
1/53

Reduction monads Syntax Semantics Conclusion

Signatures and models for syntax and operational
semantics in the presence of variable binding

Ambroise Lafont1

1DAPI
IMT Atlantique

PhD supervised by N. Tabareau and T. Hirschowitz, 2019

Ambroise Lafont Signatures and models for syntax and operational semantics

2/53

Reduction monads Syntax Semantics Conclusion

The subject in one slide

What is a programming language, mathematically?

In the literature, no well-established consensus.

Differential λ-calculus [Ehrhard-Regnier 2003]
~10 pages (section 2 → beginning of section 3) describing the
programming language and proving some properties.

This thesis:
a tentative notion of programming languages, reduction
monads, and
a discipline for automatically generating well-behaved
reduction monads.

Ambroise Lafont Signatures and models for syntax and operational semantics

3/53

Reduction monads Syntax Semantics Conclusion

What is a programming language?
Example: arithmetic expressions in a calculator

Ambroise Lafont Signatures and models for syntax and operational semantics

4/53

Reduction monads Syntax Semantics Conclusion

What is a programming language?
Program execution

Program = valid syntactic text
Execution = modification of the program:

(2 + 2)× 3 4× 3 12
1 execution step 1 execution step

Operational semantics = description of how programs execute.
Ambroise Lafont Signatures and models for syntax and operational semantics

5/53

Reduction monads Syntax Semantics Conclusion

What is a programming language?
A graph whose vertices are programs.

(2 + 2)× 3

4× 3

3× 2 + 2× 2

12

6 + 2× 2 3× 2 + 4

6 + 4

10

x + (5 + 4)

x + 9

Variables = placeholders for expressions
Substitution: (x + (5 + 4))[x := 12] = 12 + (5 + 4)
Reductions are stable under substitution

x + (5 + 4)→ x + 9
12 + (5 + 4)→ 12 + 9 ·

; Reduction monads!
Ambroise Lafont Signatures and models for syntax and operational semantics

6/53

Reduction monads Syntax Semantics Conclusion

A difficulty

Bound variables and α-equivalence
α-equivalence:

x 7→ 2× x should be identified with y 7→ 2× y

“x is bound by 7→ in x 7→ 2× x”

Ambroise Lafont Signatures and models for syntax and operational semantics

7/53

Reduction monads Syntax Semantics Conclusion

Specifying programming languages: initial semantics

Constructing syntax and reductions may be complex
(cf. differential λ-calculus).
Often easier to describe the models.

Model ≈ graph with interpretation of the operations and reductions

a model of arithmetic expressions: Z
Syntactic “+“ ; actual “+” ,
Syntactic “×“ ; actual “×” , ...

Programming language = initial model.
Initiality ⇒ recursion principle.

Notion of signature
Specifies models.
Effective iff the initial model exists.

Ambroise Lafont Signatures and models for syntax and operational semantics

8/53

Reduction monads Syntax Semantics Conclusion

State of the art: syntax

Two main notions of syntax:
Substitution monoids (≈ finitary monads) [Fiore-Plotkin-Turi,
1999].
Nominal sets [Gabbay-Pitts, 1999].

[N,Set] nominal sets monads

more structured modelswider recursion principle

This thesis: monads

Ambroise Lafont Signatures and models for syntax and operational semantics

9/53

Reduction monads Syntax Semantics Conclusion

State of the art: specifying syntax

Main notions of signature for monads:
Pointed strong endofunctors [Fiore-Plotkin-Turi, 1999].
Equational systems [Fiore-Hur, 2010].
Modules [Hirschowitz-Maggesi, 2007].

This thesis: modules

Ambroise Lafont Signatures and models for syntax and operational semantics

10/53

Reduction monads Syntax Semantics Conclusion

State of the art: semantics

Semantic notions of programming language:
Distributive laws [Plotkin-Turi, 1997].
double categories [Meseguer, the Montanari school].

Do not cover higher-order languages.
2-categories [Power, Seely,...].
relative monads [Ahrens, 2016].

Only covers congruent semantics.

Ambroise Lafont Signatures and models for syntax and operational semantics

11/53

Reduction monads Syntax Semantics Conclusion

Contributions
1 Mathematical definition of programming languages as

reduction monads.
2 Specification of syntactic equations, based on modules over

monads.
3 Specification of semantics.

Systematic use of monads and modules for taking care of
substitution.
Articles

CSL 2018 about 2.
FSCD 2019 about 2. = variant of Fiore’s approach.
POPL 2020 about 1. and 3.

All in collaboration with Benedikt Ahrens, André Hirschowitz and
Marco Maggesi.

Ambroise Lafont Signatures and models for syntax and operational semantics

12/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

13/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

14/53

Reduction monads Syntax Semantics Conclusion

Ingredients

Programming languages (PLs) as graphs
(Syntax) vertices = terms
(Semantics) arrows = reductions between terms

Simultaneous substitution: variables 7→ terms
monads and modules over them

Example
λ-calculus with β-reduction:

Syntax: S,T ::= x | S T | λx .S
Modulo α-equivalence, e.g.

λx .x = λy .y

Reductions: (λx .t) u β−→ t[x := u] + congruences

Ambroise Lafont Signatures and models for syntax and operational semantics

15/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

16/53

Reduction monads Syntax Semantics Conclusion

PLs as graphs
Example: λ-calculus with β-reduction

(λx . x y) id

id y

Ω

Ω Ω

β

β

β Ω

Ω β

y

β

(Syntax) vertices = terms e.g. Ω = (λx . x x) (λx . x x)
(Semantics) arrows = reductions

Ambroise Lafont Signatures and models for syntax and operational semantics

17/53

Reduction monads Syntax Semantics Conclusion

Graphs
Definition

Graph = a quadruple (A,V , σ, τ) where

A = {arrows} σ = source of an arrow
V = {vertices} τ = target of an arrow

A
σ //
τ
// V

σ : A → V
t r−→ u 7→ t

τ : A → V
t r−→ u 7→ u

σ(r) r−→ τ(r)

Ambroise Lafont Signatures and models for syntax and operational semantics

18/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

19/53

Reduction monads Syntax Semantics Conclusion

Simultaneous substitution
Syntax comes with substitution

terms (e.g. λ-terms) = trees with free variables as (distinguished) leaves.

t

x xy

u

γ

v

α β γ

u

γ

v

α γβ

u

γ

x 7→

y 7→

t t
[
x := u
y := v

]

γ α β γ γ

=

Ambroise Lafont Signatures and models for syntax and operational semantics

20/53

Reduction monads Syntax Semantics Conclusion

Simultaneous substitution made formal

Free variables indexing

X 7→ {terms taking free variables in X}

Example: λ-calculus

L({x , y}) =


λz .z x

x

y

y

x y

x y

, , , , . . .


Simultaneous substitution

∀f : X → L(Y), L(X) → L(Y)
t 7→ t[x 7→ f (x)] (or t[f])

Ambroise Lafont Signatures and models for syntax and operational semantics

21/53

Reduction monads Syntax Semantics Conclusion

Monads model simultaneous substitution
λ-calculus as a monad (L,_[_], η)

1 Simultaneous substitution (L,_[_])
2 Variables are terms

ηX : X → L(X)

x 7→ x

x

3 Substitution laws:

x [f] = f (x) t[x 7→ x] = t

+ associativity:

t[f][g] = t [x 7→ f (x)[g]]

Ambroise Lafont Signatures and models for syntax and operational semantics

22/53

Reduction monads Syntax Semantics Conclusion

Substitution for semantics
We saw that syntax is expected to support substitution. This is also true of semantics.

Our notion of PL:
Syntax: a monad (L,_[_], η)
Semantics:

graphs R(X)
σX //
τX
// L(X) for each X

R(X) = total set of reductions between
terms taking free variables in X

substitution of reduction: variables 7→ L-terms.
t r−→ u

t[f] r [f]−−→ u[f]

Ambroise Lafont Signatures and models for syntax and operational semantics

23/53

Reduction monads Syntax Semantics Conclusion

Substitution for semantics made formal

R as a module over L
R supports L-monadic substitution:

∀f : X → L(Y), R(X) → R(Y)
r 7→ r [x 7→ f (x)] (or r [f])

+ substitution laws

Other examples of L-modules: L, L× L, 1, . . .

σ and τ as L-module morphisms

t r−→ u ; t ′ r [f]−−→ u′ with
{
t ′ = t[f]
u′ = u[f]

i.e.,
{
σ(r [f]) = σ(r)[f]
τ(r [f]) = τ(r)[f]

Commutation with substitution ⇔ Module morphisms σ, τ : R → L.

Ambroise Lafont Signatures and models for syntax and operational semantics

24/53

Reduction monads Syntax Semantics Conclusion

Reduction monads
Summary: graphs + substitution.

Definition

A reduction monad R
σ //
τ
// T consists of

T = monad (= module over itself)
R = module over T
σ, τ : R → T are T -module morphisms.

Example
λ-calculus with β-reduction.

How can we specify a reduction monad?
1 signature for the (syntactic) operations for the monad;
2 reduction rules.

Ambroise Lafont Signatures and models for syntax and operational semantics

25/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

26/53

Reduction monads Syntax Semantics Conclusion

Overview

Syntax = monad L
Operations = module morphisms Σ(L)→ L
1-signatures specify operations
2-signatures specify operations + equations.

Ambroise Lafont Signatures and models for syntax and operational semantics

27/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

28/53

Reduction monads Syntax Semantics Conclusion

Operations as module morphisms

Ambroise Lafont Signatures and models for syntax and operational semantics

29/53

Reduction monads Syntax Semantics Conclusion

Examples of modules
We argued that syntactic operations are module morphisms. Basic examples of modules?

Module over a monad T : supports the T -monadic substitution
Examples

T itself
M × N for any modules M and N:

∀(t, u) ∈ M(X)× N(X), X f−→ T (Y),

(t, u)[f] = (t[f], u[f]) ∈ M(Y)× N(Y)

M ′= derivative of a module M:

M ′(X) = M(X q {�})
X extended with a fresh variable �

used to model an operation binding a variable (Cf next slide).
Ambroise Lafont Signatures and models for syntax and operational semantics

30/53

Reduction monads Syntax Semantics Conclusion

Operations as module morphisms
Operations can be combined into a single one.

Operations = module morphisms = maps commuting with substitution:

Example: λ-calculus

app : L× L → L

abs : L′ → L
{

absX : L(X q {�})→ L(X)
t 7→ λ � .t

Combine operations into a single one:

[app, abs] : (L× L)q L′ → L

where (coproducts of modules M and N)

(M q N)(X) = M(X)q N(X)

Ambroise Lafont Signatures and models for syntax and operational semantics

31/53

Reduction monads Syntax Semantics Conclusion

1-signatures specify operations

Definition
A 1-signature Σ is a (functorial) assignment

monad module over T

7→ Σ(T)T

Definition (model of a 1-signature Σ)

A model of Σ is a pair (T ,m) denoted by Σ(T) m−→ T s.t.
T is a monad
Σ(T) m−→ T is a T -module morphism

Example: λ-calculus

[app, abs] : ΣLC (L)→ L where ΣLC (L) = (L× L)q L′

Ambroise Lafont Signatures and models for syntax and operational semantics

32/53

Reduction monads Syntax Semantics Conclusion

Syntax
We defined 1-signatures and their models. When is a signature effective?

(suitable notion of model morphism [Hirschowitz-Maggesi 2012])

Definition
The syntax specified by a 1-signature Σ is the initial object in its
category of models.

Question: Does the syntax exist for every 1-signature?
Answer: No.

Counter-example: Σ(R) = P ◦ R

Powerset endofunctor on Set.

(for cardinality reasons)

Ambroise Lafont Signatures and models for syntax and operational semantics

33/53

Reduction monads Syntax Semantics Conclusion

Initial semantics for algebraic 1-signatures
We gave examples of effective 1-signatures. They were all algebraic.

Definition
Algebraic 1-signatures = 1-signatures built out of derivatives,
finite products, disjoint unions, and the 1-signature Θ : T 7→ T .

Algebraic 1-signatures ' binding signatures [Fiore-Plotkin-Turi 1999]
⇒ specification of n-ary operations, possibly binding variables.

Theorem (Fiore-Plotkin-Turi 1999)
Syntax exists for any algebraic 1-signature.

Example
λ-calculus

Question: Specify syntactic operations subject to some equations?

(commutative associative binary operation + of diff. λ-calculus)
Ambroise Lafont Signatures and models for syntax and operational semantics

34/53

Reduction monads Syntax Semantics Conclusion

Quotient of algebraic signatures

We saw that algebraic signatures are effective. Can we specify
effectively operations subject to equations?

Theorem (CSL 2018)
Syntax exists for any “quotient” of algebraic 1-signatures.

Example
a commutative binary operation +:

∀a, b, a + b = b + a

Ambroise Lafont Signatures and models for syntax and operational semantics

36/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

37/53

Reduction monads Syntax Semantics Conclusion

Example: a commutative binary operation

Specification of a binary operation
1-signature T 7→ T × T

model
T × T

+��
T

Question What is an appropriate notion of model for a
commutative binary operation?

a monad T
with a binary operation

a model T × T +−→ T of Θ×Θ

s.t.

T × T

+

''

swap --

T
T × T +

:: where swap(t, u) = (u, t)

Ambroise Lafont Signatures and models for syntax and operational semantics

38/53

Reduction monads Syntax Semantics Conclusion

Equations
Σ = 1-signature (e.g. binary operation Σ(T) = T × T)

Definition

A Σ-equation A
u //
v
// B is a (functorial) assignment

model of Σ parallel pair of T -module morphisms

(
A(M)

uM //
vM
// B(M)

)
M = (Σ(T)→ T) 7→

Example (Binary commutative operation)

Σ(T) = T × T

∣∣∣∣∣∣∣∣∣
T × T

+
��
T

7→ T × T

+

%%

swap ++
T

T × T +
>>

Ambroise Lafont Signatures and models for syntax and operational semantics

39/53

Reduction monads Syntax Semantics Conclusion

2-signatures and their models
We defined equations. A set of equations yields a 2-signature.

Definition
A 2-signature is a pair (Σ,E) where

Σ is a 1-signature for monads
E is a set of Σ-equations

Definition
A model of a 2-signature (Σ,E) consists of:

a model M =

 Σ(T)
��
T

 of Σ s.t.

∀ A
u //
v
// B ∈ E , uM = vM : A(M)→ B(M)

morphism of models = morphisms as models of Σ.
Ambroise Lafont Signatures and models for syntax and operational semantics

40/53

Reduction monads Syntax Semantics Conclusion

Initial semantics for algebraic 2-signatures
We defined 2-signatures and their models. When is a 2-signature effective?

Theorem (FSCD 2019)
Any algebraic 2-signature has an initial model.

Definition
A 2-signature (Σ,E) is algebraic if:

Σ is algebraic
E consists of elementary Σ-equations

Main instances of elementary Σ-equations

A ⇒ B s.t. A

 Σ(T)
��
T

 = Φ(T) B

 Σ(T)
��
T

 = T

for some algebraic 1-signature Φ.
(e.g. Φ(T) = T × T for commutativity)

Ambroise Lafont Signatures and models for syntax and operational semantics

41/53

Reduction monads Syntax Semantics Conclusion

Example: algebraic 2-signature for differential λ-calculus
Lionel Vaux’s version

Ld : s, t ::= x | s t |λx .s | Ds · t | 0 | s + t
ΣLCd (T) = ΣLC (T) q T × T q 1 q T × T

Equations
associativity and commutativity of +, neutrality of 0 for +
bilinearity of D_ · _ with respect to +, left linearity of
application, linearity of abstraction

λx .(s + t) = λx .s + λx .t λx .0 = 0

Ambroise Lafont Signatures and models for syntax and operational semantics

42/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

43/53

Reduction monads Syntax Semantics Conclusion

Specifying reduction monads

λ-calculus with (small-step) β-reduction as a reduction monad:
σ //
τ
//

monadmodule over L

R L

module morphisms

vertices = L = initial model of the signature of λ-calculus.
arrows = R, σ, τ = ?

specified through reduction rules (to be made formal):

(λx .t) u → t[x := u] t → t ′

t u → t ′ u . . .

Ambroise Lafont Signatures and models for syntax and operational semantics

44/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

45/53

Reduction monads Syntax Semantics Conclusion

Analysis of a reduction rule
Example: binary congruence for application.

t → t ′ u → u′
t u → t ′ u′

hypotheses

conclusion

t, t ′, u, u′ 7→

metavariables: as a L-module L4

Hypothesis/conclusion = pair of λ-terms using metavariables
as parallel module morphisms L4 ⇒ L
Generalization: L ; any model ΣLC (T)→ T of ΣLC :

(application denoted by app : T × T → T)

e.g., t u → t ′ u′ : T 4 → T
(t, t ′, u, u′) 7→ app(t, u)
(t, t ′, u, u′) 7→ app(t ′, u′)

Ambroise Lafont Signatures and models for syntax and operational semantics

46/53

Reduction monads Syntax Semantics Conclusion

Reduction rules
Definition

Let Σ = signature for monads (e.g. ΣLC for congruence for application).

Definition of Σ-reduction rules

A Σ-reduction rule (~σ, ~τ) σ1 → τ1 . . . σn → τn
σ0 → τ0

assigns (functorially) to each model Σ(T)→ T :

V (T) = T -module of metavariables (e.g. V (T) = T 4)

parallel T -module morphisms V (T)
σi,T //
τi,T
// T ′...′

We write
σi , τi : V → Θ(ni) ni = number of derivatives

Ambroise Lafont Signatures and models for syntax and operational semantics

47/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics

48/53

Reduction monads Syntax Semantics Conclusion

Reduction signatures

Reduction signatures specify reduction monads.

Definition
A reduction signature is a pair (Σ,R) where

Σ is a signature for monads (1- or 2-signature)
R is a family of Σ-reduction rules

Example: λ-calculus with β-reduction
Σ = ΣLC
Σ-reduction rules:

β-reduction
congruence for application and abstraction

Ambroise Lafont Signatures and models for syntax and operational semantics

49/53

Reduction monads Syntax Semantics Conclusion

Models
We defined reduction signatures. What are their models?

A model of a signature (Σ,R) consists of:

a reduction monad R
σ //
τ
// T with a Σ-model structure on T

for each reduction rule

σ1 → τ1 . . . σn → τn
σ0 → τ0

op V
σi //
τi
// Θ(ni) in R,

a mapping, for each v ∈ V (T)(X),σ1(v) r1−→ τ1(v)
. . .

σn(v) rn−→ τn(v)

 7→ σ0(v) op(r1,...rn)−−−−−−→ τ0(v)

compatible with substitution:
op(r1, . . . rn)[f] = op(r1[f], . . . , rn[f])

Ambroise Lafont Signatures and models for syntax and operational semantics

50/53

Reduction monads Syntax Semantics Conclusion

Initiality
We defined models of a reduction signature. When is a signature effective?

(suitable notion of model morphism)

Theorem (POPL 2020)
Σ has an initial model (e.g. Σ is algebraic) ⇒ (Σ,R) has an initial
model.

Examples
λ-calculus with small-step β-reduction
λ-ex = λ-calculus with explicit substitutions [Kesner 2009].

A Theory of Explicit Substitutions with Safe and Full Composition

Ambroise Lafont Signatures and models for syntax and operational semantics

51/53

Reduction monads Syntax Semantics Conclusion

Reduction signature for λ-ex

Syntax
λ-ex: λ-calculus + explicit substitution t[x/u] s.t. x is bound in t:

as a module morphism Lex ′ × Lex → Lex

subject to the equation

t[x/u][y/v] = t[y/v][x/u] if y /∈ fv(u) and x /∈ fv(v)

as a ΣLex -equation Lex ′′ × Lex × Lex ⇒ Lex .

Semantics
congruences, β-reduction (λx .t) u → t[x/u], . . .

t[x/u][y/v]→ t[y/v][x/u[y/v]] if x /∈ fv(u) and y ∈ fv(u)

metavariable module: Lex ′′ × Lex × Lex
� (Lex

� ⊂ Lex ′)
Ambroise Lafont Signatures and models for syntax and operational semantics

52/53

Reduction monads Syntax Semantics Conclusion

Extension of reduction monads
with associated effectivity theorem

1 Vertices: syntax/monad ; module of “configurations” over
the syntax

Examples
λ-calculus with small-step β-reduction cbv:

variables 7→ values (rather than terms)
Thus, monad of values (rather than terms)
Still, reductions between terms (rather than values) =
“configurations” over the monad of values

π-calculus

differential λ-calculus (without its signature though)

2 Graph ; Bipartite graph
Example
λ-calculus with big-step β-reduction cbv: term → value.

Ambroise Lafont Signatures and models for syntax and operational semantics

53/53

Reduction monads Syntax Semantics Conclusion

Conclusion

Summary
PLs as reduction monads
Signatures for reduction monads with effectivity theorem

Perspectives
Generalize reduction monads and their signatures

specify the differential λ-calculus
Generalize on the category of sets:

specify simply-typed PLs: category of families of sets (indexed
by simple types)
specify Finster-Mimram’s monad of weak ω-groupoids:
category of globular sets

Thank you!

Ambroise Lafont Signatures and models for syntax and operational semantics

	Reduction monads
	Graphs
	Substitution

	Syntax
	Operations
	Equations

	Semantics
	Reduction rules
	Reduction signatures

	Conclusion

