
N-Dimensional Lists (ndlist)
Version 0.7

Alex Baker

https://github.com/ambaker1/ndlist

October 23, 2023

Abstract

The “ndlist” package is a pure-Tcl package for tensor manipulation and processing.

This package is also a Tin package, and can be loaded in as shown below:

Example 1: Installing and loading “ndlist”

Code:

package require tin
tin add -auto ndlist https://github.com/ambaker1/ndlist install.tcl
tin import ndlist

1

https://github.com/ambaker1/ndlist
https://github.com/ambaker1/Tin

0-Dimensional Lists (Scalars)
Everything is a string is a foundational rule of Tcl, and with this package, everything is a scalar, or a 0D-list.

To reinforce a specific scalar type, you can use the following commands:

Boolean Value

The command bool converts value to boolean, by calling the ::tcl::mathfunc::bool command.

bool <$value>

$value Boolean value. Default 0

Integer Value

The command int converts value to integer, by calling the ::tcl::mathfunc::int command.

int <$value>

$value Integer value. Default 0

Floating-point Decimal Value

The command float converts value to float, by calling the ::tcl::mathfunc::double command.

float <$value>

$value Double-precision floating point decimal value. Default 0.0

Example 2: Convert to floating-point decimal value

Code:
puts [float 5]

Output:
5.0

2

1-Dimensional Lists (Vectors)
Lists are foundational to Tcl, so in addition to providing utilities for ND-lists, this package also provides

utilities for working with 1D-lists, or vectors.

Range Generator

The command range simply generates a list of integer values. This can be used in conjunction with the Tcl

foreach loop to simplify writing “for” loops. There are two ways of calling this command, as shown below.

range $n

range $start $stop <$step>

$n Number of indices, starting at 0 (e.g. 3 returns 0 1 2).

$start Starting value.

$stop Stop value.

$step Step size. Default 1 or -1, depending on direction of start to stop.

Example 3: Integer range generation

Code:
puts [range 3]
puts [range 0 2]
puts [range 10 3 -2]

Output:
0 1 2
0 1 2
10 8 6 4

Example 4: Simpler for-loop

Code:
foreach i [range 3] {

puts $i
}

Output:
0
1
2

3

Logical Indexing

The command find returns the indices of non-zero elements of a boolean list, or indices of elements that

satisfy a given criterion. Can be used in conjunction with nget to perform logical indexing.

find $list <$op $scalar>

$list List of values to compare.

$op Comparison operator. Default “!=”.

$scalar Comparison value. Default 0.

Example 5: Filtering a list

Code:
set x {0.5 2.3 4.0 2.5 1.6 2.0 1.4 5.6}
puts [nget $x [find $x > 2]]

Output:
2.3 4.0 2.5 5.6

Linear Interpolation

The command linterp performs linear 1D interpolation. Converts input to “float”.

linterp $x $xList $yList

$x Value to query in $xList

$xList List of x points, strictly increasing

$yList List of y points, same length as $xList

Example 6: Linear interpolation

Code:
puts [linterp 2 {1 2 3} {4 5 6}]
puts [linterp 8.2 {0 10 20} {2 -4 5}]

Output:
5.0
-2.92

4

Vector Generation

The command linspace can be used to generate a vector of specified length and equal spacing between two

specified values. Converts input to “float”

linspace $n $start $stop

$n Number of points

$start Starting value

$stop End value

Example 7: Linearly spaced vector generation

Code:
puts [linspace 5 0 1]

Output:
0.0 0.25 0.5 0.75 1.0

The command linsteps generates intermediate values given an increment size and a sequence of targets.

Converts input to “float”.

linsteps $step $x1 $x2 ...

$step Maximum step size

$x1 $x2 ... Targets to hit.

Example 8: Intermediate value vector generation

Code:
puts [linsteps 0.25 0 1 0]

Output:
0.0 0.25 0.5 0.75 1.0 0.75 0.5 0.25 0.0

5

Functional Mapping

The command lapply simply applies a command over each element of a list, and returns the result. Basic

math operators can be mapped over a list with the command lop.

lapply $command $list $arg ...

lop $list $op $arg...

$list List to map over.

$command Command prefix to map with.

$op Math operator (see ::tcl::mathop documentation).

$arg ... Additional arguments to append to command after each list element.

Example 9: Applying a math function to a list

Code:
Add Tcl math functions to the current namespace path
namespace path [concat [namespace path] ::tcl::mathfunc]
puts [lapply abs {-5 1 2 -2}]

Output:
5 1 2 2

6

Mapping Over Two Lists

The commands lapply and lop only map over one list. The commands lapply2 and lop2 allow you to map,

element-wise, over two lists. List lengths must be equal.

lapply2 $command $list1 $list2 $arg ...

lop2 $list1 $op $list2 $arg...

$list1 $list2 Lists to map over, element-wise.

$command Command prefix to map with.

$op Math operator (see ::tcl::mathop documentation).

$arg ... Additional arguments to append to command after list elements.

Example 10: Mapping over two lists

Code:
lapply puts [lapply2 {format "%s %s"} {hello goodbye} {world moon}]

Output:
hello world
goodbye moon

Example 11: Adding two lists together

Code:
puts [lop2 {1 2 3} + {2 3 2}]

Output:
3 5 5

7

List Math

The Tcl command lmap allows you to loop over an arbitrary number of lists in parallel, evaluating a script

at each iteration, and collecting the results of each loop iteration into a new list. The command lexpr is an

extension of this concept, just calling lmap and passing the input through the Tcl expr command.

lexpr $varList $list <$varList $list ...> $expr

$varList ... List(s) of variables to iterate with.

$list ... List(s) to iterate over.

$expr Tcl expression to evaluate at every loop iteration.

Example 12: Filtering a list

Code:
set numbers [range 10]
set odds [lexpr x $numbers {$x % 2 ? $x : [continue]}]; # only odd numbers
puts $odds

Output:
1 3 5 7 9

Example 13: Adding three lists together

Code:
set x {1 2 3}
set y {2 9 2}
set z {5 -2 0}
puts [lexpr xi $x yi $y zi $z {$xi + $yi + $zi}]

Output:
8 9 5

8

List Statistics

The commands max, min, sum, product, mean, median, stdev and pstdev compute the maximum, minimum,

sum, product, mean, median, sample and population standard deviation of values in a list. For more advanced

statistics, check out the Tcllib math::statistics package.

max $list

min $list

sum $list

product $list

mean $list

median $list

stdev $list

pstdev $list

$list List to compute statistic of.

Example 14: List Statistics

Code:
set list {-5 3 4 0}
foreach stat {max min sum product mean median stdev pstdev} {

puts [list $stat [$stat $list]]
}

Output:
max 4
min -5
sum 2
product 0
mean 0.5
median 1.5
stdev 4.041451884327381
pstdev 3.5

9

Vector Algebra

The dot product of two equal length vectors can be computed with dot. The cross product of two vectors of

length 3 can be computed with cross.

dot $a $b

cross $a $b

$a First vector.

$b Second vector.

Example 15: Dot and cross product

Code:
set x {1 2 3}
set y {-2 -4 6}
puts [dot $x $y]
puts [cross $x $y]

Output:
8
24 -12 0

The norm, or magnitude, of a vector can be computed with norm.

norm $a <$p>

$a Vector to compute norm of.

$p Norm type. 1 is sum of absolute values, 2 is euclidean distance, and Inf is

absolute maximum value. Default 2.

Example 16: Normalizing a vector

Code:
set x {3 4}
set x [lop $x / [norm $x]]
puts $x

Output:
0.6 0.8

For more advanced vector algebra routines, check out the Tcllib math::linearalgebra package.

10

2-Dimensional Lists (Matrices)
A matrix is a two-dimensional list, or a list of row vectors. This is consistent with the format used in the

Tcllib math::linearalgebra package. See the example below for how matrices are interpreted.

A =

2 5 1 3

4 1 7 9

6 8 3 2

7 8 1 4

 , B =

9

3

0

−3

 , C =
[
3 7 −5 −2

]

Example 17: Matrices and vectors

Code:
Define matrices, column vectors, and row vectors
set A {{2 5 1 3} {4 1 7 9} {6 8 3 2} {7 8 1 4}}
set B {9 3 0 -3}
set C {{3 7 -5 -2}}
Print out matrices (join with newline to print out each row)
puts "A ="
puts [join $A \n]
puts "B ="
puts [join $B \n]
puts "C ="
puts [join $C \n]

Output:
A =
2 5 1 3
4 1 7 9
6 8 3 2
7 8 1 4
B =
9
3
0
-3
C =
3 7 -5 -2

11

Generating Matrices

The commands zeros, ones, and eye generate common matrices.

zeros $n $m

ones $n $m

$n Number of rows

$m Number of columns

The command eye generates an identity matrix of a specified size.

eye $n

$n Size of identity matrix

Example 18: Generating standard matrices

Code:
puts [zeros 2 3]
puts [ones 3 2]
puts [eye 3]

Output:
{0 0 0} {0 0 0}
{1 1} {1 1} {1 1}
{1 0 0} {0 1 0} {0 0 1}

12

Combining Matrices

The commands stack and augment can be used to combine matrices, row or column-wise.

stack $mat1 $mat2 ...

augment $mat1 $mat2 ...

$mat1 $mat2 ... Arbitrary number of matrices to stack/augment (number of columns/rows

must match)

The command block combines a matrix of matrices into a block matrix.

block $matrices

$matrices Matrix of matrices.

Example 19: Combining matrices

Code:
set A [stack {{1 2}} {{3 4}}]
set B [augment {1 2} {3 4}]
set C [block [list [list $A $B] [list $B $A]]]
puts $A
puts $B
puts [join $C \n]; # prints each row on a new line

Output:
{1 2} {3 4}
{1 3} {2 4}
1 2 1 3
3 4 2 4
1 3 1 2
2 4 3 4

13

Matrix Transpose

The command transpose simply swaps the rows and columns of a matrix.

transpose $A

$A Matrix to transpose, nxm.

Returns an mxn matrix.

Example 20: Transposing a matrix

Code:
puts [transpose {{1 2} {3 4}}]

Output:
{1 3} {2 4}

Matrix Multiplication

The command matmul performs matrix multiplication for two matrices. Inner dimensions must match.

matmul $A $B

$A Left matrix, nxq.

$B Right matrix, qxm.

Returns an nxm matrix (or the corresponding dimensions from additional matrices)

Example 21: Multiplying a matrix

Code:
puts [matmul {{2 5 1 3} {4 1 7 9} {6 8 3 2} {7 8 1 4}} {9 3 0 -3}]

Output:
24 12 72 75

14

Miscellaneous Linear Algebra Routines

The command outerprod takes the outer product of two vectors, a ⊗ b = abT .

outerprod $a $b

$a $b Vectors with lengths n and m. Returns a matrix, shape nxm.

The command kronprod takes the Kronecker product of two matrices, as shown in Eq. (1).

kronprod $A $B

$A $B Matrices, shapes nxm and pxq. Returns a matrix, shape (np)x(mq).

A ⊗ B =

a11B ... a1nB

...
. . .

...

an1B ... annB

 (1)

Example 22: Outer product and Kronecker product

Code:
set A [eye 3]
set B [outerprod {1 2} {3 4}]
set C [kronprod $A $B]
puts [join $C \n]; # prints out each row on a new line

Output:
3 4 0 0 0 0
6 8 0 0 0 0
0 0 3 4 0 0
0 0 6 8 0 0
0 0 0 0 3 4
0 0 0 0 6 8

For more advanced matrix algebra routines, check out the Tcllib math::linearalgebra package.

15

Iteration Tools

The commands zip zips two lists into a list of tuples, and zip3 zip three lists into a list of triples. Lists must

be the same length.

zip $a $b

zip3 $a $b $c

$a $b $c Lists to zip together.

Example 23: Zipping and unzipping lists

Code:
Zipping
set x [zip {A B C} {1 2 3}]
set y [zip3 {Do Re Mi} {A B C} {1 2 3}]
puts $x
puts $y
Unzipping (using transpose)
puts [transpose $x]

Output:
{A 1} {B 2} {C 3}
{Do A 1} {Re B 2} {Mi C 3}
{A B C} {1 2 3}

The command cartprod computes the Cartesian product of an arbitrary number of vectors, returning a

matrix where the columns correspond to the input vectors and the rows correspond to all the combinations

of the vector elements.

cartprod $a $b ...

$a $b ... Arbitrary number of vectors to take Cartesian product of.

Example 24: Cartesian product

Code:
puts [cartprod {A B C} {1 2 3}]

Output:
{A 1} {A 2} {A 3} {B 1} {B 2} {B 3} {C 1} {C 2} {C 3}

16

N-Dimensional Lists (Tensors)
A ND-list is defined as a list of equal length (N-1)D-lists, which are defined as equal length (N-2)D-lists,

and so on until (N-N)D-lists, which are scalars of arbitrary size. This definition is flexible, and allows for

different interpretations of the same data. For example, the list “1 2 3” can be interpreted as a scalar with

value “1 2 3”, a vector with values “1”, “2”, and “3”, or a matrix with row vectors “1”, “2”, and “3”.

The command ndlist validates that the input is a valid ND-list. If the input value is “ragged”, as in it has

inconsistent dimensions, it will throw an error. In general, if a value is a valid for N dimensions, it will also

be valid for dimensions 0 to N-1. All other ND-list commands assume a valid ND-list.

ndlist $nd $value

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$value List to interpret as an ndlist

Shape and Size

The commands nshape and nsize return the shape and size of an ND-list, respectively. The shape is a list of

the dimensions, and the size is the product of the shape.

nshape $nd $ndlist <$axis>

nsize $nd $ndlist

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist ND-list to get dimensions of.

$axis Axis to get dimension along. Blank for all.

Example 25: Getting shape and size of an ND-list

Code:
set A [ndlist 2D {{1 2 3} {4 5 6}}]
puts [nshape 2D $A]
puts [nsize 2D $A]

Output:
2 3
6

17

Initialization

The command nfull initializes a valid ND-list of any size filled with a single value.

nfull $value $n ...

$value Value to repeat

$n ... Shape (list of dimensions) of ND-list.

Example 26: Generate ND-list filled with one value

Code:
puts [nfull foo 3 2]; # 3x2 matrix filled with "foo"
puts [nfull 0 2 2 2]; # 2x2x2 tensor filled with zeros

Output:
{foo foo} {foo foo} {foo foo}
{{0 0} {0 0}} {{0 0} {0 0}}

The command nrand initializes a valid ND-list of any size filled with random values between 0 and 1.

nrand $n ...

$n ... Shape (list of dimensions) of ND-list.

Example 27: Generate random matrix

Code:
expr {srand(0)}; # resets the random number seed (for the example)
puts [nrand 1 2]; # 1x2 matrix filled with random numbers

Output:
{0.013469574513598146 0.3831388500440581}

18

Repeating and Expanding

The command nrepeat repeats portions of an ND-list a specified number of times.

nrepeat $ndlist $n ...

$value Value to repeat

$n ... Repetitions at each level.

Example 28: Repeat elements of a matrix

Code:
puts [nrepeat {{1 2} {3 4}} 1 2]

Output:
{1 2 1 2} {3 4 3 4}

The command nexpand repeats portions of an ND-list to expand to new dimensions. New dimensions must

be divisible by old dimensions. For example, 1x1, 2x1, 4x1, 1x3, 2x3 and 4x3 are compatible with 4x3.

nexpand $ndlist $n ...

$ndlist ND-list to expand.

$n ... New shape of ND-list. If -1 is used, it keeps that axis the same.

Example 29: Expand an ND-list to new dimensions

Code:
puts [nexpand {1 2 3} -1 2]
puts [nexpand {{1 2}} 2 4]

Output:
{1 1} {2 2} {3 3}
{1 2 1 2} {1 2 1 2}

19

Padding and Extending

The command npad pads an ND-list along its axes by a specified number of elements.

npad $ndlist $value $n ...

$ndlist ND-list to pad.

$value Value to pad with.

$n ... Number of elements to pad.

Example 30: Padding an ND-list with zeros

Code:
set a {{1 2 3} {4 5 6} {7 8 9}}
puts [npad $a 0 2 1]

Output:
{1 2 3 0} {4 5 6 0} {7 8 9 0} {0 0 0 0} {0 0 0 0}

The command nextend extends an ND-list to a new shape by padding.

nextend $ndlist $value $n ...

$ndlist ND-list to extend.

$value Value to pad with.

$n ... New shape of ND-list.

Example 31: Extending an ND-list to a new shape with a filler value

Code:
set a {hello hi hey howdy}
puts [nextend $a world -1 2]

Output:
{hello world} {hi world} {hey world} {howdy world}

20

Flattening and Reshaping

The command nreshape reshapes a vector into a compatible shape. Vector length must equal target ND-list

size.

nreshape $vector $n ...

$vector Vector (1D-list) to reshape.

$n ... Shape (list of dimensions) of ND-list.

Example 32: Reshape a vector to a matrix

Code:
puts [nreshape {1 2 3 4 5 6} 2 3]

Output:
{1 2 3} {4 5 6}

The inverse is nflatten, which flattens an ND-list to a vector, which can be then used with nreshape.

nflatten $nd $ndlist

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist ND-list to flatten.

Example 33: Reshape a matrix to a 3D tensor

Code:
set x [nflatten 2D {{1 2 3 4} {5 6 7 8}}]
puts [nreshape $x 2 2 2]

Output:
{{1 2} {3 4}} {{5 6} {7 8}}

21

Index Notation

This package provides generalized N-dimensional list access/modification commands, using an index notation

parsed by the command ::ndlist::ParseIndex, which returns the index type and an index list for the type.

::ndlist::ParseIndex $n $input

$n Number of elements in list.

$input Index input. Options are shown below:

: All indices

$start:$stop Range of indices (e.g. 0:4 or 1:end-2).

$start:$step:$stop Stepped range of indices (e.g. 0:2:-2 or 2:3:end).

$iList List of indices (e.g. {0 end-1 5} or 3).

$i* Single index with a asterisk, “flattens” the ndlist (e.g. 0* or end-3*).

Additionally, indices get passed through the ::ndlist::Index2Integer command, which converts the inputs

“end”, “end-integer”, “integer±integer” and negative wrap-around indexing (where -1 is equivalent to “end”)

into normal integer indices. Note that this command will return an error if the index is out of range.

::ndlist::Index2Integer $n $index

$n Number of elements in list.

$index Single index.

Example 34: Index Notation

Code:
set n 10
puts [::ndlist::ParseIndex $n :]
puts [::ndlist::ParseIndex $n 1:8]
puts [::ndlist::ParseIndex $n 0:2:6]
puts [::ndlist::ParseIndex $n {0 5 end-1}]
puts [::ndlist::ParseIndex $n end*]

Output:
A {}
R {1 8}
L {0 2 4 6}
L {0 5 8}
S 9

22

Access

Portions of an ND-list can be accessed with the command nget, using the index parser ::ndlist::ParseIndex

for each dimension being indexed. Note that unlike the Tcl lindex and lrange commands, nget will return

an error if the indices are out of range.

nget $ndlist $i ...

$ndlist ND-list value.

$i ... Index inputs, parsed with ::ndlist::ParseIndex. The number of index argu-

ments determines the interpreted dimensions.

Example 35: ND-list access

Code:
set A {{1 2 3} {4 5 6} {7 8 9}}
puts [nget $A 0 :]; # get row matrix
puts [nget $A 0* :]; # flatten row matrix to a vector
puts [nget $A 0:1 0:1]; # get matrix subset
puts [nget $A end:0 end:0]; # can have reverse ranges
puts [nget $A {0 0 0} 1*]; # can repeat indices

Output:
{1 2 3}
1 2 3
{1 2} {4 5}
{9 8 7} {6 5 4} {3 2 1}
2 2 2

23

Modification

A ND-list can be modified by reference with nset, and by value with nreplace, using the index parser

::ndlist::ParseIndex for each dimension being indexed. Note that unlike the Tcl lset and lreplace commands,

the commands nset and nreplace will return an error if the indices are out of range. If all the index inputs

are “:” except for one, and the replacement list is blank, it will delete values along that axis by calling

nremove. Otherwise, the replacement ND-list must be expandable to the target index dimensions.

nset $varName $i ... $sublist

nreplace $ndlist $i ... $sublist

$varName Variable that contains an ND-list.

$ndlist ND-list to modify.

$i ... Index inputs, parsed with ::ndlist::ParseIndex. The number of index inputs

determines the interpreted dimensions.

$sublist Replacement list, or blank to delete values.

Example 36: Replace range with a single value

Code:
puts [nreplace [range 10] 0:2:end 0]

Output:
0 1 0 3 0 5 0 7 0 9

Example 37: Swapping matrix rows

Code:
set a {{1 2 3} {4 5 6} {7 8 9}}
nset a {1 0} : [nget $a {0 1} :]; # Swap rows and columns (modify by reference)
puts $a

Output:
{4 5 6} {1 2 3} {7 8 9}

24

Removal

The command nremove removes portions of an ND-list at a specified axis.

nremove $nd $ndlist $i <$axis>

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist ND-list to modify.

$i Index input, parsed with ::ndlist::ParseIndex.

$axis Axis to remove at. Default 0.

Example 38: Filtering a list by removing elements

Code:
set x [range 10]
puts [nremove $x [find $x > 4]]

Output:
0 1 2 3 4

Example 39: Deleting a column from a matrix

Code:
set a {{1 2 3} {4 5 6} {7 8 9}}
puts [nremove $a 2 1]

Output:
{1 2} {4 5} {7 8}

25

Appending

The command nappend is a generalized append for Tcl. For 0D, it just calls the Tcl append command. For

1D, it just calls the Tcl lappend command. For ND, it verifies that the (N-1)D inputs have the same shape as

the elements of the ND-list, and then calls the Tcl lappend command, appending along axis 0. For example,

for 2D, it verifies that the list lengths match the number of columns of the matrix.

nappend $nd $varName $arg ...

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$varName Variable that contains an ND-list.

$arg ... (N-1)D lists (or strings for 0D) to append to ND-list.

Example 40: Scalar and list append

Code:
set a {}
nappend 0D a foo
nappend 0D a bar
nappend 1D a {hello world}
puts $a

Output:
foobar {hello world}

Example 41: Adding rows to a matrix (checks dimensions)

Code:
set a {}
nappend 2D a {1 2 3}
nappend 2D a {4 5 6}
nappend 2D a {7 8 9}
puts $a

Output:
{1 2 3} {4 5 6} {7 8 9}

26

Insertion and Concatenation

The command ninsert allows you to insert an ND-list into another ND-list at a specified index and axis, as

long as the ND-lists agree in dimension at all other axes. If “end” or “end-integer” is used for the index, it

will insert after the index. Otherwise, it will insert before the index. The command ncat is shorthand for

inserting at “end”, and concatenates two ND-lists.

ninsert $nd $ndlist1 $index $ndlist2 <$axis>

ncat $nd $ndlist1 $ndlist2 <$axis>

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist1 $ndlist2 ND-lists to combine.

$index Index to insert at.

$axis Axis to insert/concatenate at (default 0).

Example 42: Inserting a column into a matrix

Code:
set matrix {{1 2} {3 4} {5 6}}
set column {A B C}
puts [ninsert 2D $matrix 1 $column 1]

Output:
{1 A 2} {3 B 4} {5 C 6}

Example 43: Concatenate tensors

Code:
set x [nreshape {1 2 3 4 5 6 7 8 9} 3 3 1]
set y [nreshape {A B C D E F G H I} 3 3 1]
puts [ncat 3D $x $y 2]

Output:
{{1 A} {2 B} {3 C}} {{4 D} {5 E} {6 F}} {{7 G} {8 H} {9 I}}

27

Changing Order of Axes

The command nswapaxes is a general purpose transposing function that swaps the axes of an ND-list. For

simple matrix transposing, the command transpose can be used instead.

nswapaxes $ndlist $axis1 $axis2

$ndlist ND-list to manipulate.

$axis1 $axis2 Axes to swap.

The command nmoveaxis moves a specified source axis to a target position. For example, moving axis 0 to

position 2 would change “i,j,k” to “j,k,i”.

nmoveaxis $ndlist $source $target

$ndlist ND-list to manipulate.

$source Source axis.

$target Target position.

The command npermute is more general purpose, and defines a new order for the axes of an ND-list. For

example, the axis list “1 0 2” would change “i,j,k” to “j,i,k”.

npermute $ndlist $axis ...

$ndlist ND-list to manipulate.

$axis ... List of axes defining new order.

Example 44: Changing tensor axes

Code:
set x {{{1 2} {3 4}} {{5 6} {7 8}}}
set y [nswapaxes $x 0 2]
set z [nmoveaxis $x 0 2]
puts [lindex $x 0 0 1]
puts [lindex $y 1 0 0]
puts [lindex $z 0 1 0]

Output:
2
2
2

28

ND Functional Mapping

The command napply simply applies a command over each element of an ND-list, and returns the result.

Basic math operators can be mapped over an ND-list with the command nop, which is a special case of

napply, using the ::tcl::mathop namespace.

napply $nd $command $ndlist $arg ...

nop $nd $ndlist $op $arg...

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist ND-list to map over.

$command Command prefix to map with.

$op Math operator (see ::tcl::mathop documentation).

$arg ... Additional arguments to append to command after ND-list element.

Example 45: Chained functional mapping over a matrix

Code:
napply 2D puts [napply 2D {format %.2f} [napply 2D expr {{1 2} {3 4}} + 1]]

Output:
2.00
3.00
4.00
5.00

Example 46: Element-wise operations

Code:
puts [nop 1D {1 2 3} + 1]
puts [nop 2D {{1 2 3} {4 5 6}} > 2]

Output:
2 3 4
{0 0 1} {1 1 1}

29

Mapping Over Two ND-lists

The commands napply and nop only map over one ND-list. The commands napply2 and nop2 allow you to

map, element-wise, over two ND-lists. If the input lists have different shapes, they will be expanded to their

maximum dimensions with nexpand (if compatible).

napply2 $nd $command $ndlist1 $ndlist2 $arg ...

nop2 $nd $ndlist1 $op $ndlist2 $arg...

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$ndlist1 $ndlist2 ND-lists to map over, element-wise.

$command Command prefix to map with.

$op Math operator (see ::tcl::mathop documentation).

$arg ... Additional arguments to append to command after ND-list elements.

Example 47: Format columns of a matrix

Code:
set data {{1 2 3} {4 5 6} {7 8 9}}
set formats {{%.1f %.2f %.3f}}
puts [napply2 2D format $formats $data]

Output:
{1.0 2.00 3.000} {4.0 5.00 6.000} {7.0 8.00 9.000}

Example 48: Adding matrices together

Code:
set A {{1 2} {3 4}}
set B {{4 9} {3 1}}
puts [nop2 2D $A + $B]

Output:
{5 11} {6 5}

30

Reducing an ND-list

The command nreduce combines nmoveaxis and napply to reduce an axis of an ND-list with a function that

reduces a vector to a scalar, like max or sum.

nreduce $nd $command $ndlist <$axis> <$arg ...>

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$command Command prefix to map with.

$ndlist ND-list to map over.

$axis Axis to reduce. Default 0.

$arg ... Additional arguments to append to command after ND-list elements.

Example 49: Matrix row and column statistics

Code:
set x {{1 2} {3 4} {5 6} {7 8}}
puts [nreduce 2D max $x]; # max of each column
puts [nreduce 2D max $x 1]; # max of each row
puts [nreduce 2D sum $x]; # sum of each column
puts [nreduce 2D sum $x 1]; # sum of each row

Output:
7 8
2 4 6 8
16 20
3 7 11 15

31

Generalized N-Dimensional Mapping

The command nmap is a general purpose mapping function for N-dimensional lists in Tcl, and the command

nexpr a special case for math expressions. If multiple ND-lists are provided for iteration, they must be

expandable to their maximum dimensions. The actual implementation flattens all the ND-lists and calls the

Tcl lmap command, and then reshapes the result to the target dimensions. So, if “continue” or “break” are

used in the map body, it will return an error.

nmap $nd $varName $ndlist <$varName $ndlist ...> $body

nexpr $nd $varName $ndlist <$varName $ndlist ...> $expr

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$varName Variable name to iterate with.

$ndlist ND-list to iterate over.

$body Tcl script to evaluate at every loop iteration.

$expr Tcl expression to evaluate at every loop iteration.

Example 50: Expand and map over matrices

Code:
set phrases [nmap 2D greeting {{hello goodbye}} subject {world moon} {

list $greeting $subject
}]
napply 2D puts $phrases

Output:
hello world
goodbye world
hello moon
goodbye moon

Example 51: Adding two matrices together, element-wise

Code:
set x {{1 2} {3 4}}
set y {{4 1} {3 9}}
set z [nexpr 2D xi $x yi $y {$xi + $yi}]
puts $z

Output:
{5 3} {6 13}

32

Generalized N-Dimensional Looping

The command nforeach is simply a version of nmap that returns nothing.

nforeach $nd $varName $ndlist <$varName $ndlist ...> $body

$nd Rank of ND-list (e.g. 2D, 2d, or 2 for a matrix).

$varName Variable name to iterate with.

$ndlist ND-list to iterate over.

$body Tcl script to evaluate at every loop iteration.

Loop Index Access

The iteration indices of nmap, nexpr , or nforeach can be accessed with the commands i, j, and k. The

commands j and k are simply shorthand for i with axes 1 and 2.

i <$axis>

j

k

$axis Dimension to access mapping index at. Default 0.

If -1, returns the linear index of the loop.

Example 52: Finding index tuples that match criteria

Code:
set x {{1 2 3} {4 5 6} {7 8 9}}
set indices {}
nforeach 2D xi $x {

if {$xi > 4} {
lappend indices [list [i] [j]]

}
}
puts $indices

Output:
{1 1} {1 2} {2 0} {2 1} {2 2}

33

Command Index
::ndlist::Index2Integer, 22

::ndlist::ParseIndex, 22

augment, 13

block, 13

bool, 2

cartprod, 16

cross, 10

dot, 10

eye, 12

find, 4

float, 2

i, 33

int, 2

j, 33

k, 33

kronprod, 15

lapply, 6

lapply2, 7

lexpr, 8

linspace, 5

linsteps, 5

linterp, 4

lop, 6

lop2, 7

matmul, 14

max, 9

mean, 9

median, 9

min, 9

nappend, 26

napply, 29

napply2, 30

ncat, 27

ndlist, 17

nexpand, 19

nexpr, 32

nextend, 20

nflatten, 21

nforeach, 33

nfull, 18

nget, 23

ninsert, 27

nmap, 32

nmoveaxis, 28

nop, 29

nop2, 30

norm, 10

npad, 20

npermute, 28

nrand, 18

nreduce, 31

nremove, 25

nrepeat, 19

nreplace, 24

nreshape, 21

nset, 24

nshape, 17

34

nsize, 17

nswapaxes, 28

ones, 12

outerprod, 15

product, 9

pstdev, 9

range, 3

stack, 13

stdev, 9

sum, 9

transpose, 14

zeros, 12

zip, 16

zip3, 16

35

	0-Dimensional Lists (Scalars)
	Boolean Value
	Integer Value
	Floating-point Decimal Value

	1-Dimensional Lists (Vectors)
	Range Generator
	Logical Indexing
	Linear Interpolation
	Vector Generation
	Functional Mapping
	Mapping Over Two Lists
	List Math
	List Statistics
	Vector Algebra

	2-Dimensional Lists (Matrices)
	Generating Matrices
	Combining Matrices
	Matrix Transpose
	Matrix Multiplication
	Miscellaneous Linear Algebra Routines
	Iteration Tools

	N-Dimensional Lists (Tensors)
	Shape and Size
	Initialization
	Repeating and Expanding
	Padding and Extending
	Flattening and Reshaping
	Index Notation
	Access
	Modification
	Removal
	Appending
	Insertion and Concatenation
	Changing Order of Axes
	ND Functional Mapping
	Mapping Over Two ND-lists
	Reducing an ND-list
	Generalized N-Dimensional Mapping
	Generalized N-Dimensional Looping
	Loop Index Access

	Command Index

