
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Semantics of pattern unification
Anonymous Author(s)

ABSTRACT

It is well-known that first-order unification corresponds to the con-

struction of equalisers in a (multi-sorted) Lawvere theory. We show

that Miller’s decidable pattern fragment of second-order unification

can be interpreted similarly; the involved Lawvere theories are no

longer freely generated by operations. To illustrate our semantic

analysis, we present a generic unification algorithm implemented

in Agda. The syntax with metavariables given as input of the algo-

rithm is parameterised by a notion of signature generalising binding

signatures, covering a wide range of examples, including ordered

𝜆-calculus, (intrinsic) polymorphic syntax such as System F, and

of course Miller’s original application, normalised simply-typed

𝜆-calculus.

ACM Reference Format:

Anonymous Author(s). 2024. Semantics of pattern unification. In Proceedings

of Submitted to LICS ’24. ACM, New York, NY, USA, 18 pages. https://doi.

org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Unification is one of the basic algorithms of type inference. It takes

two terms 𝑡 and𝑢, each containing some metavariables, and returns

a substitution 𝜎 which assigns a term to each metavariable, such

that 𝑡 [𝜎] = 𝑢 [𝜎]. This substitution is typically the most general

one, in the sense that that every other unifier for these two terms

factors through it. That is, given any other unifier 𝛿 , there exists a

unique 𝛿 ′ such that 𝛿 = 𝜎 [𝛿 ′].
Unification is useful in type inference because it offers a conve-

nient way of handling the instantiation of quantifiers: whenever a

polymorphic type of the form∀𝑎. is eliminated, a fresh metavariable

can be substituted for the quantified variable 𝑎, and then unifica-

tion can be used to incrementally deduce what the instantiation

should have been, thereby sparing the programmer from having to

instantiate quantifiers manually.

However, while recent results in type inference, such as Dunfield

and Krishnaswami [10], or Zhao et al. [32], make heavy use of uni-

fication in their algorithms, they do not do so in a well-abstracted

way. They present a set of rules (i.e., a first-order functional pro-

gram) which explicitly re-implement unification, and as a result

their correctness proofs have to re-establish many of the fundamen-

tal results of unification theory individually. Almost no lemmas in

the proof of the one algorithm can be re-used in the other, which

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Submitted to LICS ’24, 2024, Tallinn

© 2024 ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

is particularly problematic given the sizes of the proofs involved:

Dunfield and Krishnaswami [10] comes with a 190 page appendix,

and Zhao et al’s Coq proof is many thousands of lines long.

Worse still, if anymodifications to the unification algorithmwere

needed, then the entire metatheory would need to be redone. For

example, both of these systems make use of first-order unification

(i.e., for types without binders in them), by retaining the ML-style

monotype/polytype distinction. Something as simple as innocuous

as the addition of a monomorphic type with a binder (for example,

a recursive type 𝜇𝑎.𝐴[𝑎]) would require moving from first-order

unification to something like Miller pattern unification [21], where

metavariables are no longer constant but may be applied to distinct

variables. This would in turn require completely redoing all of the

proofs in the two systems. Type inference for dependent types

also uses Miller patterns, of course, but the example of recursive

types shows that this issue arises long before we reach the most

sophisticated type theories.

Fixing this problem would require doing two things. First, these

type inference algorithms need to be rephrased in such a way that

they invoke unification as a subroutine, which would enable us to

make use of generic results about unification theory. Second, the

unification algorithm needs to be formulated generically enough

that it can be plugged into multiple contexts without needing sub-

stantial modifications to the guts of the proof.

Contributions

In this paper, we take one further step towards addressing the mod-

ularity problem in the theory of type inference, by showing how

to formulate Miller pattern unification in a generic, abstract style.

Like prior developments [30], we parameterise the algorithm over a

notion of binding signature which is very general: it has a customis-

able notion of context, which makes it possible to handle examples

such as simply-typed second-order syntax, ordered lambda calculi,

and intrinsic polymorphic syntax (such as System F). This lets us

derive several new unification algorithms simply as instantiations

of our framework.

Furthermore, our notion of signature can be axiomatised in a

categorical style, which leads to an almost purely categorical proof

of the correctness of our algorithm -- each of the rules of our pat-

tern unification algorithm end up corresponding to some standard

categorical construction, and each part of our proof essentially just

shows that the construction actually has the expected properties.

This is similar to Rydeheard and Burstall’s similar reconstruction

of first-order unification [28], and serves as evidence that we have

correctly factored the unification algorithm.

Plan of the paper

In section §2, we present our generic pattern unification algorithm,

parameterised by our generalised notion of binding signature. We

introduce categorical semantics of pattern unification in Section §3.

We show correctness of the two phases of the unification algo-

rithm in Section §4 and Section §5. Termination and completeness

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Submitted to LICS ’24, 2024, Tallinn Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

are justified in Sections §6. Related work is finally discussed in

Section §7.

General notations

Given a list ®𝑥 = (𝑥1, . . . , 𝑥𝑛) and a list of positions ®𝑝 = (𝑝1, . . . , 𝑝𝑚)
taken in {1, . . . , 𝑛}, we denote (𝑥𝑝1 , . . . , 𝑥𝑝𝑚) by 𝑥 ®𝑝 .

Given a category B, we denote its opposite category by B𝑜𝑝
.

If 𝑎 and 𝑏 are two objects of B, we denote the set of morphisms

between 𝑎 and 𝑏 by homB (𝑎, 𝑏). We denote the identity morphism

at an object 𝑥 by 1𝑥 . We denote the coproduct of two objects 𝐴

and 𝐵 by 𝐴 + 𝐵 and the coproduct of a family of objects (𝐴𝑖)𝑖∈𝐼 by∐
𝑖∈𝐼 𝐴𝑖 , and similarly for morphisms. If 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐴′ → 𝐵,

we denote the induced morphism 𝐴 +𝐴′ → 𝐵 by 𝑓 , 𝑔. Coproduct

injections 𝐴 𝑗 →
∐
𝑖∈𝐼 𝐴𝑖 are typically denoted by 𝑖𝑛 𝑗 . Let 𝑇 be a

monad on a category B. We denote its unit by 𝜂, and its Kleisli

category by 𝐾𝑙𝑇 : the objects are the same as those of B, and a

Kleisli morphism from 𝐴 to 𝐵 is a morphism 𝐴 → 𝑇𝐵 in B. We

denote the Kleisli composition of 𝑓 : 𝐴→ 𝑇𝐵 and 𝑔 : 𝐵 → 𝑇𝐶 by

𝑓 [𝑔] : 𝐴→ 𝑇𝐶 .

2 PRESENTATION OF THE ALGORITHM

In this section, we start by describing a pattern unification algo-

rithm for pure 𝜆-calculus, summarised in Figure 4. Then we present

our generic algorithm (Figure 5). The type signatures of the imple-

mented functions are listed in Figure 3 and will be explained in the

following subsections.

We show the most relevant parts of the Agda code; the inter-

ested reader can check the full implementation in the supplemental

material. We tend to use Agda as a programming language rather

than as a theorem prover. This means that the definitions of our

data structures typically do not mention the properties (such as

associativity for a category), and we leave for future work the task

of mechanising the correctness proof of the algorithm. (The proper

formalisation of category theory in proof assistants remains a sig-

nificant challenge in its own right.) Furthermore, we disable the

termination checker and provide instead a termination proof on

paper in Section §6.1. Even used purely as a programming language,

dependent types are very helpful in structuring the implementation.

The Agda code is much simpler than an earlier, less-strongly typed,

version written in OCaml.

2.1 An example: pure 𝜆-calculus.

Consider the syntax of pure 𝜆-calculus extendedwith patternmetavari-

ables. We list the Agda code in Figure 1, together with a correspond-

ing presentation as inductive rules generating the syntax. We write

Γ;𝑛 ⊢ 𝑡 to mean 𝑡 is a well-formed 𝜆-term in the context Γ;𝑛, con-
sisting of two parts:

(1) a metavariable context (or metacontext) Γ, which is either a

formal error context ⊥, or a proper context, as a list (𝑀1 :

𝑚1, . . . , 𝑀𝑝 :𝑚𝑝), of metavariable declarations specifying

metavariable symbols 𝑀𝑖 together with their arities, i.e,

their number of arguments𝑚𝑖 ;

(2) a variable context, which is a mere natural number indicat-

ing the highest possible free variable.

The error metacontext ⊥ will prove useful to handle failure in the

unification algorithm. The unification algorithm is fundamentally a

partial one, since unifiers may not exist. Instead of modelling partial-

ity with some kind of error monad, we instead make our unification

algorithm total by adding a formal error, so that a metacontext is

either a proper metacontext or a formal error metacontext, and

the unification algorithm either returns a proper substitution or an

error substitution. Our approach to failure actually arises from the

categorical semantics (see Section §3.1).

In the inductive rules, we use the bold face 𝚪 for any proper

metacontext. In the Agda code, we adopt a nameless encoding of

proper metacontexts: they are mere lists of metavariable arities, and

metavariables are referred to by their index in the list. The type of

metacontexts MetaContext is formally defined as Maybe (List N),
whereMaybe𝑋 is an inductive typewith an error constructor⊥ and

a success constructor ⌊−⌋ taking as argument an element of type

𝑋 . Therefore, 𝚪 typically translates into ⌊Γ⌋ in the implementation.

To alleviate notations, we also adopt a dotted convention in Agda

to mean that a successful metacontext is involved. For example,

MetaContext· and Tm· Γ 𝑛 are respectively defined as List N and

Tm ⌊Γ⌋ 𝑛.
The last term constructor ! builds a well-formed term in any error

context ⊥;𝑛. We call it an error term: it is the only one available

in such contexts. Proper terms, i.e., terms well-formed in a proper

metacontext, are built from application, 𝜆-abstraction and variables:

they generate the (proper) syntax of 𝜆-calculus. Note that ! cannot

occur as a sub-term of a proper term.

Remark 2.1. The names of constructors of 𝜆-calculus for applica-

tion, 𝜆-abstraction, and variables, are dotted to indicate that they

are only available in a proper metacontext. “Improper” versions

of those, defined in any metacontext, are also implemented in the

obvious way, coinciding with the constructors in a proper context,

or returning ! in the error context.

Free variables are indexed from 1 and we use the De Bruijn level

convention: the variable bound in 𝚪;𝑛 ⊢ 𝜆𝑡 is 𝑛+1, not 0, as it would
be using De Bruijn indices [9]. In Agda, variables in the variable

context 𝑛 consist of elements of Fin 𝑛, the type of natural numbers

between
1
1 and 𝑛. Let us focus on the last constructor building a

metavariable application in the context 𝚪;𝑛. The argument of type

𝑚 ∈ 𝚪 is an index of any element𝑚 in the list 𝚪. The constructor also

takes an argument of type𝑚 ⇒ 𝑛, which unfolds as Vec (Fin n) m:

this is the type of lists of size𝑚 consisting of elements of Fin 𝑛, that
is, natural numbers between 1 and𝑛. Note this does not fully enforce

the pattern restriction: metavariable arguments are not required

to be distinct. However, our unification algorithm is guaranteed to

produce correct outputs only if this constraint is satisfied in the

inputs.

The Agda implementation of metavariable substitutions for 𝜆-

calculus is listed in the first box of Figure 2. We call a substitution

successful if it targets a proper metacontext, proper if the domain is

proper. Note that any successful substitution is proper because there

is only one metavariable substitution 1⊥ from the error context:

it is a formal identity substitution, targeting itself. A metavariable

substitution 𝜎 : 𝚪 → Δ from a proper context assigns to each

metavariable𝑀 of arity𝑚 in 𝚪 a term Δ;𝑚 ⊢ 𝜎𝑀 .

1Fin 𝑛 is actually defined in the standard library as an inductive type designed to be

(canonically) isomorphic with {0, . . . , 𝑛 − 1}.
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Syntax of 𝜆-calculus (Section §2.1)

data Tm : MetaContext→ N→ Set
Tm· Γ n = Tm ⌊ Γ ⌋ n

MetaContext· = List N
MetaContext = Maybe MetaContext·

⇒ : N→ N→ Set
m⇒ n = Vec (Fin n) m

data Tm where
App· : ∀ {Γ n}→ Tm· Γ n→ Tm· Γ n→ Tm· Γ n

Lam· : ∀ {Γ n}→ Tm· Γ (1 + n)→ Tm· Γ n

Var· : ∀ {Γ n}→ Fin n→ Tm· Γ n

() : ∀ {Γ n m}→ m ∈ Γ→ m⇒ n→ Tm· Γ n

! : ∀ {n}→ Tm ⊥ n

1 ≤ 𝑖 ≤ 𝑛
𝚪;𝑛 ⊢ 𝑖

𝚪;𝑛 ⊢ 𝑡 𝚪;𝑛 ⊢ 𝑢
𝚪;𝑛 ⊢ 𝑡 𝑢

𝚪;𝑛 + 1 ⊢ 𝑡
𝚪;𝑛 ⊢ 𝜆𝑡

𝑀 :𝑚 ∈ 𝚪

𝑥1, . . . ,𝑥𝑚∈{1, . . . ,𝑛} distinct︷ ︸︸ ︷
𝑥 :𝑚 ⇒ 𝑛

𝚪;𝑛 ⊢ 𝑀 (𝑥1, . . ., 𝑥𝑚)

⊥;𝑎 ⊢ !
App : ∀ {Γ n}→ Tm Γ n→ Tm Γ n→ Tm Γ n

App {⊥} ! ! = !
App {⌊ Γ ⌋} t u = App· t u

Lam : ∀ {Γ n}→ Tm Γ (1 + n)→ Tm Γ n

Lam {⊥} ! = !
Lam {⌊ Γ ⌋} t = Lam· t

Var : ∀ {Γ n}→ Fin n→ Tm Γ n

Var {⊥} i = !
Var {⌊ Γ ⌋} i = Var· i

Figure 2: Metavariable substitution

– Proper substitutions

Γ ·−→ Δ = ⌊ Γ ⌋ −→ Δ

– Successful substitutions

Γ ·−→· Δ = ⌊ Γ ⌋ −→ ⌊ Δ ⌋
data _−→_ where

[] : ∀ {Δ}→ ([] ·−→ Δ)
, : ∀ {Γ Δ m}→ Tm Δ m→ (Γ ·−→ Δ)→ (m :: Γ ·−→ Δ)
1⊥ : ⊥ −→ ⊥

𝜆-calculus (Section §2.1)

[]t : ∀ {Γ n}→ Tm Γ n→∀ {Δ}→ (Γ −→ Δ)→ Tm Δ n

App· t u [𝜎]t = App (t [𝜎]t) (u [𝜎]t)
Lam· t [𝜎]t = Lam (t [𝜎]t)
Var· i [𝜎]t = Var i
M (x) [𝜎]t = nth 𝜎 M { x }
! [1⊥]t = !

Γ;𝑛 ⊢ 𝑡 𝜎 : Γ → Δ

Δ;𝑛 ⊢ 𝑡 [𝜎]

[]s : ∀ {Γ Δ E}→ (Γ −→ Δ)→ (Δ −→ E)→ (Γ −→ E)
[] [𝜎]s = []
(t , 𝛿) [𝜎]s = t [𝜎]t , 𝛿 [𝜎]s
1⊥ [1⊥]s = 1⊥

𝛿 : Γ → Δ 𝜎 : Δ→ 𝐸

𝛿 [𝜎]︸︷︷︸
𝑀 ↦→𝛿𝑀 [𝜎]

: Γ → 𝐸

Generic syntax (Section §2.2)

[]t : ∀ {Γ a}→ Tm Γ a→∀ {Δ}→ (Γ −→ Δ)→ Tm Δ a

[]s : ∀ {Γ Δ E}→ (Γ −→ Δ)→ (Δ −→ E)→ (Γ −→ E)

Rigid· o 𝛿 [𝜎]t = Rigid o (𝛿 [𝜎]s)
M (x) [𝜎]t = nth 𝜎 M { x }
! [1⊥]t = !

Γ;𝑎 ⊢ 𝑡 𝜎 : Γ → Δ

Δ;𝑎 ⊢ 𝑡 [𝜎]

[] [𝜎]s = []
(t , 𝛿) [𝜎]s = t [𝜎]t , 𝛿 [𝜎]s
1⊥ [1⊥]s = 1⊥

𝛿 : Γ → Δ 𝜎 : Δ→ 𝐸

𝛿 [𝜎]︸︷︷︸
𝑀 ↦→𝛿𝑀 [𝜎]

: Γ → 𝐸

This assignment extends (through a recursive definition) to any

term 𝚪;𝑛 ⊢ 𝑡 , yielding a term Δ;𝑛 ⊢ 𝑡 [𝜎]. Note that the congruence
cases involve improper versions of the operations (Remark 2.1),

as the target metacontext may not be proper. The base case is

𝑀 (𝑥1, . . . , 𝑥𝑚) [𝜎] = 𝜎𝑀 {𝑥}, where −{𝑥} is variable renaming, de-

fined by recursion. Renaming a 𝜆-abstraction requires extending the

renaming 𝑥 : 𝑝 ⇒ 𝑞 to 𝑥 ↑ : 𝑝 + 1⇒ 𝑞 + 1 to take into account the

additional bound variable 𝑝 + 1, which is renamed to 𝑞 + 1. Then,
(𝜆𝑡){𝑥} is defined as 𝜆(𝑡{𝑥 ↑}). While metavariable substitutions

change the metacontext of the substituted term, renamings change

the variable context.

The identity substitution 1
𝚪
: 𝚪 → 𝚪 is defined by the term

𝑀 (1, . . . ,𝑚) for each metavariable declaration 𝑀 : 𝑚 ∈ 𝚪. The

composition 𝛿 [𝜎] : 𝚪1 → Γ3 of two substitutions 𝛿 : 𝚪1 → Γ2 and
𝜎 : Γ2 → Γ3 is defined as𝑀 ↦→ 𝛿𝑀 [𝜎].

A unifier of two terms Γ;𝑛 ⊢ 𝑡,𝑢 is a substitution 𝜎 : Γ → Δ
such that 𝑡 [𝜎] = 𝑢 [𝜎]. A most general unifier (later abbreviated as

mgu) of 𝑡 and 𝑢 is a unifier 𝜎 : Γ → Δ that uniquely factors any

other unifier 𝛿 : Γ → Δ′, in the sense that there exists a unique

𝛿 ′ : Δ→ Δ′ such that 𝛿 = 𝜎 [𝛿 ′].
Remark 2.2. Given a metacontext Γ, there is a single terminal

substitution !𝑠 : Γ → ⊥, which maps any metavariable to the only

available term ! if Γ is proper, or is the identity substitution 1⊥
otherwise. Any term substituted by !𝑠 yields the error term !, since

it is the only one in the metacontext ⊥. As a consequence,
• !𝑠 : Γ → ⊥ is uniquely factored by any other substitution

𝜎 : Γ → Δ as the composition of 𝜎 with !𝑠 : Δ→ ⊥
• !𝑠 unifies any pair of terms.

Remark 2.3. Because of the additional error context, our notion

of unification differs from the standard presentation, which is re-

covered by focusing only on successful substitutions. However, it

follows from Remark 2.2 that mgus in the standard setting are still

mgus in our setting. Moreover, when there is no successful unifier,

the terminal substitution is a mgu.

The main property of pattern unification is that the mgu of any

pair of terms exists as soon as there exists a unifier. Remark 2.3

shows that we can actually get rid of the latter condition: the non-

existence of unifiers (for example, when unifying 𝑡1 𝑡2 with 𝜆𝑢) is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Submitted to LICS ’24, 2024, Tallinn Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

restated as !𝑠 being the mgu. Accordingly, our implementation does

not explicitly fail. Given two terms Γ;𝑛 ⊢ 𝑡,𝑢 as input, the Agda

function unify returns a context Δ, which is ⊥ in case there is no

successful unifier, and a substitution 𝜎 : Γ → Δ. We denote such

a situation by Γ ⊢ 𝑡 = 𝑢 ⇒ 𝜎 ⊣ Δ, leaving the variable context

𝑛 implicit: the symbol ⇒ separates the input and the output of

the unification algorithm, which is the mgu of 𝑡 and 𝑢, although

this property of the output substitution is not explicit in the type

signature (see Figure 3).

This unification function recursively inspects the structure of the

given terms until reaching a metavariable at the top-level, as seen

in the second box of Figure 4. The last two cases handle unification

of two error terms, and unification of two different rigid term

constructors (application, 𝜆-abstraction, or variables), resulting in

failure.

When reaching a metavariable application𝑀 (𝑥) at the top-level
of either term in a metacontext 𝚪, denoting by 𝑡 the other term,

three situations must be considered:

(1) 𝑡 is a metavariable application𝑀 (𝑦);
(2) 𝑡 is not a metavariable application and𝑀 occurs deeply in

𝑡 ;

(3) 𝑀 does not occur in 𝑡 .

The occur-check function returns Same-MVar 𝑦 in the first case,

Cycle in the second case, and No-Cycle 𝑡 ′ in the last case, where 𝑡 ′

is 𝑡 but considered in the context 𝚪 without𝑀 , denoted by 𝚪\𝑀 .

In the first case, the line let 𝑝, 𝑧 = commonPositions 𝑚 𝑥 𝑦

computes the vector of common positions of 𝑥 and 𝑦, that is, the

maximal vector of (distinct) positions (𝑧1, . . . , 𝑧𝑝) such that 𝑥®𝑧 =

𝑦®𝑧 . We denote
2
such a situation by 𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝 . The most

general unifier 𝜎 coincides with the identity substitution except

that𝑀 :𝑚 is replaced by a fresh metavariable 𝑃 : 𝑝 in the context

𝚪, and 𝜎 maps𝑀 to 𝑃 (𝑧).

Example 2.4. Let 𝑥,𝑦, 𝑧 be three distinct variables, and let us

consider unification of𝑀 (𝑥,𝑦) and𝑀 (𝑧, 𝑥). Given a unifier 𝜎 , since

𝑀 (𝑥,𝑦) [𝜎] = 𝜎𝑀 {1 ↦→ 𝑥, 2 ↦→ 𝑦} and 𝑀 (𝑧, 𝑥) [𝜎] = 𝜎𝑀 {1 ↦→
𝑧, 2 ↦→ 𝑥} must be equal, 𝜎𝑀 cannot depend on the variables 1 and

2. It follows that the most general unifier is 𝑀 ↦→ 𝑃 , replacing 𝑀

with a fresh constant metavariable 𝑃 . A similar argument shows

that the most general unifier of𝑀 (𝑥,𝑦) and𝑀 (𝑧,𝑦) is𝑀 ↦→ 𝑃 (2).

The corresponding rule Same-MVar does not stipulate how to

generate the fresh metavariable symbol 𝑃 , although there is an

obvious choice, consisting in taking𝑀 which has just been removed

from the context 𝚪. Accordingly, the implementation keeps𝑀 but

changes its arity to 𝑝 , resulting in a context denoted by 𝚪 [𝑀 : 𝑝].
The second case tackles unification of a metavariable application

with a term in which the metavariable occurs deeply. It is handled

by the failing rule Cycle: there is no unifier because the size of

both hand sides can never match after substitution.

The last case described by the rule No-cycle is unification of

𝑀 (𝑥) with a term 𝑡 in which 𝑀 does not occur. This kind of uni-

fication problem is handled specifically by a previously defined

function prune, which we now describe. The intuition is that𝑀 (𝑥)
and 𝑡 should be unified by replacing 𝑀 with 𝑡 [𝑥𝑖 ↦→ 𝑖]. However,
2
The similarity with the above introduced notation is no coincidence: as we will see

(Remark 3.11), both are (co)equalisers.

this only makes sense if the free variables of 𝑡 are in 𝑥 . For example,

if 𝑡 is a variable that does not occur in 𝑥 , then obviously there is

no unifier. Nonetheless, it is possible to prune the outbound vari-

ables in 𝑡 as long as they only occur in metavariable arguments,

by restricting the arities of those metavariables. As an example,

if 𝑡 is a metavariable application 𝑁 (𝑥,𝑦), then although the free

variables are not all included in 𝑥 , the most general unifier still

exists, essentially replacing 𝑁 with 𝑀 , discarding the outbound

variables 𝑦.

For this pruning phase, we use the notation Γ ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎 ⊣
Δ, where 𝑡 is a term in the metacontext Γ, while 𝑥 is the argument

of the metavariable whose arity𝑚 is left implicit, as well as its (irrel-

evant) name. The output is a metacontext Δ, together with a term

𝑡 ′ in context Δ;𝑚, and a substitution 𝜎 : Γ → Δ. If Γ is proper, this

is precisely the data for the most general unifier of 𝑡 and𝑀 (𝑥), con-
sidered in the extended metacontext𝑀 :𝑚, Γ. Following the above

pruning intuition, 𝑡 ′ is the term 𝑡 where the outbound variables

have been pruned, in case of success. This justifies the type signa-

ture of the prune in Figure 3. This function recursively inspects its

argument. The base metavariable case corresponds to unification

of𝑀 (𝑥) and𝑀′ (𝑦) where𝑀 and𝑀′ are distinct metavariables. In

this case, the line let 𝑝, 𝑥 ′, 𝑦′ = commonValues 𝑚 𝑥 𝑦 computes

the vectors of common value positions (𝑥 ′
1
, . . . , 𝑥 ′𝑝) and (𝑦′1, . . . , 𝑦

′
𝑝)

between 𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑚′ , i.e., the pair of maximal lists

(®𝑥 ′, ®𝑦′) of distinct positions such that 𝑥 ®𝑥 ′ = 𝑦 ®𝑦′ . We denote
3
such

a situation by 𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝 . The most general unifier

𝜎 coincides with the identity substitution except that the metavari-

ables 𝑀 and 𝑀′ are removed from the context and replaced by a

single metavariable declaration 𝑃 : 𝑝 . Then, 𝜎 maps𝑀 to 𝑃 (𝑥 ′) and
𝑀′ to 𝑃 (𝑦′).

Example 2.5. Let 𝑥,𝑦, 𝑧 be three distinct variables. The most

general unifier of𝑀 (𝑥,𝑦) and 𝑁 (𝑧, 𝑥) is𝑀 ↦→ 𝑁 ′ (1), 𝑁 ↦→ 𝑁 ′ (2).
The most general unifier of𝑀 (𝑥,𝑦) and 𝑁 (𝑧) is𝑀 ↦→ 𝑁 ′, 𝑁 ↦→ 𝑁 ′.

As for the rule Same-Var, the corresponding rule P-Flex does

not stipulate how to generate the fresh metavariable symbol 𝑃 ,

although the implementation makes an obvious choice, reusing the

name𝑀 .

The intuition for the application case is that if we want to unify

𝑀 (𝑥) with 𝑡 𝑢, we can refine 𝑀 (𝑥) to be 𝑀1 (𝑥) 𝑀2 (𝑥), where 𝑀1

and 𝑀2 are two fresh metavariables to be unified with 𝑡 and 𝑢.

Assume that those two unification problems yield 𝑡 ′ and 𝑢′ as
replacements for 𝑡 and 𝑢, as well as substitution 𝜎1 and 𝜎2, then𝑀

should be replaced accordingly with 𝑡 ′ [𝜎2] 𝑢′. Note that this really
involves improper application, taking into account the following

three subcases at once.

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎1 ⊣ 𝚫1
𝚫1 ⊢ 𝑢 [𝜎1] :> 𝑥 ⇒ 𝑢′;𝜎2 ⊣ 𝚫2

𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ 𝑡 ′ [𝜎2] 𝑢′;𝜎1 [𝜎2] ⊣ 𝚫2

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎1 ⊣ 𝚫1
𝚫1 ⊢ 𝑢 [𝜎1] :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
⊥ ⊢ ! :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥

3
The similarity with the notation for the pruning phase is no coincidence: both can be

interpreted as pullbacks (or pushouts), as we will see in Remark 4.3.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 3: Type signatures of the functions implemented in Figure 4 and Figure 5

record _−→? Γ : Set k’ where
constructor _◀_
field
Δ : MetaContext
𝜎 : Γ −→ Δ

record [_]∪_−→? m Γ : Set k’ where
constructor _◀_
field
Δ : MetaContext
u,𝜎 : (Tm Δ m) × (Γ −→ Δ)

record _∪_−→? (Γ : MetaContext·)(Γ’ : MetaContext)
: Set (i ⊔ j ⊔ k) where

constructor _◀_
field
Δ : MetaContext
𝛿 ,𝜎 : (Γ ·−→ Δ) × (Γ’ −→ Δ)

prune : ∀ {Γ a m}→ Tm Γ a→ (m⇒ a)→ [m]∪ Γ −→?
prune-𝜎 : ∀ {Γ Γ’ Γ” }→ (Γ’ ·−→ Γ)→ (Γ” =⇒ Γ’)→ Γ” ∪ Γ −→?

unify-flex-* : ∀ {Γ m a}→ m ∈ Γ→ (m⇒ a)→ Tm· Γ a→ Γ ·−→?
unify : ∀ {Γ a}→ Tm Γ a→ Tm Γ a→ Γ −→?
unify-𝜎 : ∀ {Γ Γ’}→ (Γ’ −→ Γ)→ (Γ’ −→ Γ)→ (Γ −→?)

Figure 4: Pattern unification for 𝜆-calculus (Section §2.1)

prune {⌊ Γ ⌋} (M : m (x)) y =

let p , x’ , y’ = commonValues m x y

in Γ [M : p] ·◀ ((M : p) (y’) , M ↦→-(x’))

𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝

𝚪 [𝑀 :𝑚] ⊢ 𝑀 (𝑥) :> 𝑦 ⇒
𝑃 (𝑦′);𝑀 ↦→ 𝑃 (𝑥 ′) ⊣ 𝚪 [𝑃 : 𝑝]

P-Flex

prune ! y = ⊥ ◀ (! , !𝑠)

⊥ ⊢ ! :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
P-Fail

prune (App· t u) x =
let Δ1 ◀ (t’ , 𝜎1) = prune t x

Δ2 ◀ (u’ , 𝜎2) = prune (u [𝜎1]t) x
in Δ2 ◀ (App (t’ [𝜎2]t) u’ , 𝜎1 [𝜎2]s)

prune (Lam· t) x =
let Δ ◀ (t’ , 𝜎) = prune t (x ↑)
in Δ ◀ (Lam t’ , 𝜎)

prune {Γ} (Var· i) x with i { x }−1
... | ⊥ = ⊥ ◀ (! , !𝑠)
... | ⌊ PreImage j ⌋ = Γ ◀ (Var j , 1𝑠)

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎1 ⊣ Δ1

Δ1 ⊢ 𝑢 [𝜎1] :> 𝑥 ⇒ 𝑢′;𝜎2 ⊣ Δ2

𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ 𝑡 ′ [𝜎2] 𝑢′;𝜎1 [𝜎2] ⊣ Δ2

𝚪 ⊢ 𝑡 :> 𝑥 ↑ ⇒ 𝑡 ′;𝜎 ⊣ Δ
𝚪 ⊢ 𝜆𝑡 :> 𝑥 ⇒ 𝜆𝑡 ′;𝜎 ⊣ Δ

𝑖 ∉ 𝑥

𝚪 ⊢ 𝑖 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
𝑖 = 𝑥 𝑗

𝚪 ⊢ 𝑖 :> 𝑥 ⇒ 𝑗 ; 1
𝚪
⊣ 𝚪

unify t (M (x)) = unify-flex-* M x t

unify (M (x)) t = unify-flex-* M x t

unify-flex-* {Γ} {m} M x t

with occur-check M t

... | Same-MVar y =

let p , z = commonPositions m x y

in Γ [M : p] ·◀ M ↦→-(z)
... | Cycle = ⊥ ◀ !𝑠
... | No-Cycle t’ =
let Δ ◀ (u , 𝜎) = prune t’ x
in Δ ◀ M ↦→ u , 𝜎

𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝

𝚪 [𝑀 :𝑚] ⊢ 𝑀 (𝑥) = 𝑀 (𝑦) ⇒
𝑀 ↦→ 𝑃 (𝑧) ⊣ 𝚪 [𝑃 : 𝑝]

Same-MVar

𝑀 ∈ 𝑡 𝑡 ≠ 𝑀 (. . .)
𝚪, 𝑀 :𝑚 ⊢ 𝑀 (𝑥) = 𝑡 ⇒ !𝑠 ⊣ ⊥

Cycle

𝑀 ∉ 𝑡 𝚪\𝑀 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎 ⊣ Δ
𝚪 ⊢ 𝑀 (𝑥) = 𝑡 ⇒ 𝑀 ↦→ 𝑡 ′, 𝜎 ⊣ Δ No-cycle

(+ symmetric rules)

unify (App· t u) (App· t’ u’) =
let Δ1 ◀ 𝜎1 = unify t t’

Δ2 ◀ 𝜎2 = unify (u [𝜎1]t) (u’ [𝜎1]t)
in Δ2 ◀ 𝜎1 [𝜎2]s

unify (Lam· t) (Lam· t’) = unify t t’

unify {Γ} (Var· i) (Var· j) with i Fin.
?

= j

... | no _ = ⊥ ◀ !𝑠

... | yes _ = Γ ◀ 1𝑠

𝚪 ⊢ 𝑡 = 𝑡 ′ ⇒ 𝜎1 ⊣ Δ1

Δ1 ⊢ 𝑢 [𝜎1] = 𝑢′ [𝜎2] ⇒ 𝜎2 ⊣ Δ2

𝚪 ⊢ 𝑡 𝑢 = 𝑡 ′ 𝑢′ ⇒ 𝜎1 [𝜎2] ⊣ Δ2

𝚪 ⊢ 𝑡 = 𝑡 ′ ⇒ 𝜎 ⊣ Δ
𝚪 ⊢ 𝜆𝑡 = 𝜆𝑡 ′ ⇒ 𝜎 ⊣ Δ

𝑖 ≠ 𝑗

𝚪 ⊢ 𝑖 = 𝑗 ⇒ !𝑠 ⊣ ⊥ 𝚪 ⊢ 𝑖 = 𝑖 ⇒ 1Γ ⊣ 𝚪

unify ! ! = ⊥ ◀ !𝑠 ⊥ ⊢ ! = !⇒ !𝑠 ⊣ ⊥
U-Fail unify _ _ = ⊥ ◀ !𝑠

𝑜 ≠ 𝑜′ (rigid term constructors)

𝚪 ⊢ 𝑜 (®𝑡) = 𝑜′ (®𝑡 ′) ⇒ !𝑠 ⊣ ⊥

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Submitted to LICS ’24, 2024, Tallinn Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 5: Our generic pattern unification algorithm

prune {⌊ Γ ⌋} (M : m (x)) y =

let p , x’ , y’ = pullback m x y in

Γ [M : p] ·◀ ((M : p) (y’) , M ↦→-(x’))
Same as the rule P-Flex in Figure 4.

prune ! y = ⊥ ◀ (! , !𝑠)

Same as the rule P-Fail in Figure 4.

prune (Rigid· o 𝛿) x with o { x }−1
... | ⊥ = ⊥ ◀ (! , !𝑠)
... | ⌊ PreImage o’ ⌋ =
let Δ ◀ (𝛿 ’ , 𝜎) = prune-𝜎 𝛿 (x ^ o’)
in Δ ◀ (Rigid o’ 𝛿 ’ , 𝜎)

𝑜 ≠ . . . {𝑥}
𝚪 ⊢ 𝑜 (𝛿) :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥

P-Rig-Fail

𝚪 ⊢ 𝛿 :> 𝑥𝑜
′
⇒ 𝛿 ′;𝜎 ⊣ Δ 𝑜 = 𝑜′{𝑥}

𝚪 ⊢ 𝑜 (𝛿) :> 𝑥 ⇒ 𝑜′ (𝛿 ′);𝜎 ⊣ Δ
P-Rig

prune-𝜎 {Γ} [] [] = Γ ◀ ([] , 1𝑠)
prune-𝜎 (t , 𝛿) (x0 :: xs) =
let Δ1 ◀ (t’ , 𝜎1) = prune t x0

Δ2 ◀ (𝛿 ’ , 𝜎2) = prune-𝜎 (𝛿 [𝜎1]s) xs
in Δ2 ◀ ((t’ [𝜎2]t , 𝛿 ’) , (𝜎1 [𝜎2]s))

Γ ⊢ () :> () ⇒ (); 1Γ ⊣ Γ
P-Empty

Γ ⊢ 𝑡 :> 𝑥0 ⇒ 𝑡 ′;𝜎1 ⊣ Δ1

Δ1 ⊢ 𝛿 [𝜎1] :> 𝑥 ⇒ 𝛿 ′;𝜎2 ⊣ Δ2

Γ ⊢ 𝑡, 𝛿 :> 𝑥0, 𝑥 ⇒
𝑡 ′ [𝜎2], 𝛿 ′;𝜎1 [𝜎2] ⊣ Δ2

P-Split

unify-flex-* is defined as in Figure 4, replacing commonPositions with equaliser .

unify t (M (x)) = unify-flex-* M x t

unify (M (x)) t = unify-flex-* M x t

See the rules Same-MVar, Cycle, and No-Cycle in Figure 4.

unify (Rigid· o 𝛿) (Rigid· o’ 𝛿 ’) with o

?

= o’

... | no _ = ⊥ ◀ !𝑠

... | yes ≡.refl = unify-𝜎 𝛿 𝛿 ’

𝑜 ≠ 𝑜′

𝚪 ⊢ 𝑜 (𝛿) = 𝑜′ (𝛿 ′) ⇒ !𝑠 ⊣ ⊥
Clash

𝚪 ⊢ 𝛿 = 𝛿 ′ ⇒ 𝜎 ⊣ Δ
𝚪 ⊢ 𝑜 (𝛿) = 𝑜 (𝛿 ′) ⇒ 𝜎 ⊣ ΔU-Rig

unify ! ! = ⊥ ◀ !𝑠 Same as the rule U-Fail in Figure 4.

unify-𝜎 {Γ} [] [] = Γ ◀ 1𝑠
unify-𝜎 (t1 , 𝛿1) (t2 , 𝛿2) =
let Δ ◀ 𝜎 = unify t1 t2

Δ’ ◀ 𝜎’ = unify-𝜎 (𝛿1 [𝜎]s) (𝛿2 [𝜎]s)
in Δ’ ◀ 𝜎 [𝜎’]s

unify-𝜎 1⊥ 1⊥ = ⊥ ◀ !𝑠

Γ ⊢ () = () ⇒ 1Γ ⊣ Γ
U-Empty

Γ ⊢ 𝑡1 = 𝑡2 ⇒ 𝜎 ⊣ Δ Δ ⊢ 𝛿1 [𝜎] = 𝛿2 [𝜎] ⇒ 𝜎′ ⊣ Δ′

Γ ⊢ 𝑡1, 𝛿1 = 𝑡2, 𝛿2 ⇒ 𝜎 [𝜎′] ⊣ Δ′
U-Split

⊥ ⊢ 1⊥ = 1⊥ ⇒ !𝑠 ⊣ ⊥
U-Id-Fail

Figure 6: Generalised binding signatures in Agda

record Signature i j k : Set (lsuc (i ⊔ j ⊔ k)) where
field
A : Set i
⇒ : A→ A→ Set j
id : ∀ {a}→ (a⇒ a)
◦ : ∀ {a b c}→ (b⇒ c)→ (a⇒ b)→ (a⇒ c)
O : A→ Set k
𝛼 : ∀ {a}→ O a→ List A

– Functoriality components

{} : ∀ {a b}→ O a→ (a⇒ b)→ O b

^ : ∀ {a b}(x : a⇒ b)(o : O a)→ 𝛼 o =⇒ 𝛼 (o { x })

The same intuition applies for 𝜆-abstraction, but here we ap-

ply the fresh metavariable corresponding to the body of the 𝜆-

abstraction to the bound variable 𝑛 + 1, which needs not be pruned.

In the variable case, 𝑖{𝑥}−1 returns the index 𝑗 such that 𝑖 = 𝑥 𝑗 , or

fails if no such 𝑗 exist.

This ends our description of the unification algorithm, in the

specific case of pure 𝜆-calculus.

2.2 Generalisation

In this section, we show how to abstract over 𝜆-calculus to get a

generic algorithm for pattern unification, parameterised by a new

notion of signature to account for syntax with metavariables. We

split this notion in two parts:

(1) a notion of generalised binding signature, or GB-signature

(formally introduced in Definition 3.13), specifying a syntax

with metavariables, for which unification problems can be

stated;

(2) some additional structures used in the algorithm to solve

those unification problems, as well as properties ensuring

its correctness, making the GB-signature pattern-friendly

(see Definition 3.15).

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 7: Syntax generated by a GB-signature

MetaContext· = List A
MetaContext = Maybe MetaContext·

data Tm : MetaContext→ A
→ Set (i ⊔ j ⊔ k)

Tm· Γ a = Tm ⌊ Γ ⌋ a

data Tm where
Rigid· : ∀ {Γ a}(o : O a)→ (𝛼 o ·−→· Γ)
→ Tm· Γ a

() : ∀ {Γ a m}→ m ∈ Γ→ m⇒ a

→ Tm· Γ a

! : ∀ {a}→ Tm ⊥ a

𝑜 ∈ 𝑂 (𝑎)

”𝛼𝑜
®𝑡−→Γ”︷ ︸︸ ︷

𝚪;𝑜1 ⊢ 𝑡1 . . . Γ;𝑜𝑛 ⊢ 𝑡𝑛
𝚪;𝑎 ⊢ 𝑜 (𝑡1, . . . , 𝑡𝑛)

Rig

𝑀 :𝑚 ∈ 𝚪 𝑥 ∈ homA (𝑚,𝑎)
𝚪;𝑎 ⊢ 𝑀 (𝑥) Flex

⊥;𝑛 ⊢ !

This separation is motivated by the fact that in the case of 𝜆-calculus,

the vectors of common (value) positions as well as inverse renam-

ing −{−}−1 of variables are involved in the algorithm, but not in

the definition of the syntax and associated operations (renaming,

metavariable substitution).

Let us first focus on the notion of GB-signature, starting from

binding signatures [2]: the latter consist in a set of operation sym-

bols, and for each 𝑜 ∈ 𝑂 , an arity 𝛼𝑜 = (𝑜1, . . . , 𝑜𝑛), i.e., a list of natu-
ral numbers specifying how many variables are bound in each argu-

ment. For example, pure 𝜆-calculus is specified by 𝑂 = {𝑙𝑎𝑚, 𝑎𝑝𝑝},
with 𝛼𝑎𝑝𝑝 = (0, 0), 𝛼𝑙𝑎𝑚 = (1). Now, a GB-signature consists in a

tuple (A,𝑂, 𝛼) consisting of
• a small category A whose objects are called arities or vari-

able contexts, and whose morphisms are called renamings;

• for each variable context 𝑎, a set of operation symbols𝑂 (𝑎);
• for each operation symbol 𝑜 ∈ 𝑂 (𝑎), a list of variable con-

texts 𝛼𝑜 = (𝑜1, . . . , 𝑜𝑛).
such that𝑂 and 𝛼 are functorial in a suitable sense (see Remark 2.9

below). Intuitively,𝑂 (𝑎) is the set of operation symbols available in

the variable context 𝑎. The Agda implementation in Figure 6 does

not include properties such as associativity of morphism compo-

sition, although they are assumed in the proof of correctness. For

example, the latter associativity property ensures that composition

of metavariable substitutions is associative.

The syntax specified by a GB-signature (A,𝑂, 𝛼) is inductively
defined in Figure 7, where a context Γ;𝑎 is defined as in Section §2.1

for 𝜆-calculus, except that variables contexts and metavariable ar-

ities are objects of A instead of natural numbers. We call a term

rigid if it is of the shape 𝑜 (. . .), flexible if it is some metavariable

application𝑀 (. . .).

Remark 2.6. Recall that the Agda code uses a nameless con-

vention for metacontexts: they are just lists of variable contexts.

Therefore, the arity 𝛼𝑜 of an operation 𝑜 can be considered as a

metacontext. It follows that the argument of an operation 𝑜 in the

context 𝚪;𝑎 can be specified either as a metavariable substitution

(defined in Figure 2) from 𝛼𝑜 = (𝑜1, . . . , 𝑜𝑛) to 𝚪, as in the Agda

code, or explicitly as a list of terms (𝑡1, . . . , 𝑡𝑛) such that 𝚪;𝑜𝑖 ⊢ 𝑡𝑖 ,
as in the rule Rig. In the following, we will use either interpretation.

Remark 2.7. The syntax in the empty metacontext does not de-

pend on the morphisms inA. In fact, by restricting the morphisms

in A to identity morphisms, any GB-signature induces an indexed

container [5] generating the same syntax without metavariables.

Example 2.8. Binding signatures can be compiled into GB-signatures.

More specifically, a syntax specified by a binding signature (𝑂, 𝛼)
is also generated by the GB-signature (F𝑚,𝑂′, 𝛼 ′), where

• F𝑚 is the category of finite cardinals and injections between

them;

• 𝑂 ′ (𝑝) = {1, . . . , 𝑝} ⊔ {𝑜𝑝 |𝑜 ∈ 𝑂};
• 𝛼 ′

𝑖
= () and 𝛼 ′𝑜𝑝 = (𝑝 + 𝑜1, . . . , 𝑝 + 𝑜𝑛) for any 𝑖, 𝑝 ∈ N and

𝑛-ary operation symbol 𝑜 ∈ 𝑂 .
Note that variables 𝑖 are explicitly specified as nullary operations

and thus do not require a dedicated generating rule, contrary to

what happens with binding signatures. Moreover, the choice of

renamings (i.e., morphisms in the category of arities) is motivated

by the Flex rule. Indeed, if 𝑀 has arity𝑚 ∈ N, then a choice of

arguments in the variable context 𝑎 ∈ N consists of a list of distinct

variables in the variable context 𝑎, or equivalently, an injection be-

tween the cardinal sets𝑚 and 𝑎, that is, a morphism in F𝑚 between

𝑚 and 𝑎.

GB-signatures capture multi-sorted binding signatures such as

simply-typed 𝜆-calculus, or polymorphic syntax such as System F

(see Appendix §B). Although equations are not explicitly supported,

simply-typed 𝜆-calculus modulo 𝛽- and 𝜂- equations can be handled

by working on the normalised syntax (see Section §B.3).

Remark 2.9. In the notion of GB-signature, functoriality ensures

that the generated syntax supports renaming: given a morphism

𝑥 : 𝑎 → 𝑏 in A and a term Γ;𝑎 ⊢ 𝑡 , we can recursively define

a term Γ;𝑏 ⊢ 𝑡{𝑥}. The metavariable base case is the same as in

Section §2.1: 𝑀 (𝑦){𝑥} = 𝑀 (𝑥 ◦ 𝑦). For an operation 𝑜 (𝑡1, . . . , 𝑡𝑛),
functoriality provides the following components:

(1) a 𝑛-ary operation symbol 𝑜{𝑥} ∈ 𝑂 (𝑏);
(2) a list of morphisms (𝑥𝑜

1
, . . . , 𝑥𝑜𝑛) in A such that 𝑥𝑜

𝑖
: 𝑜𝑖 →

𝑜{𝑥}𝑖 for each 𝑖 ∈ {1, . . . , 𝑛}.
Then, 𝑜 (𝑡1, . . ., 𝑡𝑛){𝑥} is defined as 𝑜{𝑥}(𝑡1{𝑥𝑜

1
}, . . ., 𝑡𝑛{𝑥𝑜𝑛}).

Notation 2.10. If 𝚪 and 𝚫 are two metacontexts𝑀1 :𝑚1, . . . , 𝑀𝑝 :

𝑚𝑝 and 𝑁1 : 𝑛1, . . . , 𝑁𝑝 : 𝑛𝑝 of the same length, we write 𝛿 : 𝚪 =⇒
𝚫 to mean that 𝛿 is a vector of renamings (𝛿1, . . . , 𝛿𝑛) between 𝚪

and 𝚫, in the sense that each 𝛿𝑖 is a morphism between 𝑚𝑖 and

𝑛𝑖 . The second functoriality component in Remark 2.9 is accord-

ingly specified as a vector of renamings 𝑥𝑜 : 𝛼𝑜 =⇒ 𝛼𝑜 { 𝑓 } in
Figure 7, considering operation arities as nameless metacontexts

(Remark 2.6). We extend the renaming notation to substitutions:

given 𝛿 : Γ → 𝚫 and 𝑥 : 𝚫
′ =⇒ 𝚫, we define 𝛿{𝑥} : Γ → 𝚫

′
as

(𝛿1{𝑥1}, . . . , 𝛿𝑛{𝑥𝑛}) where 𝑛 is the length of Δ, so that 𝑜 (𝛿){𝑥}
7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Submitted to LICS ’24, 2024, Tallinn Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

can be equivalently defined as 𝑜{𝑥}(𝛿{𝑥𝑜 }). Note that a vector of
renamings 𝛿 : 𝚪 =⇒ 𝚫 canonically induces a metavariable substi-

tution 𝛿 : 𝚫→ 𝚪, mapping 𝑁𝑖 to𝑀𝑖 (𝛿𝑖).

The Agda code adapting the definitions of Section §2.1 to a

syntax generated by a generic signature is usually shorter because

the application, 𝜆-abstraction, and variable cases are replaced with a

single rigid case. Because of Remark 2.6, it is more convenient define

operations on termsmutually with the corresponding operations on

substitutions. For example, composition of substitutions is defined

mutually with substitution of terms in the second box of Figure 2.

The same applies for renaming of terms and substitution as in

Notation 2.10.

We are similarly led to generalise unification of terms to unifica-

tion of proper substitutions, andwe extend accordingly the notation.

Given two substitutions 𝛿1, 𝛿2 : 𝚪
′ → Γ, we write Γ ⊢ 𝛿1 = 𝛿2 ⇒

𝜎 ⊣ Δ to mean that 𝜎 : Γ → Δ unifies 𝛿1 and 𝛿2, in the sense that

𝛿1 [𝜎] = 𝛿2 [𝜎], and is the most general one, i.e., it uniquely factors

any other unifier of 𝛿1 and 𝛿2. The main unification function is thus

split in two functions, unify for single terms, and unify-𝜎 for sub-

stitutions as seen in Figure 3. Similarly, we define pruning of terms

mutually with pruning of proper substitutions. We thus also extend

the pruning notation: given a substitution 𝛿 : 𝚪
′ → Γ and a vector

𝑥 : 𝚪
′′ =⇒ 𝚪

′
of renamings, the judgement Γ ⊢ 𝛿 :> 𝑥 ⇒ 𝛿 ′;𝜎 ⊣ Δ

means that the substitution 𝜎 : Γ → Δ extended with 𝛿 ′ : 𝚪′′ → Δ
is the most general unifier of 𝛿 and 𝑥 as substitutions from Γ, 𝚪′ to
Δ. This justifies the return type of unify-𝜎 in Figure 3.

In the 𝜆-calculus implementation (Figure 4), unification of two

metavariable applications requires computing the vector of com-

mon positions or value positions of their arguments, depending

on whether the involved metavariables are identical. Both vectors

are characterised as equalisers or pullbacks in the category F𝑚
defined in Example 2.8, thus providing a canonical replacement

in the generic algorithm, along with new interpretations of the

notations 𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝 and 𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝 and

as equalisers and pullbacks.

Notation 2.11. We denote an equaliser 𝑝
𝑧 // 𝑚

𝑥 //
𝑦
// . . .

in A by 𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝 . Similarly, 𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝

denotes a pullback in A of the shape

𝑝
𝑥 ′ //

𝑦′

��

𝑚

𝑥

��
. . .

𝑦
// . . .

.

Let us now comment on pruning rigid terms, when we want to

unify an operation 𝑜 (𝛿) with a fresh metavariable application𝑀 (𝑥).
Any unifier must replace 𝑀 with an operation 𝑜′ (𝛿 ′), such that

𝑜′{𝑥}(𝛿 ′{𝑥𝑜 ′ }) = 𝑜 (𝛿), so that, in particular, 𝑜′{𝑥} = 𝑜 . In other

words, 𝑜 must be have a preimage 𝑜′ for renaming by 𝑥 . This is

precisely the point of the inverse renaming 𝑜{𝑥}−1 in the Agda

code: it returns a preimage 𝑜′ if it exists, or fails. In the 𝜆-calculus

case, this check is only explicit for variables, since there is a single

version of application and 𝜆-abstraction symbols in any variable

Figure 8: Friendly GB-signatures in Agda

record isFriendly {i j k}(S : Signature i j k) : Set (i ⊔ j ⊔ k) where
open Signature S
field

equaliser : ∀ {a} m→ (x y : m⇒ a)→ Σ A (𝜆 p→ p⇒ m)

pullback : ∀m {m’ a}→ (x : m⇒ a)→ (y : m’⇒ a)

→ Σ A (𝜆 p→ p⇒ m × p⇒ m’)

_
?

=_ : ∀ {a}(o o’ : O a)→ Dec (o ≡ o’)
{}−1 : ∀ {a}(o : O a)→∀ {b}(x : b⇒ a)

→Maybe (pre-image (_{ x }) o)

context. Inverse renaming is a function provided by friendly GB-

signatures, which are GB-signatures with additional components

listed in Figure 8 on which the algorithm relies. To sum up,

• equalisers and pullbacks are usedwhen unifying twometavari-

able applications;

• equality of operation symbols is used when unifying two

rigid terms;

• inverse renaming is used when pruning a rigid term.

The formal notion of pattern-friendly signatures (Definition 3.15) in-

cludes additional properties ensuring correctness of the algorithm.

3 CATEGORICAL SEMANTICS

To prove that the algorithm is correct, we show in the next sections

that the inductive rules describing the implementation are sound.

For instance, the rule U-Split is sound on the condition that the

output of the conclusion is a most general unifier whenever the

output of the premises are most general unifiers. We rely on the

categorical semantics of pattern unification that we introduce in this

section. In Section §3.1, we relate pattern unification to a coequaliser

construction, and in Section §3.2, we provide a formal definition

of GB-signatures with Initial Algebra Semantics for the generated

syntax.

3.1 Pattern unification as a coequaliser

construction

In this section, we assume given a GB-signature 𝑆 = (A,𝑂, 𝛼) and
explain howmost general unifiers can be thought of as equalisers in

a multi-sorted Lawvere theory, as is well-known in the first-order

case [6, 28]. We furthermore provide a formal justification for the

error metacontext ⊥.

Lemma 3.1. Proper metacontexts and substitutions (with their com-

position) between them define a categoryMCon(𝑆).

This relies on functoriality of GB-signatures that we will spell

out formally in the next section. There, we will see in Lemma 3.20

that this category fully faithfully embeds in a Kleisli category for a

monad generated by 𝑆 on [A, Set].

Remark 3.2. The opposite category of MCon(𝑆) is equivalent
to a multi-sorted Lawvere theory whose sorts are the objects of

A. In general, this theory is not freely generated by operations

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

unless A is discrete, in which case we recover (multi-sorted) first-

order unification. Note that even the GB-signature induced (as in

Example 2.8) by an empty binding signature is not “free” in this

sense.

Lemma 3.3. The most general unifier of two parallel substitutions

𝚪
′

𝛿1 //
𝛿2

// 𝚪 is characterised as their coequaliser.

This motivates a new interpretation of the unification notation,

that we introduce later in Notation 3.10, after explaining how fail-

ure is categorically handled. Indeed, pattern unification is typically

stated as the existence of a coequaliser on the condition that there

is a unifier in this categoryMCon(𝑆). But we can get rid of this con-

dition by considering the category MCon(𝑆) freely extended with

a terminal object ⊥, resulting in the full category of metacontexts

and substitutions.

Definition 3.4. Given a category B, let B⊥ denote the category

B extended freely with a terminal object ⊥.

Notation 3.5. We denote by !𝑠 any terminal morphism to ⊥ in

B⊥.

Lemma 3.6. metacontexts and substitutions between them define

a category which is isomorphic toMCon⊥ (𝑆).

In Section §2.1, we already made sense of this extension. Let us

rephrase our explanations from a categorical perspective. Adding a

terminal object results in adding a terminal cocone to all diagrams.

As a consequence, we have the following lemma.

Lemma 3.7. Let 𝐽 be a diagram in a category B. The following

are equivalent:

(1) 𝐽 has a colimit as long as there exists a cocone;

(2) 𝐽 has a colimit in B⊥.

The following results are also useful.

Lemma 3.8. Let B be a category.

(i) The canonical embedding functor B → B⊥ creates colimits.

(ii) Any diagram 𝐽 inB⊥ such that⊥ is in its image has a colimit

given by the terminal cocone on ⊥.

This ensures in particular that coproducts in MCon(𝑆), which
are computed as union of metacontexts, are also coproducts in

MCon⊥ (𝑆). It also justifies defining the union of a proper metacon-

text with ⊥ as ⊥.
The main property of this extension for our purposes is the

following corollary.

Corollary 3.9. Any coequaliser inMCon(𝑆) is also a coequaliser
inMCon⊥ (𝑆). Moreover, whenever there is no unifier of two lists of

terms, then the coequaliser of the corresponding parallel arrows in

MCon⊥ (𝑆) exists: it is the terminal cocone on ⊥.

This justifies the following interpretation to the unification no-

tation.

Notation 3.10. Γ ⊢ 𝛿1 = 𝛿2 ⇒ 𝜎 ⊣ Δ denotes a coequaliser

. . .
𝛿1 //
𝛿2

// Γ 𝜎 // Δ in MCon⊥ (𝑆).

Remark 3.11. This is the same interpretation as in Notation 2.11

for equaliser, taking A to be the opposite category ofMCon⊥ (𝑆).
Categorically speaking, our pattern-unification algorithm pro-

vides an explicit proof of the following statement, where the con-

ditions for a signature to be pattern-friendly are introduced in the

next section (Definition 3.15).

Theorem 3.12. Given any pattern-friendly signature 𝑆 , the cate-

goryMCon⊥ (𝑆) has coequalisers.

3.2 Initial Algebra Semantics for GB-signatures

Definition 3.13. A generalised binding signature, or GB-signature,

is a tuple (A,O, 𝛼) consisting of
• a small categoryA of arities and renamings between them;

• a functor O− (−) : N × A → Set of operation symbols;

• a functor 𝛼 :

∫
𝐽 → A

where

∫
𝐽 denotes the category of elements of 𝐽 : N × A → Set

mapping (𝑛, 𝑎) to O𝑛 (𝑎) × {1,, 𝑛}, defined as follows:

• objects are tuples (𝑛, 𝑎, 𝑜, 𝑖) such that 𝑜 ∈ O𝑛 (𝑎) and 𝑖 ∈
{1, . . . , 𝑛};

• a morphism between (𝑛, 𝑎, 𝑜, 𝑖) and (𝑛′, 𝑎′, 𝑜′, 𝑖′) is a mor-

phism 𝑓 : 𝑎 → 𝑎′ such that 𝑛 = 𝑛′, 𝑖 = 𝑖′ and 𝑜{𝑓 } = 𝑜′
where 𝑜{𝑓 } denotes the image of 𝑜 by the function O𝑛 (𝑓) :
O𝑛 (𝑎) → O𝑛 (𝑎′).

Remark 3.14. This definition of GB-signatures superficially dif-

fers from the one we informally introduced in Section §2.2, in the

sense that the set of operation symbols 𝑂 (𝑎) in a variable context

𝑎 was not indexed by natural numbers. The two descriptions are

equivalent: O𝑛 (𝑎) is recovered as the subset of 𝑛-ary operation

symbols in 𝑂 (𝑎), and conversely, 𝑂 (𝑎) is recovered as the union of

all the O𝑛 (𝑎) for every natural number 𝑛.

We now introduce our conditions for the generic unification

algorithm to be correct.

Definition 3.15. A GB-signature 𝑆 = (A,O, 𝛼) is said pattern-

friendly if

(1) A has finite connected limits;

(2) all morphisms in A are monomorphic;

(3) each O𝑛 (−) : A → Set preserves finite connected limits;

(4) 𝛼 preserves finite connected limits.

These conditions ensure the following two properties.

Property 3.16 (proved in §A.1). The following properties hold for

pattern-friendly signatures.

(i) The action of O𝑛 : A → Set on any renaming is an injec-

tion: given any 𝑜 ∈ O𝑛 (𝑏) and renaming 𝑓 : 𝑎 → 𝑏, there

is at most one 𝑜′ ∈ O𝑛 (𝑎) such that 𝑜 = 𝑜′{𝑓 }.
(ii) Let L be the functor A𝑜𝑝 −→ MCon⊥ (𝑆) mapping a mor-

phism 𝑥 ∈ homA (𝑏, 𝑎) to the substitution (𝑋 : 𝑎) → (𝑋 :

𝑏) selecting (by the Yoneda Lemma) the term𝑋 (𝑥). Then,L
preserves finite connected colimits: it maps pullbacks and

equalisers inA to pushouts and coequalisers inMCon⊥ (𝑆).
The first property is used for soundness of the rules P-Rig and

P-Rig-Fail. The second one is used to justify unification of two

metavariables applications as pullbacks and equalisers in A, in the

rules Same-MVar and P-Flex.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Submitted to LICS ’24, 2024, Tallinn Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Remark 3.17. A metavariable application 𝚪;𝑎 ⊢ 𝑀 (𝑥) corre-
sponds to the composition L𝑥 [𝑖𝑛𝑀] as a substitution from 𝑋 : 𝑎 to

𝚪, where 𝑖𝑛𝑀 is the coproduct injection (𝑋 : 𝑚) � (𝑀 : 𝑚) ↩→ 𝚪

mapping𝑀 to𝑀 (1𝑚).

The rest of this section, we provide Initial Algebra Semantics for

the generated syntax (this is used in the proof of Property 3.16.(ii)).

Any GB-signature 𝑆 = (A,O, 𝛼), generates an endofunctor 𝐹𝑆
on [A, Set], that we denote by just 𝐹 when the context is clear,

defined by

𝐹𝑆 (𝑋)𝑎 =
∐
𝑛∈N

∐
𝑜∈O𝑛 (𝑎)

𝑋𝑜1 × · · · × 𝑋𝑜𝑛 .

Lemma 3.18 (proved in §A.2). 𝐹 is finitary and generates a free

monad 𝑇 . Moreover, 𝑇𝑋 is the initial algebra of 𝑍 ↦→ 𝑋 + 𝐹𝑍 .
The proper syntax generated by a GB-signature (see Figure 7) is

recovered as free algebras for 𝐹 . More precisely, given a metacontext

𝚪 = (𝑀1 :𝑚1, . . . , 𝑀𝑝 :𝑚𝑝),
𝑇 (Γ)𝑎 � {𝑡 | Γ;𝑎 ⊢ 𝑡}

where 𝚪 : A → Set is defined as the coproduct of representable

functors

∐
𝑖 𝑦𝑚𝑖 , mapping 𝑎 to

∐
𝑖 homA (𝑚𝑖 , 𝑎). Moreover, the ac-

tion of 𝑇 (𝚪) on morphisms of A correspond to renaming.

Notation 3.19. Given a proper metacontext 𝚪. We sometimes

denote 𝚪 just by 𝚪.

If 𝚪 = (𝑀1 : 𝑚1, ..., 𝑀𝑝 : 𝑚𝑝) and 𝚫 are metacontexts, a Kleisli

morphism 𝜎 : 𝚪 → 𝑇𝚫 is equivalently given (by combining the

above lemma, the Yoneda Lemma, and the universal property of

coproducts) by a metavariable substitution from 𝚪 to 𝚫. Moreover,

Kleisli composition corresponds to composition of substitutions.

This provides a formal link between the category of metacontexts

MCon(𝑆) and the Kleisli category of 𝑇

Lemma 3.20. The category MCon(𝑆) is equivalent to the full sub-
category of 𝐾𝑙𝑇 spanned by coproducts of representable functors.

We exploit this characterisation to prove various properties of

this category when the signature is pattern-friendly.

Lemma 3.21 (proved in §A.3). Given aGB-signature 𝑆 = (A,O, 𝛼)
such thatA has finite connected limits, 𝐹𝑆 restricts as an endofunctor

on the full subcategory C of [A, Set] consisting of functors preserv-
ing finite connected limits if and only if the last two conditions of

Definition 3.15 holds.

We now assume given a pattern-friendly signature 𝑆 = (A,O, 𝛼).

Lemma 3.22 (proved in §A.4). C is closed under limits, coproducts,

and filtered colimits. Moreover, it is cocomplete.

Corollary 3.23 (proved in §A.5). 𝑇 restricts as a monad on

C freely generated by the restriction of 𝐹 as an endofunctor on C
(Lemma 3.21).

4 SOUNDNESS OF THE PRUNING PHASE

In this section, we assume a pattern-friendly GB-signature 𝑆 and

discuss soundness of the main rules of the two mutually recursive

functions prune and prune-𝜎 listed in Figure 5, which handles uni-

fication of two substitutions 𝛿 : 𝚪
′
1 → Γ and 𝑥 : 𝚪

′
1 → 𝚪

′
2 where 𝑥

is induced by a vector of renamings 𝑥 : 𝚪
′
2 =⇒ 𝚪

′
1. Strictly speak-

ing, this is not unification as we introduced it because 𝛿 and 𝑥 do

not target the same context, but it is straightforward to adapt the

definition: a unifier is given by two substitutions 𝜎 : Γ → Δ and

𝜎′ : 𝚪′2 → Δ such that the following equation holds

𝛿 [𝜎] = 𝑥 [𝜎′] (1)

As usual, the mgu is defined as the unifier uniquely factoring any

other unifier.

Remark 4.1. The right hand-side 𝑥 [𝜎′] in (1) is actually equal to

𝜎′{𝑥}. Indeed, 𝑥 = (. . . , 𝑀𝑖 (𝑥𝑖), . . .) and𝑀𝑖 (𝑥𝑖) [𝜎′] = 𝜎′𝑖 {𝑥𝑖 }.

From a categorical point of view, such a mgu is characterised as

a pushout.

Notation 4.2. Given 𝛿 : 𝚪
′
1 → Γ, 𝑥 : 𝚪

′
2 =⇒ 𝚪

′
1, 𝜎 : Γ → Δ, and

𝜎′ : 𝚪′2 → Δ, the notation Γ ⊢ 𝛿 :> 𝑥 ⇒ 𝜎′;𝜎 ⊣ Δ means that the

square

𝚪
′
1

𝑥 //

𝛿

��

𝚪
′
2

𝜎 ′

��
Γ

𝜎
// Δ

is a pushout in MCon⊥ (𝑆).

Remark 4.3. This justifies the similarity between the pruning

notation − ⊢ − :> − ⇒ −;− and the pullback notation of Nota-

tion 2.11, since pushouts in a category are nothing but pullbacks in

the opposite category.

In the following subsections, we detail soundness of the rules for

the rigid case (Section §4.1) and then for the flex case (Section §4.2).

The rules P-Empty and P-Split are straightforward adaptions

specialised to those specific unification problems of the rulesU-Empty

and U-Split described later in Section §5.1. The failing rule P-Fail

is justified by Lemma 3.8.(ii).

4.1 Rigid (rules P-Rig and P-Rig-Fail)

The rules P-Rig and P-Rig-Fail handle non-cyclic unification of

𝑀 (𝑥) with 𝚪;𝑎 ⊢ 𝑜 (𝛿) for some 𝑜 ∈ O𝑛 (𝑎), where 𝑀 ∉ 𝚪. By

Remark 4.1, a unifier is given by a substitution 𝜎 : Γ → Δ and a

term 𝑢 such that

𝑜 (𝛿 [𝜎]) = 𝑢{𝑥}. (2)

Now, 𝑢 is either some 𝑀 (𝑦) or 𝑜′ (®𝑣). But in the first case, 𝑢{𝑥} =
𝑀 (𝑦){𝑥} = 𝑀 (𝑥 ◦ 𝑦), contradicting Equation (2). Therefore, 𝑢 =

𝑜′ (𝛿 ′) for some 𝑜′ ∈ O𝑛 (𝑚) and 𝛿 ′ is a substitution from 𝛼𝑜 ′ to

Δ. Then, 𝑢{𝑥} = 𝑜′{𝑥}(𝛿{𝑥𝑜 ′ }). It follows from Equation (2) that

𝑜 = 𝑜′{𝑥}, and 𝛿 [𝜎] = 𝛿 ′{𝑥𝑜 ′ }.
Note that there is at most one 𝑜′ such that 𝑜 = 𝑜′{𝑥}, by Prop-

erty 3.16.(i). In this case, a unifier is equivalently given by substitu-

tions 𝜎 : Γ → Δ and 𝜎′ : 𝛼𝑜 ′ → Δ such that 𝛿 [𝜎] = 𝜎′{𝑥𝑜 ′ }. But,
by Remark 4.1, this is precisely the data for a unifier of 𝛿 and 𝑥𝑜

′
.

This actually induces an isomorphism between the two categories

of unifiers, thus justifying the rules P-Rig and P-Rig-Fail.

4.2 Flex (rule P-Flex)

The rule P-Flex handles unification of𝑀 (𝑥) with 𝑁 (𝑦) where𝑀 ≠

𝑁 in a variable context 𝑎. More explicitly, this is about computing

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

the pushout of (𝑋 : 𝑎) L𝑥−−−→ (𝑋 : 𝑚) � (𝑀 : 𝑚)
𝑖𝑛𝑀
↩−−−→ 𝚪 and

(𝑋 : 𝑎) L𝑥−−−→ (𝑋 : 𝑛) � (𝑁 : 𝑛).
Thanks to the following lemma, it is actually enough to compute

the pushout of L𝑥 and L𝑦, taking 𝐴 = (𝑋 : 𝑎), 𝐵 = (𝑋 : 𝑚),
𝐶 = (𝑋 : 𝑁), 𝑌 = 𝚪\𝑀 , so that 𝐵 + 𝑌 � 𝚪.

Lemma 4.4. In any category, if the square below left is a pushout,

then so is the square below right.

𝐴
𝑓 //

𝑔

��

𝐵

𝜎

��
𝐶

𝑢
// 𝑍

𝐴
𝑓 //

𝑔

��

𝐵
𝑖𝑛1 // 𝐵 + 𝑌

𝜎+𝑌
��

𝐶
𝑢
// 𝑍

𝑖𝑛1

// 𝑍 + 𝑌

.

By Property 3.16.(ii), the pushout of L𝑥 and L𝑦 is the image by L of

the pullback of 𝑥 and 𝑦 in A, thus justifying the rule P-Flex.

5 SOUNDNESS OF THE UNIFICATION PHASE

In this section, we assume a pattern-friendly GB-signature 𝑆 and

discuss soundness of the main rules of the two mutually recur-

sive functions unify and unify-𝜎 listed in Figure 5, which compute

coequalisers inMCon⊥ (𝑆).
The failing rulesU-Fail andU-Id-Fail are justified by Lemma 3.8.(ii).

Both rules Clash and U-Rig handle unification of two rigid terms

𝑜 (𝛿) and 𝑜′ (𝛿 ′). If 𝑜 ≠ 𝑜′, they do not have any unifier: this is the

rule Clash. If 𝑜 = 𝑜′, then a substitution is a unifier if and only if it

unifies 𝛿 and 𝛿 ′, thus justifying the U-Rig.

In the next subsections, we discuss the rule sequential rules

U-Empty and U-Split (Section §5.1), the rule No-Cycle transition-

ing to the pruning phase (Section §5.2), the rule Same-MVar uni-

fying metavariable with itself (Section §5.3), and the failing rule

Cycle for cyclic unification of a metavariable with a term which

includes it deeply (Section §5.4).

5.1 Sequential unification (rules U-Empty and

U-Split)

The rule U-Empty is a direct application of the following general

lemma.

Lemma 5.1. If 𝐴 is initial in a category, then any diagram of the

shape 𝐴
// // 𝐵

1𝐵 // 𝐵 is a coequaliser.

The ruleU-Split is a direct application of a stepwise construction

of coequalisers valid in any category, as noted by [28, Theorem 9]:

if the first two diagrams below are coequalisers, then the last one

as well.

Γ

Γ′
1

Γ Δ1 Γ′
2

Δ1 Δ2

Γ

𝑡1

𝑢1

𝜎1

𝑡2 𝜎1

𝑢2 𝜎1

𝜎2

Γ′
1
+ Γ′

2

𝑡1,𝑡2 //
𝑢1,𝑢2

// Γ
𝜎2◦𝜎1 // Δ2

5.2 Flex-Flex, no cycle (rule No-Cycle)

The rule No-Cycle transitions from unification to pruning. While

unification is a coequaliser construction, in Section §4, we explained

that pruning is a pushout construction. The rule is justified by

the following well-known connection between those two notions,

taking 𝐵 to be 𝚪\𝑀 and𝐶 to be the singleton context𝑀 :𝑚, so that

the coproduct of those two contexts in MCon⊥ (𝑆) is their disjoint
union 𝚪.

Lemma 5.2. Consider a commuting square

𝐴
𝑢 //

𝑣

��

𝐵

𝑓

��
𝐶

𝑔
// 𝐷

in

any category. If the coproduct 𝐵 +𝐶 of 𝐵 and 𝐶 exists, then this is a

pushout if and only if 𝐵 +𝐶
𝑓 ,𝑔
−−→ 𝐷 is the coequaliser of 𝑖𝑛1 ◦ 𝑢 and

𝑖𝑛2 ◦ 𝑣 .

5.3 Flex-Flex, same metavariable (rule

Same-MVar)

Herewe detail unification of𝑀 (𝑥) and𝑀 (𝑦), for𝑥,𝑦 ∈ homA (𝑚,𝑎).
By Remark 3.17, 𝑀 (𝑥) = L𝑥 [𝑖𝑛𝑀] and 𝑀 (𝑦) = L𝑦 [𝑖𝑛𝑀]. We ex-

ploit the following lemma with 𝑢 = L𝑥 and 𝑣 = L𝑦.

Lemma 5.3. In any category, if the below left diagram is a co-

equaliser, then so is the below right diagram.

𝐴
𝑢 //
𝑣
// 𝐵 ℎ // 𝐶

𝐵 𝑖𝑛𝐵((
𝐴

𝑢 88

𝑣 &&
𝐵 + 𝐷 ℎ+1𝐷// 𝐶 + 𝐷

𝐵 𝑖𝑛𝐵

66

It follows that it is enough to compute the coequaliser of L𝑥 and

L𝑦. Furthermore, by Property 3.16.(ii), it is the image by L of the

equaliser of 𝑥 and 𝑦, thus justifying the rule Same-MVar.

5.4 Flex-rigid, cyclic (rule Cycle)

The rule Cycle handles unification of𝑀 (𝑥) and a term 𝑡 such that

𝑡 is rigid and 𝑀 occurs in 𝑡 . In this section, we show that indeed

there is no successful unifier. More precisely, we prove Corollary 5.8

below, stating that if there is a unifier of a term 𝑡 and a metavariable

application𝑀 (𝑥), then either𝑀 occurs at top-level in 𝑡 , or it does

not occur at all. The argument follows the basic intuition that

𝜎𝑀 = 𝑡 [𝑀 ↦→ 𝜎𝑀] is impossible if 𝑀 occurs deeply in 𝑢 because

the sizes of both hand sides can nevermatch. Tomake this statement

precise, we need some recursive definitions and properties of size.

Definition 5.4. The size |𝑡 | ∈ N of a proper term 𝑡 is recursively

defined by |𝑀 (𝑥) | = 0, and |𝑜 (®𝑡) | = 1 + |®𝑡 |, with |®𝑡 | = ∑
𝑖 𝑡𝑖 .

We will also need to count the occurrences of a metavariables in

a term.

Definition 5.5. For any term 𝑡 we define |𝑡 |𝑀 recursively by

|𝑀 (𝑥) |𝑀 = 1, |𝑁 (𝑥) |𝑀 = 0 if 𝑁 ≠ 𝑀 , and |𝑜 (®𝑡) |𝑀 = |®𝑡 |𝑀 with

the sum convention as above for |®𝑡 |𝑀 .

Lemma 5.6. For any term 𝚪;𝑎 ⊢𝑡 , if |𝑡 |𝑀 = 0, then 𝚪\𝑀 ;𝑎 ⊢ 𝑡 .
Moreover, for any 𝚪 = (𝑀1 : 𝑚1, . . . , 𝑀𝑛 : 𝑚𝑛), well-formed term

𝑡 in context 𝚪;𝑎, and successful substitution 𝜎 : 𝚪 → 𝚫, we have

|𝑡 [𝜎] | = |𝑡 | +∑𝑖 |𝑡 |𝑀𝑖
× |𝜎𝑖 |.

Corollary 5.7. For any term 𝑡 in context 𝚪;𝑎 with (𝑀 :𝑚) ∈ 𝚪,
successful substitution 𝜎 : 𝚪 → 𝚫, morphism 𝑥 ∈ homA (𝑚,𝑎) and

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Submitted to LICS ’24, 2024, Tallinn Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

𝑢 in context Δ;𝑢, we have |𝑡 [𝜎,𝑀 ↦→ 𝑢] | ≥ |𝑡 | + |𝑢 | × |𝑡 |𝑀 and

|𝑀 (𝑥) [𝑢] | = |𝑢 |.

Corollary 5.8. Let 𝑡 be a term in context 𝚪;𝑎 with (𝑀 :𝑚) ∈ 𝚪
and 𝑥 ∈ homA (𝑚,𝑎) such that (𝑀 ↦→ 𝑢, 𝜎) : 𝚪 → 𝚫 unifies 𝑡 and

𝑀 (𝑥). Then, either 𝑡 = 𝑀 (𝑦) for some 𝑦 ∈ homA (𝑚,𝑎), or 𝚪;𝑎 ⊢ 𝑡 .

Proof. Since 𝑡 [𝜎,𝑀 ↦→ 𝑢] = 𝑀 (𝑥) [𝑢], we have |𝑡 [𝜎,𝑀 ↦→
𝑢] | = |𝑀 (𝑥) [𝑢] |. Corollary 5.7 implies |𝑢 | ≥ |𝑡 | + |𝑢 | × |𝑡 |𝑀 . There-

fore, either |𝑡 |𝑀 = 0 and we conclude by Lemma 5.6, or |𝑡 |𝑀 > 0

and |𝑡 | = 0, so that 𝑡 is𝑀 (𝑦) for some 𝑦. □

6 TERMINATION AND COMPLETENESS

6.1 Termination

In this section, we sketch an explicit argument to justify termination

of our algorithm described in Figure 5. Indeed, it involves three

recursive calls in the pruning phase (cf. the rules P-Rig and P-Split),

as well as in the main unification phase (cf. the rules U-Rig and

U-Split). In each phase, the second recursive call for splitting is not

structurally recursive, making Agda unable to check termination.

However, we can devise an adequate notion of input size so that for

each recursive call, the inputs are strictly smaller than the inputs of

the calling site. First, we define the size |𝚪 | of a propermetacontext 𝚪

as its length, while |⊥| = 0 by definition. We also recursively define

the size
4 | |𝑡 | | of a proper term 𝑡 by | |𝑀 (𝑥) | | = 1 and | |𝑜 (®𝑡) | | = 1+||®𝑡 | |,

with | |®𝑡 | | = ∑
𝑖 | |𝑡𝑖 | |. Note that no term is of empty size.

Let us first quickly justify termination of the pruning phase.

Consider the above defined size of the input, which is a term 𝑡 for

prune, or a list of terms ®𝑡 for prune-𝜎 . It is straightforward to check
that the sizes of the inputs of recursive calls are strictly smaller

thanks to the following lemmas.

Lemma 6.1. For any proper term 𝚪;𝑎 ⊢ 𝑡 and successful substi-

tution 𝜎 : 𝚪 → 𝚫, if 𝜎 is a metavariable renaming, i.e., 𝜎𝑀 is a

metavariable application for any (𝑀 :𝑚) ∈ 𝚪, then | |𝑡 [𝜎] | | = | |𝑡 | |.

Lemma 6.2. If there is a finite derivation tree of 𝚪 ⊢ ®𝑡 :> 𝑥 ⇒
®𝑤 ;𝜎 ⊣ 𝚫 then |𝚪 | = |𝚫| and 𝜎 is a metavariable renaming.

The size invariance in the above lemma is actually used in the

termination proof of the main unification phase, where we consider

the size of the input to be the pair (|Γ |, | |𝑡 | |) for unify or (|Γ |, | |®𝑡 | |) for
unify-𝜎 , given as input a term 𝑡 or a list of terms ®𝑡 in themetacontext

Γ. More precisely, it is used in the following lemma that ensures

size decreasing (with respect to the lexicographic order).

Lemma 6.3. If there is a finite derivation tree of 𝚪 ⊢ ®𝑡 = ®𝑢 ⇒ 𝜎 ⊣ Δ,
then |𝚪 | ≥ |Δ|, and moreover if |𝚪 | = |Δ| and Δ is proper, then 𝜎 is a

metavariable renaming.

6.2 Completeness

In this section, we explain why soundness (Section §4 and Sec-

tion §5) and termination (Section §6.1) entail completeness. Intu-

itively, one may worry that the algorithm fails in cases where it

should not. In fact, we already checked in the previous sections

that failure only occurs when there is no unifier, as expected. In-

deed, failure is treated as a free “terminal” unifier, as explained in

4
The difference with the notion of size introduced in Definition 5.4 is that metavariable

applications are now of size 1 instead of 0.

Section §3.1, by considering the categoryMCon⊥ (𝑆) extending cat-
egoryMCon(𝑆) with an error metacontext ⊥. Corollary 3.9 implies

that since the algorithm terminates and computes the coequaliser in

MCon⊥ (𝑆), it always finds the most general unifier in MCon(𝑆) if
it exists, and otherwise returns failure (i.e., the map to the terminal

object ⊥).

7 RELATEDWORK

First-order unification has been explained from a lattice-theoretic

point of view by Plotkin [25], and later categorically analysed by

Barr andWells [6], Goguen [14], Rydeheard and Burstall [28, Section

9.7] as coequalisers. However, there is little work on understanding

pattern unification algebraically, with the notable exception of Vez-

zosi and Abel [31], working with normalised terms of simply-typed

𝜆-calculus. The present paper can be thought of as a generalisation

of their work.

Although our notion of signature has a broader scope since

we are not specifically focusing on syntax where variables can be

substituted, our work is closer in spirit to the presheaf approach [11]

to binding signatures than to the nominal approach [13] in that

everything is explicitly scoped: terms come with their support,

metavariables always appear with their scope of allowed variables.

Nominal unification [30] is an alternative to pattern unifica-

tion where metavariables are not supplied with the list of allowed

variables. Instead, substitution can capture variables. Nominal uni-

fication explicitly deals with 𝛼-equivalence as an external relation

on the syntax, and as a consequence deals with freshness problems

in addition to unification problems.

Cheney [8] shows that nominal unification and pattern unifica-

tion problems are inter-translatable. As he notes, this result indi-

rectly provides semantic foundations for pattern unification based

on the nominal approach. In this respect, the present work provides

a more direct semantic analysis of pattern unification, leading us

to the generic algorithm we present, parameterised by a general

notion of signature for the syntax.

Pattern unification has also been studied from the viewpoint of

logical frameworks [1, 22–24] using contextual types to characterise

metavariables. LF-style signatures handle type dependency (which

is future work for us), but there are also GB-signatures which can-

not be encoded with an LF signature. For example, GB-signatures

allow us to express pattern unification for ordered lambda terms

(Section §B.4).

Our semantics for metavariables has been engineered so that it

can only interpret metavariable instantiations in the pattern frag-

ment, and cannot interpret full metavariable instantiations, contrary

to prior semantics of metavariables (e.g., Hu et al. [18] or Hamana

[16]). This restriction gives our model much stronger properties,

enabling us to characterise each part of the pattern unification

algorithm in terms of universal properties. This lets us extend Ry-

deheard and Burstall’s proof to the pattern case.

REFERENCES

[1] Andreas Abel and Brigitte Pientka. 2011. Higher-Order Dynamic Pattern Unifica-

tion for Dependent Types and Records. In Typed Lambda Calculi and Applications

- 10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Pro-

ceedings (Lecture Notes in Computer Science, Vol. 6690), C.-H. Luke Ong (Ed.).

Springer, 10–26. https://doi.org/10.1007/978-3-642-21691-6_5

12

https://doi.org/10.1007/978-3-642-21691-6_5

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[2] Peter Aczel. 1978. A general church-rosser theorem. Unpublished

note. http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-

RosserTheorem.pdf (1978), 10–07.

[3] Jiri Adámek, Francis Borceux, Stephen Lack, and Jirí Rosicky. 2002. A classifica-

tion of accessible categories. Journal of Pure and Applied Algebra 175, 1 (2002),

7–30. https://doi.org/10.1016/S0022-4049(02)00126-3 Special Volume celebrating

the 70th birthday of Professor Max Kelly.

[4] J. Adámek and J. Rosicky. 1994. Locally Presentable and Accessible Categories.

Cambridge University Press. https://doi.org/10.1017/CBO9780511600579

[5] Thorsten Altenkirch and Peter Morris. 2009. Indexed Containers. In Proceedings

of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14

August 2009, Los Angeles, CA, USA. IEEE Computer Society, 277–285. https:

//doi.org/10.1109/LICS.2009.33

[6] Michael Barr and Charles Wells. 1990. Category Theory for Computing Science.

Prentice-Hall, Inc., USA.

[7] R. Blackwell, G.M. Kelly, and A.J. Power. 1989. Two-dimensional monad theory.

Journal of Pure and Applied Algebra 59, 1 (1989), 1–41. https://doi.org/10.1016/

0022-4049(89)90160-6

[8] James Cheney. 2005. Relating nominal and higher-order pattern unification. In

Proceedings of the 19th international workshop on Unification (UNIF 2005). LORIA

research report A05, 104–119.

[9] N. G. De Bruijn. 1972. Lambda-Calculus Notationwith Nameless Dummies, a Tool

for Automatic Formula Manipulation, with Application to the Church-Rosser

Theorem. Indagationes Mathematicae 34 (1972), 381–392.

[10] Jana Dunfield and Neelakantan R. Krishnaswami. 2019. Sound and complete

bidirectional typechecking for higher-rank polymorphism with existentials and

indexed types. Proc. ACM Program. Lang. 3, POPL (2019), 9:1–9:28. https:

//doi.org/10.1145/3290322

[11] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. 1999. Abstract Syntax and

Variable Binding. In Proc. 14th Symposium on Logic in Computer Science IEEE.

[12] M. P. Fiore and C.-K. Hur. 2010. Second-order equational logic. In Proceedings of

the 19th EACSL Annual Conference on Computer Science Logic (CSL 2010).

[13] Murdoch J. Gabbay and Andrew M. Pitts. 1999. A New Approach to Abstract

Syntax Involving Binders. In Proc. 14th Symposium on Logic in Computer Science

IEEE.

[14] Joseph A. Goguen. 1989. What is Unification? - A Categorical View of Substitu-

tion, Equation and Solution. In Resolution of Equations in Algebraic Structures,

Volume 1: Algebraic Techniques. Academic, 217–261.

[15] John W. Gray. 1966. Fibred and Cofibred Categories. In Proceedings of the Con-

ference on Categorical Algebra, S. Eilenberg, D. K. Harrison, S. MacLane, and

H. Röhrl (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 21–83.

[16] Makoto Hamana. 2004. Free Σ-Monoids: A Higher-Order Syntax with Metavari-

ables. In Proc. 2nd Asian Symposium on Programming Languages and Systems

(LNCS, Vol. 3302), Wei-Ngan Chin (Ed.). Springer, 348–363. https://doi.org/10.

1007/978-3-540-30477-7_23

[17] Makoto Hamana. 2011. Polymorphic Abstract Syntax via Grothendieck Con-

struction.

[18] Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schöpp. 2022. A Category Theoretic

View of Contextual Types: From Simple Types to Dependent Types. ACM Trans.

Comput. Log. 23, 4 (2022), 25:1–25:36. https://doi.org/10.1145/3545115

[19] André Joyal and Ross Street. 1993. Pullbacks equivalent to pseudopullbacks.

Cahiers de Topologie et Géométrie Différentielle Catégoriques XXXIV, 2 (1993),

153–156.

[20] Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.).

Number 5 in Graduate Texts in Mathematics. Springer.

[21] Dale Miller. 1991. A Logic Programming Language with Lambda-Abstraction,

Function Variables, and Simple Unification. J. Log. Comput. 1, 4 (1991), 497–536.

https://doi.org/10.1093/logcom/1.4.497

[22] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual

modal type theory. ACM Trans. Comput. Log. 9, 3 (2008), 23:1–23:49. https:

//doi.org/10.1145/1352582.1352591

[23] Aleksandar Nanevski, Brigitte Pientka, and Frank Pfenning. 2003. A modal

foundation for meta-variables. In Eighth ACM SIGPLAN International Conference

on Functional Programming, Workshop on Mechanized reasoning about languages

with variable binding, MERLIN 2003, Uppsala, Sweden, August 2003. ACM. https:

//doi.org/10.1145/976571.976582

[24] Brigitte Pientka. 2003. Tabled higher-order logic programming. Carnegie Mellon

University.

[25] GordonD. Plotkin. 1970. ANote on Inductive Generalization.Machine Intelligence

5 (1970), 153–163.

[26] Jeff Polakow and Frank Pfenning. 2000. Properties of Terms in Continuation-

Passing Style in an Ordered Logical Framework. In 2nd Workshop on Logical

Frameworks and Meta-languages (LFM’00), Joëlle Despeyroux (Ed.). Santa Barbara,

California. Proceedings available as INRIA Technical Report.

[27] Jan Reiterman. 1977. A left adjoint construction related to free triples. Journal

of Pure and Applied Algebra 10 (1977), 57–71.

[28] David E. Rydeheard and Rod M. Burstall. 1988. Computational category theory.

Prentice Hall.

[29] Anders Schack-Nielsen and Carsten Schürmann. 2010. Pattern Unification for the

Lambda Calculus with Linear and Affine Types. In Proceedings 5th International

Workshop on Logical Frameworks andMeta-languages: Theory and Practice, LFMTP

2010, Edinburgh, UK, 14th July 2010 (EPTCS, Vol. 34), Karl Crary and Marino

Miculan (Eds.). 101–116. https://doi.org/10.4204/EPTCS.34.9

[30] Christian Urban, Andrew Pitts, and Murdoch Gabbay. 2003. Nominal Unifica-

tion. In Computer Science Logic, Matthias Baaz and Johann A. Makowsky (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 513–527.

[31] Andrea Vezzosi and Andreas Abel. 2014. A Categorical Perspective on Pattern

Unification. RISC-Linz (2014), 69.

[32] Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. A mechanical

formalization of higher-ranked polymorphic type inference. Proc. ACM Program.

Lang. 3, ICFP (2019), 112:1–112:29. https://doi.org/10.1145/3341716

13

https://doi.org/10.1016/S0022-4049(02)00126-3
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1109/LICS.2009.33
https://doi.org/10.1109/LICS.2009.33
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3290322
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.1145/3545115
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/976571.976582
https://doi.org/10.1145/976571.976582
https://doi.org/10.4204/EPTCS.34.9
https://doi.org/10.1145/3341716

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Submitted to LICS ’24, 2024, Tallinn Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A PROOFS OF STATEMENTS IN SECTION 3.2

A.1 Property 3.16

We use the notations and definitions of Section §3.2.

Let us first prove the first item.

Proof of Property 3.16.(i). We show that given any𝑜 ∈ O𝑛 (𝑏)
and renaming 𝑓 : 𝑎 → 𝑏, there is at most one 𝑜′ ∈ O𝑛 (𝑎) such that

𝑜 = 𝑜′{𝑓 }.
SinceO𝑛 preserves finite connected limits, it preservesmonomor-

phisms because a morphism 𝑓 : 𝑎 → 𝑏 is monomorphic if and only

if the following square is a pullback (see [20, Exercise III.4.4]).

𝐴 𝐴

𝐴 𝐵

𝑓

𝑓

□

The rest of this section is devoted to the proof of Property 3.16.(ii).

By right continuity of the homset bifunctor, any representable

functor is in C and thus the embedding C → [A, Set] factors the
Yoneda embedding A𝑜𝑝 → [A, Set].

LemmaA.1. LetD denote the opposite category ofA and𝐾 : D →
C the factorisation of C → [A, Set] by the Yoneda embedding. Then,

𝐾 : D → C preserves finite connected colimits.

Proof. This essentially follows from the fact functors in C
preserves finite connected limits. Let us detail the argument: let

𝑦 : A𝑜𝑝 → [A, Set] denote the Yoneda embedding and 𝐽 : C →
[A, Set] denote the canonical embedding, so that

𝑦 = 𝐽 ◦ 𝐾. (3)

Now consider a finite connected limit lim 𝐹 in A. Then,

C (𝐾 lim 𝐹, 𝑋) � [A, Set] (𝐽𝐾 lim 𝐹, 𝐽𝑋) (𝐽 is fully faithful)

� [A, Set] (𝑦 lim 𝐹, 𝐽𝑋) (By Equation (3))

� 𝐽𝑋 (lim 𝐹) (By the Yoneda Lemma.)

� lim(𝐽𝑋 ◦ 𝐹)
(𝑋 preserves finite connected limits)

� lim([A, Set] (𝑦𝐹−, 𝐽𝑋)]
(By the Yoneda Lemma)

� lim([A, Set] (𝐽𝐾𝐹−, 𝐽𝑋)] (By Equation (3))

� limC (𝐾𝐹−, 𝑋) (𝐽 is full and faithful)

� C (colim 𝐾𝐹,𝑋)
(By left continuity of the hom-set bifunctor)

These isomorphisms are natural in 𝑋 and thus 𝐾 lim 𝐹 � colim 𝐾𝐹 .

□

Proof of Property 3.16.(ii). Note that L factors as

D
L•−−→ MCon(𝑆) ↩→ MCon⊥ (𝑆),

where the right embedding preserves colimits by Lemma 3.8.(i), so

it is enough to show that L• preserves finite connected colimits.

Let 𝑇|C be the monad 𝑇 restricted to C , following Corollary 3.23.

Since 𝐾 : D → C preserves finite connected colimits (Lemma A.1),

composing it with the left adjoint C → 𝐾𝑙𝑇|C yields a functor

D → 𝐾𝑙𝑇|C also preserving those colimits. Since it factors asD
L•−−→

MCon(𝑆) ↩→ 𝐾𝑙𝑇|C , where the right functor is full and faithful, L•
also preserves finite connected colimits. □

A.2 Lemma 3.18

𝐹 is finitary because filtered colimits commute with finite limits

[20, Theorem IX.2.1] and colimits. The free monad construction is

due to Reiterman [27].

A.3 Lemma 3.21

Notation A.2. Given a functor 𝐹 : 𝐼 → B, we denote the limit

(resp. colimit) of 𝐹 by

∫
𝑖:𝐼
𝐹 (𝑖) or lim 𝐹 (resp.

∫ 𝑖:𝐼
𝐹 (𝑖) or colim 𝐹)

and the canonical projection lim 𝐹 → 𝐹𝑖 by 𝑝𝑖 for any object 𝑖 of 𝐼 .

This section is dedicated to the proof of the following lemma.

Lemma A.3. Given a GB-signature 𝑆 = (A,O, 𝛼) such that A
has finite connected limits, 𝐹𝑆 restricts as an endofunctor on the full

subcategory C of [A, Set] consisting of functors preserving finite

connected limits if and only if each O𝑛 ∈ C , and 𝛼 :

∫
𝐽 → A

preserves finite limits.

We first introduce a bunch of intermediate lemmas.

Lemma A.4. If B is a small category with finite connected limits,

then a functor𝐺 : B → Set preserves those limits if and only if

∫
B

is a coproduct of filtered categories.

Proof. This is a direct application of Adámek et al. [3, Theorem

2.4 and Example 2.3.(iii)]. □

Corollary A.5. Assume A has finite connected limits. Then 𝐽 :

N × A → Set preserves finite connected limits if and only if each

O𝑛 : A → Set does.

Proof. This follows from

∫
𝐽 �

∐
𝑛∈N

∐
𝑗∈{1,...,𝑛}

∫
O𝑛 . □

Lemma A.6. Let 𝐹 : B → Set be a functor. For any functor

𝐺 : 𝐼 →
∫
𝐹 , denoting by 𝐻 the composite functor 𝐼

𝐺−→
∫
𝐹 → B,

there exists a unique 𝑥 ∈ lim(𝐹 ◦ 𝐻) such that 𝐺𝑖 = (𝐻𝑖, 𝑝𝑖 (𝑥)).

Proof.

∫
𝐹 is isomorphic to the opposite of the comma category

𝑦/𝐹 , where 𝑦 : B𝑜𝑝 → [B, Set] is the Yoneda embedding. The

statement follows from the universal property of a comma category.

□

Lemma A.7. Let 𝐹 : B → Set and 𝐺 : 𝐼 →
∫
𝐹 such that 𝐹

preserves the limit of 𝐻 : 𝐼
𝐺−→

∫
𝐹 −→ B. Then, there exists a unique

𝑥 ∈ 𝐹 lim𝐻 such that 𝐺𝑖 = (𝐻𝑖, 𝐹𝑝𝑖 (𝑥)) and moreover, (lim𝐻, 𝑥) is
the limit of 𝐺 .

Proof. The unique existence of 𝑥 ∈ 𝐹 lim𝐻 such that 𝐺𝑖 =

(𝐻𝑖, 𝐹𝑝𝑖 (𝑥)) follows from Lemma A.6 and the fact that 𝐹 preserves

lim𝐻 . Let C denote the full subcategory of [B, Set] of functors
preserving lim𝐺 . Note that

∫
𝐹 is isomorphic to the opposite of

the comma category 𝐾/𝐹 , where 𝐾 : B𝑜𝑝 → C is the Yoneda

embedding, which preserves colim 𝐺 , by an argument similar to

the proof of LemmaA.1.We conclude from the fact that the forgetful

functor from a comma category 𝐿/𝑅 to the product of the categories

creates colimits that 𝐿 preserve. □
14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Corollary A.8. Let 𝐼 be a small category,B andB′ be categories
with 𝐼 -limits (i.e., limits of any diagram over 𝐼). Let 𝐹 : B → Set be a

functor preserving those colimits. Then,

∫
𝐹 has 𝐼 -limits, preserved by

the projection

∫
𝐹 → B. Moreover, a functor𝐺 :

∫
𝐹 → B′ preserves

them if and only if for any 𝑑 : 𝐼 → B and 𝑥 ∈ 𝐹 lim𝑑 , the canonical
morphism 𝐺 (lim𝑑, 𝑥) →

∫
𝑖:𝐼
𝐺 (𝑑𝑖 , 𝐹𝑝𝑖 (𝑥)) is an isomorphism.

Proof. By Lemma A.7, a diagram 𝑑′ : 𝐼 →
∫
𝐹 is equiva-

lently given by 𝑑 : 𝐼 → B and 𝑥 ∈ 𝐹 lim𝑑 , recovering 𝑑′ as
𝑑′
𝑖
= (𝑑𝑖 , 𝐹𝑝𝑖 (𝑥)), and moreover lim𝑑′ = (lim𝑑, 𝑥). □

Corollary A.9. Assuming thatA has finite connected limits and

each O𝑛 preserves finite connected limits, the finite limit preservation

on 𝛼 :

∫
𝐽 → A of Lemma A.3 can be reformulated as follows: given

a finite connected diagram 𝑑 : 𝐷 → A and element 𝑜 ∈ O𝑛 (lim𝑑),
the following canonical morphism is an isomorphism

𝑜 𝑗 →
∫
𝑖:𝐷

𝑜{𝑝𝑖 } 𝑗

for any 𝑗 ∈ {1, . . . , 𝑛}.

Proof. This is a direct application of Corollary A.8 and Corol-

lary A.5. □

Lemma A.10 (Limits commute with dependent pairs). Given

functors 𝐾 : 𝐼 → Set and 𝐺 :

∫
𝐾 → Set, the following canonical

morphism is an isomorphism∐
𝛼∈lim𝐾

∫
𝑖:𝐼

𝐺 (𝑖, 𝑝𝑖 (𝛼)) →
∫
𝑖:𝐼

∐
𝑥∈𝐾𝑖

𝐺 (𝑖, 𝑥)

Proof. The domain consists of a family (𝛼𝑖)𝑖∈𝐼 where 𝛼𝑖 ∈ 𝐾𝑖
together with a family (𝑔𝑖)𝑖∈𝐼 where𝑔𝑖 ∈ 𝐺 (𝑖, 𝛼𝑖), such that that for
each morphism 𝑖

𝑢−→ 𝑗 in 𝐼 , we have𝐾𝑢 (𝛼𝑖) = 𝛼 𝑗 and (𝐺𝑢) (𝑔𝑖) = 𝑔 𝑗 .
The codomain consists of a family (𝑥𝑖 , 𝑔𝑖)𝑖∈𝐼 where 𝑥𝑖 ∈ 𝐾𝑖 and

𝑔𝑖 ∈ 𝐺 (𝑖, 𝑥𝑖), such that for each morphism 𝑖
𝑢−→ 𝑗 in 𝐼 , we have

𝐾𝑢 (𝑥𝑖) = 𝑥 𝑗 and (𝐺𝑢) (𝑔𝑖) = 𝑔 𝑗 .
The canonical morphism maps ((𝑥𝑖)𝑖∈𝐼 , (𝑔𝑖)𝑖∈𝐼) to the family

(𝑥𝑖 , 𝑔𝑖)𝑖∈𝐼 . It is clearly a bijection. □

Proof of Lemma A.3. Let 𝑑 : 𝐼 → A be a finite connected

diagram and 𝑋 be a functor preserving finite connected limits.

Then,∫
𝑖:𝐼

𝐹 (𝑋)𝑑𝑖 =
∫
𝑖:𝐼

∐
𝑛

∐
𝑜∈O𝑛 (𝑑𝑖)

𝑋𝑜1 × · · · × 𝑋𝑜𝑛

�
∐
𝑛

∫
𝑖:𝐼

∐
𝑜∈O𝑛 (𝑑𝑖)

𝑋𝑜1 × · · · × 𝑋𝑜𝑛

(Coproducts commute with connected limits)

�
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖)

∫
𝑖:𝐼

𝑋
𝑝𝑖 (𝑜)1

× · · · × 𝑋
𝑝𝑖 (𝑜)𝑛

(By Lemma A.10)

�
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖)

∫
𝑖:𝐼

𝑋
𝑝𝑖 (𝑜)1

× · · · ×
∫
𝑖:𝐼

𝑋
𝑝𝑖 (𝑜)𝑛

(By commutation of limits)

Thus, since 𝑋 preserves finite connected limits by assumption,∫
𝑖

𝐹 (𝑋)𝑑𝑖 =
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖)

𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜)1

× · · · × 𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜)𝑛

(4)

Now, let us prove the only if statement first. Assuming that

𝛼 :

∫
𝐽 → A and each O𝑛 preserves finite connected limits. Then,∫

𝑖

𝐹 (𝑋)𝑑𝑖 �
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖)

𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜)1

× · · · × 𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜)𝑛

(By Equation (4))

�
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑)

𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }1

× · · · × 𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }𝑛

(By assumption on O𝑛)

�
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑)

𝑋𝑜1 × · · · × 𝑋𝑜𝑛 (By Corollary A.9)

= 𝐹 (𝑋)
lim𝑑

Conversely, let us assume that 𝐹 restricts to an endofunctor

on C . Then, 𝐹 (1) = ∐
𝑛 O𝑛 preserves finite connected limits. By

Lemma A.4, each O𝑛 preserves finite connected limits. By Corol-

lary A.9, it is enough to prove that given a finite connected diagram

𝑑 : 𝐷 → A and element 𝑜 ∈ O𝑛 (lim𝑑), the following canonical

morphism is an isomorphism

𝑜 𝑗 →
∫
𝑖:𝐷

𝑜{𝑝𝑖 } 𝑗

Now, we have∫
𝑖:𝐼

𝐹 (𝑋)𝑑𝑖 � 𝐹 (𝑋)lim𝑑 (By assumption)

=
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑)

𝑋𝑜1 × · · · × 𝑋𝑜𝑛

On the other hand,∫
𝑖:𝐼

𝐹 (𝑋)𝑑𝑖 �
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖)

𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜)1

× · · · × 𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜)𝑛

(By Equation (4))

=
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑)

𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }1

× · · · × 𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }𝑛

(O𝑛 preserves finite connected limits)

It follows from those two chains of isomorphisms that each function

𝑋𝑜 𝑗 → 𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 } 𝑗

is a bijection, or equivalently (by the Yoneda

Lemma), that C (𝐾𝑜 𝑗 , 𝑋) → C (𝐾
∫
𝑖:𝐼
𝑜{𝑝𝑖 } 𝑗 , 𝑋) is an isomorphism.

Since the Yoneda embedding is fully faithful, 𝑜 𝑗 →
∫
𝑖:𝐷

𝑜{𝑝𝑖 } 𝑗 is
an isomorphism. □

A.4 Lemma 3.22

Cocompleteness follows from Adámek and Rosicky [4, Remark

1.56], since C is the category of models of a limit sketch, and is

thus locally presentable, by Adámek and Rosicky [4, Proposition

1.51].

For the claimed closure property, all we have to check is that

limits, coproducts, and filtered colimits of functors preserving finite

connected limits still preserve finite connected limits. The case of

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Submitted to LICS ’24, 2024, Tallinn Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

limits is clear, since limits commute with limits. Coproducts and

filtered colimits also commute with finite connected limits Adámek

et al. [3, Example 1.3.(vi)].

A.5 Corollary 3.23

The result follows from the construction of𝑇 using colimits of initial

chains, thanks to the closure properties of C . More specifically,𝑇𝑋

can be constructed as the colimit of the chain ∅ → 𝐻∅ → 𝐻𝐻∅ →
. . . , where ∅ denotes the constant functor mapping anything to the

empty set, and 𝐻𝑍 = 𝐹𝑍 + 𝑋 .

B APPLICATIONS

In this section, we present various examples of pattern-friendly sig-

natures. We start in Section §B.1 with a variant of pure 𝜆-calculus

where metavariable arguments are sets rather than lists. Then, in

Section §B.2, we present simply-typed 𝜆-calculus, as an example

of syntax specified by a multi-sorted binding signature. We then

explain in Section §B.3 how we can handle 𝛽 and 𝜂 equations by

working on the normalised syntax. Next, we introduce an exam-

ple of unification for ordered syntax in Section §B.4, and finally

we present an example of polymorphic such as System F, in Sec-

tion §B.5.

B.1 Metavariable arguments as sets

If we think of the arguments of a metavariable as specifying the

available variables, then it makes sense to assemble them in a set

rather than in a list. This motivates considering the categoryA = I
whose objects are natural numbers and a morphism 𝑛 → 𝑝 is a

subset of {1, . . . , 𝑝} of cardinal 𝑛. For instance, I can be taken as

subcategory of F𝑚 consisting of strictly increasing injections, or

as the subcategory of the augmented simplex category consisting

of injective functions. Then, a metavariable takes as argument

a set of variables, rather than a list of distinct variables. In this

approach, unifying two metavariables (see the rules U-Flex and

P-Flex) amount to computing a set intersection.

B.2 Simply-typed 𝜆-calculus

In this section, we present the example of simply-typed 𝜆-calculus.

Our treatment generalises to anymulti-sorted binding signature Fiore

and Hur [12].

Let𝑇 denote the set of simple types generated by a set of atomic

types and a binary arrow type construction − ⇒ −. Let us now
describe the category A of arities, or variable contexts, and renam-

ings between them. An arity ®𝜎 → 𝜏 consists of a list of input types

®𝜎 and an output type 𝜏 . A term 𝑡 in ®𝜎 → 𝜏 considered as a vari-

able context is intuitively a well-typed term 𝑡 of type 𝜏 potentially

using variables whose types are specified by ®𝜎 . A valid choice of

arguments for a metavariable 𝑀 : (®𝜎 → 𝜏) in variable context

®𝜎′ → 𝜏 ′ first requires 𝜏 = 𝜏 ′, and consists of an injective renaming

®𝑟 between ®𝜎 = (𝜎1, . . . , 𝜎𝑚) and ®𝜎′ = (𝜎′
1
, . . . , 𝜎′𝑛), that is, a choice

of distinct positions (𝑟1, . . . , 𝑟𝑚) in {1, . . . , 𝑛} such that ®𝜎 = 𝜎′®𝑟 .
This discussion determines the category of arities asA = F𝑚 [𝑇]×

𝑇 , where F𝑚 [𝑇] is the category of finite lists of elements of 𝑇 and

injective renamings between them. Table 1 summarises the defini-

tion of the endofunctor 𝐹 on [A, Set] specifying the syntax, where

| ®𝜎 |𝜏 denotes the number (as a cardinal set) of occurrences of 𝜏 in ®𝜎 .
The induced signature is pattern-friendly and so the generic

pattern unification algorithm applies. Equalisers and pullbacks are

computed following the same pattern as in pure 𝜆-calculus. For

example, to unify𝑀 (®𝑥) and𝑀 (®𝑦), we first compute the vector ®𝑧 of
common positions between ®𝑥 and ®𝑦, thus satisfying 𝑥®𝑧 = 𝑦®𝑧 . Then,
the most general unifier maps𝑀 : (®𝜎 → 𝜏) to the term 𝑃 (®𝑧), where
the arity ®𝜎′ → 𝜏 ′ of the fresh metavariable 𝑃 is the only possible

choice such that 𝑃 (®𝑧) is a valid term in the variable context ®𝜎 → 𝜏 ,

that is, 𝜏 ′ = 𝜏 and ®𝜎′ = 𝜎®𝑧 .

B.3 Simply-typed 𝜆-calculus modulo 𝛽𝜂

Higher-order pattern unification was originally introduced for

closed simply-typed lambda-terms with metavariables applied to

distinct variables. Lambda-terms are considered in 𝛽-short 𝜂-long

normal forms. Although we do not explicitly cover equations, the

syntax of those normal formas is equation free and can be speci-

fied by a GB-signature: we take the same category of arities as in

Section §B.2, and we consider the operations as specified in Table 1.

B.4 Ordered 𝜆-calculus

Our setting handles linear ordered 𝜆-calculus, consisting of 𝜆-terms

using all the variables in context. In this context, a metavariable

𝑀 of arity𝑚 ∈ N can only be used in the variable context𝑚, and

there is no freedom in choosing the arguments of a metavariable

application, since all the variablesmust be used, in order. Thus, there

is no need to even mention those arguments in the syntax. It is thus

not surprising that ordered 𝜆-calculus is already handled by first-

order unification, where metavariables do not take any argument,

by considering ordered 𝜆-calculus as a multi-sorted Lawvere theory

where the sorts are the variable contexts, and the syntax is generated

by operations 𝐿𝑛 × 𝐿𝑚 → 𝐿𝑛+𝑚 and abstractions 𝐿𝑛+1 → 𝐿𝑛 .

Our generalisation can handle calculi combining ordered and un-

restricted variables, such as the calculus underlying ordered linear

logic described in Polakow and Pfenning [26]. In this section we

detail this specific example. Note that this does not fit into Schack-

Nielsen and Schürman’s pattern unification algorithm Schack-Nielsen

and Schürmann [29] for linear types where exchange is allowed

(the order of their variables does not matter).

The set 𝑇 of types is generated by a set of atomic types and two

binary arrow type constructions ⇒ and ↠. The syntax extends

pure 𝜆-calculus with a distinct application 𝑡> 𝑢 and abstraction

𝜆>𝑢. Variables contexts are of the shape ®𝜎 | ®𝜔 → 𝜏 , where ®𝜎 , ®𝜔 , and
𝜏 are taken in 𝑇 . The idea is that a term in such a context has type

𝜏 and must use all the variables of ®𝜔 in order, but is free to use any

of the variables in ®𝜎 . Assuming a metavariable𝑀 of arity ®𝜎 | ®𝜔 → 𝜏 ,

the above discussion about ordered 𝜆-calculus justifies that there is

no need to specify the arguments for ®𝜔 when applying𝑀 . Thus, a

metavariable application𝑀 (®𝑥) in the variable context ®𝜎′ | ®𝜔 ′ → 𝜏 ′

is well-formed if 𝜏 = 𝜏 ′ and ®𝑥 is an injective renaming from ®𝜎 to ®𝜎′.
Therefore, we takeA = F𝑚 [𝑇] ×𝑇 ∗ ×𝑇 for the category of arities,

where 𝑇 ∗ denote the discrete category whose objects are lists of

elements of 𝑇 . The remaining components of the GB-signature are

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Semantics of pattern unification Submitted to LICS ’24, 2024, Tallinn

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table 1: Examples of (pattern-friendly) GB-signatures (Definition 3.13)

Simply-typed 𝜆-calculus (Section §B.2)

Typing rule 𝑂 (®𝜎 → 𝜏) = . . .+ 𝛼𝑜 = (. . .)

𝑥 : 𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏

{𝑣𝑖 |𝑖 ∈ |®𝜎 |𝜏 } ()

Γ ⊢ 𝑡 : 𝜏 ′ ⇒ 𝜏 Γ ⊢ 𝑢 : 𝜏 ′

Γ ⊢ 𝑡 𝑢 : 𝜏
{𝑎𝜏 ′ |𝜏 ′ ∈ 𝑇 }

(
®𝜎 → (𝜏 ′ ⇒ 𝜏)
®𝜎 → 𝜏 ′

)
Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2

Γ ⊢ 𝜆𝑥 .𝑡 : 𝜏1 ⇒ 𝜏2
{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} (®𝜎, 𝜏1 → 𝜏2)

Simply-typed 𝜆-calculus modulo 𝛽𝜂 (Section §B.3)

Typing rule 𝑂 (®𝜎 → 𝜏) = . . .+ 𝛼𝑜 = (. . .)

𝑥 : ®𝜏 ′ ⇒ 𝜏 ∈ Γ 𝜏 is a base type Γ ⊢ ®𝑡 : ®𝜏 ′

Γ ⊢ 𝑥®𝑡 : 𝜏
{𝑎𝑖,𝜏 ′

1
,...,𝜏 ′𝑛 |𝑖 ∈ |®𝜎 |®𝜏 ′⇒𝜏 and 𝜏 is a base type}

©«
®𝜎 → 𝜏 ′

1

. . .

®𝜎 → 𝜏 ′𝑛

ª®¬
Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2

Γ ⊢ 𝜆𝑥.𝑡 : 𝜏1 ⇒ 𝜏2
{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} (®𝜎, 𝜏1 → 𝜏2)

Ordered 𝜆-calculus (Section §B.4)

Typing rule 𝑂 (®𝜎 | ®𝜔 → 𝜏) = . . .+ 𝛼𝑜 = (. . .)

𝑥 : 𝜏 ∈ Γ
Γ |· ⊢ 𝑥 : 𝜏

{𝑣𝑖 |𝑖 ∈ |®𝜎 |𝜏 and ®𝜔 = ()} ()

Γ |𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
{𝑣> | ®𝜔 = ()} ()

Γ |Ω ⊢ 𝑡 : 𝜏 ′ ⇒ 𝜏 Γ |· ⊢ 𝑢 : 𝜏 ′

Γ |Ω ⊢ 𝑡 𝑢 : 𝜏
{𝑎𝜏 ′ |𝜏 ′ ∈ 𝑇 }

(
®𝜎 | ®𝜔 → (𝜏 ′ ⇒ 𝜏)
®𝜎 | () → 𝜏 ′

)
Γ |Ω1 ⊢ 𝑡 : 𝜏 ′ ↠ 𝜏 Γ |Ω2 ⊢ 𝑢 : 𝜏 ′

Γ |Ω1,Ω2 ⊢ 𝑡> 𝑢 : 𝜏
{𝑎 ®𝜔1, ®𝜔2

𝜏 ′ |𝜏 ′ ∈ 𝑇 and ®𝜔 = ®𝜔1, ®𝜔2}
(
®𝜎 | ®𝜔1 → (𝜏 ′ ⇒ 𝜏)
®𝜎 | ®𝜔2 → 𝜏 ′

)
Γ, 𝑥 : 𝜏1 |Ω ⊢ 𝑡 : 𝜏2

Γ |Ω ⊢ 𝜆𝑥 .𝑡 : 𝜏1 ⇒ 𝜏2
{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} (®𝜎, 𝜏1 | ®𝜔 → 𝜏2)

Γ |Ω, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Γ |Ω ⊢ 𝜆>𝑥 .𝑡 : 𝜏1 ↠ 𝜏2

{𝑙>𝜏1,𝜏2 |𝜏 = (𝜏1 ↠ 𝜏2)} (®𝜎, 𝜏1 | ®𝜔 → 𝜏2)

System F (Section §B.5)

Typing rule 𝑂 (𝑝 | ®𝜎 ⊢ 𝜏) = . . .+ 𝛼𝑜 = (. . .)

𝑥 : 𝜏 ∈ Γ
𝑛 |Γ ⊢ 𝑥 : 𝜏

{𝑣𝑖 |𝑖 ∈ |®𝜎 |𝜏 } ()

𝑛 |Γ ⊢ 𝑡 : 𝜏 ′ ⇒ 𝜏 𝑛 |Γ ⊢ 𝑢 : 𝜏 ′

𝑛 |Γ ⊢ 𝑡 𝑢 : 𝜏
{𝑎𝜏 ′ |𝜏 ′ ∈ 𝑆𝑛}

(
𝑛 | ®𝜎 → 𝜏 ′ ⇒ 𝜏

𝑛 | ®𝜎 → 𝜏 ′

)
𝑛 |Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
𝑛 |Γ ⊢ 𝜆𝑥 .𝑡 : 𝜏1 ⇒ 𝜏2

{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} (𝑛 | ®𝜎, 𝜏1 → 𝜏2)

𝑛 |Γ ⊢ 𝑡 : ∀𝜏1 𝜏2 ∈ 𝑆𝑛
𝑛 |Γ ⊢ 𝑡 · 𝜏2 : 𝜏1 [𝜏2]

{𝐴𝜏1,𝜏2 |𝜏 = 𝜏1 [𝜏2]} (𝑛 | ®𝜎 → ∀𝜏1)

𝑛 + 1|𝑤𝑘 (Γ) ⊢ 𝑡 : 𝜏
𝑛 |Γ ⊢ Λ𝑡 : ∀𝜏 {Λ𝜏 ′ |𝜏 = ∀𝜏 ′} (𝑛 + 1|𝑤𝑘 (®𝜎) → 𝜏 ′)

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Submitted to LICS ’24, 2024, Tallinn Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

specified in Table 1: we alternate typing rules for the unrestricted

and the ordered fragments (variables, application, abstraction).

Pullbacks and equalisers are computed essentially as in Sec-

tion §B.2. For example, the most general unifier of𝑀 (®𝑥) and𝑀 (®𝑦)
maps 𝑀 to 𝑃 (®𝑧) where ®𝑧 is the vector of common positions of ®𝑥
and ®𝑦, and 𝑃 is a fresh metavariable of arity 𝜎®𝑧 | ®𝜔 → 𝜏 .

B.5 Intrinsic polymorphic syntax

We present intrinsic System F, in the spirit of Hamana [17].

The syntax of types in type variable context 𝑛 is inductively

generated as follows, following the De Bruijn level convention.

1 ≤ 𝑖 ≤ 𝑛
𝑛 ⊢ 𝑖

𝑛 ⊢ 𝑡 𝑛 ⊢ 𝑢
𝑛 ⊢ 𝑡 ⇒ 𝑢

𝑛 + 1 ⊢ 𝑡
𝑛 ⊢ ∀𝑡

Let 𝑆 : F𝑚 → Set be the functor mapping 𝑛 to the set 𝑆𝑛 of types

for system 𝐹 taking free type variables in {1, . . . , 𝑛}. In other words,

𝑆𝑛 = {𝜏 |𝑛 ⊢ 𝜏}. Intuitively, a metavariable arity 𝑛 | ®𝜎 → 𝜏 specifies

the number 𝑛 of free type variables, the list of input types ®𝜎 , and
the output type 𝜏 , all living in 𝑆𝑛 . This provides the underlying

set of objects of the category A of arities. A term 𝑡 in 𝑛 | ®𝜎 → 𝜏

considered as a variable context is intuitively a well-typed term of

type 𝜏 potentially involving ground variables of type ®𝜎 and type

variables in {1, . . . , 𝑛}.
A metavariable 𝑀 : (𝑛 |𝜎1, . . . , 𝜎𝑝 → 𝜏) in the variable context

𝑛′ | ®𝜎′ → 𝜏 ′ must be supplied with

• a choice (𝜂1, . . . , 𝜂𝑛) of 𝑛 distinct type variables among the

set {1, . . . 𝑛′}, such that 𝜏 [®𝜂] = 𝜏 ′, and
• an injective renaming ®𝜎 [®𝜂] → ®𝜎′, i.e., a list of distinct

positions 𝑟1, . . . , 𝑟𝑝 such that ®𝜎 [®𝜂] = 𝜎′®𝑟 .
This defines the data for a morphism in A between (𝑛 | ®𝜎 → 𝜏)
and (𝑛′ | ®𝜎′ → 𝜏 ′). The intrinsic syntax of system 𝐹 can then be

specified as in Table 1. The induced GB-signature is pattern-friendly.

For example, morphisms in A are easily seen to be monomorphic;

we detail in Appendix §C the proof that A has finite connected

limits. Pullbacks and equalisers inA are essentially computed as in

Section §B.2, by computing the vector of common (value) positions.

For example, given a metavariable 𝑀 of arity𝑚 | ®𝜎 → 𝜏 , to unify

𝑀 (®𝑤 | ®𝑥) with𝑀 (®𝑦 |®𝑧), we compute the vector of common positions

®𝑝 between ®𝑤 and ®𝑦, and the vector of common positions ®𝑞 between

®𝑥 and ®𝑧. Then, the most general unifier maps𝑀 to the term 𝑃 (®𝑝 | ®𝑞),
where 𝑃 is a fresh metavariable. Its arity𝑚′ | ®𝜎′ → 𝜏 ′ is the only
possible one for 𝑃 (®𝑝 | ®𝑞) to be well-formed in the variable context

𝑚 | ®𝜎 → 𝜏 , that is, 𝑚′ is the size of ®𝑝 , while 𝜏 ′ = 𝜏 [𝑝𝑖 ↦→ 𝑖] and
®𝜎′ = 𝜎®𝑞 [𝑝𝑖 ↦→ 𝑖].

C PROOF THAT A HAS FINITE CONNECTED

LIMITS (SECTION B.5 ON SYSTEM F)

In this section, we show that the category A of arities for System

F (Section §B.5) has finite connected limits. First, note that A is

the op-lax colimit of the functor from F𝑚 to the category of small

categories mapping 𝑛 to F𝑚 [𝑆𝑛] ×𝑆𝑛 . Let us introduce the category
A′ whose definition follows that of A, but without the output

types: objects are pairs of a natural number 𝑛 and an element of 𝑆𝑛 .

Formally, this is the op-lax colimit of 𝑛 ↦→ F𝑚 [𝑆𝑛].

Lemma C.1. A′ has finite connected limits, and the projection

functor A′ → F𝑚 preserves them.

Proof. The crucial point is thatA′ is not only op-fibred overF𝑚
by construction, it is also fibred over F𝑚 . Intuitively, if ®𝜎 ∈ F𝑚 [𝑆𝑛]
and 𝑓 : 𝑛′ → 𝑛 is a morphism in F𝑚 , then 𝑓! ®𝜎 ∈ F𝑚 [𝑆𝑛′] is
essentially ®𝜎 restricted to elements of 𝑆𝑛 that are in the image of

𝑆𝑓 . We can now apply Gray [15, Corollary 4.3], since each F𝑚 [𝑆𝑛]
has finite connected limits. □

We are now ready to prove that A has finite connected limits.

Lemma C.2. A has finite connected limits.

Proof. Since 𝑆 : F𝑚 → Set preserves finite connected limits,∫
𝑆 has finite connected limits and the projection functor to F𝑚

preserves them by Corollary A.8.

Now, the 2-category of small categories with finite connected

limits and functors preserving those between them is the category of

algebras for a 2-monad on the category of small categories Blackwell

et al. [7]. Thus, it includes the weak pullback of A′ → F𝑚 ←
∫
𝑆 .

But since

∫
𝑆 → F𝑚 is a fibration, and thus an isofibration, by Joyal

and Street [19] this weak pullback can be computed as a pullback,

which is A. □

18

	Abstract
	1 Introduction
	2 Presentation of the algorithm
	2.1 An example: pure -calculus.
	2.2 Generalisation

	3 Categorical semantics
	3.1 Pattern unification as a coequaliser construction
	3.2 Initial Algebra Semantics for GB-signatures

	4 Soundness of the pruning phase
	4.1 Rigid (rules P-Rig and P-Rig-Fail)
	4.2 Flex (rule P-Flex)

	5 Soundness of the unification phase
	5.1 Sequential unification (rules U-Empty and U-Split)
	5.2 Flex-Rig, no cycle (rule No-Cycle)
	5.3 Flex-Flex, same metavariable (rule Same-MVar)
	5.4 Flex-rigid, cyclic (rule Cycle)

	6 Termination and completeness
	6.1 Termination
	6.2 Completeness

	7 Related work
	References
	A Proofs of statements in Section 3.2
	A.1 Property 3.16
	A.2 Lemma 3.18
	A.3 Lemma 3.21
	A.4 Lemma 3.22
	A.5 Corollary 3.23

	B Applications
	B.1 Metavariable arguments as sets
	B.2 Simply-typed -calculus
	B.3 Simply-typed -calculus modulo
	B.4 Ordered -calculus
	B.5 Intrinsic polymorphic syntax

	C Proof that A has finite connected limits (Section B.5 on system F)

