Signatures and models for syntax and operational semantics in the presence of variable binding

Ambroise Lafont ${ }^{1}$

${ }^{1}$ DAPI
IMT Atlantique

PhD supervised by N. Tabareau and T. Hirschowitz, 2019

The subject in one slide

What is a programming language, mathematically?

- In the literature, no well-established consensus.

Differential λ-calculus [Ehrhard-Regnier 2003]

~ 10 pages (section $2 \rightarrow$ beginning of section 3) describing the programming language and proving some properties.

- This thesis:
- a tentative notion of programming languages, reduction monads, and
- a discipline for automatically generating well-behaved reduction monads.

What is a programming language?

Example: arithmetic expressions in a calculator

NuMWORKS

Attention à la syntaxe

Syntax (of expressions) = formal language

- vocabulary: available symbols/keys
- grammar rules : what is a valid expression.
e.g. + is a binary operation.

What is a programming language?

Program execution
Program = valid syntactic text
Execution $=$ modification of the program:

$$
(2+2) \times 3 \xrightarrow{1 \text { execution step }} 4 \times 3 \xrightarrow{1 \text { execution step }} 12
$$

Operational semantics $=$ description of how programs execute.

What is a programming language?

A graph whose vertices are programs.

$$
3 \times 2+2 \times 2
$$

Variables $=$ placeholders for expressions

- Substitution: $(x+(5+4))[x:=12]=12+(5+4)$
- Reductions are stable under substitution

$$
\frac{x+(5+4) \rightarrow x+9}{12+(5+4) \rightarrow 12+9} .
$$

\sim Reduction monads!

A difficulty

Bound variables and α-equivalence α-equivalence:

$$
\begin{gathered}
x \mapsto 2 \times x \quad \text { should be identified with } \quad y \mapsto 2 \times y \\
\text { " } x \text { is bound by } \mapsto \text { in } x \mapsto 2 \times x \text { " }
\end{gathered}
$$

Specifying programming languages: initial semantics

- Constructing syntax and reductions may be complex (cf. differential λ-calculus).
- Often easier to describe the models.

Model \approx graph with interpretation of the operations and reductions
a model of arithmetic expressions: \mathbb{Z}

- Syntactic " + " \sim actual " + " ,
- Syntactic " \times " \sim actual " \times " , ...
- Programming language $=$ initial model.
- Initiality \Rightarrow recursion principle.

Notion of signature

- Specifies models.
- Effective iff the initial model exists.

State of the art: syntax

Two main notions of syntax:

- Substitution monoids (\approx finitary monads) [Fiore-Plotkin-Turi, 1999].
- Nominal sets [Gabbay-Pitts, 1999].
wider recursion principle
more structured models
[\mathbb{N}, Set] \quad nominal sets $\quad{ }^{\prime} \quad$ monads

This thesis: monads

State of the art: specifying syntax

Main notions of signature for monads:

- Pointed strong endofunctors [Fiore-Plotkin-Turi, 1999].
- Equational systems [Fiore-Hur, 2010].
- Modules [Hirschowitz-Maggesi, 2007].

This thesis: modules

State of the art: semantics

Semantic notions of programming language:

- Distributive laws [Plotkin-Turi, 1997].
- double categories [Meseguer, the Montanari school].

Do not cover higher-order languages.

- 2-categories [Power, Seely,...].
- relative monads [Ahrens, 2016].

Only covers congruent semantics.

Contributions

(1) Mathematical definition of programming languages as reduction monads.
(2) Specification of syntactic equations, based on modules over monads.
(3) Specification of semantics.

Systematic use of monads and modules for taking care of substitution.

Articles

- CSL 2018 about 2.
- FSCD 2019 about 2. = variant of Fiore's approach.
- POPL 2020 about 1. and 3.

All in collaboration with Benedikt Ahrens, André Hirschowitz and Marco Maggesi.

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Ingredients

- Programming languages (PLs) as graphs
- (Syntax) vertices $=$ terms
- (Semantics) arrows = reductions between terms
- Simultaneous substitution: variables \mapsto terms
- monads and modules over them

Example

λ-calculus with β-reduction:

- Syntax: $\quad S, T \quad::=x|S T| \lambda x . S$
- Modulo α-equivalence, e.g.

$$
\lambda x \cdot x=\lambda y \cdot y
$$

- Reductions: $(\lambda x . t) u \xrightarrow{\beta} t[x:=u] \quad+\quad$ congruences

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

PLs as graphs

Example: λ-calculus with β-reduction

($\lambda x . x y)$ id

- (Syntax) vertices $=$ terms e.g. $\Omega=(\lambda x . x x)(\lambda x . x x)$
- (Semantics) arrows $=$ reductions

Graphs

Definition

Graph $=$ a quadruple (A, V, σ, τ) where

$$
\begin{array}{ll}
A=\{\text { arrows }\} & \sigma=\text { source of an arrow } \\
V=\{\text { vertices }\} & \tau=\text { target of an arrow }
\end{array}
$$

$$
\begin{aligned}
& A \xrightarrow[\tau]{\sigma} V \\
& \sigma: \begin{array}{rllll}
A & \rightarrow V & \tau: & A & \rightarrow V \\
t \xrightarrow{A} u & \mapsto t & & t \xrightarrow{r} u & \mapsto u
\end{array} \\
& \sigma(r) \xrightarrow{r} \tau(r)
\end{aligned}
$$

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Simultaneous substitution

Syntax comes with substitution

terms (e.g. λ-terms) $=$ trees with free variables as (distinguished) leaves.

Simultaneous substitution made formal

Free variables indexing

$$
X \mapsto\{\text { terms taking free variables in } X\}
$$

Example: λ-calculus

Simultaneous substitution

$$
\begin{aligned}
& \forall f: X \rightarrow L(Y), \\
& L(X) \rightarrow L(Y) \\
& t \mapsto t[x \mapsto f(x)] \quad(\text { or } t[f])
\end{aligned}
$$

Monads model simultaneous substitution

λ-calculus as a monad ($L, \ldots\left[_\right], \eta$)
(1) Simultaneous substitution ($L, \ldots\left[_\right]$)
(2) Variables are terms

$$
\begin{aligned}
\eta_{X}: \quad X & \rightarrow \\
x & \mapsto \\
& \\
x & \frac{L(X)}{x}
\end{aligned}
$$

(3) Substitution laws:

$$
\underline{x}[f]=f(x) \quad t[x \mapsto \underline{x}]=t
$$

+ associativity:

$$
t[f][g]=t[x \mapsto f(x)[g]]
$$

Substitution for semantics

We saw that syntax is expected to support substitution. This is also true of semantics.

Our notion of PL:

- Syntax: a monad (L, _[_], η)
- Semantics:
- graphs $R(X) \underset{\tau_{X}}{\sigma_{X}} L(X)$ for each X

$$
R(X)=\begin{gathered}
\text { total set of reductions between } \\
\text { terms taking free variables in } X
\end{gathered}
$$

- substitution of reduction: variables \mapsto L-terms.

$$
\frac{t \xrightarrow{r} u}{t[f] \xrightarrow{r[f]} u[f]}
$$

Substitution for semantics made formal

R as a module over L

R supports L-monadic substitution:

$$
\forall f: X \rightarrow \boldsymbol{L}(Y), \quad \begin{aligned}
R(X) & \rightarrow R(Y) \\
r & \mapsto r[x \mapsto f(x)] \quad \text { (or } r[f] \text {) }
\end{aligned}
$$

+ substitution laws
Other examples of L-modules: $L, L \times L, 1, \ldots$
σ and τ as L-module morphisms
$t \xrightarrow{r} u \leadsto t^{\prime} \xrightarrow{r[f]} u^{\prime} \quad$ with $\quad\left\{\begin{array}{l}t^{\prime}=t[f] \\ u^{\prime}=u[f]\end{array}\right.$ i.e., $\quad\left\{\begin{array}{l}\sigma(r[f])=\sigma(r)[f] \\ \tau(r[f])=\tau(r)[f]\end{array}\right.$

Commutation with substitution \Leftrightarrow Module morphisms $\sigma, \tau: R \rightarrow L$.

Reduction monads

Summary: graphs + substitution.

Definition

A reduction monad $R \underset{\tau}{\stackrel{\sigma}{\Longrightarrow}} T$ consists of

- $T=$ monad ($=$ module over itself)
- $R=$ module over T
- $\sigma, \tau: R \rightarrow T$ are T-module morphisms.

Example

λ-calculus with β-reduction.
How can we specify a reduction monad?
(1) signature for the (syntactic) operations for the monad;
(2) reduction rules.

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Overview

- Syntax $=$ monad L
- Operations $=$ module morphisms $\Sigma(L) \rightarrow L$
- 1-signatures specify operations
- 2-signatures specify operations + equations.

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Operations as module morphisms

For any model of λ-calculus (in particular for L),
Application commutes with substitution

$$
(t u)\left[x \mapsto v_{x}\right]=t\left[x \mapsto v_{x}\right] u\left[x \mapsto v_{x}\right]
$$

Categorical formulation
$L \times L$ supports $\sim \sim L \times L$ is a module over L L-substitution
application commutes with substitution
 app : $L \times L \rightarrow L$ is a module morphism
[Hirschowitz-Maggesi 2007 : Modules over Monads and Linearity]

Examples of modules

We argued that syntactic operations are module morphisms. Basic examples of modules?
Module over a monad T : supports the T-monadic substitution
Examples

- T itself
- $M \times N$ for any modules M and N :

$$
\begin{gathered}
\forall(t, u) \in M(X) \times N(X), \quad X \stackrel{f}{\rightarrow} T(Y) \\
(t, u)[f]=(t[f], u[f]) \in M(Y) \times N(Y)
\end{gathered}
$$

- $M^{\prime}=$ derivative of a module M :
X extended with a fresh variable \diamond

$$
M^{\prime}(X)=M(\overparen{X \amalg\{\diamond\}})
$$

used to model an operation binding a variable (Cf next slide).

Operations as module morphisms

Operations can be combined into a single one.

Operations $=$ module morphisms $=$ maps commuting with substitution:

Example: λ-calculus

$$
\begin{aligned}
& \text { app : } \quad L \times L \rightarrow L \\
& \text { abs: } \quad L^{\prime} \quad \rightarrow L
\end{aligned} \quad\left\{\begin{aligned}
\text { abs }: L(X \amalg\{\diamond\}) & \rightarrow L(X) \\
t & \mapsto \lambda \diamond . t
\end{aligned}\right.
$$

Combine operations into a single one:

$$
\text { [app, abs] : }(L \times L) \amalg L^{\prime} \rightarrow L
$$

where (coproducts of modules M and N)

$$
(M \amalg N)(X)=M(X) \amalg N(X)
$$

1-signatures specify operations

Definition

A 1-signature Σ is a (functorial) assignment

$$
T \mapsto \Sigma(T)
$$

monad

 module over T
Definition (model of a 1-signature Σ)

A model of Σ is a pair (T, m) denoted by $\Sigma(T) \xrightarrow{m} T$ s.t.

- T is a monad
- $\Sigma(T) \xrightarrow{m} T$ is a T-module morphism

Example: λ-calculus

$$
\left[\text { app, abs] : } \Sigma_{L C}(L) \rightarrow L \quad \text { where } \Sigma_{L C}(L)=(L \times L) \amalg L^{\prime}\right.
$$

Syntax

We defined 1 -signatures and their models. When is a signature effective?
(suitable notion of model morphism [Hirschowitz-Maggesi 2012])

Definition

The syntax specified by a 1 -signature Σ is the initial object in its category of models.

Question: Does the syntax exist for every 1-signature?
Answer: No.
Counter-example: $\Sigma(R)=\mathcal{P} \circ R$

Powerset endofunctor on Set.
(for cardinality reasons)

Initial semantics for algebraic 1-signatures

We gave examples of effective 1 -signatures. They were all algebraic.

Definition

Algebraic 1-signatures $=1$-signatures built out of derivatives, finite products, disjoint unions, and the 1-signature $\Theta: T \mapsto T$.

Algebraic 1-signatures \simeq binding signatures [Fiore-Plotkin-Turi 1999] \Rightarrow specification of n-ary operations, possibly binding variables.

Theorem (Fiore-Plotkin-Turi 1999)

Syntax exists for any algebraic 1-signature.

Example
 λ-calculus

Question: Specify syntactic operations subject to some equations?
(commutative associative binary operation + of diff. λ-calculus)

Quotient of algebraic signatures

We saw that algebraic signatures are effective. Can we specify effectively operations subject to equations?

Theorem (CSL 2018)

Syntax exists for any "quotient" of algebraic 1-signatures.

Example

a commutative binary operation + :
$\forall a, b, \quad a+b=b+a$

What about an associative operation?

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Example: a commutative binary operation

Specification of a binary operation

1-signature	$T \mapsto T \times T$
model	$T \times T$
	$\downarrow+$
	T

Question What is an appropriate notion of model for a commutative binary operation?

- a monad T
- with a binary operation $\}$
a model $T \times T \xrightarrow{+} T$ of $\Theta \times \Theta$
- s.t.

where $\operatorname{swap}(t, u)=(u, t)$

Equations

$\Sigma=1$-signature (e.g. binary operation $\Sigma(T)=T \times T$)

Definition

A ¿-equation $A \underset{v}{\stackrel{u}{\longrightarrow}} B$ is a (functorial) assignment

$$
M=(\Sigma(T) \rightarrow T) \quad \mapsto \quad\left(A(M) \underset{v_{M}}{\stackrel{u_{M}}{\leftrightarrows}} B(M)\right)
$$

model of Σ parallel pair of T-module morphisms

Example (Binary commutative operation)

$$
\Sigma(T)=T \times T\left|\begin{array}{c}
T \times T \\
\stackrel{\downarrow}{t}
\end{array}\right| \begin{gathered}
+ \\
\hline
\end{gathered}
$$

2-signatures and their models

We defined equations. A set of equations yields a 2-signature.

Definition

A 2-signature is a pair (Σ, E) where

- Σ is a 1 -signature for monads
- E is a set of \sum-equations

Definition

A model of a 2-signature (Σ, E) consists of:

- a model $M=\left(\begin{array}{c}\Sigma(T) \\ \downarrow \\ T\end{array}\right)$ of Σ s.t.

$$
\forall A \underset{{ }_{v}}{\stackrel{u}{\longrightarrow}} B \in E, \quad u_{M}=v_{M}: A(M) \rightarrow B(M)
$$

morphism of models $=$ morphisms as models of Σ.

Initial semantics for algebraic 2-signatures

We defined 2-signatures and their models. When is a 2-signature effective?

Theorem (FSCD 2019)

Any algebraic 2-signature has an initial model.

Definition

A 2-signature (Σ, E) is algebraic if:

- Σ is algebraic
- E consists of elementary Σ-equations

Main instances of elementary \sum-equations

$$
A \rightrightarrows B \text { s.t. } \quad A\left(\begin{array}{c}
\Sigma(T) \\
\downarrow \\
T
\end{array}\right)=\Phi(T) \quad B\left(\begin{array}{c}
\Sigma(T) \\
\downarrow \\
T
\end{array}\right)=T
$$

for some algebraic 1-signature Φ.

$$
\text { (e.g. } \Phi(T)=T \times T \text { for commutativity) }
$$

Example: algebraic 2 -signature for differential λ-calculus

Lionel Vaux's version

$$
\begin{array}{ccccccccc}
L^{d}: s, t & := & x|s t| \lambda x . s & \mid & D s \cdot t & \mid & 0 & \mid & s+t \\
\Sigma_{L C^{d}}(T) & = & \Sigma_{L C}(T) & \amalg & T \times T & \amalg & 1 & \amalg & T \times T
\end{array}
$$

Equations

- associativity and commutativity of + , neutrality of 0 for +
- bilinearity of D_{-}_ with respect to + , left linearity of application, linearity of abstraction

$$
\lambda x .(s+t)=\lambda x . s+\lambda x . t \quad \lambda x .0=0
$$

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Specifying reduction monads

λ-calculus with (small-step) β-reduction as a reduction monad:

- vertices $=L=$ initial model of the signature of λ-calculus.
- arrows $=R, \sigma, \tau=$?
- specified through reduction rules (to be made formal):

$$
(\lambda x . t) u \rightarrow t[x:=u] \quad \frac{t \rightarrow t^{\prime}}{t u \rightarrow t^{\prime} u} \quad \cdots
$$

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Analysis of a reduction rule

Example: binary congruence for application.

hypotheses
metavariables: as a L-module L^{4} $\overbrace{t, t^{\prime}, u, u^{\prime}} \mapsto$

conclusion
Hypothesis/conclusion $=$ pair of λ-terms using metavariables

- as parallel module morphisms $L^{4} \rightrightarrows L$
- Generalization: $L \sim$ any model $\Sigma_{L C}(T) \rightarrow T$ of $\Sigma_{L C}$: (application denoted by app : $T \times T \rightarrow T$)
e.g., $\quad t u \rightarrow t^{\prime} u^{\prime}$:

$$
T^{4} \rightarrow T
$$

$$
\left(t, t^{\prime}, u, u^{\prime}\right) \mapsto \operatorname{app}(t, u)
$$

$$
\left(t, t^{\prime}, u, u^{\prime}\right) \mapsto \operatorname{app}\left(t^{\prime}, u^{\prime}\right)
$$

Reduction rules

Definition

Let $\Sigma=$ signature for monads (e.g. $\Sigma_{L C}$ for congruence for application).

Definition of Σ-reduction rules

A Σ-reduction rule $(\vec{\sigma}, \vec{\tau})$

$$
\begin{gathered}
\frac{\sigma_{1} \rightarrow \tau_{1} \quad \ldots \quad \sigma_{n} \rightarrow \tau_{n}}{\sigma_{0} \rightarrow \tau_{0}} \\
\hline
\end{gathered}
$$

assigns (functorially) to each model $\Sigma(T) \rightarrow T$:

- $V(T)=T$-module of metavariables (e.g. $V(T)=T^{4}$)
- parallel T-module morphisms $V(T) \stackrel{\sigma_{i, T}}{\stackrel{\sigma_{i, T}}{\longrightarrow}} T^{\prime \ldots \prime}$

We write

$$
\sigma_{i}, \tau_{i}: V \rightarrow \Theta^{\left(n_{i}\right)} \quad n_{i}=\text { number of derivatives }
$$

Outline

(1) Reduction monads

- Graphs
- Substitution
(2) Syntax
- Operations
- Equations
(3) Semantics
- Reduction rules
- Reduction signatures

Reduction signatures

Reduction signatures specify reduction monads.

Definition

A reduction signature is a pair (Σ, \mathfrak{R}) where

- Σ is a signature for monads (1- or 2 -signature)
- \mathfrak{R} is a family of Σ-reduction rules

Example: λ-calculus with β-reduction

- $\Sigma=\Sigma_{L C}$
- Σ-reduction rules:
- β-reduction
- congruence for application and abstraction

Models

We defined reduction signatures. What are their models?
A model of a signature (Σ, \mathfrak{R}) consists of:

- a reduction monad $R \underset{\tau}{\underset{\sim}{\sigma}} T$ with a Σ-model structure on T
- for each reduction rule

$$
\begin{array}{|c}
\frac{\sigma_{1} \rightarrow \tau_{1} \ldots \sigma_{n} \rightarrow \tau_{n}}{\sigma_{0} \rightarrow \tau_{0}} \text { op }
\end{array} \quad V \underset{\tau_{i}}{\stackrel{\sigma_{i}}{\longrightarrow}} \Theta^{\left(n_{i}\right)} \quad \text { in } \mathfrak{R},
$$

- a mapping, for each $v \in V(T)(X)$,

$$
\left(\begin{array}{c}
\sigma_{1}(v) \xrightarrow{r_{1}} \tau_{1}(v) \\
\cdots \\
\sigma_{n}(v) \xrightarrow{\not r} \tau_{n}(v)
\end{array}\right) \quad \mapsto \quad \sigma_{0}(v) \xrightarrow{o p\left(r_{1}, \ldots, r_{n}\right)} \tau_{0}(v)
$$

- compatible with substitution:

$$
o p\left(r_{1}, \ldots r_{n}\right)[f]=o p\left(r_{1}[f], \ldots, r_{n}[f]\right)
$$

Initiality

We defined models of a reduction signature. When is a signature effective?
(suitable notion of model morphism)

Theorem (POPL 2020)

Σ has an initial model (e.g. Σ is algebraic) $\Rightarrow(\Sigma, \mathfrak{R})$ has an initial model.

Examples

- λ-calculus with small-step β-reduction
- λ-ex $=\lambda$-calculus with explicit substitutions [Kesner 2009].

A Theory of Explicit Substitutions with Safe and Full Composition

Reduction signature for λ-ex

Syntax

λ-ex: λ-calculus + explicit substitution $t[x / u]$ s.t. x is bound in t : as a module morphism $L^{e x \prime} \times L^{e x} \rightarrow L^{e x}$ subject to the equation

$$
t[x / u][y / v]=t[y / v][x / u] \quad \text { if } y \notin f v(u) \text { and } x \notin f v(v)
$$

as a $\Sigma_{L^{e x}-e q u a t i o n ~} L^{e x \prime \prime} \times L^{e x} \times L^{e x} \rightrightarrows L^{e x}$.

Semantics

congruences, β-reduction ($\lambda x . t$) $u \rightarrow t[x / u], \ldots$

$$
t[x / u][y / v] \rightarrow t[y / v][x / u[y / v]] \quad \text { if } x \notin f v(u) \text { and } y \in f v(u)
$$

metavariable module: $L^{e x \prime \prime} \times L^{e x} \times L_{\diamond}^{e x} \quad\left(L_{\diamond}^{e x} \subset L^{e x \prime}\right)$

Extension of reduction monads

with associated effectivity theorem

(1) Vertices: syntax/monad \sim module of "configurations" over the syntax

Examples

- λ-calculus with small-step β-reduction cbv:
- variables \mapsto values (rather than terms)
- Thus, monad of values (rather than terms)
- Still, reductions between terms (rather than values) $=$ "configurations" over the monad of values
- π-calculus
- differential λ-calculus (without its signature though)
(2) Graph \sim Bipartite graph

Example

λ-calculus with big-step β-reduction cbv: term \rightarrow value.

Conclusion

Summary

- PLs as reduction monads
- Signatures for reduction monads with effectivity theorem

Perspectives

- Generalize reduction monads and their signatures
- specify the differential λ-calculus
- Generalize on the category of sets:
- specify simply-typed PLs: category of families of sets (indexed by simple types)
- specify Finster-Mimram's monad of weak ω-groupoids: category of globular sets

Thank you!

