X. If this is the case then
we call e a retraction of m and we call m a section of e.

Definition 2.3 (Section and retraction). Let m :X → Y and e : Y → X. If e ◦m = idX then
e is a retraction of m and m is a section of e.

X X

Y
m   e

>>
idX //

♦

You may be inclined to think that the direction of the identity arrow in the diagram above is
irrelevant. This is certainly not the case. Asserting that the diagram commutes with the idX
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arrow in the converse direction does indeed assert that e ◦m = idX but it also asserts that
m ◦ e = idY which is not implied by commutativity of the original diagram.

A morphism m :X → Y that has a retraction e : Y → X is certainly a monomorphism.
Consider two morphisms g :A → X and h :A → X and assume that m ◦ g = m ◦h. Then
e ◦m ◦ g = e ◦m ◦h and because e is a retraction of m we can conclude that g = h which
confirms that m is a monomorphism. The dual of this argument shows that any morphism that
has a section is an epimorphism.

A more specific case occurs if a morphism f :X → Y has a retraction g : Y → X but in addition
f :X → Y is a retraction of g : Y → X . If this is the case then f and g are isomorphisms.

Definition 2.4 (Isomorphism). Let f :X → Y and g : Y → X. Then g is the inverse of f and
f is the inverse of g if g ◦ f = idX and f ◦ g = idY . An isomorphism f :X ∼−→ Y is a morphism
that has an inverse.

X Y
f //
g

oo ♦

The inverse of an isomorphism f :X ∼−→ Y is easily seen to be unique and is denoted by
f−1 : Y ∼−→ X. An isomorphism is both a section and a retraction of its inverse therefore it is
both a monomorphism and an epimorphism.

So far all properties of morphisms that we have discussed have been defined in terms of com-
mutativity. There has been no mention of an internal structure of objects or morphisms. In
category theory properties are commonly defined in this way. The most common category in
which objects and morphisms do have an ‘inner structure’ is the category Set of sets and total
functions. Properties of sets and functions often are expressed by referring to their internal
structure. Typical examples are injectivity and surjectivity, which are defined by referring to
the elements of the domain and codomain of a function. In Set the definitions of monomor-
phism and epimorphism provide an intentional alternative. A morphism f :X → Y of Set is
injective only if it is a monomorphism, and it is surjective only if it is an epimorphism. The
inner structure on sets suggests a particular kind of monomorphism, one that cannot be defined
intensionally.

Definition 2.5 (Inclusion). In the category Set an inclusion f :X ↪→ Y is a morphism
f :X � Y such that f(x) = x for all x ∈ X. ♦
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3 Functors

Definition 3.1 (Functor). A functor F : C → D is a map that takes objects A : C to objects
(FA) :D and morphisms f :A → B to morphisms Ff :FA → FB whilst preserving identities
and compositions.

F idX = idFX F (f ◦ g) = Ff ◦Fg ♦

A functor F : C → D is faithful if for all X,Y of C the map F : C[X,Y ]→ D[FX,FY ] is injective
and F is full if for all X,Y of C the map F : C[X,Y ] → D[FX,FY ] is surjective. A category
D is a subcategory of C if there is a faithful inclusion functor I :D ↪→ C. If I is both full and
faithful then D is a full subcategory of C.
As the reader will have noticed, for an object A we write functor application as FA rather than
the classical F (A). Given a suitable functor G, functor composition will be written as GF .
This does not cause any ambiguity: the notation GFA might be read as G(FA) and (GF )A
which is G(F (A)) and (G ◦F )(A) in classical notation. Finally, we shall use the notation FnA
for iterated applications of F , thus F 0A ..= A and Fm+1A ..= FFmA.

3.1 Containers

Intuitively one may think of a functor as a container type. If X and Y are collections of elements
then FX and FY are collections of containers, where a container in FX contains elements of
X and a container in FY contains elements of Y . Given a morphism f :X → Y the morphism
Ff :FX → FY takes a container in FX to a container in FY by applying f to every contained
element.

3.2 Preservation of commutative diagrams

A functor is a map between categories that preserves commutative diagrams. Let F : C → D be
a functor and let L :J → C be a diagram of C. Since F takes objects to objects and morphisms
to morphisms we can consider what one might call the image of L under F which contains a
labelled vertex (A,FLA) for ever labelled vertex (A,LA) of L and a labelled arrow (f, FLf)
for every (f, Lf) of L. Hence, we define the image of a diagram L :J → C under a functor
F : C → D to be the diagram FL :J → D.

Now suppose that the diagram L :J → C commutes. Then its image FL :J → D commutes
as well. For consider any two paths between LA and LB of L consisting of labelled arrows
Lf1, . . . , Lfn and Lg1, . . . , Lgm. Their labels compose to the same morphism Lfn ◦ . . . ◦Lf1 =
Lgm ◦ . . . ◦Lg1 of C by definition of commutativity.

C

. . . Lfn
++LA

Lf1 33

Lfn ◦... ◦Lf1

��
LB33

Lgm

HH

Lgm ◦... ◦Lg1

++Lg1 . . .

D

. . . FLfn
++

FLA

FLf1 33

F (Lfn ◦... ◦Lf1)

��
FLB33

FLgm

HH

F (Lgm ◦... ◦Lg1)

++FLg1 . . .

Consider the image of these morphisms under F . Since F is a functor it preserves composition.

FLfn ◦ . . . ◦FLf1 = F (Lfn ◦ . . . ◦Lf1) = F (Lgm ◦ . . . ◦Lg1) = FLgm ◦ . . . ◦FLg1
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Thus, any two sequences of labelled arrows of FL compose to the same morphism of D which
shows that the diagram FL :J → D commutes.
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4 Category shaped diagrams

Consider a quiver J and a diagram L :J → C. Since categories are quivers with additional
structure, J might be a category. If in addition, L preserves identities and compositions then
L :J → C is a functor and L is called a category–shaped diagram. Quiver–shaped diagrams are
more intuitive than category–shaped diagrams and the graphical diagrams that are common in
category theory are depictions of quiver–shaped diagrams. However, category–shaped diagrams
are often easier to work with because they get rid of the distinction between diagrams and
functors. Fortunately, any quiver–shaped diagram can be presented as a category–shaped
diagram in a way that preserves their commutativity, a construction that will be shown in a
minute.

Definition 4.1 (Free category). Given a quiver J , the free category K based on J is con-
structed as follows.

• Any vertex A :J is an object A :K.

• Any path A
f1−→ B

f2−→ . . .
fn−→ X in J of length n ≥ 0 is a morphism of K[A,X].

• For any object A :K the morphism idA is the zero–length path from A :J to A :J .

• Composition of morphisms is defined as path concatenation:

C
f1−→ · · · fn−→X ◦ A

g1−→ · · · gm−→C ..= A
g1−→ · · · gm−→C

f1−→ · · · fn−→X.
♦

The free category construction allows us to present any quiver–shaped diagram as a category–
shaped diagram. Let L :J → C be a quiver–shaped diagram and let K be the free category on
J . Construct a category–shaped diagram D :K → C by putting:

DX ..= LX

D(X
f1−→ · · · fn−→ Y ) ..= Lfn ◦ . . . ◦Lf1

We would like to use D as a ‘drop in’ replacement for L. In particular we would like D to
commute only if L commutes.

So assume that D does indeed commute. Consider any two paths between some pair of vertices

A and B of J . They are morphisms A
f1−→ · · · fn−→B and A

g1−→ · · · gm−→B of K. By commutativ-
ity, D maps these morphisms of K to the same morphism of C and by definition of D they get
mapped to Lfn ◦ . . . ◦Lf1 = Lgm ◦ . . . ◦Lg1 which confirms that L commutes.

Conversely, assume that D does not commute, as witnessed by two paths in K. These paths
compose to two parallel morphisms of K. The paths in K labelled by D compose to distinct
morphisms of C. Since D preserves composition it maps the parallel morphisms of K to the

same two distinct morphisms of C. Let the parallel morphisms of K be A
f1−→ · · · fn−→B and

A
g1−→ · · · gm−→B. Note that they are paths in J . By definition of D they get mapped to

Lfn ◦ . . . ◦Lf1 6= Lgm ◦ . . . ◦Lg1 which confirms that L does not commute.
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5 Functor categories

Definition 5.1 (Natural transformation). Let F : C → D and G : C → D be functors. A
natural transformation ν :F

.→ G is a family of morphisms (νX :FX → GX)X : C such that for
all morphisms f :X → Y of C the following diagram in D commutes.

FX GX

FY GY

νX //

νY
//

Ff

��
Gf

��

♦

The diagram above is called a naturality square for ν and a morphism νX :FX → GX is called
the component of ν at X : C.

Definition 5.2 (Functor category). Let C and D be categories. The functor category DC is
defined as follows.

• Every functor F : C → D is an object of DC .
• Every natural transformation ν :F

.→ G is a morphism from F to G.

• For every object F the identity morphism idF :F
.→ F is the natural transformation

(idFX :FX → FX)X : C , consisting of identity morphisms of D.

• For any two morphisms ν :F
.→ H and µ :H

.→ G the composition (µ ◦ ν) :F
.→ G is the

natural transformation (µX ◦ νX :FX → GX)X : C . ♦

It is not hard to check that compositions and identities are well defined. In particular, for all
morphisms f :X → Y of C the diagram on the left commutes because (idF )X ..= idFX . The
diagram on the right commutes because it consists of two naturality squares.

FX FX FX HX GX

FY FY FY HY GY

(idF )X // νX // µX //

(idF )Y

//
νY

//
µY

//

Ff

��
Ff

��
Ff

��
Hf

��
Gf

��

Since category–shaped diagrams are just functors, we already have an example of a functor
category. Let J and C be categories. Objects of the functor category CJ are category–shaped
diagrams L :J → C. In the following section we shall see an example of natural transformations
between diagrams in a functor category.
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6 Cones and Limits

An appealing feature of category theory is that it offers a way to formalise an intuitive notion of
canonicity. Sometimes mathematical structures are said to arise naturally, in that there appears
to be only one natural choice among a class of structures that have the required properties.
A way to study this intuitive notion of a canonical structure is to study the mathematical
structure of the solution space itself. This is a powerful concept. Design in the general sense,
might appear to involve lots of arbitrary design decisions (at least, to the unpracticed eye).
In liberal arts, designers are typically guided by intuition. A designer might use some formal
guidelines but many decisions are made based on intuition and experience of how to achieve
the desired effect. If we are able to uncover the mathematical structure of the solution space
then design decisions can be formally described and studied. Often, depending on the structure
of the solution space may be able to uncover a best, or canonical solution. The key concept in
category theory that formalises this intuitive notion of canonicity are initial and final objects.

Definition 6.1 (Initial object and final object).

• An initial object of a category C is an object A such that for every object X : C there is a
unique morphism ¡X :A→ X.

• Dually, a final object of C is an object Z such that for every object X : C there is a unique
morphism !X :X → Z. ♦

Often we will speak of the initial– and the final object of a category. This is justified by the fact
that initial– and final objects are unique up to unique isomorphism. Consider a category C and
two initial objects A and B. By definition of initiality of A and B respectively there are mor-
phisms ¡B :A→ B and ¡A :B → A and thus a morphism (¡A ◦ ¡B) :A→ A. However by initiality
the identity morphism idA :A → A is the unique morphism from A to A thus ¡A ◦ ¡B = idA.
The converse holds for B and as such ¡B :A→ B and ¡A :B → A are isomorphisms as claimed.
For clarity, if we speak of the initial object of a category C, we refer to a single representative
object of the class of initial objects of C.

Often a category can be constructed in such a way that the ‘canonical solution’ we wish to
describe is exactly the initial– or final object of this category. One particular example is the
category of cones over a diagram.

Definition 6.2 (Cones and cocones). Let L : CJ be a (category–shaped) diagram.

• A cone from A : C to L is a pair (A,ϕ) where ϕ is a natural transformation ϕ : ∆A
.→ L.

• A cocone from L to Z : C is a pair (κ, Z) where κ is a natural transformation κ :L
.→ ∆Z . ♦

It is easily checked that the definition above amounts to the following:

• A cone from A : C to L is a pair (A,ϕ) where ϕ is a family of morphisms
(ϕX :A→ LX)X : J such that for every f :X → Y of J the two leftmost diagrams below,
commute.

• A cocone from L to an object Z : C is a pair (κ, Z) where κ is a family of morphisms
(κX :LX → Z)X : J such that for every f :X → Y of J the two rightmost diagrams
commute.
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A

ϕX

��

ϕY

��
LX

Lf
// LY

∆AX

ϕX

��

∆Af // ∆AY

ϕY

��
LX

Lf
// LY

LX
Lf // LY

∆ZX
��

κX

∆Zf
// ∆ZY
��
κY

LX
Lf // LY

Z
��

κX

��
κY

Cones and cocones form a category. We define the category of cones, the category of cocones
is defined likewise.

Definition 6.3 (Category of cones). Let L :J → C be a category–shaped diagram. The
category of cones over L is defined as follows.

1. Objects are cones ϕ : ∆A
.→ L.

2. For a pair of cones ϕ : ∆A
.→ L and ψ : ∆B

.→ L a morphisms from ϕ to ψ is a morphism
g :A→ B of C such that for all X and Y of J the following commutes.

A

g
��ϕX



ϕY

��

B
ψX

{{

ψY

##
LX

Lf
// LY

3. The identity morphism of a cone ϕ : ∆A
.→ L is the morphism idA :A→ A of C.

4. Composition of morphisms is defined as composition of the underlying morphisms of C. ♦

Definition 6.4 (Limits and colimits). Let L :J → C be a category–shaped diagram.

• A limit of L is a final object π : ∆A
.→ L in the category of cones over L.

• A colimit of L is an initial object ι :L
.→ ∆Z in the category of cocones over L. ♦

A limit of a diagram L :J → C is a pair (A, π) of an object A : C and a family of morphisms
(πX :A→ LX)X : J . The morphisms πX :A→ LX are called projections, and the notation πX
is reserved for morphisms of final cones specifically, although we sometimes subscript it with
the object LX of C rather than the vertex X of J . Likewise, a colimit of a a diagram L :J → C
is a pair (ι, Z) where ι is a family of morphisms (ιX :LX → Z)X : J into an object Z : C, called
injections. Again, the notation ιX , or ιLX , is used specifically for morphisms of initial cocones.
Below, the most common limits and colimits are introduced.

Definition 6.5 (Common limits and colimits).

• Let J be the discrete category with two objects. A diagram L :J → C selects two objects
X and Y of C. The binary product X ×Y is the final cone over L. The unique morphism
h :A→ X × Y is denoted by (ψX , ψY ).

A

ψX

~~

ψY

  

h

��
X X × Y

πX

oo
πY

// Y

X
ιX //

ψX

  

X + Y

h

��

Y
ιYoo

ψY

~~
Z
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• Again, let J be the discrete category with two objects so that L :J → C selects two
objects X and Y of C. The binary coproduct X + Y is the initial cocone over L. The
unique morphism h :X + Y → Z is denoted by [ψX , ψY ].

• Let J be the free category over the quiver consisting of two arrows with distinct domains
and a common codomain. A diagram L :J → C selects three objects and two morphisms
f :X → Z and g : Y → Z of C. The pullback of f and g is the final cone over L.

Q

ψX

��

ψY

##
h

!!
P

πX

��

πY // Y

g

��
X

f
// Z

Z

f

��

g // Y

ιY

��
ψY

��

X
ιX

//

ψZ
00

P
h

  
Q

• Let J be the free category over the quiver consisting of two arrows with a common domain
but distinct codomains. A diagram L :J → C selects three objects and two morphisms
f :Z → X and g :Z → Y of C. The pushout of f and g is the initial cocone over L. ♦
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7 Comma categories

Definition 7.1 (Comma category). Let D, C and E be categories and let F :D → C and
G : E → C be functors between them. The comma category (F ↓G) of F and G is defined as
follows.

• Objects of (F ↓G) are triples (X, f, Y ) where X is an object of D, f :FX → GY is a
morphism of C and Y is an object of E .

• A morphism from (X, f, Y ) to (X ′, f ′, Y ′) is a pair (g, h) where g :X → X ′ is a morphism
of D and h : Y → Y ′ is a morphism of E such that the following commutes in C.

FX

f

��

Fg // FX ′

f ′

��
GY

Gh
// GY ′

• The identity morphism id(X,f,Y ) of an object (X, f, Y ) is simply pair (idX , idY ).

• Composition (g′, h′) ◦ (g, h) is defined by (g′ ◦ g, h′ ◦h). ♦

Definition 7.2 (Slice– and coslice categories). Let 1 be the category consisting of a single
object and its identity morphism. The diagonal functor ∆X : 1 → C for a given category C
picks out a single object X of C.

• The slice category (C/X) is the comma category (IdC ↓∆X).

• The coslice category (X/C) is the comma category (∆X ↓IdC). ♦

Objects of a slice category (C/X) are triples (A, f, 1) where f :A→ X and 1 is the single object
of 1. Similarly, objects of a coslice category (X/C) are triples (1, f, A) with f :X → A. Since 1
is the only object of 1 we can simply omit it from the triples. Morphisms from (A, f) to (B, g)
in the slice category are tuples (h, id1) with h :A→ B a morphism of C. Morphisms from (f,A)
to (g,B) in the coslice category are tuples (id1, h) again with h :A→ B of C. As before we can
simply omit id1, and thus morphisms of the slice and coslice categories (C/X) and (X/C) are
just morphisms of C such that the two equivalent diagrams on the left and respectively the two
diagrams on the right commute.

A

f
��

h // B

g

��
X

IdA

f

��

Idh // IdB

g

��
∆X1

∆X id1

// ∆X1

∆X1

f

��

∆X id1 // ∆X1

g

��
IdA

Idh
// IdB

X

f

��

g

��
A

h
// B

12


	Categories and diagrams
	Morphisms
	Functors
	Category shaped diagrams
	Functor categories
	Cones and Limits
	Comma categories

