
Escaping the Prison of Style
Antranig Basman

Raising the Floor, International
London, England

amb26@ponder.org.uk

Philip Tchernavskij
Inclusive Design Research Centre, OCAD University

Toronto, ON, Canada
ptchernavskij@ocadu.ca

ABSTRACT
We seek support for our notion of authorially open programming
practices through a critical reading of the notion of “style” in our
dominant programming cultures. We argue that this popular notion
of programming style is inescapably infused with values which di-
verge from those of its supposed analogues in areas such as literary
and artistic expression. By examining the discourse around and
technical distinctions between programming styles, we reveal their
fundamentally different nature in structuring dialogues between
the writers of computational artefacts and those who experience
them. Programming styles are predominantly discussed in inward-
facing terms, i.e. with regard only to the experience of programmers
with privileged access to the source code. Regardless of their chosen
style, programs consist of “imprisoned expressions”, built of design
elements cut off from access to the program which executes in the
world. We construct a miniature integration language, still bounded
within the space of existing programming language styles, to solve
an open authorship problem, and observe that the increased open
ownership of expressions has come at a significant usability cost.
We fail to escape the prison, and reflect that our own dialogue
remains predominantly inward-facing, due to the lack of proper
materials and vocabulary to put communities into correspondence.
We look forward to more convivial venues and idioms for express-
ing computational artefacts, with more equal relationships between
the ecologies of construction and ecologies of use.

CCS CONCEPTS
• Software and its engineering → Reusability; Software evo-
lution; Collaboration in software development; Software notations
and tools.

KEYWORDS
programming styles, programming paradigms, open authorship,
software evolution, convivial computing
ACM Reference Format:
Antranig Basman and Philip Tchernavskij. 2020. Escaping the Prison of
Style. In Conference Companion of the 4th International Conference on the Art,
Science, and Engineering of Programming (’20), March 23–26, 2020, Porto, Por-
tugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3397537.
3397548

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
’20, March 23–26, 2020, Porto, Portugal
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7507-8/20/07. . . $15.00
https://doi.org/10.1145/3397537.3397548

1 INTRODUCTION
We join this workshop’s call for more convivial digital tools, that
is, software that “can be easily used, by anybody, as often or as
seldom as desired, for the accomplishment of a purpose chosen by
the user.” [15]. We immediately reflect that conviviality can only
be derived from the relations or process surrounding an artefact
rather than read off from its directly observable properties. We are
concerned by the role existing programming tools and techniques
have in excluding large groups of users from convivial relationships
mediated by their tools [3, 7]. The vast majority of users of software
must choose between off-the-shelf products that may or may not
fit their cognitive, physical, and social needs, and are additionally
constrained by the fact that they and their collaborators already
use many such products that are often incompatible with each
other at various levels. Having access to the skills of an expert
programmer does little to alleviate these issues, because software is
generally constructed in a manner that effectively excludes anyone
but its original authors and their peers from participating in the
design process. This is less an intentional behaviour on the part of
developers, and more an assumption that has become progressively
embedded in our tools and best practices through the historical
development of the mode of software production [26, section 2.6].

We want to bring about the opposite situation, in which creative
networks are empowered to curate, share, modify, and combine dig-
ital tools of interest to them at a cost they can afford. Approaches to
this goal have been referred to variously as continuing design [11],
open authorship [6], and malleable software [26]. In this paper, we
apply the lens of open authorship in particular, which is defined
by the principle that all programs should remain open to ongoing
(re-)design by an evolving network of users. The open authorial
principle states that any design decision made by one author can be
modified by contributing an additional expression from another au-
thor — without the need to rewrite the first author’s expression [6].
It implies a programming practice mediated by external composition,
that is, the ability to superimpose programs by actions taken out
in the world, rather than those which require privileged access
to source materials. Complex and/or long-lived software typically
has several communities of authors and users, whose requirements
for the software may diverge over time. External composition has
the potential for strengthening conviviality in these circumstances,
since these communities should be able to reflect their local require-
ments in artefacts owned and maintained by themselves. By virtue
of moving the point where artefact composition occurs outside the
boundary of one development team or organisation, we avoid cen-
tring this community as the broker of all relations that are mediated
by the artefacts.

Naturally this decentering is accompanied by economics reflect-
ing the relative empowerment or disempowerment of the related
communities. Without external composition, variant designs are

https://doi.org/10.1145/3397537.3397548
https://doi.org/10.1145/3397537.3397548
https://doi.org/10.1145/3397537.3397548

’20, March 23–26, 2020, Porto, Portugal Antranig Basman and Philip Tchernavskij

achieved by means of negotiation around a centralized code base
— this is highly costly and excludes marginalized communities of
authors and users, whose requirements are irrelevant or counter-
productive to the majority. Correspondingly, we believe external
composition is an essential mechanism for changing these econom-
ics.

This paper is a reflection on how the goals of open authorship fit
within the current dialectics of programming practice and computer
science, i.e. the distinctions, value judgements, and trade-offs that
programmers consider important to their work. The focal point of
our reflection is the notion of programming styles.

2 OUR SUBJECT OF REFLECTION
The notion of style in programming has emerged by analogy from
other disciplines, such as literature, the visual arts, and arguably
more closely related ones such as architecture and civil engineer-
ing. The term may be taken in a narrower or a wider sense, more
narrowly referring to incidental details of expression such as for-
matting, naming and granularity of structure, and more widely
referring to the primitive mechanisms and organisation of compu-
tation.

One canonical illustration of the narrow sense is Kernighan and
Plauger’s The Elements of Programming Style [20]. This book – a
pastiche of Strunk andWhite’s The Elements of Style [16] – is a com-
pendium of maxims primarily aimed at producing programs that
are more easily readable by programmers. These maxims are illus-
trated through a series of narrated refactoring exercises, using code
samples taken from programming textbooks. The refactorings are
concerned with use of comments, naming, repetition, indirection
through sub-procedures, etc. Kernighan and Plauger thus frame
style as communicative clarity, something that a given program
can have more or less of.

In her book Exercises in Programming Style [22], Lopes surveys
programming styles in a wider sense. She goes beyond the kind of
bookkeeping details mentioned above and looks at more substantial
details of how computations are organised and expressed. In her
interpretation of “style”, Lopes combines notions such as models
of computation, language paradigms, and architectural patterns.
For example, there are styles representing programming with stack
machines, spreadsheets, and Haskell-esque monads. Lopes argues
that these phenomena in practice overlap and interact:

[T]here is a continuum in the spectrum of how to write
programs that goes from the concepts that the program-
ming languages encourage/enforce to the combination
of program elements that end up making up the pro-
gram; languages and patterns feed on each other, and
separating them as two different things creates a false
dichotomy. [22, p. xii]

Lopes’ survey consists of set of sample Python programs writ-
ten in different styles to solve the same task1 and accompanying
descriptions of each style, discussions of their trade-offs, and sug-
gested programming exercises, such as comparing different styles,
or extending one of the samples with additional behaviour [22].
The chosen task is to load a text as input and produce as output a
1At the time of writing, 41 different styles are collected at https://github.com/crista/
exercises-in-programming-style

Figure 1: An example of one of the sample programs
from [22] in use, here style 9, “The One”2

list of the 25 most frequent words in the text, in descending order
of frequency.

We consider Lopes’ book and survey to be an excellent illustra-
tion of what the phenomenon of programming styles encompasses
for the majority of computer scientists and programmers today.
We believe it does a fair job of reflecting the trade-offs and value
judgements that actual programmers consider in justifying one
style over another. Thus, it forms a good basis for our exercise,
to discuss what these reveal about programming as an authorial
practice.

3 A SEEMING DIVERSITY, A COMMON
PROBLEM

Figure 1 illustrates the view of one of Lopes’ sample programs “from
the outside”. It receives a text file from standard input and prints
the computed word frequencies. All the programs in [22], from the
point of the user, are exactly the same one, not merely variants.
They are invoked in just the same way and produce identical output.
The programs not only have identical interfaces for execution, but
identically non-existent interfaces for modification. In each case, the
programs are designed in away that precludes anyone encountering
the running program from attempting to understand, change, or
integrate it.

We call this a paradigm of “imprisoned expressions”, because the
design elements of individual program are cut off from extension
or reuse by anyone not already inside the boundary of the file. The
diversity of styles on offer indicates an apparent freedom to choose
one thing or another, yet our choices are framed in such a way
that this space of possibilities in practice feels like a prison. We can
choose how we want to express our computational power, but we
cannot choose how that power is shared with the wider world.

This situation follows from the framing of the style exercise,
but it also reveals the authorial culture of programming. These
are the styles of an inward-facing discipline, i.e. a practice of pro-
gramming that is primarily concerned with the work of producing

2https://github.com/crista/exercises-in-programming-style/blob/master/10-the-one.
Note that we refer to the style numbers and names used in the book [22], which do
not always match the ones used in the GitHub repository.

https://github.com/crista/exercises-in-programming-style
https://github.com/crista/exercises-in-programming-style
https://github.com/crista/exercises-in-programming-style/blob/master/10-the-one

Escaping the Prison of Style ’20, March 23–26, 2020, Porto, Portugal

initial, correct, and efficient programs, excluding the experiences
and labour of subsequent (re-)users, and implicitly assuming that
role of enacting reuse must take place within the discipline.

The effect of imprisoned expressions is that the ecology of func-
tion — the network of people and tools surrounding the running
programs — is cut off from any direct relation with the ecology
of design – the corresponding network involved in the creation
of the source code [8]. These are “styles” only evident to the elite
construction ecology.

4 THIS IS A DILUTED NOTION OF STYLE
Compare this with Christopher Alexander’s presentation of style
in his architectural design patterns [9], familiar to programmers
through their misappropriation by Gamma et al. [12]. For example,
his “Six Foot Balcony” pattern:

167 Six Foot Balcony: A balcony is first used properly
when there is enough room for two or three people to
sit in a small group with room to stretch their legs, and
room for a small table where they can set down glasses,
cups, and the newspaper. No balcony works if it is so
narrow that people have to sit in a row facing outward.
The critical size is hard to determine, but it is at least
six feet. [9]

Note the inescapable invocation of the ecology of use. This pattern
describes the design choice in terms of its usefulness and habitability
to the eventual users of the building.

Furthermore, this pattern coexists alongside:

163 Outdoor Room: . . . a partly enclosed space, outdoors,
but enough like a room so that people behave there as
they do in rooms, but with the added beauties of the sun,
wind, and smells, and rustling leaves, and crickets. [9]

Note that these are overlapping, opportunistically characterised
elements — they may coexist partially, overlapping, or not at all.
Contrast this to programming “styles” and “patterns”, which are
purely inward-looking to the ecology of production, and also largely
taxonomical — invocation of one pattern applied to a particular
design element typically rules out other patterns applicable to that
element (although naturally patterns can be invoked in cooperating
relations on cooperating design elements). By contrast, program-
ming styles — and programming design patterns — are used to
end conversations through classification, not begin them through
inspiration. They are variant “approaches to a problem” rather than
members of a vocabulary.

Our critique of the invocation of “style” in programming turns
out to echo Alexander’s own feelings about the Design Patterns
community. In a keynote delivered to OOPSLA in 1996, Alexander
[1] decried their moral deframing of pattern languages and their
lack of orientation toward the communities that motivate and live
with programs, and described programmers as behaving as “guns
for hire”:

My comment on this? Please forgive me, I’m going to be
very direct and blunt for a horrible second. It could be
thought that the technical way in which you currently
look at programming is almost as if you were willing

to be “guns for hire.” In other words, you are the techni-
cians. You know how to make the programs work. “Tell
us what to do daddy, and we’ll do it.” That is the worm
in the apple. [1]

More than 20 years later, nothing has changed, and no shred of
moral orientation has been introduced into our notion of “style”.
Let us make the 2020s the decade when we finally try to deliver on
some of Alexander’s exhortation to produce living, open, convivial
structures, rather than inward-looking, technocratic and dead ones:

What I am proposing here is something a little bit differ-
ent from that. It is a view of programming as the natural
genetic infrastructure of a living world which you/we
are capable of creating, managing, making available,
and which could then have the result that a living struc-
ture in our towns, houses, work places, cities, becomes
an attainable thing. That would be remarkable. It would
turn the world around, and make living structure the
norm once again, throughout society, and make the
world worth living in again.
This is an extraordinary vision of the future, in which
computers play a fundamental role in making the world
— and above all the built structure of the world — alive,
humane, ecologically profound, and with a deep living
structure. [1]

5 THERE AREWORSE THINGS THAN A
CATALOGUE OF STYLES

Despite our reservations on the notion of style it embodies, we
welcome the catalogue of program styles assembled in Lopes [22]
since it genuinely shows our field at its best. Travel, even travel
within a prison, broadens the mind3, and the catalogue is a help-
ful assistance to the inhabitants of the prison to desist from their
traditional activities of mounting a power struggle with their neigh-
bours imprisoned in the adjoining cell. Many programmers can
live out their careers either unaware that substantially differing
styles exist, or else locked in an endless struggle to demonstrate
that the power granted by its furnishings to enslave visitors to
their cell greatly exceeds that of their colleagues. Notable exam-
ples include Hoyte’s declaration “macro programming is, of course,
not about style. It is about power” [14], and Graham’s sneering at
the users of a programming language he invidiously dubs “Blub”
and their incapability of grasping the superior power of his cho-
sen style [13]. These inhabitants are what Orwell [24] would call
“power-worshippers” — they worship the strong simply because
they are strong, rather than for their tendency to lead their users
to “breathe the air of equality” [23].

So let us by all means celebrate the map of our prison provided
in the catalogue of styles, and see if, with its help, we can plot out
what it might take to stage an escape.

3“Denmark’s a prison.” — “Then is the world one”, Hamlet: Act II, Scene 2

’20, March 23–26, 2020, Porto, Portugal Antranig Basman and Philip Tchernavskij

6 IN PART OF THE PRISON, THERE IS MORE
LIGHT

Though the styles surveyed by Lopes are primarily motivated in
inward-facing terms, scattered throughout there are styles with val-
ues oriented toward enabling wider authorial participation. In some
cases, these values are obscured by the fact that the survey opts
to express all styles through Python source code invoked from the
command line. For example, style 1, “Good Old Times”4 reflects the
constraints of programming early computers with minimal primary
memory, and style 26, “Spreadsheet”5 represents different stages of
data processing as columns connected by formulas. These styles en-
joyed useful virtues of externalisation in their original use contexts.
Externalisation is the ability to expose a running program’s be-
haviour and state in a document form that can be freely exchanged
and modified. It is a key value for living, convivial software, because
it supports ongoing (re-)design and integration [10].

In the former case, this arose through the natural virtues inher-
ited from the embodiment of computation in the physical world
of wires and memory locations, which had not yet been effaced
by decades of programming language refinement. In the latter, the
virtue had been explicitly designed into the interaction structure —
a coordinatised, reactive surface of data was exposed to the user as
the primary interaction idiom, a direct window onto the system’s
internal state facing all the way out. In both cases, these virtues are
lost in the traditional dogmatic (dis)association between a program-
ming language’s variables and the resulting completely opaque
system state.

In other cases, styles directly address the historical need to sup-
port unpredictably evolving software. Style 14, “Hollywood”6, and
Style 15, “Bulletin Board”7represent two different approaches to
inversion of control-style architectures. Lopes recognises in their
writeup that they are suited to the design of systems whose evolu-
tion cannot fully be foreseen:

Publish-subscribe architectures are popular in compa-
nies with large computational infrastructures, because
they are very extensible and support unforeseen sys-
tem evolution – components can be easily added and
removed, new types of events can be distributed, etc. [22,
p. 119]

However, fuller recognition that these styles might enable the
possibility for open authorship, which must not require community
members to rewrite the expressions of other authors in order to
use them in designs over which they have full ownership [6], is
relegated to the reader exercises, for example exercise 14.2:

Exercise 14.2: Words with z. Change the given example
program so that it implements an additional task: after
printing out the list of 25 top words, it should print
out the number of non-stop words with the letter z.
Additional constraints: (i) no changes should be made

4https://github.com/crista/exercises-in-programming-style/blob/master/01-good-
old-times
5https://github.com/crista/exercises-in-programming-style/blob/master/27-
spreadsheet
6https://github.com/crista/exercises-in-programming-style/blob/master/15-
hollywood
7https://github.com/crista/exercises-in-programming-style/blob/master/16-bulletin-
board

to the existing classes; adding new classes and more
lines of code to the main function is allowed; (ii) files
should be read only once for both term-frequency and
“words with z” tasks. [22, p. 114]

Style 15 is presented as a “logical end point” of style 14, but it is
far from an endpoint, since the design still retains a single point of
design orchestration expressed within unmodifiable program code,
where the components solving sub-tasks are wired together:

101 em = EventManager()
102 DataStorage(em), StopWordFilter(em), WordFrequencyCounter(em

↩→)
103 WordFrequencyApplication(em)
104 em.publish(('run', sys.argv[1]))

Note that the corresponding exercise to 14.2 in this section, 15.2,
still permits the traditional evasion “adding more lines of code to
the main function is allowed”.

7 STYLE 15B - “WEAK TEA”
Let’s imagine a variant style, we’ll label 15b, continuing with this
design intention towards open authorship. This style should allow
us to solve both the initial word counting problem and the variant
“words with z” problem, while satisfying the open authorial con-
straint of creating the variant program only by means of external
composition.

We place this style at position 15b in the index, immediately
after the “Bulletin Board” style 15 that represents the high point
of authorial openness achieved in the taxonomy. Our program still
lies within the convex hull of our prison, combining elements seen
in several different styles surveyed by Lopes, such as the monadic
composition styles 9, “The One” and 24, “Quarantine”8 and the
reflective facilities broadly surveyed in chapters part V of the book
(although not the same ones in detail9), as well as the configuration
language style seen in style 19, "No Commitment"10.

However, it orchestrates these styles to a particular end — to
push the goals of open authorship closer to the extreme possible
within the standard Python ecosystem. In particular, we want to
deliver on the endpoint of the goals we see underlying exercises 14.2
and 15.2, which as an open authorial narrative as per [6] we could
describe as “Author 𝐴 has written a term frequency application.
Author 𝐵 wishes to use all of 𝐴’s design to meet a closely related
goal, but 𝐴 is not entitled by a community relationship to modify
𝐴’s code, and also does not want to do work proportional to the
size of 𝐴’s design or their enclosing community”.

Our goals lead us to reconstruct some elements from [6] in the
context of this small ecology of Python programs. Firstly, we con-
struct a minimal configuration language (or integration language, in
the sense of [18]) expressed as a hash of JSON records determining
the dataflow and sequencing of the Python functions in 𝐴’s design,
similar in construction and intention to parts of Infusion [5].

8https://github.com/crista/exercises-in-programming-style/blob/master/25-
quarantine
9These reflective faculties are seen in three example styles, 16 “Introspective” 17
“Reflective” and 18 “Asides” but in the first, they are merely used to create obstructions
to execution, in the second they are used to further obscure the program’s source text
from the ecology of construction, and in the third they implement an extraneous piece
of functionality (profiling) only of interest to technicians.
10https://github.com/crista/exercises-in-programming-style/blob/master/20-plugins

https://github.com/crista/exercises-in-programming-style/blob/master/01-good-old-times
https://github.com/crista/exercises-in-programming-style/blob/master/01-good-old-times
https://github.com/crista/exercises-in-programming-style/blob/master/27-spreadsheet
https://github.com/crista/exercises-in-programming-style/blob/master/27-spreadsheet
https://github.com/crista/exercises-in-programming-style/blob/master/15-hollywood
https://github.com/crista/exercises-in-programming-style/blob/master/15-hollywood
https://github.com/crista/exercises-in-programming-style/blob/master/16-bulletin-board
https://github.com/crista/exercises-in-programming-style/blob/master/16-bulletin-board
https://github.com/crista/exercises-in-programming-style/blob/master/25-quarantine
https://github.com/crista/exercises-in-programming-style/blob/master/25-quarantine
https://github.com/crista/exercises-in-programming-style/blob/master/20-plugins

Escaping the Prison of Style ’20, March 23–26, 2020, Porto, Portugal

An integration language is a specialisation of the notion of a con-
figuration language presented by Lopes, i.e. a declarative language
for specifying choices among a set of options, e.g. module imple-
mentations and constructor parameters11. Integration languages
aim to specify all inter-module interfaces, increasing the possibility
of reusing modules created by different authors without modifica-
tion [18]. For example, whereas the configuration language used
in “No Commitment” (INI files) [22, p. 144] maps module names
specified in a template program to particular implementations in
the base language of Python, our example integration language is
used to specify the choice of base language functions, as well as
their sequencing and dataflow. This obviates the need for a base
language template program. The dataflow specification is achieved
through a minimal selector dialect expressed with respect to the
naming structure of the integration language (its hash keys) — such
a selector dialect is also a design element predicted by [6].

Secondly, we define a “program addition operator” ⊕ [6, section
5.3] that is capable of fusing multiple programs expressed in our in-
tegration language together, allowing for the expression of program
additions as separate programs. Due to the alignment properties of
our integration language, this operator can be expressed by a simple
dictionary merge. The structure of the configuration language is
designed entirely to allow the program addition operator to serve
the function of external composition. Whilst, computationally, we
implement the behaviour of the operator as a standard function
in the Python program, it could be mechanically operated from
outside the system by merging the structure of the JSON docu-
ments representing 𝐴 and 𝐵’s design, without recourse to any of
the facilities of the programming language or its runtime.

Our resulting “minimal viable integration language” occupies
about 50 lines of Python and is not reproduced here12, but the
program itself is shown in Listing 1 and the corresponding configu-
ration structure is shown in Listing 2.

Note that listing 1 is extremely similar to the implementation in
[22] functional style 9, “The One” — the only substantive difference
is that we have taken the opportunity to shift out meaningfully
parameterisable constants such as i) the stop-word file, ii) the sort
order, iii) the number of high frequency terms to display into func-
tion arguments and hence out into the configuration dialect.

7.1 About the Integration Language
Our integration language implements a small dialect of selectors
used to express the structural connections conventionally expressed
by e.g. function executions and shared variables. It makes use of
three forms of selectors (listing 2), the first in priority fields
to control execution order using positional constraints such as
after:frequencies, and the second in interpolated arguments in
args such as $sort to control dataflow, and the third to make fully

11Lopes briefly discusses the historical development of configuration languages into Ar-
chitecture Description Languages, which are more similar to our notion of integration
languages [22, p. 144–146].
12Full source code for this sample is available at https://github.com/amb26/exercises-
in-programming-style/tree/weak-tea/15b-weak-tea, in particular with the integration
language implemented at https://github.com/amb26/exercises-in-programming-style/
blob/weak-tea/15b-weak-tea/tf_config.py

1 #!/usr/bin/env python
2 import sys, re, operator, string, tf_config
3
4 # The functions
5
6 def read_file(path_to_file):
7 with open(path_to_file) as f:
8 data = f.read()
9 return data
10
11 def filter_chars(str_data):
12 pattern = re.compile('[\W_]+')
13 return pattern.sub('␣', str_data)
14
15 def normalize(str_data):
16 return str_data.lower()
17
18 def tokenize(str_data):
19 return str_data.split()
20
21 def remove_stop_words(word_list, stop_words_file):
22 with open(stop_words_file) as f:
23 stop_words = f.read().split(',')
24 # add single-letter words
25 stop_words.extend(list(string.ascii_lowercase))
26 return [w for w in word_list if not w in stop_words]
27
28 def frequencies(word_list):
29 word_freqs = {}
30 for w in word_list:
31 if w in word_freqs:
32 word_freqs[w] += 1
33 else:
34 word_freqs[w] = 1
35 return word_freqs
36
37 def sort(word_freq, reverse):
38 return sorted(word_freq.items(), key=operator.itemgetter

↩→ (1), reverse=reverse)
39
40 def top_freqs(word_freqs, count):
41 top25 = ""
42 for tf in word_freqs[0:count]:
43 top25 += str(tf[0]) + '␣-␣' + str(tf[1]) + '\n'
44 return top25
45
46 # The main function
47
48 config = tf_config.LoadConfig('tf_15b.json')
49 # Prevent the config from actually executing if this program

↩→ is not the top-level script
50 if (__name__ == '__main__'):
51 tf_config.ExecuteConfig(config, sys.argv[1])

Listing 1: tf_15b.py: Base language functions of style 15b
expression of term frequency program

https://github.com/amb26/exercises-in-programming-style/tree/weak-tea/15b-weak-tea
https://github.com/amb26/exercises-in-programming-style/tree/weak-tea/15b-weak-tea
https://github.com/amb26/exercises-in-programming-style/blob/weak-tea/15b-weak-tea/tf_config.py
https://github.com/amb26/exercises-in-programming-style/blob/weak-tea/15b-weak-tea/tf_config.py

’20, March 23–26, 2020, Porto, Portugal Antranig Basman and Philip Tchernavskij

1 {
2 "steps": {
3 "read_file": {
4 "func": "tf_15b.read_file",
5 "args": ["$directArg"],
6 "priority": "first"
7 },
8 "filter_chars": {
9 "func": "tf_15b.filter_chars",
10 "args": ["$read_file"],
11 "priority": "after:read_file"
12 },
13 "normalize": {
14 "func": "tf_15b.normalize",
15 "args": ["$filter_chars"],
16 "priority": "after:filter_chars"
17 },
18 "tokenize": {
19 "func": "tf_15b.tokenize",
20 "args": ["$normalize"],
21 "priority": "after:normalize"
22 },
23 "remove_stop_words": {
24 "func": "tf_15b.remove_stop_words",
25 "args": ["$tokenize", "../stop_words.txt"],
26 "priority": "after:tokenize"
27 },
28 "frequencies": {
29 "func": "tf_15b.frequencies",
30 "args": ["$remove_stop_words"],
31 "priority": "after:remove_stop_words"
32 },
33 "sort": {
34 "func": "tf_15b.sort",
35 "args": ["$frequencies", true],
36 "priority": "after:frequencies"
37 },
38 "top_freqs": {
39 "func": "tf_15b.top_freqs",
40 "args": ["$sort", 25],
41 "priority": "after:sort"
42 },
43 "print_freqs": {
44 "func": "print",
45 "args": ["$top_freqs"],
46 "priority": "after:top_freqs"
47 }
48 }
49 }

Listing 2: tf_15b.json: Configuration language expression
accompanying base language functions in Listing 1

externalisable, module-qualified references in func to the imple-
mentation functions using expressions such as tf_15b.frequencies.
This leads it to be extremely verbose.

Note that in the extremely compact functional styles such as
style 9, “The One” and style 24, “Quarantine”, as well as the basic

1 #!/usr/bin/env python
2 import sys, tf_config, tf_15b
3
4 def filter_words(words, substring):
5 return [word for word in words if substring in word]
6
7 config = tf_config.LoadConfig('tf_zwords.json')
8 if (__name__ == '__main__'):
9 tf_config.ExecuteConfig(config, sys.argv[1])

Listing 3: tf_zwords.py: Base language functions of author
B’s addition to A’s design in Listing 1

style 6, “Candy Factory”13, we get all of this topology for free as part
of the natural binding structure induced by function composition.
This candy is indeed sweet until we find ourselves faced with a
differential design exercise which requires us to fish an intermediate
computation out of the chain for the benefit of an unsuspected
author.

The “words with z” task is only a rudimentary external com-
position task. Many apparently ordinary occurrences of program
extension require more complex authorial manoeuvres than in-
tercepting intermediate computations in a chain of functions, for
example introducing or removing layers of containment in a data
structure. Such cases present more complex issues for defining suit-
able integration language mechanisms. Some of these issues and
their historical solutions are reviewed more systematically in [6].

7.2 The Differential Design
Let us now present the differential part of the design — author
𝐵’s addition to the configuration and program written by 𝐴. As
promised, 𝐵 includes 𝐴’s program unmodified, and hence their con-
figuration, using the existing Python import facility, and grafts
their sequence points onto the end of 𝐴’s sequence whilst at the
same time fishing out an intermediate computation of𝐴 as returned
by the frequencies step. 𝐵’s only requires to implement one func-
tion, filter_words, capable of filtering a list of strings for those
including a given string, in their driver, shown in Listing 3.

Finally we show author 𝐵’s configuration language expression
in Listing 4, which accompanies the base language expression in
Listing 3.

13https://github.com/crista/exercises-in-programming-style/blob/master/06-
pipeline

https://github.com/crista/exercises-in-programming-style/blob/master/06-pipeline
https://github.com/crista/exercises-in-programming-style/blob/master/06-pipeline

Escaping the Prison of Style ’20, March 23–26, 2020, Porto, Portugal

1 {
2 "parent": "tf_15b.config",
3 "steps": {
4 "filter_words": {
5 "func": "tf_zwords.filter_words",
6 "args": ["$frequencies", "z"],
7 "priority": "after:print_freqs"
8 },
9 "print_words": {
10 "func": "print",
11 "args": ["$filter_words"],
12 "priority": "after:filter_words"
13 }
14 }
15 }

Listing 4: tf_zwords.json: Configuration expressions of au-
thor B’s addition to A’s design in Listing 3

Interesting features in Listing 4 are:

• The parent definition referencing author 𝐴’s config as
tf_15b.config. This indicates declaratively that 𝐵’s pro-
gram is to be composited on top of𝐴’s. This could have been
inserted into the driver definition in the base language code,
but we are indicating the path towards authoring managed
by external tools by trying to retain a standard boilerplate
in each file.

• The configuration meets the differential authorship chal-
lenge of sequencing execution after 𝐴’s program with the
after:print_freqs priority, whilst reaching into the mid-
dle of 𝐴’s dataflow with the $frequencies reference.

Another interesting feature can be observed together with the
snippet of the configuration language implementation shown in
Listing 5. This is the site where two configurations are combined,
and it has a very simple form — the dictionaries of “steps” are
simply superimposed. It’s a crucial goal of our dialect that this
composition process takes the simplest possible form, a mechanical
process that always succeeds in producing a valid program that
expresses the appropriately combined intent of the two authors.
Without meeting this goal, it is infeasible that the composition
process could be enacted outside the ecosystem of the tool chain
and runtime. However, our achievement of this goal is purely moral,
since we have not succeeded in producing any such venue outside
the system where the composition could plausibly take place. Also,
the output of our addition system is still imprisoned within the
boundaries of the Python ecosystem — we cannot meaningfully
combine programs before the relevant module has been referenced
via an import statement. Section 8.2 speculates on routes out of
the prison that necessarily stray into the operating system’s notion
of the structure of dynamically loadable objects, and [4] describes
the “Nexus” system built on top of Infusion that permits program
addition to occur via HTTP verbs.

25 # This line implements the "program addition operator"
26 config['steps'].update(parentConfig['steps'].copy())

Listing 5: Snippet of tf_config.py: Site of the program addi-
tion operator ⊕

8 SEVERAL CONCRETE LOSSES, AND A
COUPLE OF INTANGIBLE GAINS

On quite a number of important fronts, our stylistic re-expression
of the term frequency task in section 7 represents a clear loss. As
well as requiring the implementation of a “mini-framework” which
slightly exceeds in complexity the actual target programming task,
the resulting expressions are extremely verbose (at least twice the
length of the standard functional samples, and orders of magnitude
longer than the coding golf samples), feature poor locality of design
reference, where the reader has to study several separated design
elements simultaneously in order to understand the design, and
feature numerous fragile linkages where design elements are con-
nected together by fairly long strings which are easy to mistype
and misread.

What is worse, we have put a substantial part of the design
outside the reach of the vital tool chain which supports the standard
programmer. Other than being linted as being a valid JSON file,
the configuration language expressions can’t be easily checked for
validity and consistency, and errors which occur in them end up
being highlighted in unilluminating parts of the framework code
rather than in the design element causing the error.

Why on earth have we done this?
At this stage, the design victories of the “Weak Tea” style are

largely moral. We’ve provided an arena in which the expressions
of different authors can be combined, without privileging any of
them as central, or relying on the machinery of entire program-
ming languages and their toolchains. Our integration language is
significantly constrained compared to languages capable of arbi-
trary Turing-complete computation, improving the likelihood of
creating structured editing tools and substantially different visual
or non-visual representations of it. The infelicities of expression,
the duplication of selector names and poor locality of reference
could be “folded up” by suitable tools which, for example, can show
the long expanded chain in Listing 2 as equivalent to its compact
functional binding equivalent when the view of wider authorial
affordances is not necessary.

However, these tools, whilst in theory easier to build on top of
this representation, do not exist, and would require a really substan-
tial implementation effort. There is little history of communities
effectively building such things — even at its height, the Spring
Framework, one of the best-attested and supported configuration
languages, only enjoyed rudimentary authoring support. And a
truly effective integration language will need a far richer dialect
than the ones we’ve been able to describe so far.

8.1 Imagining a Community
Equally damning is imagining a community for which representa-
tions such as listing 1 could be useful. It’s very hard to imagine an
author capable of successfully editing such a prolix and fragile JSON

’20, March 23–26, 2020, Porto, Portugal Antranig Basman and Philip Tchernavskij

representation without the help of powerful tools, who wouldn’t be
more capable of editing straightforward binding chains in Python
itself such as

74 print_all(sort(frequencies(remove_stop_words(scan(
↩→ filter_chars_and_normalize(read_file(sys.argv[1])))
↩→)))[0:25])

as seen in style 5, “Candy Factory”. In any case, the expressions
to be duplicated are so short compared to the openly authorable
representation that economics strongly favour simply duplicating
them. Designs need to be very large, communities very extensive,
and the tools brought to play very powerful, before we can imag-
ine the economics shifting credibly onto the other side. But we
need to imagine this, if we mean to establish a broad literacy sup-
porting convivial relations between the expressions of unbounded
communities.

8.2 Expanding the Coverage
One can imagine communities for which the coverage offered by
our example configuration language might be useful, but in practice
this has not carried us terribly far. To start with, as we allude in
section 7.1, the authorial flexibility we’ve achieved is quite limited
— programs consuming streams of values connected via pipes are
capable of a wide range of tasks, as the corresponding ecology of
UNIX pipes shows, but in practice real communities very often re-
quire much more power to organise the allocation and deallocation
of state, the naming and correspondence of different pieces of state
in unrelated or nested collections, reference to historyful values,
etc. We need a much more ambitious system for accounting for
the contents of memory and establishing such correspondences, as
sketched in [18, 19].

There is an important subtlety we’ve so far glossed over in our
notion of “composition”, which is the geometry withwhich it occurs.
An important restriction with previous notions of composition
(e.g. those of Backus [2]) is not just the one we have stressed so far,
that the composition occurs within the privileged realm of those in
the community who change source code, but that the composition
which it enacts only joins programs together at their edges — that is,
classically, where functions accept arguments, or structures contain
members. We could call this peripheral composition. The ecology of
UNIX pipes is a paradigmatic exemplar of this style of composition
— whereas as we’ve shown, even in this rudimentary task, we need
to do more, and instead align entire programs across their surfaces,
blending the complete intention of two authors. This appeals to a
notion of design which may be named phenotropic, following Lanier
[21], where we consider systems to be open for interaction across
their entire extent. This is in contrast to other dominant design
metaphors such as the cellular model of Kay [17] and the whole
message-passing idiom of which it is a part, where design elements
are expected to be insulated by mostly impermeable membranes.

An important element, therefore, of external composition pro-
moting convivial interactions is that it comprise not only ordinary
peripheral composition, and phenotropic composition, but also per-
haps other richer means of combining the intentions of multiple
authors into a single design.

8.3 Actually Externalising the Design
Moreover, we have failed to deal with many of the practical issues
and articulation work raised in the surrounding ecosystem. We
have failed to account for how the theoretically highly legible JSON
configuration files are practically shipped around along with the
computational artefacts they describe, and how the naming system
they operate is intended to interact with the existing ones supplied
by the Python ecosystem, let alone those of unrelated programming
languages. For example, a substantial source of fragility is our
reliance on the Python runtime’s table of loaded modules, indexed
by the names they are given as imports. In practice, this relies on
all kinds of unstable details such as the directory structure of the
environment holding the source code, and the exact versions of
code found there. It’s difficult to imagine remedies for this that
don’t make our already prolix expressions bristle with ever-longer
qualified names for the things they are referencing.

In practice, the standoff between conventional programming
languages and integration languages will always be unstable, and
we don’t see a credible escape route that doesn’t leave conventional
programming languages mostly demolished. In their role as base
language for a truly effective integration domain, it seems that only
a small subset of their current capabilities can be supported. Further
research and implementation may end up changing this view.

Style 19, “No Commitment” shines light in a helpful direction for
extension. The plugin model, depending on facilities supplied by
the base operating system, is a practical model for external reuse.
Unfortunately, the operating system supplies extremely rudimen-
tary facilities for decoding the ontology of loaded objects — in
practice, named external function entry points into modules, and
if you are lucky, a calling convention suitable for invoking them.
In terms of supplying a full ontology for the contents of memory,
including the layout of memory structures, their site and reason for
allocation, the official OS metadata is inadequate, although [19] has
noted that for practical purposes, many operating systems operate
a far richer unofficial bus of metadata in order to support advanced
authorial affordances such as debugging and profiling. Our vision
of open authorship implies that every dynamically loadable object
in the OS could be inspected for its complement of configuration
language making all such of its capabilities fully visible.

8.4 What Lies Immediately Outside the Prison
In terms of a practical extension of the immediate exterior of our
prison, we could imagine extending the configuration dialect of
style 19, “No Commitment” into a richer system of metadata by
which modules advertise sites capable of allocation in structured
forms such as those seen in style 12, “Closed Maps”14, and express
relations in a symbolic form of selectors so that the boilerplate
seen in listings such as tf-18.py in section 18.2 can be eliminated.
However, Lopes provides a salutary warning that correctly predicts
that simplistic and incomplete attempts to solve the problem of
open authorship will initially make the problem they are trying to
solve much worse rather than better:

14https://github.com/crista/exercises-in-programming-style/tree/master/13-closed-
maps

https://github.com/crista/exercises-in-programming-style/tree/master/13-closed-maps
https://github.com/crista/exercises-in-programming-style/tree/master/13-closed-maps

Escaping the Prison of Style ’20, March 23–26, 2020, Porto, Portugal

Modern frameworks have embraced this style of pro-
gramming for supporting usage-sensitive customiza-
tions. However, when abused, software written in this
style can become a “configuration hell”, with dozens of
customization points, each with many different alterna-
tives that can be hard to understand. Furthermore, when
alternatives for different customization points have de-
pendencies among themselves, software may fail mys-
teriously, because the simple configuration languages
in use today don’t provide good support for expression
of dependencies between external modules. [22, p. 145]

In practice, expression of correlated dependencies is just one of
many ambitious problems such a system needs robust solutions
to. As well the previously mentioned problems of supplying an
ontology for the contents of memory at any moment, and clear
isolation of sites capable of issuing I/O, the systemmost importantly
needs to track the provenance of every expression entered into
it, so that any observed effect can be reliably traced back to the
expressions which gave rise to it.

9 STRUCTURE OF AN ESCAPE
A metaphor for the structure of the escape from such a prison was
given by Idries Shah in a Sufi teaching story appearing in his “The
Magic Monastery” [25], which we reproduce in extenso:

A man was once sent to prison for life, for something which he
had not done.
When he had behaved in an exemplary way for some months,
his jailers began to regard him as a model prisoner.
He was allowed to make his cell a little more comfortable; and
his wife sent him a prayer-carpet which she had herself woven.
When several more months had passed, this man said to his
guards:
"I am a metalworker, and you are badly paid. If you can get me
a few tools and some pieces of tin, I will make small decorative
objects, which you can take to the market and sell. We could
split the proceeds, to the advantage of both parties."
The guards agreed, and presently the smith was producing
finely wrought objects whose sale added to everyone’s well-
being.
Then, one day, when the jailers went to the cell, the man had
gone. They concluded that he must have been a magician.
After many years when the error of the sentence had been
discovered and the man was pardoned and out of hiding, the
king of that country called him and asked him how he had
escaped.
The tinsmith said:
"Real escape is possible only with the correct concurrence of
factors. My wife found the locksmith who had made the lock
on the door of my cell, and other locks throughout the prison.
She embroidered the interior designs of the locks in the rug
which she sent me, on the spot where the head is prostrated in
prayer. She relied upon me to register this design and to realize
that it was the wards of the locks. It was necessary for me to
get materials with which to make the keys, and to be able to
hammer and work metal in my cell. I had to enlist the greed
and need of the guards, so that there would be no suspicion.
That is the story of my escape."

10 CONCLUSION
We have argued that computational expressions are imprisoned as
a result of the structure of languages, tools and idioms underlying
today’s software construction, and are unable to participate in an
open ecology of function where communities have the power to
effectively and economically own their software. We have recog-
nised that a catalogue of today’s programming styles is a useful
starting point to map out the structure of that prison and to seek
out weak points from which an escape might be launched. We
have constructed a miniature integration language best meeting
the needs of open authorship from within the prison of the Python
language and found that it offers a substantially poorer authorial
experience in most concrete aspects than the use of conventional
styles. We have planned to construct increasingly ambitious such
languages, and the crucially necessary accompanying authoring
tool supports, until we overcome the extremely substantial obsta-
cles preventing an escape into the apparently extremely hostile
exterior of the prison. And perhaps, after centuries, or millenia,
the correspondence we succeed in establishing between creators
and users of software might give rise to the possibility for genuine,
communicative, styles to emerge.

ACKNOWLEDGMENTS
The authors are indebted to Colin Clark for illuminating conversa-
tions leading to some of the ideas in this paper, and for the thought-
ful critique he delivered at its presentation. This critique may be
read at https://wiki.fluidproject.org/display/fluid/Presentations un-
der the title of “The Question Concerning Style”.

REFERENCES
[1] Christopher Alexander. 1996. Keynote Speech to the 1996 OOPSLA Convention.

http://www.patternlanguage.com/archive/ieee.html
[2] John Backus. 1978. Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs. 21, 8 (1978), 613–641.
[3] Antranig Basman. 2017. If What We Made Were Real. In Proceedings of the 28th

Annual Workshop of the Psychology of Programming Interest Group (PPIG 2017).
[4] Antranig Basman, Luke Church, Clemens Klokmose, and Colin Clark. 2016. Soft-

ware and How it Lives On - Embedding Live Programs in theWorld Around Them.
In Proceedings of the 27th Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2016).

[5] Antranig Basman, Colin Clark, and Clayton Lewis. 2015. Harmonious Authorship
from Different Representations. In Proceedings of the 26th Annual Workshop of the
Psychology of Programming Interest Group (PPIG 2015) (Bournemouth, England).

[6] Antranig Basman, Clayton Lewis, and Colin Clark. 2018. The Open Authorial
Principle: Supporting Networks of Authors in Creating Externalisable Designs.
In Proceedings of the 2018 ACM OOPSLA (Boston, MA, USA) (Onward! 2018). ACM,
New York, NY, USA, 29–43.

[7] Antranig Basman and Philip Tchernavskij. 2018. What Lies in the Path of the
Revolution. In Proceedings of the 29th Annual Workshop of the Psychology of
Programming Interest Group (PPIG 2018).

[8] Antranig Basman, Philip Tchernavskij, Simon Bates, and Michel Beaudouin-
Lafon. 2018. An Anatomy of Interaction: Co-occurrences and Entanglements.
In Companion to the Second <Programming> (Nice, France) (Programming ’18).
ACM, New York, NY, USA, to appear.

[9] Christopher Alexander. 1977. A Pattern Language. Oxford University Press.
[10] Colin Clark and Antranig Basman. [n.d.]. Tracing a Paradigm for Externalization:

Avatars and the GPII Nexus.
[11] Colin Clark and Sepideh Shahi. 2018. On Continuing Creativity. In Proceedings

of the Psychology of Programming Interest Group (PPIG 2018).
[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.
[13] Paul Graham. 2003. Beating the Averages. http://www.paulgraham.com/avg.html
[14] Doug Hoyte. 2008. Let Over Lambda. Lulu.com.
[15] Ivan Illich and Anne Lang. 1973. Tools for conviviality. Harper & Row New York.
[16] William Strunk Jr. and Elwyn Brooks White. 1959. The Elements of Style. Macmil-

lan, New York.

https://wiki.fluidproject.org/display/fluid/Presentations
http://www.patternlanguage.com/archive/ieee.html
http://www.paulgraham.com/avg.html

’20, March 23–26, 2020, Porto, Portugal Antranig Basman and Philip Tchernavskij

[17] Alan Kay. 2003. Clarification of "object-oriented". https://userpage.fu-berlin.de/
~ram/pub/pub_jf47ht81Ht/doc_kay_oop_de

[18] Stephen Kell. 2011. The Mythical Matched Modules: Overcoming the Tyranny
of Inflexible Software Construction. In Proceedings of the 24th ACM OOPSLA
(Orlando, Florida, USA) (OOPSLA ’09). ACM, New York, NY, USA, 881–888.

[19] Stephen Kell. 2015. Towards a Dynamic Object Model within Unix Processes.
In Proceedings of the 2015 ACM Onward! (Pittsburgh, PA, USA) (Onward! 2015).
ACM, New York, NY, USA, 224–239.

[20] Brian W. Kernighan and P. J. Plauger. 1982. The Elements of Programming Style.
McGraw-Hill, Inc.

[21] Jaron Lanier. 2003. Why Gordian software has convinced me to believe in the
reality of cats and apples. https://www.edge.org/conversation/jaron_lanier-
why-gordian-software-has-convinced-me-to-believe-in-the-reality-of-cats

[22] Cristina Videira Lopes. 2014. Exercises in Programming Style. Chapman &
Hall/CRC.

[23] George Orwell. 1938. Homage to Catalonia. Secker and Warburg.
[24] George Orwell. 1946. Second Thoughts on James Burnham. Polemic (1946).
[25] Idries Shah. 1972. The Magic Monastery. Octagon Press.
[26] Philip Tchernavskij. 2019. Designing and Programming Malleable Software. Ph.D.

Dissertation. Université Paris-Saclay.

https://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_de
https://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_de
https://www.edge.org/conversation/jaron_lanier-why-gordian-software-has-convinced-me-to-believe-in-the-reality-of-cats
https://www.edge.org/conversation/jaron_lanier-why-gordian-software-has-convinced-me-to-believe-in-the-reality-of-cats

	Abstract
	1 Introduction
	2 Our subject of reflection
	3 A seeming diversity, a common problem
	4 This is a diluted notion of style
	5 There are worse things than a catalogue of styles
	6 In part of the prison, there is more light
	7 Style 15b - ``Weak Tea''
	7.1 About the Integration Language
	7.2 The Differential Design

	8 Several Concrete Losses, and a Couple of Intangible Gains
	8.1 Imagining a Community
	8.2 Expanding the Coverage
	8.3 Actually Externalising the Design
	8.4 What Lies Immediately Outside the Prison

	9 Structure of an escape
	10 Conclusion
	Acknowledgments
	References

