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The subject in one slide

What is a programming language, mathematically?

In the literature, no well-established consensus.

Differential λ-calculus [Ehrhard-Regnier 2003]
~10 pages (section 2 → beginning of section 3) describing the
programming language and proving some properties.

This thesis:
a tentative notion of programming languages, reduction
monads, and
a discipline for automatically generating well-behaved
reduction monads.

Ambroise Lafont Signatures and models for syntax and operational semantics
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What is a programming language?
Example: arithmetic expressions in a calculator

Ambroise Lafont Signatures and models for syntax and operational semantics
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What is a programming language?
Program execution

Program = valid syntactic text
Execution = modification of the program:

(2 + 2)× 3 4× 3 12
1 execution step 1 execution step

Operational semantics = description of how programs execute.
Ambroise Lafont Signatures and models for syntax and operational semantics
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What is a programming language?
A graph whose vertices are programs.

(2 + 2)× 3

4× 3

3× 2 + 2× 2

12

6 + 2× 2 3× 2 + 4

6 + 4

10

x + (5 + 4)

x + 9

Variables = placeholders for expressions
Substitution: (x + (5 + 4))[x := 12] = 12 + (5 + 4)
Reductions are stable under substitution

x + (5 + 4)→ x + 9
12 + (5 + 4)→ 12 + 9 ·

; Reduction monads!
Ambroise Lafont Signatures and models for syntax and operational semantics
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A difficulty

Bound variables and α-equivalence
α-equivalence:

x 7→ 2× x should be identified with y 7→ 2× y

“x is bound by 7→ in x 7→ 2× x”

Ambroise Lafont Signatures and models for syntax and operational semantics
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Specifying programming languages: initial semantics

Constructing syntax and reductions may be complex
(cf. differential λ-calculus).
Often easier to describe the models.

Model ≈ graph with interpretation of the operations and reductions

a model of arithmetic expressions: Z
Syntactic “+“ ; actual “+” ,
Syntactic “×“ ; actual “×” , ...

Programming language = initial model.
Initiality ⇒ recursion principle.

Notion of signature
Specifies models.
Effective iff the initial model exists.

Ambroise Lafont Signatures and models for syntax and operational semantics
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State of the art: syntax

Two main notions of syntax:
Substitution monoids (≈ finitary monads) [Fiore-Plotkin-Turi,
1999].
Nominal sets [Gabbay-Pitts, 1999].

[N,Set] nominal sets monads

more structured modelswider recursion principle

This thesis: monads

Ambroise Lafont Signatures and models for syntax and operational semantics
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State of the art: specifying syntax

Main notions of signature for monads:
Pointed strong endofunctors [Fiore-Plotkin-Turi, 1999].
Equational systems [Fiore-Hur, 2010].
Modules [Hirschowitz-Maggesi, 2007].

This thesis: modules

Ambroise Lafont Signatures and models for syntax and operational semantics
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State of the art: semantics

Semantic notions of programming language:
Distributive laws [Plotkin-Turi, 1997].
double categories [Meseguer, the Montanari school].

Do not cover higher-order languages.
2-categories [Power, Seely,...].
relative monads [Ahrens, 2016].

Only covers congruent semantics.

Ambroise Lafont Signatures and models for syntax and operational semantics
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Contributions
1 Mathematical definition of programming languages as

reduction monads.
2 Specification of syntactic equations, based on modules over

monads.
3 Specification of semantics.

Systematic use of monads and modules for taking care of
substitution.
Articles

CSL 2018 about 2.
FSCD 2019 about 2. = variant of Fiore’s approach.
POPL 2020 about 1. and 3.

All in collaboration with Benedikt Ahrens, André Hirschowitz and
Marco Maggesi.
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Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures
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Ingredients

Programming languages (PLs) as graphs
(Syntax) vertices = terms
(Semantics) arrows = reductions between terms

Simultaneous substitution: variables 7→ terms
monads and modules over them

Example
λ-calculus with β-reduction:

Syntax: S,T ::= x | S T | λx .S
Modulo α-equivalence, e.g.

λx .x = λy .y

Reductions: (λx .t) u β−→ t[x := u] + congruences

Ambroise Lafont Signatures and models for syntax and operational semantics
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PLs as graphs
Example: λ-calculus with β-reduction

(λx . x y) id

id y

Ω

Ω Ω

β

β

β Ω

Ω β

y

β

(Syntax) vertices = terms e.g. Ω = (λx . x x) (λx . x x)
(Semantics) arrows = reductions

Ambroise Lafont Signatures and models for syntax and operational semantics
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Graphs
Definition

Graph = a quadruple (A,V , σ, τ) where

A = {arrows} σ = source of an arrow
V = {vertices} τ = target of an arrow

A
σ //
τ
// V

σ : A → V
t r−→ u 7→ t

τ : A → V
t r−→ u 7→ u

σ(r) r−→ τ(r)

Ambroise Lafont Signatures and models for syntax and operational semantics
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Simultaneous substitution
Syntax comes with substitution

terms (e.g. λ-terms) = trees with free variables as (distinguished) leaves.

t

x xy

u

γ

v

α β γ

u

γ

v

α γβ

u

γ

x 7→

y 7→

t t
[
x := u
y := v

]

γ α β γ γ

=

Ambroise Lafont Signatures and models for syntax and operational semantics
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Simultaneous substitution made formal

Free variables indexing

X 7→ {terms taking free variables in X}

Example: λ-calculus

L({x , y}) =


λz .z x

x

y

y

x y

x y

, , , , . . .


Simultaneous substitution

∀f : X → L(Y ), L(X ) → L(Y )
t 7→ t[x 7→ f (x)] (or t[f ])

Ambroise Lafont Signatures and models for syntax and operational semantics
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Monads model simultaneous substitution
λ-calculus as a monad (L,_[_], η)

1 Simultaneous substitution (L,_[_])
2 Variables are terms

ηX : X → L(X )

x 7→ x

x

3 Substitution laws:

x [f ] = f (x) t[x 7→ x ] = t

+ associativity:

t[f ][g ] = t [x 7→ f (x)[g ]]

Ambroise Lafont Signatures and models for syntax and operational semantics
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Substitution for semantics
We saw that syntax is expected to support substitution. This is also true of semantics.

Our notion of PL:
Syntax: a monad (L,_[_], η)
Semantics:

graphs R(X )
σX //
τX
// L(X ) for each X

R(X ) = total set of reductions between
terms taking free variables in X

substitution of reduction: variables 7→ L-terms.
t r−→ u

t[f ] r [f ]−−→ u[f ]

Ambroise Lafont Signatures and models for syntax and operational semantics
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Substitution for semantics made formal

R as a module over L
R supports L-monadic substitution:

∀f : X → L(Y ), R(X ) → R(Y )
r 7→ r [x 7→ f (x)] (or r [f ])

+ substitution laws

Other examples of L-modules: L, L× L, 1, . . .

σ and τ as L-module morphisms

t r−→ u ; t ′ r [f ]−−→ u′ with
{
t ′ = t[f ]
u′ = u[f ]

i.e.,
{
σ(r [f ]) = σ(r)[f ]
τ(r [f ]) = τ(r)[f ]

Commutation with substitution ⇔ Module morphisms σ, τ : R → L.

Ambroise Lafont Signatures and models for syntax and operational semantics
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Reduction monads
Summary: graphs + substitution.

Definition

A reduction monad R
σ //
τ
// T consists of

T = monad (= module over itself)
R = module over T
σ, τ : R → T are T -module morphisms.

Example
λ-calculus with β-reduction.

How can we specify a reduction monad?
1 signature for the (syntactic) operations for the monad;
2 reduction rules.

Ambroise Lafont Signatures and models for syntax and operational semantics
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Overview

Syntax = monad L
Operations = module morphisms Σ(L)→ L
1-signatures specify operations
2-signatures specify operations + equations.

Ambroise Lafont Signatures and models for syntax and operational semantics



27/53

Reduction monads Syntax Semantics Conclusion

Outline

1 Reduction monads
Graphs
Substitution

2 Syntax
Operations
Equations

3 Semantics
Reduction rules
Reduction signatures

Ambroise Lafont Signatures and models for syntax and operational semantics



28/53

Reduction monads Syntax Semantics Conclusion

Operations as module morphisms

Ambroise Lafont Signatures and models for syntax and operational semantics
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Examples of modules
We argued that syntactic operations are module morphisms. Basic examples of modules?

Module over a monad T : supports the T -monadic substitution
Examples

T itself
M × N for any modules M and N:

∀(t, u) ∈ M(X )× N(X ), X f−→ T (Y ),

(t, u)[f ] = (t[f ], u[f ]) ∈ M(Y )× N(Y )

M ′= derivative of a module M:

M ′(X ) = M(X q {�})
X extended with a fresh variable �

used to model an operation binding a variable (Cf next slide).
Ambroise Lafont Signatures and models for syntax and operational semantics
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Operations as module morphisms
Operations can be combined into a single one.

Operations = module morphisms = maps commuting with substitution:

Example: λ-calculus

app : L× L → L

abs : L′ → L
{

absX : L(X q {�})→ L(X )
t 7→ λ � .t

Combine operations into a single one:

[app, abs] : (L× L)q L′ → L

where (coproducts of modules M and N)

(M q N)(X ) = M(X )q N(X )

Ambroise Lafont Signatures and models for syntax and operational semantics
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1-signatures specify operations

Definition
A 1-signature Σ is a (functorial) assignment

monad module over T

7→ Σ(T )T

Definition (model of a 1-signature Σ)

A model of Σ is a pair (T ,m) denoted by Σ(T ) m−→ T s.t.
T is a monad
Σ(T ) m−→ T is a T -module morphism

Example: λ-calculus

[app, abs] : ΣLC (L)→ L where ΣLC (L) = (L× L)q L′

Ambroise Lafont Signatures and models for syntax and operational semantics
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Syntax
We defined 1-signatures and their models. When is a signature effective?

(suitable notion of model morphism [Hirschowitz-Maggesi 2012])

Definition
The syntax specified by a 1-signature Σ is the initial object in its
category of models.

Question: Does the syntax exist for every 1-signature?
Answer: No.

Counter-example: Σ(R) = P ◦ R

Powerset endofunctor on Set.

(for cardinality reasons)

Ambroise Lafont Signatures and models for syntax and operational semantics
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Initial semantics for algebraic 1-signatures
We gave examples of effective 1-signatures. They were all algebraic.

Definition
Algebraic 1-signatures = 1-signatures built out of derivatives,
finite products, disjoint unions, and the 1-signature Θ : T 7→ T .

Algebraic 1-signatures ' binding signatures [Fiore-Plotkin-Turi 1999]
⇒ specification of n-ary operations, possibly binding variables.

Theorem (Fiore-Plotkin-Turi 1999)
Syntax exists for any algebraic 1-signature.

Example
λ-calculus

Question: Specify syntactic operations subject to some equations?

(commutative associative binary operation + of diff. λ-calculus)
Ambroise Lafont Signatures and models for syntax and operational semantics
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Quotient of algebraic signatures

We saw that algebraic signatures are effective. Can we specify
effectively operations subject to equations?

Theorem (CSL 2018)
Syntax exists for any “quotient” of algebraic 1-signatures.

Example
a commutative binary operation +:

∀a, b, a + b = b + a

Ambroise Lafont Signatures and models for syntax and operational semantics
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Example: a commutative binary operation

Specification of a binary operation
1-signature T 7→ T × T

model
T × T

+��
T

Question What is an appropriate notion of model for a
commutative binary operation?

a monad T
with a binary operation

a model T × T +−→ T of Θ×Θ

s.t.

T × T

+

''

swap --

T
T × T +

:: where swap(t, u) = (u, t)

Ambroise Lafont Signatures and models for syntax and operational semantics
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Equations
Σ = 1-signature (e.g. binary operation Σ(T ) = T × T )

Definition

A Σ-equation A
u //
v
// B is a (functorial) assignment

model of Σ parallel pair of T -module morphisms

(
A(M)

uM //
vM
// B(M)

)
M = (Σ(T )→ T ) 7→

Example (Binary commutative operation)

Σ(T ) = T × T

∣∣∣∣∣∣∣∣∣
T × T

+
��
T

7→ T × T

+

%%

swap ++
T

T × T +
>>

Ambroise Lafont Signatures and models for syntax and operational semantics
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2-signatures and their models
We defined equations. A set of equations yields a 2-signature.

Definition
A 2-signature is a pair (Σ,E ) where

Σ is a 1-signature for monads
E is a set of Σ-equations

Definition
A model of a 2-signature (Σ,E ) consists of:

a model M =

 Σ(T )
��
T

 of Σ s.t.

∀ A
u //
v
// B ∈ E , uM = vM : A(M)→ B(M)

morphism of models = morphisms as models of Σ.
Ambroise Lafont Signatures and models for syntax and operational semantics
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Initial semantics for algebraic 2-signatures
We defined 2-signatures and their models. When is a 2-signature effective?

Theorem (FSCD 2019)
Any algebraic 2-signature has an initial model.

Definition
A 2-signature (Σ,E ) is algebraic if:

Σ is algebraic
E consists of elementary Σ-equations

Main instances of elementary Σ-equations

A ⇒ B s.t. A

 Σ(T )
��
T

 = Φ(T ) B

 Σ(T )
��
T

 = T

for some algebraic 1-signature Φ.
(e.g. Φ(T ) = T × T for commutativity)

Ambroise Lafont Signatures and models for syntax and operational semantics
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Example: algebraic 2-signature for differential λ-calculus
Lionel Vaux’s version

Ld : s, t ::= x | s t |λx .s | Ds · t | 0 | s + t
ΣLCd (T ) = ΣLC (T ) q T × T q 1 q T × T

Equations
associativity and commutativity of +, neutrality of 0 for +
bilinearity of D_ · _ with respect to +, left linearity of
application, linearity of abstraction

λx .(s + t) = λx .s + λx .t λx .0 = 0

Ambroise Lafont Signatures and models for syntax and operational semantics
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Specifying reduction monads

λ-calculus with (small-step) β-reduction as a reduction monad:
σ //
τ
//

monadmodule over L

R L

module morphisms

vertices = L = initial model of the signature of λ-calculus.
arrows = R, σ, τ = ?

specified through reduction rules (to be made formal):

(λx .t) u → t[x := u] t → t ′

t u → t ′ u . . .

Ambroise Lafont Signatures and models for syntax and operational semantics
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Analysis of a reduction rule
Example: binary congruence for application.

t → t ′ u → u′
t u → t ′ u′

hypotheses

conclusion

t, t ′, u, u′ 7→

metavariables: as a L-module L4

Hypothesis/conclusion = pair of λ-terms using metavariables
as parallel module morphisms L4 ⇒ L
Generalization: L ; any model ΣLC (T )→ T of ΣLC :

(application denoted by app : T × T → T )

e.g., t u → t ′ u′ : T 4 → T
(t, t ′, u, u′) 7→ app(t, u)
(t, t ′, u, u′) 7→ app(t ′, u′)

Ambroise Lafont Signatures and models for syntax and operational semantics
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Reduction rules
Definition

Let Σ = signature for monads (e.g. ΣLC for congruence for application).

Definition of Σ-reduction rules

A Σ-reduction rule (~σ, ~τ) σ1 → τ1 . . . σn → τn
σ0 → τ0

assigns (functorially) to each model Σ(T )→ T :

V (T ) = T -module of metavariables (e.g. V (T ) = T 4)

parallel T -module morphisms V (T )
σi,T //
τi,T
// T ′...′

We write
σi , τi : V → Θ(ni ) ni = number of derivatives

Ambroise Lafont Signatures and models for syntax and operational semantics
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Reduction signatures

Reduction signatures specify reduction monads.

Definition
A reduction signature is a pair (Σ,R) where

Σ is a signature for monads (1- or 2-signature)
R is a family of Σ-reduction rules

Example: λ-calculus with β-reduction
Σ = ΣLC
Σ-reduction rules:

β-reduction
congruence for application and abstraction

Ambroise Lafont Signatures and models for syntax and operational semantics
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Models
We defined reduction signatures. What are their models?

A model of a signature (Σ,R) consists of:

a reduction monad R
σ //
τ
// T with a Σ-model structure on T

for each reduction rule

σ1 → τ1 . . . σn → τn
σ0 → τ0

op V
σi //
τi
// Θ(ni ) in R,

a mapping, for each v ∈ V (T )(X ),σ1(v) r1−→ τ1(v)
. . .

σn(v) rn−→ τn(v)

 7→ σ0(v) op(r1,...rn)−−−−−−→ τ0(v)

compatible with substitution:
op(r1, . . . rn)[f ] = op(r1[f ], . . . , rn[f ])

Ambroise Lafont Signatures and models for syntax and operational semantics
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Initiality
We defined models of a reduction signature. When is a signature effective?

(suitable notion of model morphism)

Theorem (POPL 2020)
Σ has an initial model (e.g. Σ is algebraic) ⇒ (Σ,R) has an initial
model.

Examples
λ-calculus with small-step β-reduction
λ-ex = λ-calculus with explicit substitutions [Kesner 2009].

A Theory of Explicit Substitutions with Safe and Full Composition

Ambroise Lafont Signatures and models for syntax and operational semantics
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Reduction signature for λ-ex

Syntax
λ-ex: λ-calculus + explicit substitution t[x/u] s.t. x is bound in t:

as a module morphism Lex ′ × Lex → Lex

subject to the equation

t[x/u][y/v ] = t[y/v ][x/u] if y /∈ fv(u) and x /∈ fv(v)

as a ΣLex -equation Lex ′′ × Lex × Lex ⇒ Lex .

Semantics
congruences, β-reduction (λx .t) u → t[x/u], . . .

t[x/u][y/v ]→ t[y/v ][x/u[y/v ]] if x /∈ fv(u) and y ∈ fv(u)

metavariable module: Lex ′′ × Lex × Lex
� (Lex

� ⊂ Lex ′)
Ambroise Lafont Signatures and models for syntax and operational semantics



52/53

Reduction monads Syntax Semantics Conclusion

Extension of reduction monads
with associated effectivity theorem

1 Vertices: syntax/monad ; module of “configurations” over
the syntax

Examples
λ-calculus with small-step β-reduction cbv:

variables 7→ values (rather than terms)
Thus, monad of values (rather than terms)
Still, reductions between terms (rather than values) =
“configurations” over the monad of values

π-calculus

differential λ-calculus (without its signature though)

2 Graph ; Bipartite graph
Example
λ-calculus with big-step β-reduction cbv: term → value.

Ambroise Lafont Signatures and models for syntax and operational semantics
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Conclusion

Summary
PLs as reduction monads
Signatures for reduction monads with effectivity theorem

Perspectives
Generalize reduction monads and their signatures

specify the differential λ-calculus
Generalize on the category of sets:

specify simply-typed PLs: category of families of sets (indexed
by simple types)
specify Finster-Mimram’s monad of weak ω-groupoids:
category of globular sets

Thank you!

Ambroise Lafont Signatures and models for syntax and operational semantics
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