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I. ABSTRACT
The increase of artificial light exposure

through the increased prevalence of technology has
an effect on the sleep cycle and circadian rhythm of
humans. The goal of this project is to determine how
different colors and intensities of light exposure prior
to sleep affect the quality of sleep through the
classification of time series data.

II. INTRODUCTION
A. Background Information

As the world undergoes technological
advancement on an unprecedented scale, artificial
light from man-made sources is becoming ever more
prevalent. The extent of this anthropogenic increase
in artificial light has become a pollutant, with
extensive research showing both ecological and
medical consequences [1]. This is due to the
importance of light from the sun on the survival and
function of the majority of organisms and thus
ecosystems on earth. These organisms have
developed day/night cycles that cause physiological,
behavioral, and metabolic changes which optimize
function and are essential for survival. Artificial light
interferes with these processes due to differences in
wavelength, intensity, and timing from that of light
with origins from the sun. A study of satellite images
done in 2001, showed that artificial light at night
(ALAN) affects 18.7% of global land area 1, through

1 The actual percentage of global land area affected by artificial
light is actually smaller due to this data being taken from satellite
images and the measure of skyglow.

which roughly two-thirds of the human population
and 99% of humans living in the United States and
the European Union, “live in areas where the night
sky is above the threshold set for polluted status.” [2]
The rapid development of technology and thus a
rapid increase in artificial light within the last two
hundred years has undoubtedly had effects on the
biological function of organisms around the world.

What is most concerning for the health of
humans, however, is the ever-increasing use of
devices with light-up displays such as phones, TVs,
and computers for entertainment, work, and
communication. Currently, there are an estimated 16
billion mobile devices worldwide [3] with many
individuals spending over five hours a day looking at
a screen. One biological mechanism that is affected
by this increased exposure to artificial light in human
beings is the circadian rhythm, through which the
body undergoes changes during the night in
preparation for sleep and changes during the day in
preparation for activity. The circadian rhythm plays
major roles in many “physiological processes, such as
body temperature, blood pressure, hormone secretion,
gene expression, and immune functions” [4], which
all have some reliance on diurnal light patterns from
the sun and thus the optimized function of these
human body processes are impacted by stimulus from
artificial sources of light. When light enters the eyes
and is picked up by photosensitive ganglion cells, this
information is then communicated to the
suprachiasmatic nuclei of the hypothalamus, and then
to other parts of the brain and body (fig 1.). One
result is that the brain experiences an increase in



wakefulness2 and reduction in homeostatic sleep
pressure in the presence of light [5] through the
suppression of melatonin, a hormone released by the
pineal gland which facilitates sleep and the circadian
rhythm.

As a result light exposure during unnatural
times can detrimentally affect sleep, which is
necessary for human health and function. Sleep
deprivation or impairment can lead to many health
issues such as impairment to cognition [6],
metabolism [7], and immune response [8]. This leads
to the focus of this project, which is to determine the
effects of light exposure on sleep quality.

fig 1.

B. Data
The data used in this project comes from the

Sueño Ancillary study done by The Hispanic
Community Health Study / Study of Latinos
(HCHS/SOL). The data is composed of wrist-worn
actimetry sensor3 data taken over the course of one
week for each participant (n=2252). Measurements
are taken from the sensor in thirty-second intervals
and consist of blue, green, red, and white light
intensities, locomotor activity, time, and sleep
interval indicators [9]. One notable feature that we
use is the interval indicator, which describes whether
the patient is asleep, awake or resting for a given
epoch. This uses the study’s sleep/wake detection
algorithm to determine.

3 Actiwatch Spectrum, Philips Respironics

2 Wakefulness here is defined as improved auditory reaction time,
improved ECG readings indicating alertness, and reduced
attentional lapses.

III. METHODS
A. Feature Engineering

The outcome variable that we used for the
data is sleep efficiency which is defined by the ratio
between the duration of time the participant spent
sleeping over the duration of time spent in bed for a
given night [10].

The sleep efficiency equation is shown
below:

𝑆𝑙𝑒𝑒𝑝𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑇𝑜𝑡𝑎𝑙 𝑆𝑙𝑒𝑒𝑝 𝑇𝑖𝑚𝑒
𝑇𝑖𝑚𝑒 𝑖𝑛 𝐵𝑒𝑑

To calculate this quantity, we isolated the
epochs when a subject switches from one activity to
another. Thus, the amount of sleep can be calculated
by finding the difference between the epochs when a
subject sleeps and when they get up from the bed.
Similarly, the amount of time spent in the bed can be
calculated by finding the difference between the
epochs when a subject comes to bed and when they
get up from the bed. For a given sleep event xi, sleep
quality is defined as:

{ Good, if SleepEfficiency(xi) > 0.95
Bad, if SleepEfficiency(xi) 5≤ 0. 9 }

We created our classifier using the sktime
library. The classifiers in this library take nested
series as feature inputs for univariate classification,
and nested series within DataFrames as feature input
for multivariate classification. These nested series are
indexed and represent the value of the observation
that is changing with time, which in our case is the
light intensity for white, blue, green, and red colors.
The target is simply a series of labels of the
corresponding feature inputs. These labels are the
sleep quality of a sleep event. In order to get the light
exposure time series corresponding to a certain sleep
event, we isolated the light exposure until 2 hours
before a subject went to sleep. The series for any
color of light for different sleep events were then
placed within another series, thus creating a nested
series. This creates a feature input and target feature
that can be used for multivariate time series
classification using the sktime library. Below is an
example of how a DataFrame in this format would be
structured:
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The DataFrame is a matrix where n is𝑛 𝑥 6
the number of complete active-rest intervals. Each
element L is a series of length (equivalent to 2240
hours worth of 30-second epochs) where the
superscript represents the associated color of light.
SE and SQ represent the sleep efficiency ratio and
sleep quality rating respectively. The value of SQ for
any given SE is dependent on the threshold, which
we chose to be 0.95 because this value represents a
sleeping event where a person spent about 8 hours in
the bed but did not sleep until about 25 minutes
passed by. This choice is completely discretionary -
other studies have used a value of 0.85 [13] based on
their discretion.

B. ROCKET [11]
Usually time series classification models are

highly complex and require long training times even
for small quantities of data. Some methods focus on
properties such as frequency or shape, while others
use learned convolutional kernels to perform
classification. However, these methods are not
scalable at all.

RandOm Convolutional KErnel Transform
(ROCKET) involves creating features from time
series using random convolutional kernels. These
kernels have random length, weights, biases, dilation
and padding. Due to the randomness in the kernels
and the resulting features, it is virtually impossible to
interpret these features. In fact, interpretability
remains a huge challenge in the realm of time series
classification. The number of kernels is usually
10,000 but the transformations still take place
extremely fast. For k kernels and n time series, where
each time series is of length l, the complexity of
ROCKET is O(k . n . l).

C. Classifiers with ROCKET
Once the random convolutional features are

created, they can be used to train a linear classifier. In

theory, ROCKET can be used with any classifier such
as Logistic Regression or Ridge Regression.

Logistic Regression: ROCKET can be used with
logistic regression and stochastic gradient descent.
This is particularly suitable for very large datasets
because it provides for fast training with a memory
cost fixed by the size of each minibatch. The
complexity of stochastic gradient descent is
proportional to the number of features and the
number of classes (which is 2 in our case) but is
linear in relation to the number of training examples.

Ridge Regression: For our practical use case,
however, we use a ridge regression classifier. The
ridge regression classifier is significantly faster than
logistic regression on smaller datasets because it can
make use of so-called generalized cross-validation to
determine appropriate regularization. Regularization
is critically important where the number of features is
significantly greater than the number of training
examples, allowing for the optimization of linear
models, and preventing pathological behavior in
iterative optimization, e.g., for logistic regression.
The ridge regression classifier can exploit generalized
cross-validation to determine an appropriate
regularization parameter quickly. In the case of our
model, the number of features is in the order of ten
thousand while the number of training examples is in
the order of thousands, so ridge regression is
computationally efficient while maintaining high
accuracy. The non-scalability of ridge classification
to larger datasets did not pose a problem for us.

D. Evaluation metric for ROCKET-Ridge Classifier
After performing feature engineering, it

turned out that only about 13% of sleep events were
of ‘Bad’ sleep quality. In the case of such imbalanced
data labels, the usual accuracy metric would not be
appropriate because a naive model that always
predicts ‘Good’ sleep quality would have 87%
accuracy, but it would be practically useless.
Therefore, recall with respect to ‘Bad’ sleep quality
is a better evaluation metric. Recall with respect to
‘Bad’ sleep quality is the ratio between the number of
correctly identified ‘Bad’ sleep quality events and a
total number of actual ‘Bad’ sleep quality events.
When this ratio is high, it means that the model is



able to correctly predict more of the ‘Bad’ sleep
quality events.

E. LSTM
Considering our data is time series with the

frequency of 1 observation per 30 seconds and we are
trying to predict the sleep-awake status of an
individual based on the series of light he/she
received. A recurrent neural network (RNN) might
be ideal to accomplish this goal as RNN will learn the
relationship from time step to time step. It will
produce predictions not only from the current light
intensity but also from the previous light the
individual received.
Long Short-Term Memory(LSTM)[12] is an RNN
model that fixed the problem of losing the long-term
dependency of traditional RNN models. We are using
the many-to-many architecture where x<t> is the light
intensity and y<t> be the prediction of the sleep-awake
status of tth time step.

F. Evaluation metric for LSTM
In the model, we are directly predicting the

sleep-awake status of every time step and compute
the sleep quality from the predictions. As we are not
directly predicting sleep quality, we are not too
concerned about the imbalanced label of sleep
quality. The main metric to evaluate the LSTM model
is still the accuracy of the individual prediction in
each time step. But we will also evaluate the accuracy
of the calculated sleep quality and recall.

IV. RESULTS
A.Training the  LSTM

Unlike the ROCKET model, we trained the
LSTM model with raw unbalanced data, because the
sequence of data passed into the model is important
for the model to learn the correlation between each
time step. As the dimensionality of the model is high

and they are inter-correlated, we don’t want our
oversampling on the bad sleep quality data to
generate unnecessary noise to the model.

We used the first 1600 records of patients
for the training set and the remaining part of the
dataset as a test set. We used the 80-20
train-validation split on the training set and trained
the model for 10 epochs. We saved the model with
the lowest validation loss to avoid overfitting the
model and generate the test result from it.

B. LSTM results
After training the LSTM model and getting

the best model from the validation set, we tested it
against the test set. It turns out that our model
performs pretty well. The accuracy for the prediction
of sleep-wake states in each time step is 92.94% and
the accuracy is 98.26% for classifying the good or
bad sleep quality calculated from the predicted
sleep-wake states. The accuracy is high, but it doesn’t
mean this is a perfect model. The True negative rate
of this model is 0. This means that given light
intensity received by a patient with bad sleep quality,
the model never predicts the patient is having bad
sleep quality. This may be caused by the imbalanced
data input to the LSTM for training, as we are
concerned with the high dimensionality of
inter-correlation between time steps so we didn’t
oversample the bad sleep quality data.

However, though this LSTM model is not
suitable for sleep quality classification, it is capable
of sleep state classification based on light intensity as
it has a cross-entropy loss of 0.82, which is very high.

C. ROCKET-Ridge Models
All the attempted models in this section are

similar in the sense that they apply ROCKET on the
light exposure time series upto two hours before any
sleep event to create features and then use Ridge
Classifier on those features to predict the sleep
quality of any sleep event. Given that the data is
imbalanced, we chose to filter the data such that there
was a 50/50 ratio between ‘Good’ and ‘Bad’ quality
sleep events in the training dataset. The
ROCKET-Ridge classifiers do not need any
hyperparameter tuning because ROCKET creates
tens of thousands of random features and these



features are easily learned by the Ridge classifier
without overfitting due to effective regularization.
Therefore, we split the data into a 75/25 training-test
split with no validation set.

I.  All Lights Model: Baseline
The first baseline model included light

exposure time series for all four colors: red, blue,
green, and white.
‘Bad’ Sleep Quality Recall: 0.64
‘Good’ Sleep Quality Recall: 0.58

II. Red Light Model
This model only included light exposure

time series for the red color.
‘Bad’ Sleep Quality Recall: 0.63
‘Good’ Sleep Quality Recall: 0.60

III. Green Light Model
This model only included light exposure

time series for the green color.
‘Bad’ Sleep Quality Recall: 0.64
‘Good’ Sleep Quality Recall: 0.60

IV. Blue Light Model
This model only included light exposure

time series for the blue color.
‘Bad’ Sleep Quality Recall: 0.59
‘Good’ Sleep Quality Recall: 0.58

V. White Light Model
This model only included light exposure

time series for the white color. This model performs
the best when it comes to models with only a single
light color.
‘Bad’ Sleep Quality Recall: 0.62
‘Good’ Sleep Quality Recall: 0.61

VI. Vote Model: Best
This model uses Red, Blue, Green and

White Light Models individually to get their
predictions. Then, for any sleep event, the predictions
from the four models are put to vote and the most
common outcome is selected as the final prediction.
In case of ties, the prediction of White Light Model
determines the outcome because it is the best
performing model with only a single color. This
model turns out to be the best performing model.
‘Bad’ Sleep Quality Recall: 0.63

‘Good’ Sleep Quality Recall: 0.62
D. Observations from ROCKET-Ridge Models

I. Vote Model performance difference based on
activity level

To assess the model performance on
different subsets of dataset, we first split it into two
groups: first group included participants whose mean
activity over the week of recording was less than the
overall median of mean activity levels of all the
participants (less active), and the second group
included the rest of the participants (more active).

‘Bad’ Sleep Quality Recall (less active): 0.61
‘Good’ Sleep Quality Recall (less active): 0.62

‘Bad’ Sleep Quality Recall (more active): 0.65
‘Good’ Sleep Quality Recall (more active): 0.62

So, the Vote Model performs similarly for ‘Good’
sleep quality events, both overall and across groups.
However, the model performs better for ‘Bad’ sleep
quality detection for more active participants in
comparison to less active participants. This gives us
an intuition that among less active participants, the
light wave features are not good enough at predicting
‘Bad’ sleep quality, as compared to that in more
active participants. This means that there must be
other confounding features among less active
participants that are causing ‘Bad’ sleep quality.
These confounding features among less active
individuals could be age, health conditions or events
happening outside the two-hour window before
sleeping that are dictating the ‘Bad’ sleep quality
among less active participants.

II. Vote Model performance difference based on sleep
level

Next, we split our dataset into two groups
based on the amount of time that participants spent
sleeping: first group included participants whose total
sleep duration over the week of recording was less
than the overall median of sleep duration of all the
participants (less sleep), and the second group
included the rest of the individuals (more sleep).

‘Bad’ Sleep Quality Recall (less sleep): 0.65
‘Good’ Sleep Quality Recall (less sleep): 0.66



‘Bad’ Sleep Quality Recall (more sleep): 0.61
‘Good’ Sleep Quality Recall (more sleep): 0.58

So, the Vote Model performs better for participants
that sleep less and worse for participants that sleep
more, irrespective of the kind of sleep quality. This
gives us an intuition that among participants who
sleep more, the light wave features are not good
enough at predicting their sleep quality to be ‘Good’
or ‘Bad’, as compared to participants who sleep less.
So there must be other confounding features that are
dictating this classification among participants who
sleep more. Again, these confounding features among
individuals that sleep more could be age, health
conditions or events happening outside the two-hour
window before sleeping that are dictating the sleep
quality classification among participants that sleep
more.

III. Correlation between different colors of light
exposure levels and its consequences

We know that for any average individual,
the light exposure at any instant is a mixture of
different colors. In fact, any color can be decomposed
into its red, blue and green components. White light
is a mixture of all three colors at their maximum
intensity and typical sources include sunlight and
usual artificial lighting indoors. So, as per our
expectations, the correlation value between light
exposure levels between any pair of colors in the
two-hour window before a sleep event is very high.
The least median correlation occurs between red and
blue light (= 0.73) and the highest median correlation
occurs between green and blue light (= 0.94).

We know that ROCKET creates random
convolutional features from the time series and those
features are then used by the Ridge Classifier for time
series classification. Since the time series for
different colors have high correlation, we would
expect that ROCKET would create similar wave
features across different light time series. Since
similar features are being used, the recall for any
sleep quality by Red, Blue and Green Light Model
should be the same; and if that is not the case, it must
be due to the difference in the color of the light.

To determine the difference in model
performance between the Red, Green and Blue Light
Model on ‘Bad’ sleep quality events, we perform
bootstrapping on the test set and get a distribution of

recall values with respect to ‘Bad’ sleep quality
events for each of the three models. Then, we use the
Kolmogrov-Smirnov statistic (KS-statistic) to
determine whether the three distributions of recall
values are the same or not. The mean recall values
with respect to ‘Bad’ sleep quality are as follows:

Red Light Model: 0.63
Green Light Model: 0.64
Blue Light Model: 0.59

With a significance level of 1%, we find out
that:

a) The recall values for Red and Green Light Models
come from the same distribution (p-value = 0.91)

b) The recall values for Red and Blue Light Models
come from different distributions (p-value = 0.002)

c) The recall values for Green and Blue Light Models
come from different distributions (p-value = 0.6x10-4)

Thus, the recall with respect to ‘Bad’ sleep
quality for the Blue Light Model is clearly less than
that of the other two models. The three models are
the same in every aspect except the color of the light,
which is not a feature in our ROCKET-Ridge Models.
This gives us an intuition that the same wave features
that work well in Red and Green Light Models do not
work well enough in Blue Light Model to determine
‘Bad’ sleep quality. So, it must be that the reason why
random convolutional features in the Blue Light
Model aren’t enough to determine ‘Bad’ sleep quality
events is because the color blue itself causes ‘Bad’
sleep quality to some extent, and our model is unable
to capture that because color is not a feature. This is
in line with the popular theory that blue light
negatively affects sleep quality because it suppresses
the secretion of melatonin - the sleep-causing
hormone.

V. CONCLUSION

Due to the nature of our data, it was
necessary to score our models based on recall rather
than accuracy due to imbalances in the amount of
“good” and “bad” classified sleep events.



Our first model is LSTM, which is a
recurrent neural network (RNN) which fixed the long
term dependency lost problem of traditional RNN.
We trained the model by passing the light intensity
with 30-second epochs and try to predict whether the
patient is asleep, awake or in bed but not asleep. With
the predicted sleep-wake status, we can calculate the
sleep efficiency and classify whether the sleep quality
is good or bad. The prediction accuracy of the
sleep-wake status is 92% and thus the classification
accuracy is 98%. However, the high accuracy results
from the highly skewed data. Most of the sleep in the
data is of good quality. With the Recall with respect
to bad-quality sleep to be 0, this is not a good model
for our prediction task, as we value more of the
ability to correctly identify the bad quality sleep.

For the ROCKET model using a ridge
regression classifier, we found that all of our models
that involved using single light colors performed
similarly, which is something we expected due to our
exploratory data analysis showing that the readings
between the different colors all displayed similar
patterns. The best performing model however was the
best vote model, which selected colors based on the
most common outcome and then used that color for
the prediction. An interesting discovery that seems
intuitively accurate is that when bootstrapping for
differences in patients with low and high activity, our
model found greater performance difficulty in low
activity patients. This would support the idea that in
patients with overall lower physical activity, there is
more influence from confounding variables on their
quality of sleep; one possibility is that lower activity
is an indication of poorer health. A similar
observation was found when differentiating patients
who slept very little and a lot, with greater
performance difficulty on patients who slept a lot. We
can only speculate that there are omitted variables at
play here. Lastly, when bootstrapping to differentiate
colors, we again found that one of the colors, blue,
had worse performance and we speculate that is due
to blue light playing a greater role in the suppression
of melatonin.
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