N-Dimensional Lists (ndlist)

Version 0.8

Alex Baker

https://github.com/ambakerl /ndlist

May 16, 2024

Abstract

The “ndlist” package is a pure-Tcl package for tensor manipulation and processing.

This package is also a Tin package, and can be loaded in as shown below:

Example 1: Installing and loading “ndlist”

Code:

package require tin
tin add -auto ndlist https://github.com/ambakerl/ndlist install.tcl
tin import ndlist

https://github.com/ambaker1/ndlist
https://github.com/ambaker1/Tin

1-Dimensional Lists (Vectors)

Lists are foundational to Tcl, so in addition to providing utilities for ND-lists, this package also provides

utilities for working with 1D-lists, or vectors.

Range Generator

The command range simply generates a list of integer values. This can be used in conjunction with the Tcl

foreach loop to simplify writing “for” loops. There are two ways of calling this command, as shown below.

range $n

range $start $stop <$step>

$n Number of indices, starting at 0 (e.g. 3 returns 0 1 2).

$start Starting value.

$stop Stop value.

$step Step size. Default 1 or -1, depending on direction of start to stop.

Example 2: Integer range generation

Code:

puts [range 3]
puts [range 0 2]
puts [range 10 3 -2]

Example 3: Simpler for-loop

Code:

foreach i [range 3] {
puts $i

Logical Indexing

The command find returns the indices of non-zero elements of a boolean list, or indices of elements that

satisfy a given criterion. Can be used in conjunction with nget to perform logical indexing.

find $list <$op $scalar>

$list List of values to compare.
$op Comparison operator. Default “!1=".
$scalar Comparison value. Default 0.

Example 4: Filtering a list
Code:

set x {0.5 2.3 4.0 2.5 1.6 2.0 1.4 5.6}
puts [nget $x [find $x > 2]]

2.3 4.0 2.5 5.6

Linear Interpolation

The command linterp performs linear 1D interpolation. Converts input to double.

linterp $x $xList $yList

$x Value to query in $xList
$xList List of x points, strictly increasing
$yList List of y points, same length as $xList

Example 5: Linear interpolation
Code:

puts [linterp 2 {1 2 3} {4 5 6}]
puts [linterp 8.2 {0 10 20} {2 -4 5}]

Vector Generation

The command linspace can be used to generate a vector of specified length and equal spacing between two

specified values. Converts input to double.

linspace $n $start $stop

$n Number of points
$start Starting value
$stop End value

Example 6: Linearly spaced vector generation

Code:

puts [linspace 5 0 1]

0.0 0.25 0.5 0.75 1.0

The command linsteps generates intermediate values given an increment size and a sequence of targets.

Converts input to double.

linsteps $step $x1 $x2 ...

$step Maximum step size

$x1 $x2 ... Targets to hit.

Example 7: Intermediate value vector generation

Code:
puts [linsteps 0.25 0 1 0]

0.0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 0.0

Functional Mapping

The command lapply simply applies a command over each element of a list, and returns the result. The

command lapply2 maps element-wise over two equal length lists.

| lapply $command $list $arg ... |

lapply2 $command $listl $list2 $arg ... |

$list List to map over.

$listl $list2 Lists to map over, element-wise.

$command Command prefix to map with.

$arg ... Additional arguments to append to command after list elements.

Example 8: Applying a math function to a list
Code:

Add Tcl math functions to the current namespace path
namespace path [concat [namespace path] ::tcl::mathfunc]
puts [lapply abs {-5 1 2 -2}]

Example 9: Mapping over two lists

Code:

lapply puts [lapply2 {format "%s %s"} {hello goodbye} {world moon}]

hello world
goodbye moon

List Statistics

The commands maz, min, sum, product, mean, median, stdev and pstdev compute the maximum, minimum,

sum, product, mean, median, sample and population standard deviation of values in a list. For more advanced

statistics, check out the Tcllib math::statistics package.

| max $list

| min $list

| sum $list

product $list

| mean $list

median $list

stdev $list

pstdev $list

$list List to compute statistic of.

Example 10: List Statistics

Code:

set list {-5 3 4 0}
foreach stat {max min sum product mean median stdev pstdev} {
puts [list $stat [$stat $1list]]

product 0

mean 0.5

median 1.5

stdev 4.041451884327381
pstdev 3.5

Veector Algebra

The dot product of two equal length vectors can be computed with dot. The cross product of two vectors of

length 3 can be computed with cross.

[dot sa $b |

| cross $a $b |

$a First vector.

$b Second vector.

The norm, or magnitude, of a vector can be computed with norm.

norm $a <$p>

$a Vector to compute norm of.
$p Norm type. 1 is sum of absolute values, 2 is euclidean distance, and Inf is

absolute maximum value. Default 2.

Example 11: Dot and cross product
Code:

set x {1 2 3%}

set y {-2 -4 6}
puts [dot $x $y]
puts [cross $x $y]

Output
8
24 -12 0

For more advanced vector algebra routines, check out the Tcllib math::linearalgebra package.

2-Dimensional Lists (Matrices)

A matrix is a two-dimensional list, or a list of row vectors. This is consistent with the format used in the

Tcllib math::linearalgebra package. See the example below for how matrices are interpreted.

KNS

co 0o = Ot

—_ W =~y

=N O W
o

Example 12: Matrices and vectors

Code:

Define matrices, column vectors, and row vectors
set A {{25 13 {41709} {6832} {7814}
set B {9 3 0 -3}

set C {{3 7 -5 -2}}

Print out matrices (join with newline to print out each row)
puts "A ="

puts [join $A \n]

puts "B ="

puts [join $B \n]

puts "C ="

puts [join $C \n]

CLJOQJ(DUJ\I(J)#M
I 0 0 = o1 1

w Q
~N
|
o
|
N

Generating Matrices

The commands zeros, ones, and eye generate common matrices.

| zeros $n $m |

| ones $n $m |

$n Number of rows

$m Number of columns

The command eye generates an identity matrix of a specified size.

eye $n

$n Size of identity matrix

Example 13: Generating standard matrices

Code:

puts [zeros 2 3]
puts [ones 3 2]
puts [eye 3]

{0 0 0} {0 0 O}
{1 1> {1 1> {1 1}
{100} {010} {00 1}

Combining Matrices

The commands stack and augment can be used to combine matrices, row or column-wise.

| stack $matl $mat2 ... |

| augment $matl $mat2 ... |

$matl $mat2 ... Arbitrary number of matrices to stack/augment (number of columns/rows

must match)

The command block combines a matrix of matrices into a block matrix.

| block $matrices

$matrices Matrix of matrices.

Example 14: Combining matrices

Code:

set A [stack {{1 2}} {{3 4}}]

set B [augment {1 2} {3 4}]

set C [block [list [list $A $B] [list $B $A1]]
puts $A

puts $B

puts [join $C \nl; # prints each row on a new line

{1 2} {3 4}
{1 3} {2 4}

10

Matrix Transpose

The command transpose simply swaps the rows and columns of a matrix.

transpose $A

$A Matrix to transpose, nxm.

Returns an mxn matrix.

Example 15: Transposing a matrix

Code:
puts [transpose {{1 2} {3 4}}]

{1 3} {2 4}

Matrix Multiplication

The command matmul performs matrix multiplication for two matrices. Inner dimensions must match.

| matmul $A $B

$A Left matrix, nxq.
$B Right matrix, qxm.

Returns an nxm matrix (or the corresponding dimensions from additional matrices)

Example 16: Multiplying a matrix

Code:
puts [matmul {{2 513} {417 9} {6 832} {7 814} {9 30 -3}]

24 12 72 75

11

Miscellaneous Linear Algebra Routines

The command outerprod takes the outer product of two vectors, a @ b = ab”.

outerprod $a $b

$a $b Vectors with lengths n and m. Returns a matrix, shape nxm.

The command kronprod takes the Kronecker product of two matrices, as shown in Eq. (1).

kronprod $A $B

$A $B Matrices, shapes nxm and pxq. Returns a matrix, shape (np)x(mq).
(111B alnB
A®B=| : - : (1)
a’nlB an’nB

Example 17: Outer product and Kronecker product
Code:

set A [eye 3]

set B [outerprod {1 2} {3 4}]

set C [kronprod $A $B]

puts [join $C \nl; # prints out each row on a new line

Output
340000
680000
003400
006800
000034
000068

For more advanced matrix algebra routines, check out the Tcllib math::linearalgebra package.

12

Iteration Tools

The commands zip zips two lists into a list of tuples, and zip3 zip three lists into a list of triples. Lists must

be the same length.

|zip $a $b |

| zip3 $a $b $c |

$a $b $c Lists to zip together.

Example 18: Zipping and unzipping lists
Code:

Zipping

set x [zip {A B C} {1 2 3}]

set y [zip3 {Do Re Mi} {A B C} {1 2 3}]
puts $x

puts $y

Unzipping (using transpose)

puts [transpose $x]

{A 1} {B 2} {C 3}
{Do A 1} {Re B 2} {Mi C 3}
{A B C} {123}

The command cartprod computes the Cartesian product of an arbitrary number of vectors, returning a

matrix where the columns correspond to the input vectors and the rows correspond to all the combinations

of the vector elements.

cartprod $a $b ...

$a $b ... Arbitrary number of vectors to take Cartesian product of.

Example 19: Cartesian product

Code:
puts [cartprod {A B C} {1 2 3}]

{a 1} {A 2} {a 3} {B 1} {B 2} {B 3} {C 1} {C 2} {C 3}

13

N-Dimensional Lists (Tensors)

A ND-list is defined as a list of equal length (N-1)D-lists, which are defined as equal length (N-2)D-lists,
and so on until (N-N)D-lists, which are scalars of arbitrary size. This definition is flexible, and allows for
different interpretations of the same data. For example, the list “1 2 3” can be interpreted as a scalar with

value “1 2 3”7, a vector with values “1”, “2” and “3”, or a matrix with row vectors “1”, “2”, and “3”.

The command ndlist validates that the input is a valid ND-list. If the input value is “ragged”, as in it has
inconsistent dimensions, it will throw an error. In general, if a value is a valid for N dimensions, it will also

be valid for dimensions 0 to N-1. All other ND-list commands assume a valid ND-list.

| ndlist $nd $value

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$value List to interpret as an ndlist

Shape and Size

The commands nshape and nsize return the shape and size of an ND-list, respectively. The shape is a list of

the dimensions, and the size is the product of the shape.

| nshape $nd $ndlist <$axis> |

| nsize $nd $ndlist |

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).
$ndlist ND-list to get shape/size of.
$axis Axis to get dimension along. Blank for all.

Example 20: Getting shape and size of an ND-list
Code:

narray new 2D x {{1 2 3} {4 5 6}}
puts [nshape 2D [$x]]
puts [$x size]

14

Initialization

The command nfull initializes a valid ND-list of any size filled with a single value.

| nfull $value $n ...

$value Value to repeat

$n ... Shape (list of dimensions) of ND-list.

Example 21: Generate ND-list filled with one value

Code:

puts [nfull foo 3 2]; # 3x2 matrix filled with "foo"
puts [nfull 0 2 2 2]; # 2x2x2 tensor filled with zeros

{foo foo} {foo foo} {foo foo}
{{0 0} {0 0}} {{0o o} {0 0}}

The command nrand initializes a valid ND-list of any size filled with random values between 0 and 1.

| nrand $n ...

$n ... Shape (list of dimensions) of ND-list.

Example 22: Generate random matrix

Code:

expr {srand(0)}; # resets the random number seed (for the example)
puts [nrand 1 2]; # 1x2 matrix filled with random numbers

{0.013469574513598146 0.3831388500440581}

15

Repeating and Expanding

The command nrepeat repeats portions of an ND-list a specified number of times.

| nrepeat $ndlist $n ...

$value Value to repeat

$n ... Repetitions at each level.

Example 23: Repeat elements of a matrix
Code:
puts [nrepeat {{1 2} {3 4}} 1 2]

{1212} {3434}

The command nezxpand repeats portions of an ND-list to expand to new dimensions. New dimensions must

be divisible by old dimensions. For example, 1x1, 2x1, 4x1, 1x3, 2x3 and 4x3 are compatible with 4x3.

nexpand $ndlist $n ...

$ndlist ND-list to expand.

$n ... New shape of ND-list. If -1 is used, it keeps that axis the same.

Example 24: Expand an ND-list to new dimensions
Code:

puts [nexpand {1 2 3} -1 2]
puts [nexpand {{1 2}} 2 4]

{1 1} {2 2} {3 3}
{1212y {1212}

16

Padding and Extending

The command npad pads an ND-list along its axes by a specified number of elements.

| npad $ndlist $value $n ...

$ndlist ND-list to pad.
$value Value to pad with.
$n ... Number of elements to pad.

Example 25: Padding an ND-list with zeros
Code:

set a {{1 2 3} {4 5 6} {7 8 9}}
puts [npad $a 0 2 1]

{1230}{4560r {7890} {0000} {0000}

The command nextend extends an ND-list to a new shape by padding.

| nextend $ndlist $value $n ...

$ndlist ND-list to extend.
$value Value to pad with.
$n ... New shape of ND-list.

Example 26: Extending an ND-list to a new shape with a filler value

Code:

set a {hello hi hey howdy}
puts [nextend $a world -1 2]

{hello world} {hi world} {hey world} {howdy world}

17

Flattening and Reshaping

The command nfiatten flattens an ND-list to a vector.

| nflatten $nd $ndlist

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist ND-list to flatten.

Example 27: Reshape a matrix to a 3D tensor
Code:

set x [nflatten 2D {{1 2 3 4} {5 6 7 8}}]
puts [nreshape $x 2 2 2]

{{1 2} {3 4}} {{5 6} {7 8}}

The command nreshape reshapes a vector into specified dimensions. Sizes must be compatible

nreshape $vector $n ...

$vector

$n ...

Vector (1D-list) to reshape.
Shape (list of dimensions) of ND-list.

Example 28: Reshape a vector to a matrix
Code:

puts [nreshape {1 2 3 4 5 6} 2 3]

{1 2 3} {4 5 6}

18

Index Notation

This package provides generalized N-dimensional list access/modification commands, using an index notation

parsed by the command ::ndlist::Parselndex, which returns the index type and an index list for the type.

::ndlist: :ParseIndex $n $input

$n Number of elements in list.
$input Index input. Options are shown below:

All indices

$start:$stop Range of indices (e.g. 0:4 or l:end-2).

$start:$step:$stop Stepped range of indices (e.g. 0:2:-2 or 2:3:end).

$ilist List of indices (e.g. {0 end-1 5} or 3).

$ix Single index with a asterisk, “flattens” the ndlist (e.g. 0* or end-3%).

Additionally, indices get passed through the ::ndlist::Index2Integer command, which converts the inputs
M«

“end”; “end-integer”, “integerstinteger” and negative wrap-around indexing (where -1 is equivalent to “end”)

into normal integer indices. Note that this command will return an error if the index is out of range.

::ndlist: :Index2Integer $n $index |

$n Number of elements in list.

$index Single index.

Example 29: Index Notation

Code:
set n 10
puts [::ndlist::ParseIndex $n :]
puts [::ndlist::ParseIndex $n 1:8]
puts [::ndlist::ParseIndex $n 0:2:6]
puts [::ndlist::ParseIndex $n {0 5 end-1}]
puts [::ndlist::ParseIndex $n endx*]
Output
A {}
R {1 8}
L {0 2 4 6}
L {0 5 8}
S 9

19

Access

Portions of an ND-list can be accessed with the command nget, using the index parser ::ndlist::Parselndex
for each dimension being indexed. Note that unlike the Tcl lindex and lrange commands, nget will return

an error if the indices are out of range.

nget $ndlist $i

$ndlist ND-list value.

$i ... Index inputs, parsed with ::ndlist::Parselndex.

Example 30: ND-list access
Code:

set A {{1 2 3} {4 5 6} {7 8 9}}

puts [nget $A O :]; # get row matrix

puts [nget $A Ox :]; # flatten row matrix to a vector
puts [nget $A 0:1 0:1]; # get matrix subset

puts [nget $A end:0 end:0]; # can have reverse ranges
puts [nget $A {0 O 0} 1*]; # can repeat indices

{1 2 3}

123

{1 2} {4 5}

{987} {6 54} {321}
222

20

Modification

A ND-list can be modified by reference with nset, and by value with nreplace, using the index parser
2ndlist::Parselndex for each dimension being indexed. Note that unlike the Tcl Iset and Ireplace commands,
the commands nset and nreplace will return an error if the indices are out of range. If all the index inputs

W,

are except for one, and the replacement list is blank, it will delete values along that axis by calling

nremove. Otherwise, the replacement ND-list must be expandable to the target index dimensions.

| nset $varName $i ... $sublist |
| nreplace $ndlist $i ... $sublist |
$varName Variable that contains an ND-list.
$ndlist ND-list to modify.
$i ... Index inputs, parsed with ::ndlist::Parselndex.
$sublist Replacement list, or blank to delete values.

Example 31: Replace range with a single value

Code:

puts [nreplace [range 10] 0:2:end 0]

01030507009

Example 32: Swapping matrix rows
Code:

set a {{1 2 3} {4 5 6} {7 8 9}}
nset a {1 0} : [nget $a {0 1} :1; # Swap rows and columns (modify by reference)
puts $a

{4 5 6} {1 2 3} {7 8 9}

21

Removal

The command nremove removes portions of an ND-list at a specified axis.

| nremove $ndlist $i <$Paxis>

$ndlist ND-list to modify.
$i Index input, parsed with ::ndlist::Parselndex.
$axis Axis to remove at. Default 0.

Example 33: Filtering a list by removing elements

Code:

set x [range 10]
puts [nremove $x [find $x > 4]]

Example 34: Deleting a column from a matrix
Code:

set a {{1 2 3} {4 5 6} {7 8 9}}
puts [nremove $a 2 1]

{1 2} {4 5} {7 8}

22

Insertion and Concatenation

The command ninsert inserts an ND-list into another ND-list at a specified index and axis. The ND-lists
must agree in dimension at all other axes. If “end” or “end-integer” is used for the index, it will insert after
the index. Otherwise, it will insert before the index. The command ncat is shorthand for inserting at “end”,

and concatenates two ND-lists.

| ninsert $nd $ndlistl $index $ndlist2 <Paxis> |

| ncat $nd $ndlistl $ndlist2 <$axis> |

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).
$ndlistl $ndlist2 ND-lists to combine.

$index Index to insert at.

$axis Axis to insert/concatenate at (default 0).

Example 35: Inserting a column into a matrix
Code:

set matrix {{1 2} {3 4} {5 6}}
set column {A B C}
puts [ninsert 2D $matrix 1 $column 1]

{1 A 2} {3 B 4} {56 C 6}

Example 36: Concatenate tensors

Code:
set x [nreshape {1 234567 8 9} 33 1]
set y [nreshape {A BCDEF G H I} 3 3 1]

puts [ncat 3D $x $y 2]

{{1 A} {2 B} {3 C}} {{4 D} {5 E} {6 F}} {{7 G} {8 H} {9 I}}

23

Changing Order of Axes

The command nswapazxes is a general purpose transposing function that swaps the axes of an ND-list. For

simple matrix transposing, the command transpose can be used instead.

nswapaxes $ndlist $axisl $axis2

$ndlist ND-list to manipulate.

$axisl $axis?2 Axes to swap.

The command nmoveazis moves a specified source axis to a target position. For example, moving axis 0 to

position 2 would change “i,j,k” to “j,k,i".

nmoveaxis $ndlist $source $target

$ndlist ND-list to manipulate.
$source Source axis.
$target Target position.

The command npermute is more general purpose, and defines a new order for the axes of an ND-list. For

example, the axis list “1 0 2” would change “i,j,k” to “j,i,k”.

npermute $ndlist $axis ...

$ndlist ND-list to manipulate.

$axis ... List of axes defining new order.

Example 37: Changing tensor axes
Code:

set x {{{1 2} {3 4}} {{5 6} {7 8}}}
set y [nswapaxes $x 0 2]

set z [nmoveaxis $x 0 2]

puts [lindex $x 0 0 1]

puts [lindex $y 1 0 0]

puts [lindex $z 0 1 0]

24

ND Functional Mapping

The command napply applies a command over each element of an ND-list, and returns the result. The
commands napply2 maps element-wise over two ND-lists. If the input lists have different shapes, they will

be expanded to their maximum dimensions with nezpand (if compatible).

| napply $nd $command $ndlist $arg ... |

| napply2 $nd $command $ndlistl $ndlist2 $arg ... |

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist ND-list to map over.

$ndlistl $ndlist2 ND-lists to map over, element-wise.

$command Command prefix to map with.

$arg ... Additional arguments to append to command after ND-list element.

Example 38: Chained functional mapping over a matrix

Code:
napply 2D puts [napply 2D {format %.2f} [napply 2D expr {{1 2} {3 4}} + 1]]

Example 39: Format columns of a matrix
Code:

set data {{1 2 3} {4 5 6} {7 8 9}}
set formats {{%.1f %.2f %.3f}}
puts [napply2 2D format $formats $datal

{1.0 2.00 3.000} {4.0 5.00 6.000} {7.0 8.00 9.000}

25

Reducing an ND-list

The command nreduce combines nmoveazis and napply to reduce an axis of an ND-list with a function that

reduces a vector to a scalar, like max or sum.

nreduce $nd $command $ndlist <$axis> <$arg ...>

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$command Command prefix to map with.

$ndlist ND-list to map over.

$axis Axis to reduce. Default 0.

$arg ... Additional arguments to append to command after ND-list elements.

Example 40: Matrix row and column statistics
Code:
set x {{1 2} {3 4} {5 6} {7 8}}

puts [nreduce 2D max $x]; # max of each column
puts [nreduce 2D max $x 1]; # max of each row
puts [nreduce 2D sum $x]; # sum of each column
puts [nreduce 2D sum $x 1]; # sum of each row

37 11 15

26

Generalized N-Dimensional Mapping

The command nmap is a general purpose mapping function for N-dimensional lists in Tcl, and the command
nexpr a special case for math expressions. If multiple ND-lists are provided for iteration, they must be
expandable to their maximum dimensions. The actual implementation flattens all the ND-lists and calls the
Tcl Imap command, and then reshapes the result to the target dimensions. So, if “continue” or “break” are

used in the map body, it will return an error.

nmap $nd $varName $ndlist <$varName $ndlist ...> $body

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).
$varName Variable name to iterate with.

$ndlist ND-list to iterate over.

$body Tcl script to evaluate at every loop iteration.

Example 41: Expand and map over matrices

Code:

set phrases [nmap 2D greeting {{hello goodbye}} subject {world moon} {
list $greeting $subject

3

napply 2D puts $phrases

hello world
goodbye world
hello moon
goodbye moon

27

Loop Index Access

The iteration indices of nmap can be accessed with the commands 4, j, and k. The commands j and k are

simply shorthand for ¢ with axes 1 and 2.

| i <$axis> |

$axis Dimension to access mapping index at. Default 0.

If -1, returns the linear index of the loop.

Example 42: Finding index tuples that match criteria

Code:

set x {{1 2 3} {4 5 6} {7 8 9}}
set indices {}
nmap 2D xi $x {
if {$xi > 4} {
lappend indices [list [i] [j]]

}
}

puts $indices

{1 1} {1 2} {2 0} {2 1} {2 2}

28

ND-Arrays

The command narray is a TclOO class based on the superclass ::vutil:: ValueContainer, from the package

vutil. It is an object-oriented approach to array manipulation and processing.

| narray new $nd $varName <$ndlist> |

| narray create $name $nd $varName <$ndlist> |

$nd Rank of ND-array (e.g. 2D, 2d, or 2 for a matrix).

$varName Variable to store object name for access and garbage collection. Variable
names are restricted to word characters and namespace delimiters only.

$ndlist ND-list value to store in ND-array. Default blank.

$name Name of object if using “create” method.

Value, Rank, Shape, and Size

The value is accessed by calling the object by itself, the rank is accessed with the method rank, and the

shape and size are accessed with the methods shape and size.

| $narrayObj rank |

| $narrayObj shape <$axis> |

| $narray0bj size |

$axis Axis to get dimension along. Default blank for all axes.

Example 43: Creating ND-arrays
Code:

Create new ND-arrays

narray new 2D x {{1 2 3} {4 5 6} {7 8 9}}
narray new 1D y {hello world}

Print rank and value of ND-arrays

puts "[$x rank], [$x]"

puts "[$y rank], [$yl"

2, {1 2 3} {4 56} {7 8 9}
1, hello world

29

https://github.com/ambaker1/vutil

Indexing

The “@” operator uses nget to access a portion of the ND-array.

| $narrayObj @ $i ...

$i ...

Index inputs corresponding with rank of ND-array.

Example 44: Accessing portions of an ND-array

Code:

narray new 2D x {{1 2 3} {4 5 6} {7 8 9}}
puts [$x @ 0 2]

puts [$x @ O:end-1 {0 2}]

{1 3} {4 6}

Copying

The operator “

-=>” copies the ND-array to a new variable, and returns the new object. If indices are

specified, the new ND-array object will have the rank of the indexed range.

$narrayObj <@ $i ...> --> $varName
$i ... Indices to access. Default all.
$varName

Variable to store object name for access and garbage collection. Variable

names are restricted to word characters and namespace delimiters only.

Example 45: Copying a portion of an ND-array
Code:

narray new 2 x {{1 2 3} {4 5 6}}

$x @ 0% : --> y; # Row vector (flattened to 1D)
puts "[$y rank], [$yl"

30

Evaluation/Mapping

The command neval maps over ND-arrays using nmap. The command nezpr is a special case that passes
input through the Tcl expr command. ND-arrays can be referred to with “$@ref”, where “ref” is the name
of the ND-array variable. Portions of an ND-array can be mapped over with the notation “$@ref ($i,...)".

Input ND-arrays must all agree in rank or be scalar. Additionally, they must have compatible dimensions.

| neval $body <$self> <$rankVar> |

| nexpr $expr <$self> <$rankVar> |

$body Script to evaluate, with “$@ref” notation for object references.
$expr Expression to evaluate, with “$@ref” notation for object references.
$self Object to refer to with “$@”. Default blank.

$rankVar Variable to store resulting rank in. Default blank.

Example 46: Get distance between elements in a vector
Code:

narray new 1D x {1 2 4 7 11 16}
puts [nexpr {$0x(1:end) - $0x(0:end-1)1}]

Example 47: Outer product of two vectors

Code:

narray new 2D x {1 2 3}
narray new 2D y {{4 5 6}}
puts [nexpr {$0x * $ay}]

{4 5 6} {8 10 12} {12 15 18}

31

Modification
The assignment operator, “=", sets the value of the entire ND-array, or of a specified range. The math

“

assignment operator, “:=", sets the value, passing the input through the nexpr command. Both assignment

operators return the object.

| $narrayObj <@ $i ...> = $value |

| $narrayObj <@ $i ...> := $expr |

$i ... Indices to modify. Default all.
$value Value to assign. Blank to remove values.
$expr Expression to evaluate.

If using the math assignment operator, the ND-array or indexed range can be accessed with the alias “$.7,

and the elements of the array or indexed range can be accessed with “$@”.

$. $arg ...

$arg ... Method arguments for object.

Example 48: Element-wise modification of a vector

Code:

Create blank vectors and assign values
[narray new 1D x] = {1 2 3}

[narray new 1D y] = {10 20 30}

Add one to each element

puts [[$x := {$@ + 1}]]

Double the last element

puts [[$x @ end := {$@ * 2}]]

Element-wise addition of vectors

puts [[$x := {$@ + $ey}]]

12 23 38

32

Removal/Insertion

The method remove removes portions of an ND-array along a specified axis, returning the object.

The method insert inserts values into an ND-array at a specified index/axis, returning the object.

| $narrayObj remove $i <$axis>

| $narrayObj insert $i $sublist <$axis>

$i Indices to remove/insert at.
$sublist Value to insert.
$axis Axis to remove/insert at (default 0).

Example 49: Removing elements from a vector
Code:

narray new 1 vector {1 2 3 45 6 7 8}

Remove all odd numbers

$vector remove [find [nexpr {$@vector 7 2}]]
puts [$vector]

Example 50: Inserting a column into a matrix
Code:

narray new 2 matrix {{1 2} {3 4} {5 6}}
$matrix insert 1 {A B C} 1
puts [$matrix]

{142} {3B 4} {5C 6}

33

Map/Reduce

The method apply maps a command over the ND-array, returning the value, and the method reduce applies

a reducing command over a specified axis, returning the value. Both commands do not modify the object.

$narrayObj apply $command $arg ... |

$narrayObj reduce $command <$axis> $arg ... |

$command Command prefix to map over the ND-list object.
$arg ... Additional arguments to append to command.
$axis Axis to reduce at (default 0).

Example 51: Map a command over a list

Code:

narray new 1 text {The quick brown fox jumps over the lazy dog}
puts [$text apply {string length}]; # Print the length of each word

355354343

Example 52: Get column statistics of a matrix

Code:

narray new 2 matrix {{1 2 3} {4 5 6} {7 8 9}}

Convert to double-precision floating point
$matrix = [$matrix apply ::tcl::mathfunc::doublel
Get maximum and minimum of each column

puts [$matrix reduce max]

puts [$matrix reduce min]

34

Temporary Object Evaluation

The pipe operator, “|”, copies the ND-array to a temporary object, and evaluates the method. Returns the
result of the method, or the value of the temporary object. This operator is useful for converting methods

that modify the object to methods that return a modified value.

$narrayObj <@ $i ...> | $method $arg ...

$i ... Indices to access. Default all.
$method Method to evaluate.
$arg ... Arguments to pass to method.

Example 53: Temporary object value

Code:

Create a matrix
narray new 2 x {{1 2 3} {4 5 6}}
Print value with first row doubled.

puts [$x | @ 0% : := {$0@ * 2}]
Source object was not modified
puts [$x]

Output

{2 4 6% {4 5 6}
{1 2 3} {4 5 6}

35

Reference Variable Evaluation

The operator “&” copies the ND-array value or range to a reference variable, and evaluates a body of script.
The changes made to the reference variable will be applied to the object, and if the variable is unset, the
object will be deleted. If no indices are specified and the variable is unset in the script, the ND-array object

will be destroyed. Returns the result of the script.

$narrayObj <@ $i ...> & $refName $body

$i ... Indices to access. Default all.
$refName Variable name to use for reference.
$body Body to evaluate.

Example 54: Appending a vector
Code:

Create a 1D list

narray new 1 x {1 2 3}

Append the list

$x & ref {lappend ref 4 5 6}

puts [$x]

Append a subset of the list

$x @ end* & ref {lappend ref 7 8 9}
puts [$x]

123456
12345 {6789}

36

Command Index

::ndlist::Index2Integer, 19 narray, 29
:ndlist::ParseIndex, 19 narray methods, 30
[, 35
augment, 10
->, 30
block, 10 =, 32
=, 32
cartprod, 13 &, 36
cross, 7 apply, 34
dot. 7 insert, 33
rank, 29
eye, 9 reduce, 34
find. 3 remove, 33
shape, 29
i, 28 size, 29
ncat, 23
Jj, 28
ndlist, 14
k, 28 neval, 31
kronprod, 12 nexpand, 16
nexpr, 31
lapply, 5
PPLY nextend, 17
lapply2, 5
PPLY nflatten, 18
linspace, 4
nfull, 15
linsteps, 4
nget, 20
linterp, 3
ninsert, 23
matmul, 11 nmap, 27
max, 6 nmoveaxis, 24
mean, 6 norm, 7
median, 6 npad, 17
min, 6 npermute, 24
nrand, 15
napply, 25 nreduce, 26
napply2, 25

nremove, 22

37

nrepeat, 16
nreplace, 21
nreshape, 18
nset, 21
nshape, 14
nsize, 14

nswapaxes, 24

ones, 9

outerprod, 12

product, 6
pstdev, 6

range, 2

stack, 10
stdev, 6

sum, 6

transpose, 11

zeros, 9
zip, 13
zip3, 13

38

	1-Dimensional Lists (Vectors)
	Range Generator
	Logical Indexing
	Linear Interpolation
	Vector Generation
	Functional Mapping
	List Statistics
	Vector Algebra

	2-Dimensional Lists (Matrices)
	Generating Matrices
	Combining Matrices
	Matrix Transpose
	Matrix Multiplication
	Miscellaneous Linear Algebra Routines
	Iteration Tools

	N-Dimensional Lists (Tensors)
	Shape and Size
	Initialization
	Repeating and Expanding
	Padding and Extending
	Flattening and Reshaping
	Index Notation
	Access
	Modification
	Removal
	Insertion and Concatenation
	Changing Order of Axes
	ND Functional Mapping
	Reducing an ND-list
	Generalized N-Dimensional Mapping
	Loop Index Access

	ND-Arrays
	Value, Rank, Shape, and Size
	Indexing
	Copying
	Evaluation/Mapping
	Modification
	Removal/Insertion
	Map/Reduce
	Temporary Object Evaluation
	Reference Variable Evaluation

	Command Index

