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Semantics of pattern unification
Anonymous Author(s)

ABSTRACT

It is well-known that first-order unification corresponds to the con-

struction of equalisers in a (multi-sorted) Lawvere theory. We show

that Miller’s decidable pattern fragment of second-order unification

can be interpreted similarly; the involved Lawvere theories are no

longer freely generated by operations. To illustrate our semantic

analysis, we present a generic unification algorithm implemented

in Agda. The syntax with metavariables given as input of the algo-

rithm is parameterised by a notion of signature generalising binding

signatures, covering a wide range of examples, including ordered

𝜆-calculus, (intrinsic) polymorphic syntax such as System F, and

of course Miller’s original application, normalised simply-typed

𝜆-calculus.
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1 INTRODUCTION

Unification is one of the basic algorithms of type inference. It takes

two terms 𝑡 and𝑢, each containing some metavariables, and returns

a substitution 𝜎 which assigns a term to each metavariable, such

that 𝑡 [𝜎] = 𝑢 [𝜎]. This substitution is typically the most general

one, in the sense that that every other unifier for these two terms

factors through it. That is, given any other unifier 𝛿 , there exists a

unique 𝛿 ′ such that 𝛿 = 𝜎 [𝛿 ′].
Unification is useful in type inference because it offers a conve-

nient way of handling the instantiation of quantifiers: whenever a

polymorphic type of the form∀𝑎. is eliminated, a fresh metavariable

can be substituted for the quantified variable 𝑎, and then unifica-

tion can be used to incrementally deduce what the instantiation

should have been, thereby sparing the programmer from having to

instantiate quantifiers manually.

However, while recent results in type inference, such as Dunfield

and Krishnaswami [10], or Zhao et al. [32], make heavy use of uni-

fication in their algorithms, they do not do so in a well-abstracted

way. They present a set of rules (i.e., a first-order functional pro-

gram) which explicitly re-implement unification, and as a result

their correctness proofs have to re-establish many of the fundamen-

tal results of unification theory individually. Almost no lemmas in

the proof of the one algorithm can be re-used in the other, which
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is particularly problematic given the sizes of the proofs involved:

Dunfield and Krishnaswami [10] comes with a 190 page appendix,

and Zhao et al’s Coq proof is many thousands of lines long.

Worse still, if anymodifications to the unification algorithmwere

needed, then the entire metatheory would need to be redone. For

example, both of these systems make use of first-order unification

(i.e., for types without binders in them), by retaining the ML-style

monotype/polytype distinction. Something as simple as innocuous

as the addition of a monomorphic type with a binder (for example,

a recursive type 𝜇𝑎.𝐴[𝑎]) would require moving from first-order

unification to something like Miller pattern unification [21], where

metavariables are no longer constant but may be applied to distinct

variables. This would in turn require completely redoing all of the

proofs in the two systems. Type inference for dependent types

also uses Miller patterns, of course, but the example of recursive

types shows that this issue arises long before we reach the most

sophisticated type theories.

Fixing this problem would require doing two things. First, these

type inference algorithms need to be rephrased in such a way that

they invoke unification as a subroutine, which would enable us to

make use of generic results about unification theory. Second, the

unification algorithm needs to be formulated generically enough

that it can be plugged into multiple contexts without needing sub-

stantial modifications to the guts of the proof.

Contributions

In this paper, we take one further step towards addressing the mod-

ularity problem in the theory of type inference, by showing how

to formulate Miller pattern unification in a generic, abstract style.

Like prior developments [30], we parameterise the algorithm over a

notion of binding signature which is very general: it has a customis-

able notion of context, which makes it possible to handle examples

such as simply-typed second-order syntax, ordered lambda calculi,

and intrinsic polymorphic syntax (such as System F). This lets us

derive several new unification algorithms simply as instantiations

of our framework.

Furthermore, our notion of signature can be axiomatised in a

categorical style, which leads to an almost purely categorical proof

of the correctness of our algorithm -- each of the rules of our pat-

tern unification algorithm end up corresponding to some standard

categorical construction, and each part of our proof essentially just

shows that the construction actually has the expected properties.

This is similar to Rydeheard and Burstall’s similar reconstruction

of first-order unification [28], and serves as evidence that we have

correctly factored the unification algorithm.

Plan of the paper

In section §2, we present our generic pattern unification algorithm,

parameterised by our generalised notion of binding signature. We

introduce categorical semantics of pattern unification in Section §3.

We show correctness of the two phases of the unification algo-

rithm in Section §4 and Section §5. Termination and completeness
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are justified in Sections §6. Related work is finally discussed in

Section §7.

General notations

Given a list ®𝑥 = (𝑥1, . . . , 𝑥𝑛) and a list of positions ®𝑝 = (𝑝1, . . . , 𝑝𝑚)
taken in {1, . . . , 𝑛}, we denote (𝑥𝑝1 , . . . , 𝑥𝑝𝑚 ) by 𝑥 ®𝑝 .

Given a category B, we denote its opposite category by B𝑜𝑝
.

If 𝑎 and 𝑏 are two objects of B, we denote the set of morphisms

between 𝑎 and 𝑏 by homB (𝑎, 𝑏). We denote the identity morphism

at an object 𝑥 by 1𝑥 . We denote the coproduct of two objects 𝐴

and 𝐵 by 𝐴 + 𝐵 and the coproduct of a family of objects (𝐴𝑖 )𝑖∈𝐼 by∐
𝑖∈𝐼 𝐴𝑖 , and similarly for morphisms. If 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐴′ → 𝐵,

we denote the induced morphism 𝐴 +𝐴′ → 𝐵 by 𝑓 , 𝑔. Coproduct

injections 𝐴 𝑗 →
∐
𝑖∈𝐼 𝐴𝑖 are typically denoted by 𝑖𝑛 𝑗 . Let 𝑇 be a

monad on a category B. We denote its unit by 𝜂, and its Kleisli

category by 𝐾𝑙𝑇 : the objects are the same as those of B, and a

Kleisli morphism from 𝐴 to 𝐵 is a morphism 𝐴 → 𝑇𝐵 in B. We

denote the Kleisli composition of 𝑓 : 𝐴→ 𝑇𝐵 and 𝑔 : 𝐵 → 𝑇𝐶 by

𝑓 [𝑔] : 𝐴→ 𝑇𝐶 .

2 PRESENTATION OF THE ALGORITHM

In this section, we start by describing a pattern unification algo-

rithm for pure 𝜆-calculus, summarised in Figure 4. Then we present

our generic algorithm (Figure 5). The type signatures of the imple-

mented functions are listed in Figure 3 and will be explained in the

following subsections.

We show the most relevant parts of the Agda code; the inter-

ested reader can check the full implementation in the supplemental

material. We tend to use Agda as a programming language rather

than as a theorem prover. This means that the definitions of our

data structures typically do not mention the properties (such as

associativity for a category), and we leave for future work the task

of mechanising the correctness proof of the algorithm. (The proper

formalisation of category theory in proof assistants remains a sig-

nificant challenge in its own right.) Furthermore, we disable the

termination checker and provide instead a termination proof on

paper in Section §6.1. Even used purely as a programming language,

dependent types are very helpful in structuring the implementation.

The Agda code is much simpler than an earlier, less-strongly typed,

version written in OCaml.

2.1 An example: pure 𝜆-calculus.

Consider the syntax of pure 𝜆-calculus extendedwith patternmetavari-

ables. We list the Agda code in Figure 1, together with a correspond-

ing presentation as inductive rules generating the syntax. We write

Γ;𝑛 ⊢ 𝑡 to mean 𝑡 is a well-formed 𝜆-term in the context Γ;𝑛, con-
sisting of two parts:

(1) a metavariable context (or metacontext) Γ, which is either a

formal error context ⊥, or a proper context, as a list (𝑀1 :

𝑚1, . . . , 𝑀𝑝 :𝑚𝑝 ), of metavariable declarations specifying

metavariable symbols 𝑀𝑖 together with their arities, i.e,

their number of arguments𝑚𝑖 ;

(2) a variable context, which is a mere natural number indicat-

ing the highest possible free variable.

The error metacontext ⊥ will prove useful to handle failure in the

unification algorithm. The unification algorithm is fundamentally a

partial one, since unifiers may not exist. Instead of modelling partial-

ity with some kind of error monad, we instead make our unification

algorithm total by adding a formal error, so that a metacontext is

either a proper metacontext or a formal error metacontext, and

the unification algorithm either returns a proper substitution or an

error substitution. Our approach to failure actually arises from the

categorical semantics (see Section §3.1).

In the inductive rules, we use the bold face 𝚪 for any proper

metacontext. In the Agda code, we adopt a nameless encoding of

proper metacontexts: they are mere lists of metavariable arities, and

metavariables are referred to by their index in the list. The type of

metacontexts MetaContext is formally defined as Maybe (List N),
whereMaybe𝑋 is an inductive typewith an error constructor⊥ and

a success constructor ⌊−⌋ taking as argument an element of type

𝑋 . Therefore, 𝚪 typically translates into ⌊Γ⌋ in the implementation.

To alleviate notations, we also adopt a dotted convention in Agda

to mean that a successful metacontext is involved. For example,

MetaContext· and Tm· Γ 𝑛 are respectively defined as List N and

Tm ⌊Γ⌋ 𝑛.
The last term constructor ! builds a well-formed term in any error

context ⊥;𝑛. We call it an error term: it is the only one available

in such contexts. Proper terms, i.e., terms well-formed in a proper

metacontext, are built from application, 𝜆-abstraction and variables:

they generate the (proper) syntax of 𝜆-calculus. Note that ! cannot

occur as a sub-term of a proper term.

Remark 2.1. The names of constructors of 𝜆-calculus for applica-

tion, 𝜆-abstraction, and variables, are dotted to indicate that they

are only available in a proper metacontext. “Improper” versions

of those, defined in any metacontext, are also implemented in the

obvious way, coinciding with the constructors in a proper context,

or returning ! in the error context.

Free variables are indexed from 1 and we use the De Bruijn level

convention: the variable bound in 𝚪;𝑛 ⊢ 𝜆𝑡 is 𝑛+1, not 0, as it would
be using De Bruijn indices [9]. In Agda, variables in the variable

context 𝑛 consist of elements of Fin 𝑛, the type of natural numbers

between
1
1 and 𝑛. Let us focus on the last constructor building a

metavariable application in the context 𝚪;𝑛. The argument of type

𝑚 ∈ 𝚪 is an index of any element𝑚 in the list 𝚪. The constructor also

takes an argument of type𝑚 ⇒ 𝑛, which unfolds as Vec (Fin n) m:

this is the type of lists of size𝑚 consisting of elements of Fin 𝑛, that
is, natural numbers between 1 and𝑛. Note this does not fully enforce

the pattern restriction: metavariable arguments are not required

to be distinct. However, our unification algorithm is guaranteed to

produce correct outputs only if this constraint is satisfied in the

inputs.

The Agda implementation of metavariable substitutions for 𝜆-

calculus is listed in the first box of Figure 2. We call a substitution

successful if it targets a proper metacontext, proper if the domain is

proper. Note that any successful substitution is proper because there

is only one metavariable substitution 1⊥ from the error context:

it is a formal identity substitution, targeting itself. A metavariable

substitution 𝜎 : 𝚪 → Δ from a proper context assigns to each

metavariable𝑀 of arity𝑚 in 𝚪 a term Δ;𝑚 ⊢ 𝜎𝑀 .

1Fin 𝑛 is actually defined in the standard library as an inductive type designed to be

(canonically) isomorphic with {0, . . . , 𝑛 − 1}.
2
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Figure 1: Syntax of 𝜆-calculus (Section §2.1)

data Tm : MetaContext→ N→ Set
Tm· Γ n = Tm ⌊ Γ ⌋ n

MetaContext· = List N
MetaContext = Maybe MetaContext·

_⇒_ : N→ N→ Set
m⇒ n = Vec (Fin n) m

data Tm where
App· : ∀ {Γ n}→ Tm· Γ n→ Tm· Γ n→ Tm· Γ n

Lam· : ∀ {Γ n}→ Tm· Γ (1 + n)→ Tm· Γ n

Var· : ∀ {Γ n}→ Fin n→ Tm· Γ n

_(_) : ∀ {Γ n m}→ m ∈ Γ→ m⇒ n→ Tm· Γ n

! : ∀ {n}→ Tm ⊥ n

1 ≤ 𝑖 ≤ 𝑛
𝚪;𝑛 ⊢ 𝑖

𝚪;𝑛 ⊢ 𝑡 𝚪;𝑛 ⊢ 𝑢
𝚪;𝑛 ⊢ 𝑡 𝑢

𝚪;𝑛 + 1 ⊢ 𝑡
𝚪;𝑛 ⊢ 𝜆𝑡

𝑀 :𝑚 ∈ 𝚪

𝑥1, . . . ,𝑥𝑚∈{1, . . . ,𝑛} distinct︷      ︸︸      ︷
𝑥 :𝑚 ⇒ 𝑛

𝚪;𝑛 ⊢ 𝑀 (𝑥1, . . ., 𝑥𝑚)

⊥;𝑎 ⊢ !
App : ∀ {Γ n}→ Tm Γ n→ Tm Γ n→ Tm Γ n

App {⊥} ! ! = !
App {⌊ Γ ⌋} t u = App· t u

Lam : ∀ {Γ n}→ Tm Γ (1 + n)→ Tm Γ n

Lam {⊥} ! = !
Lam {⌊ Γ ⌋} t = Lam· t

Var : ∀ {Γ n}→ Fin n→ Tm Γ n

Var {⊥} i = !
Var {⌊ Γ ⌋} i = Var· i

Figure 2: Metavariable substitution

– Proper substitutions

Γ ·−→ Δ = ⌊ Γ ⌋ −→ Δ

– Successful substitutions

Γ ·−→· Δ = ⌊ Γ ⌋ −→ ⌊ Δ ⌋
data _−→_ where

[] : ∀ {Δ}→ ([] ·−→ Δ )
_,_ : ∀ {Γ Δ m}→ Tm Δ m→ (Γ ·−→ Δ)→ (m :: Γ ·−→ Δ)
1⊥ : ⊥ −→ ⊥

𝜆-calculus (Section §2.1)

_[_]t : ∀ {Γ n}→ Tm Γ n→∀ {Δ}→ (Γ −→ Δ)→ Tm Δ n

App· t u [ 𝜎 ]t = App (t [ 𝜎 ]t) (u [ 𝜎 ]t)
Lam· t [ 𝜎 ]t = Lam (t [ 𝜎 ]t)
Var· i [ 𝜎 ]t = Var i
M ( x ) [ 𝜎 ]t = nth 𝜎 M { x }
! [ 1⊥ ]t = !

Γ;𝑛 ⊢ 𝑡 𝜎 : Γ → Δ

Δ;𝑛 ⊢ 𝑡 [𝜎]

_[_]s : ∀ {Γ Δ E}→ (Γ −→ Δ)→ (Δ −→ E)→ (Γ −→ E)
[] [ 𝜎 ]s = []
(t , 𝛿) [ 𝜎 ]s = t [ 𝜎 ]t , 𝛿 [ 𝜎 ]s
1⊥ [ 1⊥ ]s = 1⊥

𝛿 : Γ → Δ 𝜎 : Δ→ 𝐸

𝛿 [𝜎]︸︷︷︸
𝑀 ↦→𝛿𝑀 [𝜎 ]

: Γ → 𝐸

Generic syntax (Section §2.2)

_[_]t : ∀ {Γ a}→ Tm Γ a→∀ {Δ}→ (Γ −→ Δ)→ Tm Δ a

_[_]s : ∀ {Γ Δ E}→ (Γ −→ Δ)→ (Δ −→ E)→ (Γ −→ E)

Rigid· o 𝛿 [ 𝜎 ]t = Rigid o (𝛿 [ 𝜎 ]s)
M ( x ) [ 𝜎 ]t = nth 𝜎 M { x }
! [ 1⊥ ]t = !

Γ;𝑎 ⊢ 𝑡 𝜎 : Γ → Δ

Δ;𝑎 ⊢ 𝑡 [𝜎]

[] [ 𝜎 ]s = []
(t , 𝛿) [ 𝜎 ]s = t [ 𝜎 ]t , 𝛿 [ 𝜎 ]s
1⊥ [ 1⊥ ]s = 1⊥

𝛿 : Γ → Δ 𝜎 : Δ→ 𝐸

𝛿 [𝜎]︸︷︷︸
𝑀 ↦→𝛿𝑀 [𝜎 ]

: Γ → 𝐸

This assignment extends (through a recursive definition) to any

term 𝚪;𝑛 ⊢ 𝑡 , yielding a term Δ;𝑛 ⊢ 𝑡 [𝜎]. Note that the congruence
cases involve improper versions of the operations (Remark 2.1),

as the target metacontext may not be proper. The base case is

𝑀 (𝑥1, . . . , 𝑥𝑚) [𝜎] = 𝜎𝑀 {𝑥}, where −{𝑥} is variable renaming, de-

fined by recursion. Renaming a 𝜆-abstraction requires extending the

renaming 𝑥 : 𝑝 ⇒ 𝑞 to 𝑥 ↑ : 𝑝 + 1⇒ 𝑞 + 1 to take into account the

additional bound variable 𝑝 + 1, which is renamed to 𝑞 + 1. Then,
(𝜆𝑡){𝑥} is defined as 𝜆(𝑡{𝑥 ↑}). While metavariable substitutions

change the metacontext of the substituted term, renamings change

the variable context.

The identity substitution 1
𝚪
: 𝚪 → 𝚪 is defined by the term

𝑀 (1, . . . ,𝑚) for each metavariable declaration 𝑀 : 𝑚 ∈ 𝚪. The

composition 𝛿 [𝜎] : 𝚪1 → Γ3 of two substitutions 𝛿 : 𝚪1 → Γ2 and
𝜎 : Γ2 → Γ3 is defined as𝑀 ↦→ 𝛿𝑀 [𝜎].

A unifier of two terms Γ;𝑛 ⊢ 𝑡,𝑢 is a substitution 𝜎 : Γ → Δ
such that 𝑡 [𝜎] = 𝑢 [𝜎]. A most general unifier (later abbreviated as

mgu) of 𝑡 and 𝑢 is a unifier 𝜎 : Γ → Δ that uniquely factors any

other unifier 𝛿 : Γ → Δ′, in the sense that there exists a unique

𝛿 ′ : Δ→ Δ′ such that 𝛿 = 𝜎 [𝛿 ′].
Remark 2.2. Given a metacontext Γ, there is a single terminal

substitution !𝑠 : Γ → ⊥, which maps any metavariable to the only

available term ! if Γ is proper, or is the identity substitution 1⊥
otherwise. Any term substituted by !𝑠 yields the error term !, since

it is the only one in the metacontext ⊥. As a consequence,
• !𝑠 : Γ → ⊥ is uniquely factored by any other substitution

𝜎 : Γ → Δ as the composition of 𝜎 with !𝑠 : Δ→ ⊥
• !𝑠 unifies any pair of terms.

Remark 2.3. Because of the additional error context, our notion

of unification differs from the standard presentation, which is re-

covered by focusing only on successful substitutions. However, it

follows from Remark 2.2 that mgus in the standard setting are still

mgus in our setting. Moreover, when there is no successful unifier,

the terminal substitution is a mgu.

The main property of pattern unification is that the mgu of any

pair of terms exists as soon as there exists a unifier. Remark 2.3

shows that we can actually get rid of the latter condition: the non-

existence of unifiers (for example, when unifying 𝑡1 𝑡2 with 𝜆𝑢) is

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Submitted to LICS ’24, 2024, Tallinn Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

restated as !𝑠 being the mgu. Accordingly, our implementation does

not explicitly fail. Given two terms Γ;𝑛 ⊢ 𝑡,𝑢 as input, the Agda

function unify returns a context Δ, which is ⊥ in case there is no

successful unifier, and a substitution 𝜎 : Γ → Δ. We denote such

a situation by Γ ⊢ 𝑡 = 𝑢 ⇒ 𝜎 ⊣ Δ, leaving the variable context

𝑛 implicit: the symbol ⇒ separates the input and the output of

the unification algorithm, which is the mgu of 𝑡 and 𝑢, although

this property of the output substitution is not explicit in the type

signature (see Figure 3).

This unification function recursively inspects the structure of the

given terms until reaching a metavariable at the top-level, as seen

in the second box of Figure 4. The last two cases handle unification

of two error terms, and unification of two different rigid term

constructors (application, 𝜆-abstraction, or variables), resulting in

failure.

When reaching a metavariable application𝑀 (𝑥) at the top-level
of either term in a metacontext 𝚪, denoting by 𝑡 the other term,

three situations must be considered:

(1) 𝑡 is a metavariable application𝑀 (𝑦);
(2) 𝑡 is not a metavariable application and𝑀 occurs deeply in

𝑡 ;

(3) 𝑀 does not occur in 𝑡 .

The occur-check function returns Same-MVar 𝑦 in the first case,

Cycle in the second case, and No-Cycle 𝑡 ′ in the last case, where 𝑡 ′

is 𝑡 but considered in the context 𝚪 without𝑀 , denoted by 𝚪\𝑀 .

In the first case, the line let 𝑝, 𝑧 = commonPositions 𝑚 𝑥 𝑦

computes the vector of common positions of 𝑥 and 𝑦, that is, the

maximal vector of (distinct) positions (𝑧1, . . . , 𝑧𝑝 ) such that 𝑥®𝑧 =

𝑦®𝑧 . We denote
2
such a situation by 𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝 . The most

general unifier 𝜎 coincides with the identity substitution except

that𝑀 :𝑚 is replaced by a fresh metavariable 𝑃 : 𝑝 in the context

𝚪, and 𝜎 maps𝑀 to 𝑃 (𝑧).

Example 2.4. Let 𝑥,𝑦, 𝑧 be three distinct variables, and let us

consider unification of𝑀 (𝑥,𝑦) and𝑀 (𝑧, 𝑥). Given a unifier 𝜎 , since

𝑀 (𝑥,𝑦) [𝜎] = 𝜎𝑀 {1 ↦→ 𝑥, 2 ↦→ 𝑦} and 𝑀 (𝑧, 𝑥) [𝜎] = 𝜎𝑀 {1 ↦→
𝑧, 2 ↦→ 𝑥} must be equal, 𝜎𝑀 cannot depend on the variables 1 and

2. It follows that the most general unifier is 𝑀 ↦→ 𝑃 , replacing 𝑀

with a fresh constant metavariable 𝑃 . A similar argument shows

that the most general unifier of𝑀 (𝑥,𝑦) and𝑀 (𝑧,𝑦) is𝑀 ↦→ 𝑃 (2).

The corresponding rule Same-MVar does not stipulate how to

generate the fresh metavariable symbol 𝑃 , although there is an

obvious choice, consisting in taking𝑀 which has just been removed

from the context 𝚪. Accordingly, the implementation keeps𝑀 but

changes its arity to 𝑝 , resulting in a context denoted by 𝚪 [𝑀 : 𝑝].
The second case tackles unification of a metavariable application

with a term in which the metavariable occurs deeply. It is handled

by the failing rule Cycle: there is no unifier because the size of

both hand sides can never match after substitution.

The last case described by the rule No-cycle is unification of

𝑀 (𝑥) with a term 𝑡 in which 𝑀 does not occur. This kind of uni-

fication problem is handled specifically by a previously defined

function prune, which we now describe. The intuition is that𝑀 (𝑥)
and 𝑡 should be unified by replacing 𝑀 with 𝑡 [𝑥𝑖 ↦→ 𝑖]. However,
2
The similarity with the above introduced notation is no coincidence: as we will see

(Remark 3.11), both are (co)equalisers.

this only makes sense if the free variables of 𝑡 are in 𝑥 . For example,

if 𝑡 is a variable that does not occur in 𝑥 , then obviously there is

no unifier. Nonetheless, it is possible to prune the outbound vari-

ables in 𝑡 as long as they only occur in metavariable arguments,

by restricting the arities of those metavariables. As an example,

if 𝑡 is a metavariable application 𝑁 (𝑥,𝑦), then although the free

variables are not all included in 𝑥 , the most general unifier still

exists, essentially replacing 𝑁 with 𝑀 , discarding the outbound

variables 𝑦.

For this pruning phase, we use the notation Γ ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎 ⊣
Δ, where 𝑡 is a term in the metacontext Γ, while 𝑥 is the argument

of the metavariable whose arity𝑚 is left implicit, as well as its (irrel-

evant) name. The output is a metacontext Δ, together with a term

𝑡 ′ in context Δ;𝑚, and a substitution 𝜎 : Γ → Δ. If Γ is proper, this

is precisely the data for the most general unifier of 𝑡 and𝑀 (𝑥), con-
sidered in the extended metacontext𝑀 :𝑚, Γ. Following the above

pruning intuition, 𝑡 ′ is the term 𝑡 where the outbound variables

have been pruned, in case of success. This justifies the type signa-

ture of the prune in Figure 3. This function recursively inspects its

argument. The base metavariable case corresponds to unification

of𝑀 (𝑥) and𝑀′ (𝑦) where𝑀 and𝑀′ are distinct metavariables. In

this case, the line let 𝑝, 𝑥 ′, 𝑦′ = commonValues 𝑚 𝑥 𝑦 computes

the vectors of common value positions (𝑥 ′
1
, . . . , 𝑥 ′𝑝 ) and (𝑦′1, . . . , 𝑦

′
𝑝 )

between 𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑚′ , i.e., the pair of maximal lists

( ®𝑥 ′, ®𝑦′) of distinct positions such that 𝑥 ®𝑥 ′ = 𝑦 ®𝑦′ . We denote
3
such

a situation by 𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝 . The most general unifier

𝜎 coincides with the identity substitution except that the metavari-

ables 𝑀 and 𝑀′ are removed from the context and replaced by a

single metavariable declaration 𝑃 : 𝑝 . Then, 𝜎 maps𝑀 to 𝑃 (𝑥 ′) and
𝑀′ to 𝑃 (𝑦′).

Example 2.5. Let 𝑥,𝑦, 𝑧 be three distinct variables. The most

general unifier of𝑀 (𝑥,𝑦) and 𝑁 (𝑧, 𝑥) is𝑀 ↦→ 𝑁 ′ (1), 𝑁 ↦→ 𝑁 ′ (2).
The most general unifier of𝑀 (𝑥,𝑦) and 𝑁 (𝑧) is𝑀 ↦→ 𝑁 ′, 𝑁 ↦→ 𝑁 ′.

As for the rule Same-Var, the corresponding rule P-Flex does

not stipulate how to generate the fresh metavariable symbol 𝑃 ,

although the implementation makes an obvious choice, reusing the

name𝑀 .

The intuition for the application case is that if we want to unify

𝑀 (𝑥) with 𝑡 𝑢, we can refine 𝑀 (𝑥) to be 𝑀1 (𝑥) 𝑀2 (𝑥), where 𝑀1

and 𝑀2 are two fresh metavariables to be unified with 𝑡 and 𝑢.

Assume that those two unification problems yield 𝑡 ′ and 𝑢′ as
replacements for 𝑡 and 𝑢, as well as substitution 𝜎1 and 𝜎2, then𝑀

should be replaced accordingly with 𝑡 ′ [𝜎2] 𝑢′. Note that this really
involves improper application, taking into account the following

three subcases at once.

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎1 ⊣ 𝚫1
𝚫1 ⊢ 𝑢 [𝜎1] :> 𝑥 ⇒ 𝑢′;𝜎2 ⊣ 𝚫2

𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ 𝑡 ′ [𝜎2] 𝑢′;𝜎1 [𝜎2] ⊣ 𝚫2

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎1 ⊣ 𝚫1
𝚫1 ⊢ 𝑢 [𝜎1] :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
⊥ ⊢ ! :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥

3
The similarity with the notation for the pruning phase is no coincidence: both can be

interpreted as pullbacks (or pushouts), as we will see in Remark 4.3.

4
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Figure 3: Type signatures of the functions implemented in Figure 4 and Figure 5

record _−→? Γ : Set k’ where
constructor _◀_
field
Δ : MetaContext
𝜎 : Γ −→ Δ

record [_]∪_−→? m Γ : Set k’ where
constructor _◀_
field
Δ : MetaContext
u,𝜎 : (Tm Δ m) × (Γ −→ Δ)

record _∪_−→? (Γ : MetaContext·)(Γ’ : MetaContext)
: Set (i ⊔ j ⊔ k) where

constructor _◀_
field
Δ : MetaContext
𝛿 ,𝜎 : (Γ ·−→ Δ) × (Γ’ −→ Δ)

prune : ∀ {Γ a m}→ Tm Γ a→ (m⇒ a)→ [ m ]∪ Γ −→?
prune-𝜎 : ∀ {Γ Γ’ Γ” }→ (Γ’ ·−→ Γ)→ (Γ” =⇒ Γ’)→ Γ” ∪ Γ −→?

unify-flex-* : ∀ {Γ m a}→ m ∈ Γ→ (m⇒ a)→ Tm· Γ a→ Γ ·−→?
unify : ∀ {Γ a}→ Tm Γ a→ Tm Γ a→ Γ −→?
unify-𝜎 : ∀ {Γ Γ’}→ (Γ’ −→ Γ)→ (Γ’ −→ Γ)→ (Γ −→?)

Figure 4: Pattern unification for 𝜆-calculus (Section §2.1)

prune {⌊ Γ ⌋} (M : m ( x )) y =

let p , x’ , y’ = commonValues m x y

in Γ [ M : p ] ·◀ ((M : p) ( y’ ) , M ↦→-( x’ ))

𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝

𝚪 [𝑀 :𝑚] ⊢ 𝑀 (𝑥) :> 𝑦 ⇒
𝑃 (𝑦′);𝑀 ↦→ 𝑃 (𝑥 ′) ⊣ 𝚪 [𝑃 : 𝑝]

P-Flex

prune ! y = ⊥ ◀ (! , !𝑠 )

⊥ ⊢ ! :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
P-Fail

prune (App· t u) x =
let Δ1 ◀ (t’ , 𝜎1) = prune t x

Δ2 ◀ (u’ , 𝜎2) = prune (u [ 𝜎1 ]t) x
in Δ2 ◀ (App (t’ [ 𝜎2 ]t) u’ , 𝜎1 [ 𝜎2 ]s)

prune (Lam· t) x =
let Δ ◀ (t’ , 𝜎) = prune t (x ↑)
in Δ ◀ (Lam t’ , 𝜎)

prune {Γ} (Var· i) x with i { x }−1
... | ⊥ = ⊥ ◀ (! , !𝑠 )
... | ⌊ PreImage j ⌋ = Γ ◀ (Var j , 1𝑠 )

𝚪 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎1 ⊣ Δ1

Δ1 ⊢ 𝑢 [𝜎1] :> 𝑥 ⇒ 𝑢′;𝜎2 ⊣ Δ2

𝚪 ⊢ 𝑡 𝑢 :> 𝑥 ⇒ 𝑡 ′ [𝜎2] 𝑢′;𝜎1 [𝜎2] ⊣ Δ2

𝚪 ⊢ 𝑡 :> 𝑥 ↑ ⇒ 𝑡 ′;𝜎 ⊣ Δ
𝚪 ⊢ 𝜆𝑡 :> 𝑥 ⇒ 𝜆𝑡 ′;𝜎 ⊣ Δ

𝑖 ∉ 𝑥

𝚪 ⊢ 𝑖 :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥
𝑖 = 𝑥 𝑗

𝚪 ⊢ 𝑖 :> 𝑥 ⇒ 𝑗 ; 1
𝚪
⊣ 𝚪

unify t (M ( x )) = unify-flex-* M x t

unify (M ( x )) t = unify-flex-* M x t

unify-flex-* {Γ} {m} M x t

with occur-check M t

... | Same-MVar y =

let p , z = commonPositions m x y

in Γ [ M : p ] ·◀ M ↦→-( z )
... | Cycle = ⊥ ◀ !𝑠
... | No-Cycle t’ =
let Δ ◀ (u , 𝜎) = prune t’ x
in Δ ◀ M ↦→ u , 𝜎

𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝

𝚪 [𝑀 :𝑚] ⊢ 𝑀 (𝑥) = 𝑀 (𝑦) ⇒
𝑀 ↦→ 𝑃 (𝑧) ⊣ 𝚪 [𝑃 : 𝑝]

Same-MVar

𝑀 ∈ 𝑡 𝑡 ≠ 𝑀 (. . . )
𝚪, 𝑀 :𝑚 ⊢ 𝑀 (𝑥) = 𝑡 ⇒ !𝑠 ⊣ ⊥

Cycle

𝑀 ∉ 𝑡 𝚪\𝑀 ⊢ 𝑡 :> 𝑥 ⇒ 𝑡 ′;𝜎 ⊣ Δ
𝚪 ⊢ 𝑀 (𝑥) = 𝑡 ⇒ 𝑀 ↦→ 𝑡 ′, 𝜎 ⊣ Δ No-cycle

(+ symmetric rules)

unify (App· t u) (App· t’ u’) =
let Δ1 ◀ 𝜎1 = unify t t’

Δ2 ◀ 𝜎2 = unify (u [ 𝜎1 ]t) (u’ [ 𝜎1 ]t)
in Δ2 ◀ 𝜎1 [ 𝜎2 ]s

unify (Lam· t) (Lam· t’) = unify t t’

unify {Γ} (Var· i) (Var· j) with i Fin.
?

= j

... | no _ = ⊥ ◀ !𝑠

... | yes _ = Γ ◀ 1𝑠

𝚪 ⊢ 𝑡 = 𝑡 ′ ⇒ 𝜎1 ⊣ Δ1

Δ1 ⊢ 𝑢 [𝜎1] = 𝑢′ [𝜎2] ⇒ 𝜎2 ⊣ Δ2

𝚪 ⊢ 𝑡 𝑢 = 𝑡 ′ 𝑢′ ⇒ 𝜎1 [𝜎2] ⊣ Δ2

𝚪 ⊢ 𝑡 = 𝑡 ′ ⇒ 𝜎 ⊣ Δ
𝚪 ⊢ 𝜆𝑡 = 𝜆𝑡 ′ ⇒ 𝜎 ⊣ Δ

𝑖 ≠ 𝑗

𝚪 ⊢ 𝑖 = 𝑗 ⇒ !𝑠 ⊣ ⊥ 𝚪 ⊢ 𝑖 = 𝑖 ⇒ 1Γ ⊣ 𝚪

unify ! ! = ⊥ ◀ !𝑠 ⊥ ⊢ ! = !⇒ !𝑠 ⊣ ⊥
U-Fail unify _ _ = ⊥ ◀ !𝑠

𝑜 ≠ 𝑜′ (rigid term constructors)

𝚪 ⊢ 𝑜 (®𝑡) = 𝑜′ ( ®𝑡 ′) ⇒ !𝑠 ⊣ ⊥
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Figure 5: Our generic pattern unification algorithm

prune {⌊ Γ ⌋} (M : m ( x )) y =

let p , x’ , y’ = pullback m x y in

Γ [ M : p ] ·◀ ((M : p) ( y’ ) , M ↦→-( x’ ))
Same as the rule P-Flex in Figure 4.

prune ! y = ⊥ ◀ (! , !𝑠 )

Same as the rule P-Fail in Figure 4.

prune (Rigid· o 𝛿) x with o { x }−1
... | ⊥ = ⊥ ◀ (! , !𝑠 )
... | ⌊ PreImage o’ ⌋ =
let Δ ◀ (𝛿 ’ , 𝜎) = prune-𝜎 𝛿 (x ^ o’)
in Δ ◀ (Rigid o’ 𝛿 ’ , 𝜎)

𝑜 ≠ . . . {𝑥}
𝚪 ⊢ 𝑜 (𝛿) :> 𝑥 ⇒ !; !𝑠 ⊣ ⊥

P-Rig-Fail

𝚪 ⊢ 𝛿 :> 𝑥𝑜
′
⇒ 𝛿 ′;𝜎 ⊣ Δ 𝑜 = 𝑜′{𝑥}

𝚪 ⊢ 𝑜 (𝛿) :> 𝑥 ⇒ 𝑜′ (𝛿 ′);𝜎 ⊣ Δ
P-Rig

prune-𝜎 {Γ} [] [] = Γ ◀ ([] , 1𝑠 )
prune-𝜎 (t , 𝛿) (x0 :: xs) =
let Δ1 ◀ (t’ , 𝜎1) = prune t x0

Δ2 ◀ (𝛿 ’ , 𝜎2) = prune-𝜎 (𝛿 [ 𝜎1 ]s) xs
in Δ2 ◀ ( (t’ [ 𝜎2 ]t , 𝛿 ’) , (𝜎1 [ 𝜎2 ]s) )

Γ ⊢ () :> () ⇒ (); 1Γ ⊣ Γ
P-Empty

Γ ⊢ 𝑡 :> 𝑥0 ⇒ 𝑡 ′;𝜎1 ⊣ Δ1

Δ1 ⊢ 𝛿 [𝜎1] :> 𝑥 ⇒ 𝛿 ′;𝜎2 ⊣ Δ2

Γ ⊢ 𝑡, 𝛿 :> 𝑥0, 𝑥 ⇒
𝑡 ′ [𝜎2], 𝛿 ′;𝜎1 [𝜎2] ⊣ Δ2

P-Split

unify-flex-* is defined as in Figure 4, replacing commonPositions with equaliser .

unify t (M ( x )) = unify-flex-* M x t

unify (M ( x )) t = unify-flex-* M x t

See the rules Same-MVar, Cycle, and No-Cycle in Figure 4.

unify (Rigid· o 𝛿) (Rigid· o’ 𝛿 ’) with o

?

= o’

... | no _ = ⊥ ◀ !𝑠

... | yes ≡.refl = unify-𝜎 𝛿 𝛿 ’

𝑜 ≠ 𝑜′

𝚪 ⊢ 𝑜 (𝛿) = 𝑜′ (𝛿 ′) ⇒ !𝑠 ⊣ ⊥
Clash

𝚪 ⊢ 𝛿 = 𝛿 ′ ⇒ 𝜎 ⊣ Δ
𝚪 ⊢ 𝑜 (𝛿) = 𝑜 (𝛿 ′) ⇒ 𝜎 ⊣ ΔU-Rig

unify ! ! = ⊥ ◀ !𝑠 Same as the rule U-Fail in Figure 4.

unify-𝜎 {Γ} [] [] = Γ ◀ 1𝑠
unify-𝜎 (t1 , 𝛿1) (t2 , 𝛿2) =
let Δ ◀ 𝜎 = unify t1 t2

Δ’ ◀ 𝜎’ = unify-𝜎 (𝛿1 [ 𝜎 ]s) (𝛿2 [ 𝜎 ]s)
in Δ’ ◀ 𝜎 [ 𝜎’ ]s

unify-𝜎 1⊥ 1⊥ = ⊥ ◀ !𝑠

Γ ⊢ () = () ⇒ 1Γ ⊣ Γ
U-Empty

Γ ⊢ 𝑡1 = 𝑡2 ⇒ 𝜎 ⊣ Δ Δ ⊢ 𝛿1 [𝜎] = 𝛿2 [𝜎] ⇒ 𝜎′ ⊣ Δ′

Γ ⊢ 𝑡1, 𝛿1 = 𝑡2, 𝛿2 ⇒ 𝜎 [𝜎′] ⊣ Δ′
U-Split

⊥ ⊢ 1⊥ = 1⊥ ⇒ !𝑠 ⊣ ⊥
U-Id-Fail

Figure 6: Generalised binding signatures in Agda

record Signature i j k : Set (lsuc (i ⊔ j ⊔ k)) where
field
A : Set i
_⇒_ : A→ A→ Set j
id : ∀ {a}→ (a⇒ a)
_◦_ : ∀ {a b c}→ (b⇒ c)→ (a⇒ b)→ (a⇒ c)
O : A→ Set k
𝛼 : ∀ {a}→ O a→ List A

– Functoriality components

_{_} : ∀ {a b}→ O a→ (a⇒ b)→ O b

_^_ : ∀ {a b}(x : a⇒ b)(o : O a)→ 𝛼 o =⇒ 𝛼 (o { x } )

The same intuition applies for 𝜆-abstraction, but here we ap-

ply the fresh metavariable corresponding to the body of the 𝜆-

abstraction to the bound variable 𝑛 + 1, which needs not be pruned.

In the variable case, 𝑖{𝑥}−1 returns the index 𝑗 such that 𝑖 = 𝑥 𝑗 , or

fails if no such 𝑗 exist.

This ends our description of the unification algorithm, in the

specific case of pure 𝜆-calculus.

2.2 Generalisation

In this section, we show how to abstract over 𝜆-calculus to get a

generic algorithm for pattern unification, parameterised by a new

notion of signature to account for syntax with metavariables. We

split this notion in two parts:

(1) a notion of generalised binding signature, or GB-signature

(formally introduced in Definition 3.13), specifying a syntax

with metavariables, for which unification problems can be

stated;

(2) some additional structures used in the algorithm to solve

those unification problems, as well as properties ensuring

its correctness, making the GB-signature pattern-friendly

(see Definition 3.15).
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Figure 7: Syntax generated by a GB-signature

MetaContext· = List A
MetaContext = Maybe MetaContext·

data Tm : MetaContext→ A
→ Set (i ⊔ j ⊔ k)

Tm· Γ a = Tm ⌊ Γ ⌋ a

data Tm where
Rigid· : ∀ {Γ a}(o : O a)→ (𝛼 o ·−→· Γ)
→ Tm· Γ a

_(_) : ∀ {Γ a m}→ m ∈ Γ→ m⇒ a

→ Tm· Γ a

! : ∀ {a}→ Tm ⊥ a

𝑜 ∈ 𝑂 (𝑎)

”𝛼𝑜
®𝑡−→Γ”︷                             ︸︸                             ︷

𝚪;𝑜1 ⊢ 𝑡1 . . . Γ;𝑜𝑛 ⊢ 𝑡𝑛
𝚪;𝑎 ⊢ 𝑜 (𝑡1, . . . , 𝑡𝑛)

Rig

𝑀 :𝑚 ∈ 𝚪 𝑥 ∈ homA (𝑚,𝑎)
𝚪;𝑎 ⊢ 𝑀 (𝑥) Flex

⊥;𝑛 ⊢ !

This separation is motivated by the fact that in the case of 𝜆-calculus,

the vectors of common (value) positions as well as inverse renam-

ing −{−}−1 of variables are involved in the algorithm, but not in

the definition of the syntax and associated operations (renaming,

metavariable substitution).

Let us first focus on the notion of GB-signature, starting from

binding signatures [2]: the latter consist in a set of operation sym-

bols, and for each 𝑜 ∈ 𝑂 , an arity 𝛼𝑜 = (𝑜1, . . . , 𝑜𝑛), i.e., a list of natu-
ral numbers specifying how many variables are bound in each argu-

ment. For example, pure 𝜆-calculus is specified by 𝑂 = {𝑙𝑎𝑚, 𝑎𝑝𝑝},
with 𝛼𝑎𝑝𝑝 = (0, 0), 𝛼𝑙𝑎𝑚 = (1). Now, a GB-signature consists in a

tuple (A,𝑂, 𝛼 ) consisting of
• a small category A whose objects are called arities or vari-

able contexts, and whose morphisms are called renamings;

• for each variable context 𝑎, a set of operation symbols𝑂 (𝑎);
• for each operation symbol 𝑜 ∈ 𝑂 (𝑎), a list of variable con-

texts 𝛼𝑜 = (𝑜1, . . . , 𝑜𝑛).
such that𝑂 and 𝛼 are functorial in a suitable sense (see Remark 2.9

below). Intuitively,𝑂 (𝑎) is the set of operation symbols available in

the variable context 𝑎. The Agda implementation in Figure 6 does

not include properties such as associativity of morphism compo-

sition, although they are assumed in the proof of correctness. For

example, the latter associativity property ensures that composition

of metavariable substitutions is associative.

The syntax specified by a GB-signature (A,𝑂, 𝛼 ) is inductively
defined in Figure 7, where a context Γ;𝑎 is defined as in Section §2.1

for 𝜆-calculus, except that variables contexts and metavariable ar-

ities are objects of A instead of natural numbers. We call a term

rigid if it is of the shape 𝑜 (. . . ), flexible if it is some metavariable

application𝑀 (. . . ).

Remark 2.6. Recall that the Agda code uses a nameless con-

vention for metacontexts: they are just lists of variable contexts.

Therefore, the arity 𝛼𝑜 of an operation 𝑜 can be considered as a

metacontext. It follows that the argument of an operation 𝑜 in the

context 𝚪;𝑎 can be specified either as a metavariable substitution

(defined in Figure 2) from 𝛼𝑜 = (𝑜1, . . . , 𝑜𝑛) to 𝚪, as in the Agda

code, or explicitly as a list of terms (𝑡1, . . . , 𝑡𝑛) such that 𝚪;𝑜𝑖 ⊢ 𝑡𝑖 ,
as in the rule Rig. In the following, we will use either interpretation.

Remark 2.7. The syntax in the empty metacontext does not de-

pend on the morphisms inA. In fact, by restricting the morphisms

in A to identity morphisms, any GB-signature induces an indexed

container [5] generating the same syntax without metavariables.

Example 2.8. Binding signatures can be compiled into GB-signatures.

More specifically, a syntax specified by a binding signature (𝑂, 𝛼)
is also generated by the GB-signature (F𝑚,𝑂′, 𝛼 ′), where

• F𝑚 is the category of finite cardinals and injections between

them;

• 𝑂 ′ (𝑝) = {1, . . . , 𝑝} ⊔ {𝑜𝑝 |𝑜 ∈ 𝑂};
• 𝛼 ′

𝑖
= () and 𝛼 ′𝑜𝑝 = (𝑝 + 𝑜1, . . . , 𝑝 + 𝑜𝑛) for any 𝑖, 𝑝 ∈ N and

𝑛-ary operation symbol 𝑜 ∈ 𝑂 .
Note that variables 𝑖 are explicitly specified as nullary operations

and thus do not require a dedicated generating rule, contrary to

what happens with binding signatures. Moreover, the choice of

renamings (i.e., morphisms in the category of arities) is motivated

by the Flex rule. Indeed, if 𝑀 has arity𝑚 ∈ N, then a choice of

arguments in the variable context 𝑎 ∈ N consists of a list of distinct

variables in the variable context 𝑎, or equivalently, an injection be-

tween the cardinal sets𝑚 and 𝑎, that is, a morphism in F𝑚 between

𝑚 and 𝑎.

GB-signatures capture multi-sorted binding signatures such as

simply-typed 𝜆-calculus, or polymorphic syntax such as System F

(see Appendix §B). Although equations are not explicitly supported,

simply-typed 𝜆-calculus modulo 𝛽- and 𝜂- equations can be handled

by working on the normalised syntax (see Section §B.3).

Remark 2.9. In the notion of GB-signature, functoriality ensures

that the generated syntax supports renaming: given a morphism

𝑥 : 𝑎 → 𝑏 in A and a term Γ;𝑎 ⊢ 𝑡 , we can recursively define

a term Γ;𝑏 ⊢ 𝑡{𝑥}. The metavariable base case is the same as in

Section §2.1: 𝑀 (𝑦){𝑥} = 𝑀 (𝑥 ◦ 𝑦). For an operation 𝑜 (𝑡1, . . . , 𝑡𝑛),
functoriality provides the following components:

(1) a 𝑛-ary operation symbol 𝑜{𝑥} ∈ 𝑂 (𝑏);
(2) a list of morphisms (𝑥𝑜

1
, . . . , 𝑥𝑜𝑛) in A such that 𝑥𝑜

𝑖
: 𝑜𝑖 →

𝑜{𝑥}𝑖 for each 𝑖 ∈ {1, . . . , 𝑛}.
Then, 𝑜 (𝑡1, . . ., 𝑡𝑛){𝑥} is defined as 𝑜{𝑥}(𝑡1{𝑥𝑜

1
}, . . ., 𝑡𝑛{𝑥𝑜𝑛}).

Notation 2.10. If 𝚪 and 𝚫 are two metacontexts𝑀1 :𝑚1, . . . , 𝑀𝑝 :

𝑚𝑝 and 𝑁1 : 𝑛1, . . . , 𝑁𝑝 : 𝑛𝑝 of the same length, we write 𝛿 : 𝚪 =⇒
𝚫 to mean that 𝛿 is a vector of renamings (𝛿1, . . . , 𝛿𝑛) between 𝚪

and 𝚫, in the sense that each 𝛿𝑖 is a morphism between 𝑚𝑖 and

𝑛𝑖 . The second functoriality component in Remark 2.9 is accord-

ingly specified as a vector of renamings 𝑥𝑜 : 𝛼𝑜 =⇒ 𝛼𝑜 { 𝑓 } in
Figure 7, considering operation arities as nameless metacontexts

(Remark 2.6). We extend the renaming notation to substitutions:

given 𝛿 : Γ → 𝚫 and 𝑥 : 𝚫
′ =⇒ 𝚫, we define 𝛿{𝑥} : Γ → 𝚫

′
as

(𝛿1{𝑥1}, . . . , 𝛿𝑛{𝑥𝑛}) where 𝑛 is the length of Δ, so that 𝑜 (𝛿){𝑥}
7
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can be equivalently defined as 𝑜{𝑥}(𝛿{𝑥𝑜 }). Note that a vector of
renamings 𝛿 : 𝚪 =⇒ 𝚫 canonically induces a metavariable substi-

tution 𝛿 : 𝚫→ 𝚪, mapping 𝑁𝑖 to𝑀𝑖 (𝛿𝑖 ).

The Agda code adapting the definitions of Section §2.1 to a

syntax generated by a generic signature is usually shorter because

the application, 𝜆-abstraction, and variable cases are replaced with a

single rigid case. Because of Remark 2.6, it is more convenient define

operations on termsmutually with the corresponding operations on

substitutions. For example, composition of substitutions is defined

mutually with substitution of terms in the second box of Figure 2.

The same applies for renaming of terms and substitution as in

Notation 2.10.

We are similarly led to generalise unification of terms to unifica-

tion of proper substitutions, andwe extend accordingly the notation.

Given two substitutions 𝛿1, 𝛿2 : 𝚪
′ → Γ, we write Γ ⊢ 𝛿1 = 𝛿2 ⇒

𝜎 ⊣ Δ to mean that 𝜎 : Γ → Δ unifies 𝛿1 and 𝛿2, in the sense that

𝛿1 [𝜎] = 𝛿2 [𝜎], and is the most general one, i.e., it uniquely factors

any other unifier of 𝛿1 and 𝛿2. The main unification function is thus

split in two functions, unify for single terms, and unify-𝜎 for sub-

stitutions as seen in Figure 3. Similarly, we define pruning of terms

mutually with pruning of proper substitutions. We thus also extend

the pruning notation: given a substitution 𝛿 : 𝚪
′ → Γ and a vector

𝑥 : 𝚪
′′ =⇒ 𝚪

′
of renamings, the judgement Γ ⊢ 𝛿 :> 𝑥 ⇒ 𝛿 ′;𝜎 ⊣ Δ

means that the substitution 𝜎 : Γ → Δ extended with 𝛿 ′ : 𝚪′′ → Δ
is the most general unifier of 𝛿 and 𝑥 as substitutions from Γ, 𝚪′ to
Δ. This justifies the return type of unify-𝜎 in Figure 3.

In the 𝜆-calculus implementation (Figure 4), unification of two

metavariable applications requires computing the vector of com-

mon positions or value positions of their arguments, depending

on whether the involved metavariables are identical. Both vectors

are characterised as equalisers or pullbacks in the category F𝑚
defined in Example 2.8, thus providing a canonical replacement

in the generic algorithm, along with new interpretations of the

notations 𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝 and 𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝 and

as equalisers and pullbacks.

Notation 2.11. We denote an equaliser 𝑝
𝑧 // 𝑚

𝑥 //
𝑦
// . . .

in A by 𝑚 ⊢ 𝑥 = 𝑦 ⇒ 𝑧 ⊣ 𝑝 . Similarly, 𝑚 ⊢ 𝑥 :> 𝑦 ⇒ 𝑦′;𝑥 ′ ⊣ 𝑝

denotes a pullback in A of the shape

𝑝
𝑥 ′ //

𝑦′

��

𝑚

𝑥

��
. . .

𝑦
// . . .

.

Let us now comment on pruning rigid terms, when we want to

unify an operation 𝑜 (𝛿) with a fresh metavariable application𝑀 (𝑥).
Any unifier must replace 𝑀 with an operation 𝑜′ (𝛿 ′), such that

𝑜′{𝑥}(𝛿 ′{𝑥𝑜 ′ }) = 𝑜 (𝛿), so that, in particular, 𝑜′{𝑥} = 𝑜 . In other

words, 𝑜 must be have a preimage 𝑜′ for renaming by 𝑥 . This is

precisely the point of the inverse renaming 𝑜{𝑥}−1 in the Agda

code: it returns a preimage 𝑜′ if it exists, or fails. In the 𝜆-calculus

case, this check is only explicit for variables, since there is a single

version of application and 𝜆-abstraction symbols in any variable

Figure 8: Friendly GB-signatures in Agda

record isFriendly {i j k}(S : Signature i j k) : Set (i ⊔ j ⊔ k) where
open Signature S
field

equaliser : ∀ {a} m→ (x y : m⇒ a)→ Σ A (𝜆 p→ p⇒ m)

pullback : ∀m {m’ a}→ (x : m⇒ a)→ (y : m’⇒ a)

→ Σ A (𝜆 p→ p⇒ m × p⇒ m’)

_
?

=_ : ∀ {a}(o o’ : O a)→ Dec (o ≡ o’)
_{_}−1 : ∀ {a}(o : O a)→∀ {b}(x : b⇒ a)

→Maybe (pre-image (_{ x }) o)

context. Inverse renaming is a function provided by friendly GB-

signatures, which are GB-signatures with additional components

listed in Figure 8 on which the algorithm relies. To sum up,

• equalisers and pullbacks are usedwhen unifying twometavari-

able applications;

• equality of operation symbols is used when unifying two

rigid terms;

• inverse renaming is used when pruning a rigid term.

The formal notion of pattern-friendly signatures (Definition 3.15) in-

cludes additional properties ensuring correctness of the algorithm.

3 CATEGORICAL SEMANTICS

To prove that the algorithm is correct, we show in the next sections

that the inductive rules describing the implementation are sound.

For instance, the rule U-Split is sound on the condition that the

output of the conclusion is a most general unifier whenever the

output of the premises are most general unifiers. We rely on the

categorical semantics of pattern unification that we introduce in this

section. In Section §3.1, we relate pattern unification to a coequaliser

construction, and in Section §3.2, we provide a formal definition

of GB-signatures with Initial Algebra Semantics for the generated

syntax.

3.1 Pattern unification as a coequaliser

construction

In this section, we assume given a GB-signature 𝑆 = (A,𝑂, 𝛼 ) and
explain howmost general unifiers can be thought of as equalisers in

a multi-sorted Lawvere theory, as is well-known in the first-order

case [6, 28]. We furthermore provide a formal justification for the

error metacontext ⊥.

Lemma 3.1. Proper metacontexts and substitutions (with their com-

position) between them define a categoryMCon(𝑆).

This relies on functoriality of GB-signatures that we will spell

out formally in the next section. There, we will see in Lemma 3.20

that this category fully faithfully embeds in a Kleisli category for a

monad generated by 𝑆 on [A, Set].

Remark 3.2. The opposite category of MCon(𝑆) is equivalent
to a multi-sorted Lawvere theory whose sorts are the objects of

A. In general, this theory is not freely generated by operations

8
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unless A is discrete, in which case we recover (multi-sorted) first-

order unification. Note that even the GB-signature induced (as in

Example 2.8) by an empty binding signature is not “free” in this

sense.

Lemma 3.3. The most general unifier of two parallel substitutions

𝚪
′

𝛿1 //
𝛿2

// 𝚪 is characterised as their coequaliser.

This motivates a new interpretation of the unification notation,

that we introduce later in Notation 3.10, after explaining how fail-

ure is categorically handled. Indeed, pattern unification is typically

stated as the existence of a coequaliser on the condition that there

is a unifier in this categoryMCon(𝑆). But we can get rid of this con-

dition by considering the category MCon(𝑆) freely extended with

a terminal object ⊥, resulting in the full category of metacontexts

and substitutions.

Definition 3.4. Given a category B, let B⊥ denote the category

B extended freely with a terminal object ⊥.

Notation 3.5. We denote by !𝑠 any terminal morphism to ⊥ in

B⊥.

Lemma 3.6. metacontexts and substitutions between them define

a category which is isomorphic toMCon⊥ (𝑆).

In Section §2.1, we already made sense of this extension. Let us

rephrase our explanations from a categorical perspective. Adding a

terminal object results in adding a terminal cocone to all diagrams.

As a consequence, we have the following lemma.

Lemma 3.7. Let 𝐽 be a diagram in a category B. The following

are equivalent:

(1) 𝐽 has a colimit as long as there exists a cocone;

(2) 𝐽 has a colimit in B⊥.

The following results are also useful.

Lemma 3.8. Let B be a category.

(i) The canonical embedding functor B → B⊥ creates colimits.

(ii) Any diagram 𝐽 inB⊥ such that⊥ is in its image has a colimit

given by the terminal cocone on ⊥.

This ensures in particular that coproducts in MCon(𝑆), which
are computed as union of metacontexts, are also coproducts in

MCon⊥ (𝑆). It also justifies defining the union of a proper metacon-

text with ⊥ as ⊥.
The main property of this extension for our purposes is the

following corollary.

Corollary 3.9. Any coequaliser inMCon(𝑆) is also a coequaliser
inMCon⊥ (𝑆). Moreover, whenever there is no unifier of two lists of

terms, then the coequaliser of the corresponding parallel arrows in

MCon⊥ (𝑆) exists: it is the terminal cocone on ⊥.

This justifies the following interpretation to the unification no-

tation.

Notation 3.10. Γ ⊢ 𝛿1 = 𝛿2 ⇒ 𝜎 ⊣ Δ denotes a coequaliser

. . .
𝛿1 //
𝛿2

// Γ 𝜎 // Δ in MCon⊥ (𝑆).

Remark 3.11. This is the same interpretation as in Notation 2.11

for equaliser, taking A to be the opposite category ofMCon⊥ (𝑆).
Categorically speaking, our pattern-unification algorithm pro-

vides an explicit proof of the following statement, where the con-

ditions for a signature to be pattern-friendly are introduced in the

next section (Definition 3.15).

Theorem 3.12. Given any pattern-friendly signature 𝑆 , the cate-

goryMCon⊥ (𝑆) has coequalisers.

3.2 Initial Algebra Semantics for GB-signatures

Definition 3.13. A generalised binding signature, or GB-signature,

is a tuple (A,O, 𝛼 ) consisting of
• a small categoryA of arities and renamings between them;

• a functor O− (−) : N × A → Set of operation symbols;

• a functor 𝛼 :

∫
𝐽 → A

where

∫
𝐽 denotes the category of elements of 𝐽 : N × A → Set

mapping (𝑛, 𝑎) to O𝑛 (𝑎) × {1, . . . ., 𝑛}, defined as follows:

• objects are tuples (𝑛, 𝑎, 𝑜, 𝑖) such that 𝑜 ∈ O𝑛 (𝑎) and 𝑖 ∈
{1, . . . , 𝑛};

• a morphism between (𝑛, 𝑎, 𝑜, 𝑖) and (𝑛′, 𝑎′, 𝑜′, 𝑖′) is a mor-

phism 𝑓 : 𝑎 → 𝑎′ such that 𝑛 = 𝑛′, 𝑖 = 𝑖′ and 𝑜{𝑓 } = 𝑜′
where 𝑜{𝑓 } denotes the image of 𝑜 by the function O𝑛 (𝑓 ) :
O𝑛 (𝑎) → O𝑛 (𝑎′).

Remark 3.14. This definition of GB-signatures superficially dif-

fers from the one we informally introduced in Section §2.2, in the

sense that the set of operation symbols 𝑂 (𝑎) in a variable context

𝑎 was not indexed by natural numbers. The two descriptions are

equivalent: O𝑛 (𝑎) is recovered as the subset of 𝑛-ary operation

symbols in 𝑂 (𝑎), and conversely, 𝑂 (𝑎) is recovered as the union of

all the O𝑛 (𝑎) for every natural number 𝑛.

We now introduce our conditions for the generic unification

algorithm to be correct.

Definition 3.15. A GB-signature 𝑆 = (A,O, 𝛼 ) is said pattern-

friendly if

(1) A has finite connected limits;

(2) all morphisms in A are monomorphic;

(3) each O𝑛 (−) : A → Set preserves finite connected limits;

(4) 𝛼 preserves finite connected limits.

These conditions ensure the following two properties.

Property 3.16 (proved in §A.1). The following properties hold for

pattern-friendly signatures.

(i) The action of O𝑛 : A → Set on any renaming is an injec-

tion: given any 𝑜 ∈ O𝑛 (𝑏) and renaming 𝑓 : 𝑎 → 𝑏, there

is at most one 𝑜′ ∈ O𝑛 (𝑎) such that 𝑜 = 𝑜′{𝑓 }.
(ii) Let L be the functor A𝑜𝑝 −→ MCon⊥ (𝑆) mapping a mor-

phism 𝑥 ∈ homA (𝑏, 𝑎) to the substitution (𝑋 : 𝑎) → (𝑋 :

𝑏) selecting (by the Yoneda Lemma) the term𝑋 (𝑥). Then,L
preserves finite connected colimits: it maps pullbacks and

equalisers inA to pushouts and coequalisers inMCon⊥ (𝑆).
The first property is used for soundness of the rules P-Rig and

P-Rig-Fail. The second one is used to justify unification of two

metavariables applications as pullbacks and equalisers in A, in the

rules Same-MVar and P-Flex.
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Remark 3.17. A metavariable application 𝚪;𝑎 ⊢ 𝑀 (𝑥) corre-
sponds to the composition L𝑥 [𝑖𝑛𝑀 ] as a substitution from 𝑋 : 𝑎 to

𝚪, where 𝑖𝑛𝑀 is the coproduct injection (𝑋 : 𝑚) � (𝑀 : 𝑚) ↩→ 𝚪

mapping𝑀 to𝑀 (1𝑚).

The rest of this section, we provide Initial Algebra Semantics for

the generated syntax (this is used in the proof of Property 3.16.(ii)).

Any GB-signature 𝑆 = (A,O, 𝛼 ), generates an endofunctor 𝐹𝑆
on [A, Set], that we denote by just 𝐹 when the context is clear,

defined by

𝐹𝑆 (𝑋 )𝑎 =
∐
𝑛∈N

∐
𝑜∈O𝑛 (𝑎)

𝑋𝑜1 × · · · × 𝑋𝑜𝑛 .

Lemma 3.18 (proved in §A.2). 𝐹 is finitary and generates a free

monad 𝑇 . Moreover, 𝑇𝑋 is the initial algebra of 𝑍 ↦→ 𝑋 + 𝐹𝑍 .
The proper syntax generated by a GB-signature (see Figure 7) is

recovered as free algebras for 𝐹 . More precisely, given a metacontext

𝚪 = (𝑀1 :𝑚1, . . . , 𝑀𝑝 :𝑚𝑝 ),
𝑇 (Γ)𝑎 � {𝑡 | Γ;𝑎 ⊢ 𝑡}

where 𝚪 : A → Set is defined as the coproduct of representable

functors

∐
𝑖 𝑦𝑚𝑖 , mapping 𝑎 to

∐
𝑖 homA (𝑚𝑖 , 𝑎). Moreover, the ac-

tion of 𝑇 (𝚪) on morphisms of A correspond to renaming.

Notation 3.19. Given a proper metacontext 𝚪. We sometimes

denote 𝚪 just by 𝚪.

If 𝚪 = (𝑀1 : 𝑚1, ..., 𝑀𝑝 : 𝑚𝑝 ) and 𝚫 are metacontexts, a Kleisli

morphism 𝜎 : 𝚪 → 𝑇𝚫 is equivalently given (by combining the

above lemma, the Yoneda Lemma, and the universal property of

coproducts) by a metavariable substitution from 𝚪 to 𝚫. Moreover,

Kleisli composition corresponds to composition of substitutions.

This provides a formal link between the category of metacontexts

MCon(𝑆) and the Kleisli category of 𝑇

Lemma 3.20. The category MCon(𝑆) is equivalent to the full sub-
category of 𝐾𝑙𝑇 spanned by coproducts of representable functors.

We exploit this characterisation to prove various properties of

this category when the signature is pattern-friendly.

Lemma 3.21 (proved in §A.3). Given aGB-signature 𝑆 = (A,O, 𝛼 )
such thatA has finite connected limits, 𝐹𝑆 restricts as an endofunctor

on the full subcategory C of [A, Set] consisting of functors preserv-
ing finite connected limits if and only if the last two conditions of

Definition 3.15 holds.

We now assume given a pattern-friendly signature 𝑆 = (A,O, 𝛼 ).

Lemma 3.22 (proved in §A.4). C is closed under limits, coproducts,

and filtered colimits. Moreover, it is cocomplete.

Corollary 3.23 (proved in §A.5). 𝑇 restricts as a monad on

C freely generated by the restriction of 𝐹 as an endofunctor on C
(Lemma 3.21).

4 SOUNDNESS OF THE PRUNING PHASE

In this section, we assume a pattern-friendly GB-signature 𝑆 and

discuss soundness of the main rules of the two mutually recursive

functions prune and prune-𝜎 listed in Figure 5, which handles uni-

fication of two substitutions 𝛿 : 𝚪
′
1 → Γ and 𝑥 : 𝚪

′
1 → 𝚪

′
2 where 𝑥

is induced by a vector of renamings 𝑥 : 𝚪
′
2 =⇒ 𝚪

′
1. Strictly speak-

ing, this is not unification as we introduced it because 𝛿 and 𝑥 do

not target the same context, but it is straightforward to adapt the

definition: a unifier is given by two substitutions 𝜎 : Γ → Δ and

𝜎′ : 𝚪′2 → Δ such that the following equation holds

𝛿 [𝜎] = 𝑥 [𝜎′] (1)

As usual, the mgu is defined as the unifier uniquely factoring any

other unifier.

Remark 4.1. The right hand-side 𝑥 [𝜎′] in (1) is actually equal to

𝜎′{𝑥}. Indeed, 𝑥 = (. . . , 𝑀𝑖 (𝑥𝑖 ), . . . ) and𝑀𝑖 (𝑥𝑖 ) [𝜎′] = 𝜎′𝑖 {𝑥𝑖 }.

From a categorical point of view, such a mgu is characterised as

a pushout.

Notation 4.2. Given 𝛿 : 𝚪
′
1 → Γ, 𝑥 : 𝚪

′
2 =⇒ 𝚪

′
1, 𝜎 : Γ → Δ, and

𝜎′ : 𝚪′2 → Δ, the notation Γ ⊢ 𝛿 :> 𝑥 ⇒ 𝜎′;𝜎 ⊣ Δ means that the

square

𝚪
′
1

𝑥 //

𝛿

��

𝚪
′
2

𝜎 ′

��
Γ

𝜎
// Δ

is a pushout in MCon⊥ (𝑆).

Remark 4.3. This justifies the similarity between the pruning

notation − ⊢ − :> − ⇒ −;− and the pullback notation of Nota-

tion 2.11, since pushouts in a category are nothing but pullbacks in

the opposite category.

In the following subsections, we detail soundness of the rules for

the rigid case (Section §4.1) and then for the flex case (Section §4.2).

The rules P-Empty and P-Split are straightforward adaptions

specialised to those specific unification problems of the rulesU-Empty

and U-Split described later in Section §5.1. The failing rule P-Fail

is justified by Lemma 3.8.(ii).

4.1 Rigid (rules P-Rig and P-Rig-Fail)

The rules P-Rig and P-Rig-Fail handle non-cyclic unification of

𝑀 (𝑥) with 𝚪;𝑎 ⊢ 𝑜 (𝛿) for some 𝑜 ∈ O𝑛 (𝑎), where 𝑀 ∉ 𝚪. By

Remark 4.1, a unifier is given by a substitution 𝜎 : Γ → Δ and a

term 𝑢 such that

𝑜 (𝛿 [𝜎]) = 𝑢{𝑥}. (2)

Now, 𝑢 is either some 𝑀 (𝑦) or 𝑜′ (®𝑣). But in the first case, 𝑢{𝑥} =
𝑀 (𝑦){𝑥} = 𝑀 (𝑥 ◦ 𝑦), contradicting Equation (2). Therefore, 𝑢 =

𝑜′ (𝛿 ′) for some 𝑜′ ∈ O𝑛 (𝑚) and 𝛿 ′ is a substitution from 𝛼𝑜 ′ to

Δ. Then, 𝑢{𝑥} = 𝑜′{𝑥}(𝛿{𝑥𝑜 ′ }). It follows from Equation (2) that

𝑜 = 𝑜′{𝑥}, and 𝛿 [𝜎] = 𝛿 ′{𝑥𝑜 ′ }.
Note that there is at most one 𝑜′ such that 𝑜 = 𝑜′{𝑥}, by Prop-

erty 3.16.(i). In this case, a unifier is equivalently given by substitu-

tions 𝜎 : Γ → Δ and 𝜎′ : 𝛼𝑜 ′ → Δ such that 𝛿 [𝜎] = 𝜎′{𝑥𝑜 ′ }. But,
by Remark 4.1, this is precisely the data for a unifier of 𝛿 and 𝑥𝑜

′
.

This actually induces an isomorphism between the two categories

of unifiers, thus justifying the rules P-Rig and P-Rig-Fail.

4.2 Flex (rule P-Flex)

The rule P-Flex handles unification of𝑀 (𝑥) with 𝑁 (𝑦) where𝑀 ≠

𝑁 in a variable context 𝑎. More explicitly, this is about computing
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the pushout of (𝑋 : 𝑎) L𝑥−−−→ (𝑋 : 𝑚) � (𝑀 : 𝑚)
𝑖𝑛𝑀
↩−−−→ 𝚪 and

(𝑋 : 𝑎) L𝑥−−−→ (𝑋 : 𝑛) � (𝑁 : 𝑛).
Thanks to the following lemma, it is actually enough to compute

the pushout of L𝑥 and L𝑦, taking 𝐴 = (𝑋 : 𝑎), 𝐵 = (𝑋 : 𝑚),
𝐶 = (𝑋 : 𝑁 ), 𝑌 = 𝚪\𝑀 , so that 𝐵 + 𝑌 � 𝚪.

Lemma 4.4. In any category, if the square below left is a pushout,

then so is the square below right.

𝐴
𝑓 //

𝑔

��

𝐵

𝜎

��
𝐶

𝑢
// 𝑍

𝐴
𝑓 //

𝑔

��

𝐵
𝑖𝑛1 // 𝐵 + 𝑌

𝜎+𝑌
��

𝐶
𝑢
// 𝑍

𝑖𝑛1

// 𝑍 + 𝑌

.

By Property 3.16.(ii), the pushout of L𝑥 and L𝑦 is the image by L of

the pullback of 𝑥 and 𝑦 in A, thus justifying the rule P-Flex.

5 SOUNDNESS OF THE UNIFICATION PHASE

In this section, we assume a pattern-friendly GB-signature 𝑆 and

discuss soundness of the main rules of the two mutually recur-

sive functions unify and unify-𝜎 listed in Figure 5, which compute

coequalisers inMCon⊥ (𝑆).
The failing rulesU-Fail andU-Id-Fail are justified by Lemma 3.8.(ii).

Both rules Clash and U-Rig handle unification of two rigid terms

𝑜 (𝛿) and 𝑜′ (𝛿 ′). If 𝑜 ≠ 𝑜′, they do not have any unifier: this is the

rule Clash. If 𝑜 = 𝑜′, then a substitution is a unifier if and only if it

unifies 𝛿 and 𝛿 ′, thus justifying the U-Rig.

In the next subsections, we discuss the rule sequential rules

U-Empty and U-Split (Section §5.1), the rule No-Cycle transition-

ing to the pruning phase (Section §5.2), the rule Same-MVar uni-

fying metavariable with itself (Section §5.3), and the failing rule

Cycle for cyclic unification of a metavariable with a term which

includes it deeply (Section §5.4).

5.1 Sequential unification (rules U-Empty and

U-Split)

The rule U-Empty is a direct application of the following general

lemma.

Lemma 5.1. If 𝐴 is initial in a category, then any diagram of the

shape 𝐴
// // 𝐵

1𝐵 // 𝐵 is a coequaliser.

The ruleU-Split is a direct application of a stepwise construction

of coequalisers valid in any category, as noted by [28, Theorem 9]:

if the first two diagrams below are coequalisers, then the last one

as well.

Γ

Γ′
1

Γ Δ1 Γ′
2

Δ1 Δ2

Γ

𝑡1

𝑢1

𝜎1

𝑡2 𝜎1

𝑢2 𝜎1

𝜎2

Γ′
1
+ Γ′

2

𝑡1,𝑡2 //
𝑢1,𝑢2

// Γ
𝜎2◦𝜎1 // Δ2

5.2 Flex-Flex, no cycle (rule No-Cycle)

The rule No-Cycle transitions from unification to pruning. While

unification is a coequaliser construction, in Section §4, we explained

that pruning is a pushout construction. The rule is justified by

the following well-known connection between those two notions,

taking 𝐵 to be 𝚪\𝑀 and𝐶 to be the singleton context𝑀 :𝑚, so that

the coproduct of those two contexts in MCon⊥ (𝑆) is their disjoint
union 𝚪.

Lemma 5.2. Consider a commuting square

𝐴
𝑢 //

𝑣

��

𝐵

𝑓

��
𝐶

𝑔
// 𝐷

in

any category. If the coproduct 𝐵 +𝐶 of 𝐵 and 𝐶 exists, then this is a

pushout if and only if 𝐵 +𝐶
𝑓 ,𝑔
−−→ 𝐷 is the coequaliser of 𝑖𝑛1 ◦ 𝑢 and

𝑖𝑛2 ◦ 𝑣 .

5.3 Flex-Flex, same metavariable (rule

Same-MVar)

Herewe detail unification of𝑀 (𝑥) and𝑀 (𝑦), for𝑥,𝑦 ∈ homA (𝑚,𝑎).
By Remark 3.17, 𝑀 (𝑥) = L𝑥 [𝑖𝑛𝑀 ] and 𝑀 (𝑦) = L𝑦 [𝑖𝑛𝑀 ]. We ex-

ploit the following lemma with 𝑢 = L𝑥 and 𝑣 = L𝑦.

Lemma 5.3. In any category, if the below left diagram is a co-

equaliser, then so is the below right diagram.

𝐴
𝑢 //
𝑣
// 𝐵 ℎ // 𝐶

𝐵 𝑖𝑛𝐵((
𝐴

𝑢 88

𝑣 &&
𝐵 + 𝐷 ℎ+1𝐷// 𝐶 + 𝐷

𝐵 𝑖𝑛𝐵

66

It follows that it is enough to compute the coequaliser of L𝑥 and

L𝑦. Furthermore, by Property 3.16.(ii), it is the image by L of the

equaliser of 𝑥 and 𝑦, thus justifying the rule Same-MVar.

5.4 Flex-rigid, cyclic (rule Cycle)

The rule Cycle handles unification of𝑀 (𝑥) and a term 𝑡 such that

𝑡 is rigid and 𝑀 occurs in 𝑡 . In this section, we show that indeed

there is no successful unifier. More precisely, we prove Corollary 5.8

below, stating that if there is a unifier of a term 𝑡 and a metavariable

application𝑀 (𝑥), then either𝑀 occurs at top-level in 𝑡 , or it does

not occur at all. The argument follows the basic intuition that

𝜎𝑀 = 𝑡 [𝑀 ↦→ 𝜎𝑀 ] is impossible if 𝑀 occurs deeply in 𝑢 because

the sizes of both hand sides can nevermatch. Tomake this statement

precise, we need some recursive definitions and properties of size.

Definition 5.4. The size |𝑡 | ∈ N of a proper term 𝑡 is recursively

defined by |𝑀 (𝑥) | = 0, and |𝑜 (®𝑡) | = 1 + |®𝑡 |, with |®𝑡 | = ∑
𝑖 𝑡𝑖 .

We will also need to count the occurrences of a metavariables in

a term.

Definition 5.5. For any term 𝑡 we define |𝑡 |𝑀 recursively by

|𝑀 (𝑥) |𝑀 = 1, |𝑁 (𝑥) |𝑀 = 0 if 𝑁 ≠ 𝑀 , and |𝑜 (®𝑡) |𝑀 = |®𝑡 |𝑀 with

the sum convention as above for |®𝑡 |𝑀 .

Lemma 5.6. For any term 𝚪;𝑎 ⊢𝑡 , if |𝑡 |𝑀 = 0, then 𝚪\𝑀 ;𝑎 ⊢ 𝑡 .
Moreover, for any 𝚪 = (𝑀1 : 𝑚1, . . . , 𝑀𝑛 : 𝑚𝑛), well-formed term

𝑡 in context 𝚪;𝑎, and successful substitution 𝜎 : 𝚪 → 𝚫, we have

|𝑡 [𝜎] | = |𝑡 | +∑𝑖 |𝑡 |𝑀𝑖
× |𝜎𝑖 |.

Corollary 5.7. For any term 𝑡 in context 𝚪;𝑎 with (𝑀 :𝑚) ∈ 𝚪,
successful substitution 𝜎 : 𝚪 → 𝚫, morphism 𝑥 ∈ homA (𝑚,𝑎) and
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𝑢 in context Δ;𝑢, we have |𝑡 [𝜎,𝑀 ↦→ 𝑢] | ≥ |𝑡 | + |𝑢 | × |𝑡 |𝑀 and

|𝑀 (𝑥) [𝑢] | = |𝑢 |.

Corollary 5.8. Let 𝑡 be a term in context 𝚪;𝑎 with (𝑀 :𝑚) ∈ 𝚪
and 𝑥 ∈ homA (𝑚,𝑎) such that (𝑀 ↦→ 𝑢, 𝜎) : 𝚪 → 𝚫 unifies 𝑡 and

𝑀 (𝑥). Then, either 𝑡 = 𝑀 (𝑦) for some 𝑦 ∈ homA (𝑚,𝑎), or 𝚪;𝑎 ⊢ 𝑡 .

Proof. Since 𝑡 [𝜎,𝑀 ↦→ 𝑢] = 𝑀 (𝑥) [𝑢], we have |𝑡 [𝜎,𝑀 ↦→
𝑢] | = |𝑀 (𝑥) [𝑢] |. Corollary 5.7 implies |𝑢 | ≥ |𝑡 | + |𝑢 | × |𝑡 |𝑀 . There-

fore, either |𝑡 |𝑀 = 0 and we conclude by Lemma 5.6, or |𝑡 |𝑀 > 0

and |𝑡 | = 0, so that 𝑡 is𝑀 (𝑦) for some 𝑦. □

6 TERMINATION AND COMPLETENESS

6.1 Termination

In this section, we sketch an explicit argument to justify termination

of our algorithm described in Figure 5. Indeed, it involves three

recursive calls in the pruning phase (cf. the rules P-Rig and P-Split),

as well as in the main unification phase (cf. the rules U-Rig and

U-Split). In each phase, the second recursive call for splitting is not

structurally recursive, making Agda unable to check termination.

However, we can devise an adequate notion of input size so that for

each recursive call, the inputs are strictly smaller than the inputs of

the calling site. First, we define the size |𝚪 | of a propermetacontext 𝚪

as its length, while |⊥| = 0 by definition. We also recursively define

the size
4 | |𝑡 | | of a proper term 𝑡 by | |𝑀 (𝑥) | | = 1 and | |𝑜 (®𝑡) | | = 1+||®𝑡 | |,

with | |®𝑡 | | = ∑
𝑖 | |𝑡𝑖 | |. Note that no term is of empty size.

Let us first quickly justify termination of the pruning phase.

Consider the above defined size of the input, which is a term 𝑡 for

prune, or a list of terms ®𝑡 for prune-𝜎 . It is straightforward to check
that the sizes of the inputs of recursive calls are strictly smaller

thanks to the following lemmas.

Lemma 6.1. For any proper term 𝚪;𝑎 ⊢ 𝑡 and successful substi-

tution 𝜎 : 𝚪 → 𝚫, if 𝜎 is a metavariable renaming, i.e., 𝜎𝑀 is a

metavariable application for any (𝑀 :𝑚) ∈ 𝚪, then | |𝑡 [𝜎] | | = | |𝑡 | |.

Lemma 6.2. If there is a finite derivation tree of 𝚪 ⊢ ®𝑡 :> 𝑥 ⇒
®𝑤 ;𝜎 ⊣ 𝚫 then |𝚪 | = |𝚫| and 𝜎 is a metavariable renaming.

The size invariance in the above lemma is actually used in the

termination proof of the main unification phase, where we consider

the size of the input to be the pair ( |Γ |, | |𝑡 | |) for unify or ( |Γ |, | |®𝑡 | |) for
unify-𝜎 , given as input a term 𝑡 or a list of terms ®𝑡 in themetacontext

Γ. More precisely, it is used in the following lemma that ensures

size decreasing (with respect to the lexicographic order).

Lemma 6.3. If there is a finite derivation tree of 𝚪 ⊢ ®𝑡 = ®𝑢 ⇒ 𝜎 ⊣ Δ,
then |𝚪 | ≥ |Δ|, and moreover if |𝚪 | = |Δ| and Δ is proper, then 𝜎 is a

metavariable renaming.

6.2 Completeness

In this section, we explain why soundness (Section §4 and Sec-

tion §5) and termination (Section §6.1) entail completeness. Intu-

itively, one may worry that the algorithm fails in cases where it

should not. In fact, we already checked in the previous sections

that failure only occurs when there is no unifier, as expected. In-

deed, failure is treated as a free “terminal” unifier, as explained in

4
The difference with the notion of size introduced in Definition 5.4 is that metavariable

applications are now of size 1 instead of 0.

Section §3.1, by considering the categoryMCon⊥ (𝑆) extending cat-
egoryMCon(𝑆) with an error metacontext ⊥. Corollary 3.9 implies

that since the algorithm terminates and computes the coequaliser in

MCon⊥ (𝑆), it always finds the most general unifier in MCon(𝑆) if
it exists, and otherwise returns failure (i.e., the map to the terminal

object ⊥).

7 RELATEDWORK

First-order unification has been explained from a lattice-theoretic

point of view by Plotkin [25], and later categorically analysed by

Barr andWells [6], Goguen [14], Rydeheard and Burstall [28, Section

9.7] as coequalisers. However, there is little work on understanding

pattern unification algebraically, with the notable exception of Vez-

zosi and Abel [31], working with normalised terms of simply-typed

𝜆-calculus. The present paper can be thought of as a generalisation

of their work.

Although our notion of signature has a broader scope since

we are not specifically focusing on syntax where variables can be

substituted, our work is closer in spirit to the presheaf approach [11]

to binding signatures than to the nominal approach [13] in that

everything is explicitly scoped: terms come with their support,

metavariables always appear with their scope of allowed variables.

Nominal unification [30] is an alternative to pattern unifica-

tion where metavariables are not supplied with the list of allowed

variables. Instead, substitution can capture variables. Nominal uni-

fication explicitly deals with 𝛼-equivalence as an external relation

on the syntax, and as a consequence deals with freshness problems

in addition to unification problems.

Cheney [8] shows that nominal unification and pattern unifica-

tion problems are inter-translatable. As he notes, this result indi-

rectly provides semantic foundations for pattern unification based

on the nominal approach. In this respect, the present work provides

a more direct semantic analysis of pattern unification, leading us

to the generic algorithm we present, parameterised by a general

notion of signature for the syntax.

Pattern unification has also been studied from the viewpoint of

logical frameworks [1, 22–24] using contextual types to characterise

metavariables. LF-style signatures handle type dependency (which

is future work for us), but there are also GB-signatures which can-

not be encoded with an LF signature. For example, GB-signatures

allow us to express pattern unification for ordered lambda terms

(Section §B.4).

Our semantics for metavariables has been engineered so that it

can only interpret metavariable instantiations in the pattern frag-

ment, and cannot interpret full metavariable instantiations, contrary

to prior semantics of metavariables (e.g., Hu et al. [18] or Hamana

[16]). This restriction gives our model much stronger properties,

enabling us to characterise each part of the pattern unification

algorithm in terms of universal properties. This lets us extend Ry-

deheard and Burstall’s proof to the pattern case.
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A PROOFS OF STATEMENTS IN SECTION 3.2

A.1 Property 3.16

We use the notations and definitions of Section §3.2.

Let us first prove the first item.

Proof of Property 3.16.(i). We show that given any𝑜 ∈ O𝑛 (𝑏)
and renaming 𝑓 : 𝑎 → 𝑏, there is at most one 𝑜′ ∈ O𝑛 (𝑎) such that

𝑜 = 𝑜′{𝑓 }.
SinceO𝑛 preserves finite connected limits, it preservesmonomor-

phisms because a morphism 𝑓 : 𝑎 → 𝑏 is monomorphic if and only

if the following square is a pullback (see [20, Exercise III.4.4]).

𝐴 𝐴

𝐴 𝐵

𝑓

𝑓

□

The rest of this section is devoted to the proof of Property 3.16.(ii).

By right continuity of the homset bifunctor, any representable

functor is in C and thus the embedding C → [A, Set] factors the
Yoneda embedding A𝑜𝑝 → [A, Set].

LemmaA.1. LetD denote the opposite category ofA and𝐾 : D →
C the factorisation of C → [A, Set] by the Yoneda embedding. Then,

𝐾 : D → C preserves finite connected colimits.

Proof. This essentially follows from the fact functors in C
preserves finite connected limits. Let us detail the argument: let

𝑦 : A𝑜𝑝 → [A, Set] denote the Yoneda embedding and 𝐽 : C →
[A, Set] denote the canonical embedding, so that

𝑦 = 𝐽 ◦ 𝐾. (3)

Now consider a finite connected limit lim 𝐹 in A. Then,

C (𝐾 lim 𝐹, 𝑋 ) � [A, Set] (𝐽𝐾 lim 𝐹, 𝐽𝑋 ) (𝐽 is fully faithful)

� [A, Set] (𝑦 lim 𝐹, 𝐽𝑋 ) (By Equation (3))

� 𝐽𝑋 (lim 𝐹 ) (By the Yoneda Lemma.)

� lim(𝐽𝑋 ◦ 𝐹 )
(𝑋 preserves finite connected limits)

� lim( [A, Set] (𝑦𝐹−, 𝐽𝑋 )]
(By the Yoneda Lemma)

� lim( [A, Set] (𝐽𝐾𝐹−, 𝐽𝑋 )] (By Equation (3))

� limC (𝐾𝐹−, 𝑋 ) (𝐽 is full and faithful)

� C (colim 𝐾𝐹,𝑋 )
(By left continuity of the hom-set bifunctor)

These isomorphisms are natural in 𝑋 and thus 𝐾 lim 𝐹 � colim 𝐾𝐹 .

□

Proof of Property 3.16.(ii). Note that L factors as

D
L•−−→ MCon(𝑆) ↩→ MCon⊥ (𝑆),

where the right embedding preserves colimits by Lemma 3.8.(i), so

it is enough to show that L• preserves finite connected colimits.

Let 𝑇|C be the monad 𝑇 restricted to C , following Corollary 3.23.

Since 𝐾 : D → C preserves finite connected colimits (Lemma A.1),

composing it with the left adjoint C → 𝐾𝑙𝑇|C yields a functor

D → 𝐾𝑙𝑇|C also preserving those colimits. Since it factors asD
L•−−→

MCon(𝑆) ↩→ 𝐾𝑙𝑇|C , where the right functor is full and faithful, L•
also preserves finite connected colimits. □

A.2 Lemma 3.18

𝐹 is finitary because filtered colimits commute with finite limits

[20, Theorem IX.2.1] and colimits. The free monad construction is

due to Reiterman [27].

A.3 Lemma 3.21

Notation A.2. Given a functor 𝐹 : 𝐼 → B, we denote the limit

(resp. colimit) of 𝐹 by

∫
𝑖:𝐼
𝐹 (𝑖) or lim 𝐹 (resp.

∫ 𝑖:𝐼
𝐹 (𝑖) or colim 𝐹 )

and the canonical projection lim 𝐹 → 𝐹𝑖 by 𝑝𝑖 for any object 𝑖 of 𝐼 .

This section is dedicated to the proof of the following lemma.

Lemma A.3. Given a GB-signature 𝑆 = (A,O, 𝛼 ) such that A
has finite connected limits, 𝐹𝑆 restricts as an endofunctor on the full

subcategory C of [A, Set] consisting of functors preserving finite

connected limits if and only if each O𝑛 ∈ C , and 𝛼 :

∫
𝐽 → A

preserves finite limits.

We first introduce a bunch of intermediate lemmas.

Lemma A.4. If B is a small category with finite connected limits,

then a functor𝐺 : B → Set preserves those limits if and only if

∫
B

is a coproduct of filtered categories.

Proof. This is a direct application of Adámek et al. [3, Theorem

2.4 and Example 2.3.(iii)]. □

Corollary A.5. Assume A has finite connected limits. Then 𝐽 :

N × A → Set preserves finite connected limits if and only if each

O𝑛 : A → Set does.

Proof. This follows from

∫
𝐽 �

∐
𝑛∈N

∐
𝑗∈{1,...,𝑛}

∫
O𝑛 . □

Lemma A.6. Let 𝐹 : B → Set be a functor. For any functor

𝐺 : 𝐼 →
∫
𝐹 , denoting by 𝐻 the composite functor 𝐼

𝐺−→
∫
𝐹 → B,

there exists a unique 𝑥 ∈ lim(𝐹 ◦ 𝐻 ) such that 𝐺𝑖 = (𝐻𝑖, 𝑝𝑖 (𝑥)).

Proof.

∫
𝐹 is isomorphic to the opposite of the comma category

𝑦/𝐹 , where 𝑦 : B𝑜𝑝 → [B, Set] is the Yoneda embedding. The

statement follows from the universal property of a comma category.

□

Lemma A.7. Let 𝐹 : B → Set and 𝐺 : 𝐼 →
∫
𝐹 such that 𝐹

preserves the limit of 𝐻 : 𝐼
𝐺−→

∫
𝐹 −→ B. Then, there exists a unique

𝑥 ∈ 𝐹 lim𝐻 such that 𝐺𝑖 = (𝐻𝑖, 𝐹𝑝𝑖 (𝑥)) and moreover, (lim𝐻, 𝑥) is
the limit of 𝐺 .

Proof. The unique existence of 𝑥 ∈ 𝐹 lim𝐻 such that 𝐺𝑖 =

(𝐻𝑖, 𝐹𝑝𝑖 (𝑥)) follows from Lemma A.6 and the fact that 𝐹 preserves

lim𝐻 . Let C denote the full subcategory of [B, Set] of functors
preserving lim𝐺 . Note that

∫
𝐹 is isomorphic to the opposite of

the comma category 𝐾/𝐹 , where 𝐾 : B𝑜𝑝 → C is the Yoneda

embedding, which preserves colim 𝐺 , by an argument similar to

the proof of LemmaA.1.We conclude from the fact that the forgetful

functor from a comma category 𝐿/𝑅 to the product of the categories

creates colimits that 𝐿 preserve. □
14
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Corollary A.8. Let 𝐼 be a small category,B andB′ be categories
with 𝐼 -limits (i.e., limits of any diagram over 𝐼 ). Let 𝐹 : B → Set be a

functor preserving those colimits. Then,

∫
𝐹 has 𝐼 -limits, preserved by

the projection

∫
𝐹 → B. Moreover, a functor𝐺 :

∫
𝐹 → B′ preserves

them if and only if for any 𝑑 : 𝐼 → B and 𝑥 ∈ 𝐹 lim𝑑 , the canonical
morphism 𝐺 (lim𝑑, 𝑥) →

∫
𝑖:𝐼
𝐺 (𝑑𝑖 , 𝐹𝑝𝑖 (𝑥)) is an isomorphism.

Proof. By Lemma A.7, a diagram 𝑑′ : 𝐼 →
∫
𝐹 is equiva-

lently given by 𝑑 : 𝐼 → B and 𝑥 ∈ 𝐹 lim𝑑 , recovering 𝑑′ as
𝑑′
𝑖
= (𝑑𝑖 , 𝐹𝑝𝑖 (𝑥)), and moreover lim𝑑′ = (lim𝑑, 𝑥). □

Corollary A.9. Assuming thatA has finite connected limits and

each O𝑛 preserves finite connected limits, the finite limit preservation

on 𝛼 :

∫
𝐽 → A of Lemma A.3 can be reformulated as follows: given

a finite connected diagram 𝑑 : 𝐷 → A and element 𝑜 ∈ O𝑛 (lim𝑑),
the following canonical morphism is an isomorphism

𝑜 𝑗 →
∫
𝑖:𝐷

𝑜{𝑝𝑖 } 𝑗

for any 𝑗 ∈ {1, . . . , 𝑛}.

Proof. This is a direct application of Corollary A.8 and Corol-

lary A.5. □

Lemma A.10 (Limits commute with dependent pairs). Given

functors 𝐾 : 𝐼 → Set and 𝐺 :

∫
𝐾 → Set, the following canonical

morphism is an isomorphism∐
𝛼∈lim𝐾

∫
𝑖:𝐼

𝐺 (𝑖, 𝑝𝑖 (𝛼)) →
∫
𝑖:𝐼

∐
𝑥∈𝐾𝑖

𝐺 (𝑖, 𝑥)

Proof. The domain consists of a family (𝛼𝑖 )𝑖∈𝐼 where 𝛼𝑖 ∈ 𝐾𝑖
together with a family (𝑔𝑖 )𝑖∈𝐼 where𝑔𝑖 ∈ 𝐺 (𝑖, 𝛼𝑖 ), such that that for
each morphism 𝑖

𝑢−→ 𝑗 in 𝐼 , we have𝐾𝑢 (𝛼𝑖 ) = 𝛼 𝑗 and (𝐺𝑢) (𝑔𝑖 ) = 𝑔 𝑗 .
The codomain consists of a family (𝑥𝑖 , 𝑔𝑖 )𝑖∈𝐼 where 𝑥𝑖 ∈ 𝐾𝑖 and

𝑔𝑖 ∈ 𝐺 (𝑖, 𝑥𝑖 ), such that for each morphism 𝑖
𝑢−→ 𝑗 in 𝐼 , we have

𝐾𝑢 (𝑥𝑖 ) = 𝑥 𝑗 and (𝐺𝑢) (𝑔𝑖 ) = 𝑔 𝑗 .
The canonical morphism maps ((𝑥𝑖 )𝑖∈𝐼 , (𝑔𝑖 )𝑖∈𝐼 ) to the family

(𝑥𝑖 , 𝑔𝑖 )𝑖∈𝐼 . It is clearly a bijection. □

Proof of Lemma A.3. Let 𝑑 : 𝐼 → A be a finite connected

diagram and 𝑋 be a functor preserving finite connected limits.

Then,∫
𝑖:𝐼

𝐹 (𝑋 )𝑑𝑖 =
∫
𝑖:𝐼

∐
𝑛

∐
𝑜∈O𝑛 (𝑑𝑖 )

𝑋𝑜1 × · · · × 𝑋𝑜𝑛

�
∐
𝑛

∫
𝑖:𝐼

∐
𝑜∈O𝑛 (𝑑𝑖 )

𝑋𝑜1 × · · · × 𝑋𝑜𝑛

(Coproducts commute with connected limits)

�
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖 )

∫
𝑖:𝐼

𝑋
𝑝𝑖 (𝑜 )1

× · · · × 𝑋
𝑝𝑖 (𝑜 )𝑛

(By Lemma A.10)

�
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖 )

∫
𝑖:𝐼

𝑋
𝑝𝑖 (𝑜 )1

× · · · ×
∫
𝑖:𝐼

𝑋
𝑝𝑖 (𝑜 )𝑛

(By commutation of limits)

Thus, since 𝑋 preserves finite connected limits by assumption,∫
𝑖

𝐹 (𝑋 )𝑑𝑖 =
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖 )

𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜 )1

× · · · × 𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜 )𝑛

(4)

Now, let us prove the only if statement first. Assuming that

𝛼 :

∫
𝐽 → A and each O𝑛 preserves finite connected limits. Then,∫

𝑖

𝐹 (𝑋 )𝑑𝑖 �
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖 )

𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜 )1

× · · · × 𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜 )𝑛

(By Equation (4))

�
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑 )

𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }1

× · · · × 𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }𝑛

(By assumption on O𝑛)

�
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑 )

𝑋𝑜1 × · · · × 𝑋𝑜𝑛 (By Corollary A.9)

= 𝐹 (𝑋 )
lim𝑑

Conversely, let us assume that 𝐹 restricts to an endofunctor

on C . Then, 𝐹 (1) = ∐
𝑛 O𝑛 preserves finite connected limits. By

Lemma A.4, each O𝑛 preserves finite connected limits. By Corol-

lary A.9, it is enough to prove that given a finite connected diagram

𝑑 : 𝐷 → A and element 𝑜 ∈ O𝑛 (lim𝑑), the following canonical

morphism is an isomorphism

𝑜 𝑗 →
∫
𝑖:𝐷

𝑜{𝑝𝑖 } 𝑗

Now, we have∫
𝑖:𝐼

𝐹 (𝑋 )𝑑𝑖 � 𝐹 (𝑋 )lim𝑑 (By assumption)

=
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑 )

𝑋𝑜1 × · · · × 𝑋𝑜𝑛

On the other hand,∫
𝑖:𝐼

𝐹 (𝑋 )𝑑𝑖 �
∐
𝑛

∐
𝑜∈

∫
𝑖
O𝑛 (𝑑𝑖 )

𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜 )1

× · · · × 𝑋∫
𝑖 :𝐼
𝑝𝑖 (𝑜 )𝑛

(By Equation (4))

=
∐
𝑛

∐
𝑜∈O𝑛 (lim𝑑 )

𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }1

× · · · × 𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 }𝑛

(O𝑛 preserves finite connected limits)

It follows from those two chains of isomorphisms that each function

𝑋𝑜 𝑗 → 𝑋∫
𝑖 :𝐼
𝑜 {𝑝𝑖 } 𝑗

is a bijection, or equivalently (by the Yoneda

Lemma), that C (𝐾𝑜 𝑗 , 𝑋 ) → C (𝐾
∫
𝑖:𝐼
𝑜{𝑝𝑖 } 𝑗 , 𝑋 ) is an isomorphism.

Since the Yoneda embedding is fully faithful, 𝑜 𝑗 →
∫
𝑖:𝐷

𝑜{𝑝𝑖 } 𝑗 is
an isomorphism. □

A.4 Lemma 3.22

Cocompleteness follows from Adámek and Rosicky [4, Remark

1.56], since C is the category of models of a limit sketch, and is

thus locally presentable, by Adámek and Rosicky [4, Proposition

1.51].

For the claimed closure property, all we have to check is that

limits, coproducts, and filtered colimits of functors preserving finite

connected limits still preserve finite connected limits. The case of
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limits is clear, since limits commute with limits. Coproducts and

filtered colimits also commute with finite connected limits Adámek

et al. [3, Example 1.3.(vi)].

A.5 Corollary 3.23

The result follows from the construction of𝑇 using colimits of initial

chains, thanks to the closure properties of C . More specifically,𝑇𝑋

can be constructed as the colimit of the chain ∅ → 𝐻∅ → 𝐻𝐻∅ →
. . . , where ∅ denotes the constant functor mapping anything to the

empty set, and 𝐻𝑍 = 𝐹𝑍 + 𝑋 .

B APPLICATIONS

In this section, we present various examples of pattern-friendly sig-

natures. We start in Section §B.1 with a variant of pure 𝜆-calculus

where metavariable arguments are sets rather than lists. Then, in

Section §B.2, we present simply-typed 𝜆-calculus, as an example

of syntax specified by a multi-sorted binding signature. We then

explain in Section §B.3 how we can handle 𝛽 and 𝜂 equations by

working on the normalised syntax. Next, we introduce an exam-

ple of unification for ordered syntax in Section §B.4, and finally

we present an example of polymorphic such as System F, in Sec-

tion §B.5.

B.1 Metavariable arguments as sets

If we think of the arguments of a metavariable as specifying the

available variables, then it makes sense to assemble them in a set

rather than in a list. This motivates considering the categoryA = I
whose objects are natural numbers and a morphism 𝑛 → 𝑝 is a

subset of {1, . . . , 𝑝} of cardinal 𝑛. For instance, I can be taken as

subcategory of F𝑚 consisting of strictly increasing injections, or

as the subcategory of the augmented simplex category consisting

of injective functions. Then, a metavariable takes as argument

a set of variables, rather than a list of distinct variables. In this

approach, unifying two metavariables (see the rules U-Flex and

P-Flex) amount to computing a set intersection.

B.2 Simply-typed 𝜆-calculus

In this section, we present the example of simply-typed 𝜆-calculus.

Our treatment generalises to anymulti-sorted binding signature Fiore

and Hur [12].

Let𝑇 denote the set of simple types generated by a set of atomic

types and a binary arrow type construction − ⇒ −. Let us now
describe the category A of arities, or variable contexts, and renam-

ings between them. An arity ®𝜎 → 𝜏 consists of a list of input types

®𝜎 and an output type 𝜏 . A term 𝑡 in ®𝜎 → 𝜏 considered as a vari-

able context is intuitively a well-typed term 𝑡 of type 𝜏 potentially

using variables whose types are specified by ®𝜎 . A valid choice of

arguments for a metavariable 𝑀 : ( ®𝜎 → 𝜏) in variable context

®𝜎′ → 𝜏 ′ first requires 𝜏 = 𝜏 ′, and consists of an injective renaming

®𝑟 between ®𝜎 = (𝜎1, . . . , 𝜎𝑚) and ®𝜎′ = (𝜎′
1
, . . . , 𝜎′𝑛), that is, a choice

of distinct positions (𝑟1, . . . , 𝑟𝑚) in {1, . . . , 𝑛} such that ®𝜎 = 𝜎′®𝑟 .
This discussion determines the category of arities asA = F𝑚 [𝑇 ]×

𝑇 , where F𝑚 [𝑇 ] is the category of finite lists of elements of 𝑇 and

injective renamings between them. Table 1 summarises the defini-

tion of the endofunctor 𝐹 on [A, Set] specifying the syntax, where

| ®𝜎 |𝜏 denotes the number (as a cardinal set) of occurrences of 𝜏 in ®𝜎 .
The induced signature is pattern-friendly and so the generic

pattern unification algorithm applies. Equalisers and pullbacks are

computed following the same pattern as in pure 𝜆-calculus. For

example, to unify𝑀 ( ®𝑥) and𝑀 ( ®𝑦), we first compute the vector ®𝑧 of
common positions between ®𝑥 and ®𝑦, thus satisfying 𝑥®𝑧 = 𝑦®𝑧 . Then,
the most general unifier maps𝑀 : ( ®𝜎 → 𝜏) to the term 𝑃 (®𝑧), where
the arity ®𝜎′ → 𝜏 ′ of the fresh metavariable 𝑃 is the only possible

choice such that 𝑃 (®𝑧) is a valid term in the variable context ®𝜎 → 𝜏 ,

that is, 𝜏 ′ = 𝜏 and ®𝜎′ = 𝜎®𝑧 .

B.3 Simply-typed 𝜆-calculus modulo 𝛽𝜂

Higher-order pattern unification was originally introduced for

closed simply-typed lambda-terms with metavariables applied to

distinct variables. Lambda-terms are considered in 𝛽-short 𝜂-long

normal forms. Although we do not explicitly cover equations, the

syntax of those normal formas is equation free and can be speci-

fied by a GB-signature: we take the same category of arities as in

Section §B.2, and we consider the operations as specified in Table 1.

B.4 Ordered 𝜆-calculus

Our setting handles linear ordered 𝜆-calculus, consisting of 𝜆-terms

using all the variables in context. In this context, a metavariable

𝑀 of arity𝑚 ∈ N can only be used in the variable context𝑚, and

there is no freedom in choosing the arguments of a metavariable

application, since all the variablesmust be used, in order. Thus, there

is no need to even mention those arguments in the syntax. It is thus

not surprising that ordered 𝜆-calculus is already handled by first-

order unification, where metavariables do not take any argument,

by considering ordered 𝜆-calculus as a multi-sorted Lawvere theory

where the sorts are the variable contexts, and the syntax is generated

by operations 𝐿𝑛 × 𝐿𝑚 → 𝐿𝑛+𝑚 and abstractions 𝐿𝑛+1 → 𝐿𝑛 .

Our generalisation can handle calculi combining ordered and un-

restricted variables, such as the calculus underlying ordered linear

logic described in Polakow and Pfenning [26]. In this section we

detail this specific example. Note that this does not fit into Schack-

Nielsen and Schürman’s pattern unification algorithm Schack-Nielsen

and Schürmann [29] for linear types where exchange is allowed

(the order of their variables does not matter).

The set 𝑇 of types is generated by a set of atomic types and two

binary arrow type constructions ⇒ and ↠. The syntax extends

pure 𝜆-calculus with a distinct application 𝑡> 𝑢 and abstraction

𝜆>𝑢. Variables contexts are of the shape ®𝜎 | ®𝜔 → 𝜏 , where ®𝜎 , ®𝜔 , and
𝜏 are taken in 𝑇 . The idea is that a term in such a context has type

𝜏 and must use all the variables of ®𝜔 in order, but is free to use any

of the variables in ®𝜎 . Assuming a metavariable𝑀 of arity ®𝜎 | ®𝜔 → 𝜏 ,

the above discussion about ordered 𝜆-calculus justifies that there is

no need to specify the arguments for ®𝜔 when applying𝑀 . Thus, a

metavariable application𝑀 ( ®𝑥) in the variable context ®𝜎′ | ®𝜔 ′ → 𝜏 ′

is well-formed if 𝜏 = 𝜏 ′ and ®𝑥 is an injective renaming from ®𝜎 to ®𝜎′.
Therefore, we takeA = F𝑚 [𝑇 ] ×𝑇 ∗ ×𝑇 for the category of arities,

where 𝑇 ∗ denote the discrete category whose objects are lists of

elements of 𝑇 . The remaining components of the GB-signature are
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1959

1960

1961

1962

1963

1964

1965
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Table 1: Examples of (pattern-friendly) GB-signatures (Definition 3.13)

Simply-typed 𝜆-calculus (Section §B.2)

Typing rule 𝑂 ( ®𝜎 → 𝜏) = . . .+ 𝛼𝑜 = ( . . .)

𝑥 : 𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏

{𝑣𝑖 |𝑖 ∈ |®𝜎 |𝜏 } ()

Γ ⊢ 𝑡 : 𝜏 ′ ⇒ 𝜏 Γ ⊢ 𝑢 : 𝜏 ′

Γ ⊢ 𝑡 𝑢 : 𝜏
{𝑎𝜏 ′ |𝜏 ′ ∈ 𝑇 }

(
®𝜎 → (𝜏 ′ ⇒ 𝜏)
®𝜎 → 𝜏 ′

)
Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2

Γ ⊢ 𝜆𝑥 .𝑡 : 𝜏1 ⇒ 𝜏2
{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} ( ®𝜎, 𝜏1 → 𝜏2)

Simply-typed 𝜆-calculus modulo 𝛽𝜂 (Section §B.3)

Typing rule 𝑂 ( ®𝜎 → 𝜏) = . . .+ 𝛼𝑜 = ( . . .)

𝑥 : ®𝜏 ′ ⇒ 𝜏 ∈ Γ 𝜏 is a base type Γ ⊢ ®𝑡 : ®𝜏 ′

Γ ⊢ 𝑥®𝑡 : 𝜏
{𝑎𝑖,𝜏 ′

1
,...,𝜏 ′𝑛 |𝑖 ∈ |®𝜎 |®𝜏 ′⇒𝜏 and 𝜏 is a base type}

©«
®𝜎 → 𝜏 ′

1

. . .

®𝜎 → 𝜏 ′𝑛

ª®¬
Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2

Γ ⊢ 𝜆𝑥.𝑡 : 𝜏1 ⇒ 𝜏2
{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} ( ®𝜎, 𝜏1 → 𝜏2)

Ordered 𝜆-calculus (Section §B.4)

Typing rule 𝑂 ( ®𝜎 | ®𝜔 → 𝜏) = . . .+ 𝛼𝑜 = ( . . .)

𝑥 : 𝜏 ∈ Γ
Γ |· ⊢ 𝑥 : 𝜏

{𝑣𝑖 |𝑖 ∈ |®𝜎 |𝜏 and ®𝜔 = ()} ()

Γ |𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
{𝑣> | ®𝜔 = ()} ()

Γ |Ω ⊢ 𝑡 : 𝜏 ′ ⇒ 𝜏 Γ |· ⊢ 𝑢 : 𝜏 ′

Γ |Ω ⊢ 𝑡 𝑢 : 𝜏
{𝑎𝜏 ′ |𝜏 ′ ∈ 𝑇 }

(
®𝜎 | ®𝜔 → (𝜏 ′ ⇒ 𝜏)
®𝜎 | () → 𝜏 ′

)
Γ |Ω1 ⊢ 𝑡 : 𝜏 ′ ↠ 𝜏 Γ |Ω2 ⊢ 𝑢 : 𝜏 ′

Γ |Ω1,Ω2 ⊢ 𝑡> 𝑢 : 𝜏
{𝑎 ®𝜔1, ®𝜔2

𝜏 ′ |𝜏 ′ ∈ 𝑇 and ®𝜔 = ®𝜔1, ®𝜔2}
(
®𝜎 | ®𝜔1 → (𝜏 ′ ⇒ 𝜏)
®𝜎 | ®𝜔2 → 𝜏 ′

)
Γ, 𝑥 : 𝜏1 |Ω ⊢ 𝑡 : 𝜏2

Γ |Ω ⊢ 𝜆𝑥 .𝑡 : 𝜏1 ⇒ 𝜏2
{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} ( ®𝜎, 𝜏1 | ®𝜔 → 𝜏2)

Γ |Ω, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Γ |Ω ⊢ 𝜆>𝑥 .𝑡 : 𝜏1 ↠ 𝜏2

{𝑙>𝜏1,𝜏2 |𝜏 = (𝜏1 ↠ 𝜏2)} ( ®𝜎, 𝜏1 | ®𝜔 → 𝜏2)

System F (Section §B.5)

Typing rule 𝑂 (𝑝 | ®𝜎 ⊢ 𝜏) = . . .+ 𝛼𝑜 = ( . . .)

𝑥 : 𝜏 ∈ Γ
𝑛 |Γ ⊢ 𝑥 : 𝜏

{𝑣𝑖 |𝑖 ∈ |®𝜎 |𝜏 } ()

𝑛 |Γ ⊢ 𝑡 : 𝜏 ′ ⇒ 𝜏 𝑛 |Γ ⊢ 𝑢 : 𝜏 ′

𝑛 |Γ ⊢ 𝑡 𝑢 : 𝜏
{𝑎𝜏 ′ |𝜏 ′ ∈ 𝑆𝑛}

(
𝑛 | ®𝜎 → 𝜏 ′ ⇒ 𝜏

𝑛 | ®𝜎 → 𝜏 ′

)
𝑛 |Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
𝑛 |Γ ⊢ 𝜆𝑥 .𝑡 : 𝜏1 ⇒ 𝜏2

{𝑙𝜏1,𝜏2 |𝜏 = (𝜏1 ⇒ 𝜏2)} (𝑛 | ®𝜎, 𝜏1 → 𝜏2)

𝑛 |Γ ⊢ 𝑡 : ∀𝜏1 𝜏2 ∈ 𝑆𝑛
𝑛 |Γ ⊢ 𝑡 · 𝜏2 : 𝜏1 [𝜏2]

{𝐴𝜏1,𝜏2 |𝜏 = 𝜏1 [𝜏2]} (𝑛 | ®𝜎 → ∀𝜏1)

𝑛 + 1|𝑤𝑘 (Γ) ⊢ 𝑡 : 𝜏
𝑛 |Γ ⊢ Λ𝑡 : ∀𝜏 {Λ𝜏 ′ |𝜏 = ∀𝜏 ′} (𝑛 + 1|𝑤𝑘 ( ®𝜎) → 𝜏 ′)
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2056

2057

2058
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2081
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2083

2084

2085

2086

2087

2088

specified in Table 1: we alternate typing rules for the unrestricted

and the ordered fragments (variables, application, abstraction).

Pullbacks and equalisers are computed essentially as in Sec-

tion §B.2. For example, the most general unifier of𝑀 ( ®𝑥) and𝑀 ( ®𝑦)
maps 𝑀 to 𝑃 (®𝑧) where ®𝑧 is the vector of common positions of ®𝑥
and ®𝑦, and 𝑃 is a fresh metavariable of arity 𝜎®𝑧 | ®𝜔 → 𝜏 .

B.5 Intrinsic polymorphic syntax

We present intrinsic System F, in the spirit of Hamana [17].

The syntax of types in type variable context 𝑛 is inductively

generated as follows, following the De Bruijn level convention.

1 ≤ 𝑖 ≤ 𝑛
𝑛 ⊢ 𝑖

𝑛 ⊢ 𝑡 𝑛 ⊢ 𝑢
𝑛 ⊢ 𝑡 ⇒ 𝑢

𝑛 + 1 ⊢ 𝑡
𝑛 ⊢ ∀𝑡

Let 𝑆 : F𝑚 → Set be the functor mapping 𝑛 to the set 𝑆𝑛 of types

for system 𝐹 taking free type variables in {1, . . . , 𝑛}. In other words,

𝑆𝑛 = {𝜏 |𝑛 ⊢ 𝜏}. Intuitively, a metavariable arity 𝑛 | ®𝜎 → 𝜏 specifies

the number 𝑛 of free type variables, the list of input types ®𝜎 , and
the output type 𝜏 , all living in 𝑆𝑛 . This provides the underlying

set of objects of the category A of arities. A term 𝑡 in 𝑛 | ®𝜎 → 𝜏

considered as a variable context is intuitively a well-typed term of

type 𝜏 potentially involving ground variables of type ®𝜎 and type

variables in {1, . . . , 𝑛}.
A metavariable 𝑀 : (𝑛 |𝜎1, . . . , 𝜎𝑝 → 𝜏) in the variable context

𝑛′ | ®𝜎′ → 𝜏 ′ must be supplied with

• a choice (𝜂1, . . . , 𝜂𝑛) of 𝑛 distinct type variables among the

set {1, . . . 𝑛′}, such that 𝜏 [®𝜂] = 𝜏 ′, and
• an injective renaming ®𝜎 [®𝜂] → ®𝜎′, i.e., a list of distinct

positions 𝑟1, . . . , 𝑟𝑝 such that ®𝜎 [®𝜂] = 𝜎′®𝑟 .
This defines the data for a morphism in A between (𝑛 | ®𝜎 → 𝜏)
and (𝑛′ | ®𝜎′ → 𝜏 ′). The intrinsic syntax of system 𝐹 can then be

specified as in Table 1. The induced GB-signature is pattern-friendly.

For example, morphisms in A are easily seen to be monomorphic;

we detail in Appendix §C the proof that A has finite connected

limits. Pullbacks and equalisers inA are essentially computed as in

Section §B.2, by computing the vector of common (value) positions.

For example, given a metavariable 𝑀 of arity𝑚 | ®𝜎 → 𝜏 , to unify

𝑀 ( ®𝑤 | ®𝑥) with𝑀 ( ®𝑦 |®𝑧), we compute the vector of common positions

®𝑝 between ®𝑤 and ®𝑦, and the vector of common positions ®𝑞 between

®𝑥 and ®𝑧. Then, the most general unifier maps𝑀 to the term 𝑃 ( ®𝑝 | ®𝑞),
where 𝑃 is a fresh metavariable. Its arity𝑚′ | ®𝜎′ → 𝜏 ′ is the only
possible one for 𝑃 ( ®𝑝 | ®𝑞) to be well-formed in the variable context

𝑚 | ®𝜎 → 𝜏 , that is, 𝑚′ is the size of ®𝑝 , while 𝜏 ′ = 𝜏 [𝑝𝑖 ↦→ 𝑖] and
®𝜎′ = 𝜎®𝑞 [𝑝𝑖 ↦→ 𝑖].

C PROOF THAT A HAS FINITE CONNECTED

LIMITS (SECTION B.5 ON SYSTEM F)

In this section, we show that the category A of arities for System

F (Section §B.5) has finite connected limits. First, note that A is

the op-lax colimit of the functor from F𝑚 to the category of small

categories mapping 𝑛 to F𝑚 [𝑆𝑛] ×𝑆𝑛 . Let us introduce the category
A′ whose definition follows that of A, but without the output

types: objects are pairs of a natural number 𝑛 and an element of 𝑆𝑛 .

Formally, this is the op-lax colimit of 𝑛 ↦→ F𝑚 [𝑆𝑛].

Lemma C.1. A′ has finite connected limits, and the projection

functor A′ → F𝑚 preserves them.

Proof. The crucial point is thatA′ is not only op-fibred overF𝑚
by construction, it is also fibred over F𝑚 . Intuitively, if ®𝜎 ∈ F𝑚 [𝑆𝑛]
and 𝑓 : 𝑛′ → 𝑛 is a morphism in F𝑚 , then 𝑓! ®𝜎 ∈ F𝑚 [𝑆𝑛′ ] is
essentially ®𝜎 restricted to elements of 𝑆𝑛 that are in the image of

𝑆𝑓 . We can now apply Gray [15, Corollary 4.3], since each F𝑚 [𝑆𝑛]
has finite connected limits. □

We are now ready to prove that A has finite connected limits.

Lemma C.2. A has finite connected limits.

Proof. Since 𝑆 : F𝑚 → Set preserves finite connected limits,∫
𝑆 has finite connected limits and the projection functor to F𝑚

preserves them by Corollary A.8.

Now, the 2-category of small categories with finite connected

limits and functors preserving those between them is the category of

algebras for a 2-monad on the category of small categories Blackwell

et al. [7]. Thus, it includes the weak pullback of A′ → F𝑚 ←
∫
𝑆 .

But since

∫
𝑆 → F𝑚 is a fibration, and thus an isofibration, by Joyal

and Street [19] this weak pullback can be computed as a pullback,

which is A. □
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