Signatures and models for syntax and operational semantics in the presence of variable binding

Ambroise Lafont¹

¹DAPI IMT Atlantique

PhD supervised by N. Tabareau and T. Hirschowitz, 2019

The subject in one slide

What is a programming language, mathematically?

• In the literature, no well-established consensus.

Differential λ -calculus [Ehrhard-Regnier 2003]

 ${\sim}10$ pages (section 2 \rightarrow beginning of section 3) describing the programming language and proving some properties.

- This thesis:
 - a tentative notion of programming languages, reduction monads, and
 - a discipline for automatically generating well-behaved reduction monads.

What is a programming language?

Example: arithmetic expressions in a calculator

Syntax (of expressions) = formal language

- · vocabulary : available symbols/keys
- grammar rules : what is a valid expression.
- e.g. + is a binary operation.

What is a programming language? Program execution

Program = valid syntactic text
Execution = modification of the program:

Operational semantics = description of how programs execute.

What is a programming language?

A graph whose vertices are programs.

Variables = placeholders for expressions

- Substitution: (x + (5 + 4))[x := 12] = 12 + (5 + 4)
- Reductions are stable under substitution

$$\frac{x + (5 + 4) \to x + 9}{12 + (5 + 4) \to 12 + 9}$$

\rightsquigarrow Reduction monads!

A difficulty

Bound variables and α -equivalence

 α -equivalence:

 $x \mapsto 2 \times x$ should be identified with $y \mapsto 2 \times y$

"x is bound by \mapsto in $x \mapsto 2 \times x$ "

Specifying programming languages: initial semantics

- Constructing syntax and reductions may be complex (cf. differential λ-calculus).
- Often easier to describe the models.

Model \approx graph with interpretation of the operations and reductions

a model of arithmetic expressions: $\mathbb Z$			
• Syntactic "+"	\sim	actual "+",	
• Syntactic "×"	\sim	actual " $ imes$ ",	

- Programming language = initial model.
- Initiality \Rightarrow recursion principle.

Notion of signature

- Specifies models.
- Effective iff the initial model exists.

State of the art: syntax

Two main notions of syntax:

- Substitution monoids (\approx finitary monads) [Fiore-Plotkin-Turi, 1999].
- Nominal sets [Gabbay-Pitts, 1999].

wider recursion principle

more structured models

This thesis: monads

State of the art: specifying syntax

Main notions of signature for monads:

- Pointed strong endofunctors [Fiore-Plotkin-Turi, 1999].
- Equational systems [Fiore-Hur, 2010].
- Modules [Hirschowitz-Maggesi, 2007].

This thesis: modules

State of the art: semantics

Semantic notions of programming language:

- Distributive laws [Plotkin-Turi, 1997].
- double categories [Meseguer, the Montanari school].

Do not cover higher-order languages.

- 2-categories [Power, Seely,...].
- relative monads [Ahrens, 2016].

Only covers congruent semantics.

Contributions

- Mathematical definition of programming languages as reduction monads.
- Specification of syntactic equations, based on modules over monads.
- **③** Specification of **semantics**.

Systematic use of monads and modules for taking care of substitution.

Articles

- CSL 2018 about 2.
- FSCD 2019 about 2. = variant of Fiore's approach.
- POPL 2020 about 1. and 3.

All in collaboration with Benedikt Ahrens, André Hirschowitz and Marco Maggesi.

Outline

Reduction monads

- Graphs
- Substitution
- 2 Syntax
 - Operations
 - Equations

3 Semantics

- Reduction rules
- Reduction signatures

Outline

Reduction monads

- Graphs
- Substitution

2 Syntax

- Operations
- Equations

3 Semantics

- Reduction rules
- Reduction signatures

Ingredients

- Programming languages (PLs) as graphs
 - (Syntax) vertices = terms
 - (Semantics) arrows = reductions between terms
- Simultaneous substitution: variables \mapsto terms
 - monads and modules over them

Example

 $\lambda\text{-calculus}$ with $\beta\text{-reduction}$:

• Syntax: $S, T ::= x \mid S T \mid \lambda x.S$

Modulo α-equivalence, e.g.

$$\lambda x.x = \lambda y.y$$

• **Reductions:** $(\lambda x.t) u \xrightarrow{\beta} t[x := u] + \text{congruences}$

14/53

Outline

Reduction monads

- Graphs
- Substitution

2 Syntax

- Operations
- Equations

3 Semantics

- Reduction rules
- Reduction signatures

PLs as graphs Example: λ -calculus with β -reduction

- (Syntax) vertices = terms e.g. $\Omega = (\lambda x. xx)(\lambda x. xx)$
- (Semantics) arrows = reductions

Graphs Definition

Graph = a quadruple (A, V, σ, τ) where

$$A \xrightarrow[\tau]{\sigma} V$$

$$\sigma: \begin{array}{cccc} \sigma : & A & \rightarrow V & \tau : & A & \rightarrow V \\ & t \xrightarrow{r} u & \mapsto t & & t \xrightarrow{r} u & \mapsto u \\ & & \sigma(r) \xrightarrow{r} \tau(r) \end{array}$$

Outline

Reduction monadsGraphs

Substitution

2 Syntax

- Operations
- Equations

3 Semantics

- Reduction rules
- Reduction signatures

Simultaneous substitution

Syntax comes with substitution

terms (e.g. λ -terms) = trees with free variables as (distinguished) leaves.

Ambroise Lafont Signatures and models for syntax and operational semantics

Simultaneous substitution made formal

Free variables indexing

$$X \mapsto \{ \text{terms taking free variables in } X \}$$

Simultaneous substitution

$$\forall f: X \to L(Y),$$

$$egin{array}{rcl} L(X) & o L(Y) \ t & \mapsto t[x\mapsto f(x)] & (ext{or } t[f]) \end{array}$$

20/53

Monads model simultaneous substitution λ -calculus as a monad $(L, _[], \eta)$

- Simultaneous substitution $(L, _[_])$
- Variables are terms

$$\eta_X: X \to L(X)$$
$$x \mapsto \underbrace{x}_{x}$$

Substitution laws:

$$\underline{x}[f] = f(x)$$
 $t[x \mapsto \underline{x}] = t$

+ associativity:

$$t[f][g] = t[x \mapsto f(x)[g]]$$

Substitution for semantics

We saw that syntax is expected to support substitution. This is also true of semantics.

Our notion of PL:

- Syntax: a monad (L, [_], η)
- Semantics:

• graphs
$$R(X) \xrightarrow[\tau_X]{\sigma_X} L(X)$$
 for each X

 $R(X) = \begin{array}{c} \text{total set of reductions between} \\ \text{terms taking free variables in } X \end{array}$

substitution of reduction: variables → L-terms.

$$\frac{t \xrightarrow{r} u}{t[f] \xrightarrow{r[f]} u[f]}$$

22/53

Substitution for semantics made formal

R as a **module** over L

R supports *L*-monadic substitution:

$$\forall f: X \to \boldsymbol{L}(Y),$$

$$\begin{array}{rcl} \mathcal{R}(X) & \to \mathcal{R}(Y) \\ r & \mapsto r[x \mapsto f(x)] & (\text{or } r[f] \end{array}$$

+ substitution laws

Other examples of *L*-modules: *L*, $L \times L$, 1, ...

σ and τ as L-module morphisms

$$t \xrightarrow{r} u \rightsquigarrow t' \xrightarrow{r[f]} u'$$
 with $\begin{cases} t' = t[f] \\ u' = u[f] \end{cases}$ i.e., $\begin{cases} \sigma(r[f]) = \sigma(r)[f] \\ \tau(r[f]) = \tau(r)[f] \end{cases}$

Commutation with substitution \Leftrightarrow Module morphisms $\sigma, \tau : R \rightarrow L$.

Reduction monads

Summary: graphs + substitution.

Definition

- A reduction monad $R \xrightarrow[\tau]{\sigma} T$ consists of
 - T = monad (= module over itself)
 - R = module over T
 - $\sigma, \tau : R \to T$ are *T*-module morphisms.

Example

 λ -calculus with β -reduction.

How can we specify a reduction monad?

- signature for the (syntactic) operations for the monad;
- 2 reduction rules.

Outline

Reduction monads

- Graphs
- Substitution

- Operations
- Equations

3 Semantics

- Reduction rules
- Reduction signatures

Overview

- Syntax = monad L
- Operations = module morphisms $\Sigma(L) \rightarrow L$
- 1-signatures specify operations
- 2-signatures specify operations + equations.

Outline

Reduction monads

- Graphs
- Substitution

2 SyntaxOperationsEquations

3 Semantics

- Reduction rules
- Reduction signatures

Operations as module morphisms

For any model of λ -calculus (in particular for L),

Application commutes with substitution

$$(t \ u)[x \mapsto v_x] = t[x \mapsto v_x] \ u[x \mapsto v_x]$$

Categorical formulation

 $L \times L$ supports L-substitution

 $\mathcal{N}_{\mathcal{P}}$ $L \times L$ is a **module over** L

application commutes with substitution

 \sim

 $\operatorname{app}: L \times L \to L \text{ is a}$

module morphism

[Hirschowitz-Maggesi 2007 : Modules over Monads and Linearity]

Examples of modules

We argued that syntactic operations are module morphisms. Basic examples of modules?

Module over a monad T: supports the T-monadic substitution

Examples

- T itself
- $M \times N$ for any modules M and N:

$$\forall (t, u) \in M(X) \times N(X), \qquad X \stackrel{f}{\rightarrow} T(Y),$$

$$\boxed{(t,u)[f] = (t[f], u[f])} \in M(Y) \times N(Y)$$

• M' = **derivative** of a module M:

X extended with a fresh variable
$$\diamond$$

 $M'(X) = M(X \amalg \{\diamond\})$

used to model an operation binding a variable (Cf next slide).

Operations as module morphisms Operations can be combined into a single one.

Operations = module morphisms = maps commuting with substitution:

Example: λ -calculus

$$\begin{array}{ll} \mathsf{app}: \ L \times L & \to L \\ \mathsf{abs}: \ L' & \to L \end{array} \quad \left\{ \begin{array}{l} \mathsf{abs}_X: L(X \amalg \{\diamond\}) \to L(X) \\ t \mapsto \lambda \diamond .t \end{array} \right.$$

Combine operations into a single one:

$$[\mathsf{app}, \mathsf{abs}] : (L \times L) \amalg L' \to L$$

where (*coproducts* of modules M and N)

$$(M \amalg N)(X) = M(X) \amalg N(X)$$

1-signatures specify operations

Definition

Definition (model of a 1-signature Σ)

A model of Σ is a pair (T, m) denoted by $\Sigma(T) \xrightarrow{m} T$ s.t.

- T is a monad
- $\Sigma(T) \xrightarrow{m} T$ is a *T*-module morphism

Example: λ -calculus

 $[app, abs] : \Sigma_{LC}(L) \to L$ where $\Sigma_{LC}(L) = (L \times L) \amalg L'$

Syntax

We defined 1-signatures and their models. When is a signature effective?

(suitable notion of model morphism [Hirschowitz-Maggesi 2012])

Definition

The syntax specified by a 1-signature Σ is the initial object in its category of models.

Question: Does the syntax exist for every 1-signature? Answer: No. Counter-example: $\Sigma(R) = \mathcal{P} \circ R$ Powerset endofunctor on *Set*.

(for cardinality reasons)

Initial semantics for algebraic 1-signatures We gave examples of effective 1-signatures. They were all algebraic.

Definition

Algebraic 1-signatures = 1-signatures built out of derivatives, finite products, disjoint unions, and the 1-signature $\Theta : T \mapsto T$.

Algebraic 1-signatures \simeq binding signatures [Fiore-Plotkin-Turi 1999] \Rightarrow specification of *n*-ary operations, possibly binding variables.

Theorem (Fiore-Plotkin-Turi 1999)

Syntax exists for any algebraic 1-signature.

Example

 λ -calculus

Question: Specify syntactic operations subject to some equations?

(*commutative associative* binary operation + of diff. λ -calculus)

Quotient of algebraic signatures

We saw that algebraic signatures are effective. Can we specify effectively operations subject to equations?

Theorem (CSL 2018)

Syntax exists for any "quotient" of algebraic 1-signatures.

Example

a *commutative* binary operation +:

$$\forall a, b, \quad a+b=b+a$$

What about an associative operation?

Outline

Reduction monads

- Graphs
- Substitution

Equations

3 Semantics

- Reduction rules
- Reduction signatures

Example: a commutative binary operation

Question What is an appropriate notion of model for a **commutative** binary operation?

a monad T

a model
$$T imes T \xrightarrow{+} T$$
 of $\Theta imes \Theta$

- with a binary operation
- s.t.

where swap(t, u) = (u, t)

Equations

$$\Sigma = 1$$
-signature (e.g. binary operation $\Sigma(T) = T \times T$)

Definition

A
$$\Sigma$$
-equation $A \xrightarrow{u} B$ is a (functorial) assignment

$$M = (\Sigma(T) \to T) \quad \mapsto \quad \left(A(M) \xrightarrow[v_M]{} B(M) \right)$$

model of $\boldsymbol{\Sigma}$

parallel pair of
$$T$$
-module morphisms

Example (Binary commutative operation)

$$\Sigma(T) = T \times T$$

$$\begin{array}{cccc} T \times T & & + & \\ \downarrow + & \mapsto & T \times T & T \\ T & & swap & T \times T & + \end{array}$$

Ambroise Lafont Signatures and models for syntax and operational semantics

2-signatures and their models

We defined equations. A set of equations yields a 2-signature.

Definition

A **2-signature** is a pair (Σ, E) where

- Σ is a 1-signature for monads
- E is a set of Σ-equations

Definition

A **model** of a 2-signature (Σ, E) consists of:

• a model
$$M = \begin{pmatrix} \Sigma(T) \\ \downarrow \\ T \end{pmatrix}$$
 of Σ s.t.

$$\forall A \xrightarrow{u}_{v} B \in E, \quad u_M = v_M : A(M) \to B(M)$$

morphism of models = morphisms as models of Σ .

Initial semantics for algebraic 2-signatures

We defined 2-signatures and their models. When is a 2-signature effective?

Theorem (FSCD 2019)

Any algebraic 2-signature has an initial model.

Definition

A 2-signature (Σ, E) is **algebraic** if:

- Σ is algebraic
- E consists of **elementary** Σ -equations

Main instances of elementary Σ -equations

$$A \rightrightarrows B \text{ s.t.} \qquad A \begin{pmatrix} \Sigma(T) \\ \psi \\ T \end{pmatrix} = \Phi(T) \qquad B \begin{pmatrix} \Sigma(T) \\ \psi \\ T \end{pmatrix} = T$$

for some *algebraic* 1-signature Φ .

(e.g. $\Phi(T) = T \times T$ for commutativity)

Ambroise Lafont

Signatures and models for syntax and operational semantics

40/53

Example: algebraic 2-signature for differential $\lambda\text{-calculus}$ Lionel Vaux's version

Equations

- associativity and commutativity of +, neutrality of 0 for +
- bilinearity of D_·_ with respect to +, left linearity of application, linearity of abstraction

$$\lambda x.(s+t) = \lambda x.s + \lambda x.t$$
 $\lambda x.0 = 0$

41/53

Outline

Reduction monads

- Graphs
- Substitution
- 2 Syntax
 - Operations
 - Equations

3 Semantics

- Reduction rules
- Reduction signatures

Specifying reduction monads

 λ -calculus with (small-step) β -reduction as a reduction monad:

- vertices = L = initial model of the signature of λ -calculus.
- arrows = $R, \sigma, \tau = ?$

• specified through *reduction rules* (to be made formal):

$$(\lambda x.t) u \to t[x := u] \qquad \frac{t \to t'}{t \, u \to t' \, u} \qquad \dots$$

Outline

Reduction monads

- Graphs
- Substitution
- 2 Syntax
 - Operations
 - Equations

- Reduction rules
- Reduction signatures

Analysis of a reduction rule Example: binary congruence for application.

Hypothesis/conclusion = pair of λ -terms using metavariables

- as parallel module morphisms $L^4 \rightrightarrows L$
- Generalization: L → any model Σ_{LC}(T) → T of Σ_{LC}: (application denoted by app : T × T → T)

e.g.,
$$t \ u \to t' \ u'$$
: $T^4 \to T$
 $(t, t', u, u') \mapsto \operatorname{app}(t, u)$
 $(t, t', u, u') \mapsto \operatorname{app}(t', u')$

Reduction rules

Let Σ = signature for monads (e.g. Σ_{LC} for congruence for application).

Definition of Σ -reduction rules

A
$$\Sigma$$
-reduction rule $(\vec{\sigma}, \vec{\tau})$

$$\frac{\sigma_1 \to \tau_1 \quad \dots \quad \sigma_n \to \tau_n}{\sigma_0 \to \tau_0}$$

assigns (functorially) to each model $\Sigma(\mathcal{T}) \rightarrow \mathcal{T}$:

• V(T) = T-module of metavariables (e.g. $V(T) = T^4$)

• parallel *T*-module morphisms $V(T) \xrightarrow[\tau_{i,T}]{\tau_{i,T}} T' \xrightarrow[\tau]{}$

We write

 $\sigma_i, \tau_i: V \to \Theta^{(n_i)}$ $n_i =$ number of derivatives

Outline

Reduction monads

- Graphs
- Substitution
- 2 Syntax
 - Operations
 - Equations

- Reduction rules
- Reduction signatures

Reduction signatures

Reduction signatures specify reduction monads.

Definition

A reduction signature is a pair (Σ, \mathfrak{R}) where

- Σ is a signature for monads (1- or 2-signature)
- \mathfrak{R} is a family of Σ -reduction rules

Example: λ -calculus with β -reduction

- $\Sigma = \Sigma_{LC}$
- Σ-reduction rules:
 - $\bullet \ \beta \text{-reduction}$
 - congruence for application and abstraction

Models

We defined reduction signatures. What are their models?

A model of a signature (Σ,\mathfrak{R}) consists of:

- a reduction monad $R \xrightarrow[\tau]{\sigma} T$ with a Σ -model structure on T
- for each reduction rule

$$\frac{\sigma_1 \to \tau_1 \dots \sigma_n \to \tau_n}{\sigma_0 \to \tau_0} \circ \rho \quad V \xrightarrow{\sigma_i}{\tau_i} \Theta^{(n_i)} \quad \text{in } \mathfrak{R},$$

• a mapping, for each $v \in V(\mathcal{T})(X)$,

$$\begin{pmatrix} \sigma_1(v) \xrightarrow{r_1} \tau_1(v) \\ \dots \\ \sigma_n(v) \xrightarrow{r_n} \tau_n(v) \end{pmatrix} \quad \mapsto \quad \sigma_0(v) \xrightarrow{op(r_1,\dots,r_n)} \tau_0(v)$$

• compatible with substitution:

$$op(r_1,\ldots,r_n)[f] = op(r_1[f],\ldots,r_n[f])$$

Initiality We defined models of a reduction signature. When is a signature effective?

(suitable notion of model morphism)

Theorem (POPL 2020)

 Σ has an initial model (e.g. Σ is algebraic) \Rightarrow (Σ,\mathfrak{R}) has an initial model.

Examples

- λ -calculus with small-step β -reduction
- λ -ex = λ -calculus with explicit substitutions [Kesner 2009].
- A Theory of Explicit Substitutions with Safe and Full Composition

Reduction signature for λ -ex

Syntax

 λ -ex: λ -calculus + explicit substitution t[x/u] s.t. x is bound in t:

```
as a module morphism L^{ex\prime} \times L^{ex} \rightarrow L^{ex}
```

subject to the equation

t[x/u][y/v] = t[y/v][x/u] if $y \notin fv(u)$ and $x \notin fv(v)$

as a $\Sigma_{L^{ex}}$ -equation $L^{ex''} \times L^{ex} \times L^{ex} \rightrightarrows L^{ex}$.

Semantics

congruences, β -reduction ($\lambda x.t$) $u \rightarrow t[x/u], \ldots$

 $t[x/u][y/v] \rightarrow t[y/v][x/u[y/v]]$ if $x \notin fv(u)$ and $y \in fv(u)$

metavariable module: $L^{ex''} \times L^{ex} \times L^{ex}_{\diamond}$ $(L^{ex}_{\diamond} \subset L^{ex'})$

Extension of reduction monads

with associated effectivity theorem

 $\textcircled{\label{eq:constraint} \bullet Vertices: syntax/monad} \sim \mathsf{module} \ \mathsf{of} \ ``configurations'' \ \mathsf{over} \ \mathsf{the} \ \mathsf{syntax}$

Examples

- $\lambda\text{-calculus}$ with small-step $\beta\text{-reduction}$ cbv:
 - variables \mapsto values (rather than terms)
 - Thus, monad of values (rather than terms)
 - Still, reductions between **terms** (rather than values) = "configurations" over the monad of values
- π -calculus
- differential λ -calculus (without its signature though)
- 2 Graph \rightsquigarrow Bipartite graph

Example

 λ -calculus with big-step β -reduction cbv: term \rightarrow value.

Conclusion

Summary

- PLs as reduction monads
- Signatures for reduction monads with effectivity theorem

Perspectives

- Generalize reduction monads and their signatures
 - specify the differential $\lambda\text{-calculus}$
- Generalize on the category of sets:
 - specify simply-typed PLs: category of families of sets (indexed by simple types)
 - specify Finster-Mimram's monad of weak ω -groupoids: category of globular sets

Thank you!