
Generic pattern unification

Abstract—In a Lawvere theory freely generated by operations,
an equaliser diagram has a limit as long as it has a cone. As it
is well-known, this translates in terms of first-order unification
as the existence of a most general unifier as long as there exists
a unifier. Generalising the so-called pattern fragment of second-
order unification identified by Miller, we propose an extension
of this result for a class of non-free Lawvere theories generated
by a new notion of signature in order to capture syntax with
variable binding and metavariables, including simply-typed λ-
calculus, (intrinsic) System F, ordered λ-calculus.

Index Terms—Unification, Category theory, Syntax

I. INTRODUCTION

Unification consists in finding a unifier of two terms t, u,
that is a (metavariable) substitution σ such that t[σ] = u[σ].
Unification algorithms try to compute a most general unifier
σ, in the sense that given any other unifier δ, there exists
a unique δ′ such that δ = σ[δ′]. First-order unification [24]
is used in ML-style type inference systems and logic pro-
gramming languages such as Prolog. More advanced type
systems, where variable binding is crucially involved, requires
second-order unification [17], which is undecidable [14].
However, Miller [20] identified a decidable fragment: in so-
called pattern unification, metavariables are allowed to take
distinct variables as arguments. In this situation, we can write
an algorithm that either fails in case there is no unifier, or
computes the most general unifier.

Recent results in type inference, Dunfield-
Krishnaswami [9], or Jinxu et. al [28], include very
large proofs: the former comes with a 190 page appendix,
and the latter comes with a Coq proof many thousands of
lines long -- and both of these results are for tiny kernel
calculi. If we ever hope to extend this kind of result to full
programming languages like Haskell or OCaml, we must
raise the abstraction level of these proofs, so that they are
no longer linear (with a large constant) in the size of the
calculus. A close examination of these proofs shows that a
large part of the problem is that the type inference algorithms
make use of unification, and the correctness proofs for type
inference end up essentially re-establishing the entire theory
of unification for each algorithm. The reason they do this is
because algorithmic typing rules essentially give a first-order
functional program with no abstractions over (for example)
a signature for the unification algorithm to be defined over,
or any axiomatic statement of the invariants the algorithmic
typing rules had to maintain.

The present work is a first step towards a general solution
to this problem. Our generic unification algorithm is param-
eterised by an abstract notion of signature, covering simply-
typed second-order syntax, ordered syntax, or (intrinsic) poly-
morphic syntax such as System F. We focused on Miller’s

pattern unification, as this is already a step beyond the above-
cited works [28], [9] that use plain first-order unification.
Moreover, this is necessary for types with binders (e.g., fixed-
point operators like µa.A[a]) as well as for rich type systems
like dependent types.

Related work

First-order unification has been explained from a lattice-
theoretic point of view by Plotkin [21], and later categorically
analysed in [25], [13], [5, Section 9.7] as coequalisers. How-
ever, there is little work on understanding pattern unification
algebraically, with the notable exception of [27], working
with normalised terms of simply-typed λ-calculus. The present
paper can be thought of as a generalisation of their work.

Although our notion of signature has a broader scope since
we are not specifically focusing on syntax where variables
can be substituted, our work is closer in spirit to the presheaf
approach [11] to binding signatures than to the nominal
approach [12] in that everything is explicitly scoped: terms
come with their support, metavariables always appear with
their scope of allowed variables.

Nominal unification [26] is an alternative to pattern unifi-
cation where metavariables are not supplied with the list of
allowed variables. Instead, substitution can capture variables.
Nominal unification explicitly deals with α-equivalence as an
external relation on the syntax, and as a consequence deals
with freshness problems in addition to unification problems.

Cheney [7] shows that nominal unification and pattern
unification problems are inter-translatable. As he notes, this
result indirectly provides semantics foundations of pattern
unification based on the nominal approach. In this respect,
the present work provides a more direct semantic analysis of
pattern unification, amenable to generalisation.

Plan of the paper

In section §II, we present our generic pattern unification
algorithm, parameterised by our generalised notion of bind-
ing signature. We introduce categorical semantics of pattern
unification in Section §III. We show correctness of the two
phases of the unification algorithm in Section §IV and Sec-
tion §V. Finally, we present some examples of signatures in
Section §VI.

General notations

Given a list ~x = (x1, . . . , xn) and a list of positions ~p =
(p1, . . . , pm) taken in {1, . . . , n}, we denote (xp1 , . . . , xpm)
by x~p.

Given a category B, we denote its opposite category by
Bop. If a and b are two objects of B, we denote the set
of morphisms between a and b by homB(a, b). We denote



the identity morphism at an object x by 1x. We denote the
coproduct of two objects A and B by A+B and the coproduct
of a family of objects (Ai)i∈I by

∐
i∈I Ai, and similarly for

morphisms. If f : A → B and g : A′ → B, we denote the
induced morphism A+A′ → B by f, g. Coproduct injections
Ai →

∐
i∈I Ai are typically denoted by ini. Let T be a monad

on a category B. We denote its unit by η, and its Kleisli
category by KlT : the objects are the same as those of B, and
a Kleisli morphism from A to B is a morphism A→ TB in
B. We denote the Kleisli composition of f : A → TB and
g : B → TC by f [g] : A→ TC.

II. PRESENTATION OF THE ALGORITHM

In this section, we start by describing a pattern unification
algorithm for pure λ-calculus, summarised in Figure 1. Then
we present our generic algorithm (Figure 2), and finally
show that it indeed describes a terminating algorithm in
Section §II-C. Soundness of the algorithm is justified in later
sections.

A. An example: pure λ-calculus.

Consider the syntax of pure λ-calculus extended with
metavariables satisfying the pattern restriction, encoded with
De Bruijn levels, rather than De Bruijn indices [8]. More
formally, the syntax is inductively generated by the fol-
lowing inductive rules, where Γ is a metavariable context
M1 : m1, . . . ,Mp : mp specifying a metavariable symbol Mi

together with its number of arguments mi.

1 ≤ i ≤ n
Γ;n ` i

Γ;n ` t Γ;n ` u
Γ;n ` t u

Γ;n+ 1 ` t
Γ;n ` λt

M : m ∈ Γ 1 ≤ i1, . . . , im ≤ n i1, . . . im distinct
Γ;n `M(i1, . . . , im)

Note that the De Bruijn level convention means that the
variable bound in Γ;n ` λt is n+ 1.

A metavariable substitution σ : Γ → ∆ assigns to each
metavariable M of arity m in Γ a term ∆;m ` σM . This
assignation extends (through a recursive definition) to any term
Γ;n ` t, yielding a term ∆;n ` t[σ]. The base case is

M(x1, . . . , xm)[σ] = σM{i 7→ xi},

where −{i 7→ xi} is variable renaming. For example, the
identity substitution 1Γ : Γ → Γ is defined by the term
M(1, . . . ,m) for each metavariable declaration M : m in
Γ. The composition σ[σ′] : Γ1 → Γ3 of two substitutions
σ : Γ1 → Γ2 and σ′ : Γ2 → Γ3 is defined as M 7→ σM [σ′].

A unifier of two terms Γ;n ` t, u is a substitution σ :
Γ → Γ′ such that t[σ] = u[σ]. A most general unifier of t
and u is a unifier σ : Γ → Γ′ that uniquely factors any other
unifier δ : Γ → ∆, in the sense that there exists a unique
δ′ : Γ′ → ∆ such that δ = σ[δ′]. We denote this situation by
Γ ` t = u ⇒ σ a Γ′, leaving the variable context n implicit.
Intuitively, the symbol⇒ separates the input and the output of
the unification algorithm, which either returns a most general
unifier, or fails when there is no unifier at all (for example,
when unifying t1 t2 with λu). To handle the latter case, we

add1 a formal error metavariable context ⊥ in which the only
term (in any variable context) is a formal error term !, inducing
a unique substitution ! : Γ → ⊥, satisfying t[!] = ! for any
term t. For example, we have Γ ` t1 t2 = λu ⇒ ! a ⊥.
The rule UΛ-EXFALSO in Figure 1 propagates the error from
input to output.

We generalise the notation (and thus the input of the
unification algorithm) to lists of terms ~t = (t1, . . . , tn) and
~u = (u1, . . . , un) such that Γ;ni ` ti, ui. Then, Γ ` ~t =
~u ⇒ σ a ∆ means that σ : Γ → ∆ unifies each pair (ti, ui)
and is the most general one, in the sense that it uniquely
factors any other substitution unifying each pair (ti, ui). As a
consequence, we get the congruence rule for application.

Γ ` t1, t2 = u1, u2 ⇒ σ a ∆

Γ ` t1 t2 = u1 u2 ⇒ σ a ∆

The rule UΛ-EMPTY trivially handles unification of two
empty lists. Unification of two non-empty lists of term pairs
t1, ~t2 and u1, ~u2 can be performed sequentially by first com-
puting the most general unifier of (t1, u1), then applying it to
(~t2, ~u2), and finally computing the most general unifier of the
resulting list of term pairs: this is precisely the rule UΛ-SPLIT.

Thanks to this rule, we can focus on unification of a
single term pair. The idea here is to recursively inspect the
structure of the given terms using the rules UΛ-RIGRIG
and UΛ-CLASH, until reaching a metavariable application
M(x1, . . . , xm) at the top-level of either term. Denoting by
u the other term, three mutually exclusive situations must be
considered:

1) M occurs deeply in u;
2) M occurs in u at top level, i.e., u = M(y1, . . . , ym);
3) M does not occur in u.

In the first case, there is no unifier because the size of both
hand sides can never match after substitution. This justifies the
rule UΛ-CYCLIC, where M ∈ u means that M occurs in u. In
the second case, we want to unify M(~x) with M(~y). The most
general unifier σ coincides with the identity substitution except
for σM = M ′(~z), where M ′ is fresh and ~z = (z1, . . . , zp) is
the vector of common positions, that is, a maximal vector of
(distinct) positions ~z such that x~z = y~z . We denote2 such a
situation by n ` ~x = ~y ⇒ ~z a p. We therefore get the rule
UΛ-FLEX.

Example 1. Let x, y, z be three distinct variables, and let us
consider unification of M(x, y) and M(z, x). Given a unifier
σ, since M(x, y)[σ] = σM{1 7→ x, 2 7→ y} and M(z, x)[σ] =
σM{1 7→ z, 2 7→ x} must be equal, σM cannot depend on
the variables 1, 2. It follows that the most general unifier is
M 7→ M ′, replacing M with a fresh constant metavariable
M ′. A similar argument shows that the most general unifier
of M(x, y) and M(z, y) is M 7→M ′(2).

1In Section §III-A, we interpret ⊥ as a terminal object freely added to the
category of metavariable contexts and substitutions between them.

2The similarity with the above introduced notation is no coincidence: as
we will see (Remark 14), both are (co)equalisers.



Judgments

Γ ` ~t = ~u⇒ σ a ∆ ⇐⇒ σ : Γ→ ∆ is the most general unifier of ~t and ~u

Γ ` ~u :>
−−−→
M(~x)⇒ ~w;σ a ∆ ⇐⇒ σ : Γ→ ∆ extended with Mi 7→ wi is the most general unifier of Γ ` ~u and

−−−→
M(~x)

m ` ~x = ~y ⇒ ~z a p ⇐⇒ (z1, . . . , zp) are the common positions of (x1, . . . , xm) and (y1, . . . , ym)

n ` ~x :> ~y ⇒ ~l;~r a p ⇐⇒ (l1, . . . , lp) and (r1, . . . , rp) are the common value positions of (x1, . . . , xn) and ~y

Unification Phase
• Structural rules

Γ ` () = ()⇒ 1Γ a Γ
UΛ-EMPTY

⊥ ` ~t = ~u⇒ ! a ⊥
UΛ-EXFALSO

Γ ` t1 = u1 ⇒ σ1 a ∆1 ∆1 ` t2[σ1] = u2[σ1]⇒ σ2 a ∆2

Γ ` t1, t2 = u1, u2 ⇒ σ1[σ2] a ∆2

UΛ-SPLIT

• Rigid-rigid (o, o′ are applications, λ-abstractions, or variables)

Γ ` ~t = ~u⇒ σ a ∆

Γ ` o(~t) = o(~u)⇒ σ a ∆
UΛ-RIGRIG

o 6= o′

Γ ` o(~t) = o′(~u)⇒ ! a ⊥
UΛ-CLASH

• Flex-*, no cycle
M /∈ u Γ ` u :>M(~x)⇒ w;σ a ∆

Γ,M : m `M(~x) = u⇒ σ,M 7→ w a ∆
UΛ-NOCYCLE + symmetric rule

• Flex-Flex, same
m ` ~x = ~y ⇒ ~z a p

Γ,M : m `M(~x) = M(~y)⇒M 7→M ′(~z) a Γ,M ′ : p
UΛ-FLEX

• Flex-Rigid, cyclic
M ∈ u u 6= M(. . . )

Γ,M : m `M(~x) = u⇒ ! a ⊥
UΛ-CYCLIC + symmetric rule

Non-cyclic Phase
• Structural rules

Γ ` () :> ()⇒ (); 1Γ a Γ ⊥ ` ~t :>
−−−→
M(~x)⇒ !; ! a ⊥

Γ ` t1 :>M(~x1)⇒ u1;σ1 a ∆1 ∆1 ` ~t2[σ1] :>
−−−−→
M(~x2)⇒ ~u2;σ2 a ∆2

Γ ` t1, ~t2 :>M1(~x1),
−−−−→
M(~x2)⇒ u1[σ2], ~u2;σ1[σ2] a ∆2

PΛ-SPLIT

• Rigid

Γ ` t :>M ′(~x,

bound variable︷ ︸︸ ︷
n+ 1)⇒ w;σ a ∆

Γ ` λt :>M(~x)⇒ λw;σ a ∆
PΛ-LAM

Γ ` t, u :>M1(~x),M2(~x)⇒ w1, w2;σ a ∆

Γ ` t u :>M(~x)⇒ w1 w2;σ a ∆
PΛ-APP

y = xi
Γ ` y :>M(~x)⇒ i; 1Γ a Γ

PΛ-VAROK
y /∈ ~x

Γ ` y :>M(~x)⇒ !; ! a ⊥
PΛ-VARFAIL

• Flex
n ` ~x :> ~y ⇒ ~l;~r a p

Γ, N : n ` N(~x) :>M(~y)⇒ P (~l);N 7→ P (~r) a Γ, P : p
PΛ-FLEX

Fig. 1. Unification for pure λ-calculus (Section §II-A)



Judgments

Γ ` ~t = ~u⇒ σ a ∆ ⇐⇒ σ : Γ→ ∆ is the most general unifier of ~t and ~u

Γ ` ~u :>
−−−→
M(x)⇒ ~w;σ a ∆ ⇐⇒ σ : Γ→ ∆ extended with Mi 7→ wi is the most general unifier of Γ ` ~u and

−−−→
M(~x)

m ` x = y ⇒ z a p ⇐⇒ p
z // m

x //
y
// . . . is an equaliser in A

n ` x :> y ⇒ l; r a p ⇐⇒
p

l //

r

��

n

x

��. . .
y
// . . .

is a pullback in A

Unification Phase
• Structural rules

Γ ` () = ()⇒ 1Γ a Γ ⊥ ` ~t = ~u⇒ ! a ⊥

Γ ` t1 = u1 ⇒ σ1 a ∆1 ∆1 ` ~t2[σ1] = ~u2[σ1]⇒ σ2 a ∆2

Γ ` t1, ~t2 = u1, ~u2 ⇒ σ1[σ2] a ∆2

U-SPLIT

• Rigid-rigid
Γ ` ~t = ~u⇒ σ a ∆

Γ ` o(~t) = o(~u)⇒ σ a ∆
U-RIGRIG

o 6= o′

Γ ` o(~t) = o′(~u)⇒ ! a ⊥
U-CLASH

• Flex-*, no cycle
M /∈ u Γ ` u :>M(x)⇒ w;σ a ∆

Γ,M : m `M(x) = u⇒ σ,M 7→ w a ∆
U-NOCYCLE + symmetric rule

• Flex-Flex, same
m ` x = y ⇒ z a p

Γ,M : m `M(x) = M(y)⇒M 7→M ′(z) a Γ,M ′ : p
U-FLEX

• Flex-Rigid, cyclic
M ∈ u u 6= M(. . . )

Γ,M : m `M(x) = u⇒ ! a ⊥
U-CYCLIC + symmetric rule

Non-cyclic Phase
• Structural rules

Γ ` () :> ()⇒ (); 1Γ a Γ ⊥ ` ~t :>
−−−→
M(x)⇒ !; ! a ⊥

Γ ` t1 :>M1(x1)⇒ u1;σ1 a ∆1 ∆1 ` ~t2[σ1] :>
−−−−→
M2(x2)⇒ ~u2;σ2 a ∆2

Γ ` t1, ~t2 :>M1(x1),
−−−−→
M(x2)⇒ u1[σ2], ~u2;σ1[σ2] a ∆2

P-SPLIT

• Rigid
Γ ` ~t :>M1(xo

′

1 ), . . . ,Mn(xo
′

n )⇒ ~u;σ a ∆ o = o′{x}
Γ ` o(~t) :>M(x)⇒ o′(~u);σ a ∆

P-RIG
o 6= . . . {x}

Γ ` o(~t) :>M(x)⇒ !; ! a ⊥
P-FAIL

• Flex
n ` x :> y ⇒ l; r a p

Γ, N : n ` N(x) :>M(y)⇒ P (l);N 7→ P (r) a Γ, P : p
P-FLEX

Fig. 2. Generic pattern unification algorithm (Section §II-B)



The last case consists in unifying M(~x) with some u
such that M does not occur in u, described in the rule
UΛ-NOCYCLE. The algorithm then enters a non-cyclic phase,
which specifically addresses such non-cyclic unification prob-
lems. Let us introduce a specific notation: Γ ` u :>M(~x)⇒
w;σ a ∆ means that u is a term in the metavariable context
Γ, while M is a fresh metavariable with respect to Γ and
~x = (x1, . . . , xm) are distinct variables in the (implicit)
variable context of u. The output is the most general unifier
of u and M(~x), both considered in the extended metavariable
context Γ,M : m. This substitution from Γ,M : m to ∆ is
explicitly defined as the extension of a substitution σ : Γ→ ∆
with a term ∆;m ` w for substituting M .
Remark 2. The symbol :> evokes the pruning involved in this
phase. Indeed, one intuition behind the non-cyclic unification
of M(~x) and u consists in taking u[xi 7→ i] as a definition
for M . This only makes sense if the free variables of u are
among ~x: if u is a variable that does not occur in ~x, then
obviously there is no unifier. However, it is possible to remove
the outbound variables in u if they only occur in metavariable
arguments, by restricting the arities of those metavariables.
We accordingly call σ : Γ → ∆ the pruning substitution. As
an example, if u is a metavariable application N(~x, ~y), then
although the free variables are not all included in ~x, there
is still a most general unifier, and the corresponding pruning
substitution essentially replaces N with M , discarding the
outbound variables ~y.

The non-cyclic phase recursively proceeds by introducing
fresh metavariables for each argument of the top-level oper-
ation. The variable case is straightforward (rules PΛ-VAROK
and PΛ-VARFAIL). In the congruence rule PΛ-LAM for λ-
abstraction, a fresh variable M ′ is introduced for the body of
the λ-abstraction which is additionally applied to the bound
variable n + 1, as it should not be pruned. Keeping in mind
the intuition that M = λM ′, if M ′ is to be substituted with
w, then M should be substituted with λw, thus justifying the
conclusion of the rule.

As before, the rule PΛ-APP for application motivates gen-
eralising the non-cyclic phase to handle lists. More formally
given a list ~u = (u1, . . . , up) of terms in context Γ;ni ` ui,
and lists of pruning patterns (~x1, . . . , ~xp) where each ~xi is a
choice of distinct variables in ni, the judgement Γ ` ~u :>
M1(~x1), . . . ,Mp(~xp)⇒ ~w;σ a ∆ means that the substitution
σ : Γ→ ∆ extended with Mi 7→ wi is the most general unifier
of ~u and M1(~x1), . . .Mp(~xp) in the extended metavariable
context Γ,M1 : m1, . . . ,Mp : mp. The rule PΛ-SPLIT adapts
the sequential rule UΛ-SPLIT to the non-cyclic phase.

The remaining case consists in unifying N(~x) and M(~y).
Consider the vector of common values positions (l1, . . . , lp)
and (r1, . . . , rp) between x1, . . . , xn and y1, . . . , ym, i.e., the
maximal pair of lists (~l, ~r) of distinct positions such that x~l =

y~r. We denote3 such a situation by n ` ~x :> ~y ⇒ ~l;~r a p.
Then, the most general unifier replaces N with P (~r) for some

3Again, the similarity with the notation for non-cyclic unification is no
coincidence: both are pushouts, as we will see in Remark 39.

fresh metavariable P of arity p, while the metavariable M is
replaced with P (~l), as seen in the rule PΛ-FLEX.

Example 3. Let x, y, z be three distinct variables. The most
general unifier of M(x, y) and N(z, x) is M 7→ N ′(1), N 7→
N ′(2). The most general unifier of M(x, y) and N(z) is M 7→
N ′, N 7→ N ′.

This ends our description of the unification algorithm, in
the specific case of pure λ-calculus. The purpose of this work
is to present a generalisation, by parameterising the algorithm
by a signature specifying a syntax.

B. Generalisation

Our algorithm is parameterised by a notion of signature
generalising binding signatures [1] to account for syntax with
metavariables. To recall, a binding signature (O,α) specifies
for each natural number n a set of n-ary operation symbols
On and for each o ∈ On, an arity αo = (o1, . . . , on) as a list
of natural numbers specifying how many variables are bound
in each argument. For example, pure λ-calculus is specified
by O1 = {lam}, O2 = {app}, αapp = (0, 0), αlam = (1),
and On = ∅ for any natural number n /∈ {1, 2}.

Our algorithm is parameterised by a generalised binding
signature, or GB-signature, a notion we will formally intro-
duce in Definition 20. A GB-signature consists in a tuple
(A, O, α) consisting of
• a small category A whose objects are called arities

or variable contexts, and whose morphisms are called
renamings;

• for each variable context a and natural number n, a set
of n-ary operation symbols On(a);

• for each operation symbol o ∈ On(a), a list of variable
contexts αo = (o1, . . . , on)

such that O and α are functorial in a suitable sense (see
Remark 7 below). Intuitively, On(a) is the set of n-ary
operation symbols available in the variable context a.

Definition 4. The syntax specified by a GB-signature
(A, O, α) is inductively generated by the two following rules.

o ∈ On(a) Γ; o1 ` t1 . . . Γ; on ` tn
Γ; a ` o(t1, . . . , tn)

RIG

M : m ∈ Γ x ∈ homA(m, a)

Γ; a `M(x)
FLEX

where a context Γ; a consists of a variable context a and a
metavariable context Γ, as a metavariable arity function from
a finite set of metavariable symbols to the set of objects of A.
We call a term rigid if it is of the shape o(. . . ), flexible if it
is M(. . . ).

Remark 5. The syntax in the empty metavariable context does
not depend on the morphisms in A. In fact, by restricting the
morphisms in the category of arities to identity morphisms,
any GB-signature induces an indexed container [4] generating
the same syntax without metavariables.



Example 6. Binding signatures can be compiled into GB-
signatures. More specifically, a syntax specified by a bind-
ing signature (O,α) is also generated by the GB-signature
(Fm, O′, α′), where

• Fm is the category of finite cardinals and injections
between them;

• O′n(p) = {v1, . . . , vp} t {op|o ∈ On};
• α′vi = () and α′op = (p+o1, . . . , p+on) for any i, p, n ∈
N, o ∈ On.

Note that variables vi are explicitly specified as nullary op-
erations and thus do not require a dedicated generating rule,
contrary to what happens with binding signatures. Moreover,
the choice of renamings (i.e., morphisms in the category of
arities) is motivated by the FLEX rule. Indeed, if M has arity
m ∈ N, then a choice of arguments in the variable context
a ∈ N consists of a list of distinct variables in the variable
context a, or equivalently, an injection between the cardinal
sets m and a, that is, a morphism in Fm between m and a.

GB-signatures capture multi-sorted binding signatures such
as simply-typed λ-calculus, or polymorphic syntax such as
System F (see Section §VI).

Remark 7. In the notion of GB-signature, functoriality ensures
that the generated syntax supports renaming: given a morphism
f : a → b in A and a term Γ; a ` t, we can recursively
define a term Γ; b ` t{f}. The case of metavariables is
simple: M(x){f} = M(f ◦x). For an operation o(t1, . . . , tn),
functoriality provides the following components:

• an operation symbol o{f} ∈ On(b);
• a morphism foi : oi → o{f}i for each i ∈ {1, . . . , n}.

Then, o(t1, ..., tn){f} is defined as o{f}(t1{fo1 }, ..., tn{fon}).

Unification can be formulated by following the same route
as in Section §II-A. A metavariable substitution σ from
Γ = (M1 : m1, . . . ,Mp : mp) to ∆ is a list of terms
(σ1, ..., σp) such that ∆;mi ` σi. Given a term Γ; a ` t,
we can recursively define the substituted term ∆; a ` t[σ] by
o(~t)[σ] = o(~t[σ]) and Mi(x)[σ] = σi{x}.

Figure 2 summarises our generic algorithm, parameterised
by a GB-signature, and a few more parameters: a solver for
the equation

o = o′{x}, (1)

where o′ is the unknown (see the rules P-RIG and P-FAIL,
detailed below), and a construction of equalisers and pullbacks
in A, highlighted in blue. These are used to compute the most
general unifier of two metavariable applications in the rules
U-FLEX and P-FLEX. Specialised to pure λ-calculus, they
correspond to the rules UΛ-FLEX and PΛ-FLEX: indeed, the
vector of common positions of ~x and ~y can be characterised as
their equaliser in Fm, when thinking of lists as functions from
a finite cardinal, while the vectors of common value positions
can be characterised as a pullback.

The main differences with the example of pure λ-calculus
presented above in Figure 1 is that the vector notation is

dropped for arguments of metavariables, since they are ab-
stracted as morphisms in a category4. Moreover, the case for
operations and variables are merged in the non-cyclic phase
with the rules P-RIG and P-FAIL that both handle non-cyclic
unification of M(x) with o(~t). If o = o′{x} for some o′, then
the rule P-RIG applies; otherwise, the rule P-FAIL outputs an
error. Let us explain how they specialise for a syntax specified
by a binding signature as in Example 6. In this case, x is a list
of distinct variables (x1, . . . , xm). If o is a variable vi, then the
side condition o = o′{x} means that i is xj for some variable
o′ = vj . Thus, those rules account for the rules PΛ-VAROK
and PΛ-VARFAIL. On the other hand, if o is actually on, i.e.,
an operation symbol o considered in the variable context n,
then, by definition of the functorial action, on = om{x}. Thus,
the rule P-RIG always applies with o′ = om. Moreover, xoi is
in fact the morphism from m+ oi to n+ oi defined as x+ oi,
corresponding to the list (~x, n+ 1, . . . , n+ oi). Thus, the rule
P-RIG unfolds as

Γ ` ~t :> ...,Mi(~x,

bound variables︷ ︸︸ ︷
n+ 1, ..., n+ 1 + oi), ... ⇒ ~u;σ a ∆

Γ ` o(~t) :>M(~x)⇒ o(~u);σ a ∆
.

Correctness of our generic algorithm relies on additional
assumptions on the GB-signature that we introduce in Defini-
tion 21. In particular all morphisms in A must be monomor-
phic: this ensures that Equation (1) has at most one solution
(see Property 23.(i) below).

C. Progress and termination
Each inductive rule in Figure 2 provides an elementary step

for the construction of the most general unifier. To ensure that
this set of rules describes a terminating algorithm, we essen-
tially need two properties: progress, i.e., there is always one
rule that applies given some input data, and termination, i.e.,
there is no infinite sequence of rule applications. The former is
straightforward to check. In this section we sketch the proof of
the latter termination property, following a standard argument.
Roughly, it consists in realising that for each rule, the premises
are strictly smaller than the conclusion, for an adequate notion
of input size. First, we define the size |Γ| of a metavariable
context Γ as the number of its declared metavariables. We
extend this definition to the case where Γ = ⊥, by taking
|⊥| = 0. We also recursively define the size ||t|| of a term t
by ||M(x)|| = 1 and ||o(~t)|| = 1 + ||~t||, with ||~t|| =

∑
i ||ti||.

Note that no term is of empty size.
Let us first quickly justify termination of the non-cyclic

phase. We define the size of a judgment Γ ` ~t :>
−−−→
M(x) ⇒

~w;σ a ∆ as ||~t||. It is straightforward to check that the sizes of
the premises are strictly smaller than the size of the conclusion,
for the two recursive rules P-SPLIT and P-RIG of the non-
cyclic phase, thanks to the following lemmas.

Lemma 8. For any term Γ; a ` t and substitution σ : Γ→ ∆,
if σ is a metavariable renaming, i.e., σM is a metavariable
application for any M : m ∈ Γ, then ||t[σ]|| = ||t||.

4See Section §VI-A for an example where metavariables arguments are sets
rather than lists.



Lemma 9. If there is a finite derivation tree of Γ ` ~t :>−−−→
M(x) ⇒ ~w;σ a ∆ and ∆ 6= ⊥, then |Γ| = |∆| and σ is a
metavariable renaming.

The size invariance in the above lemma is actually used in
the termination proof of the main unification phase, where the
size of a judgment Γ ` t = u⇒ σ a ∆ is defined as the pair
(|Γ|, ||t||). More precisely, it is used in the following lemma
that ensures size decreasing (with respect to the lexicographic
order) in the two recursive rules U-SPLIT and U-RIGRIG.

Lemma 10. If there is a finite derivation tree of Γ ` ~t =
~u ⇒ σ a ∆, then |Γ| ≥ |∆|, and moreover if |Γ| = |∆| and
∆ 6= ⊥, then σ is a metavariable renaming.

III. CATEGORICAL SEMANTICS

It remains to prove that each rule is sound, e.g., for the
rule U-SPLIT, if the output of the premises are most general
unifiers, then so is the conclusion. To do so, the next sections
rely on the categorical semantics of pattern unification that we
introduce in this section. In Section §III-A, we relate pattern
unification to a coequaliser construction, and in Section §III-B,
we provide a formal definition of GB-signatures with Initial
Algebra Semantics for the generated syntax.

A. Pattern unification as a coequaliser construction

In this section, we assume given a GB-signature S =
(A, O, α) and explain how most general unifiers can be
thought of as equalisers in a multi-sorted Lawvere theory, as
is well-known in the first-order case [25], [5]. We furthermore
provide a formal justification for the error metavariable context
⊥.

Lemma 11. Metavariable contexts and substitutions (with
their composition) between them define a category MCon(S).

This relies on functoriality of GB-signatures that we will
spell out formally in the next section. There, we will see
in Lemma 28 that this category fully faithfully embeds in a
Kleisli category for a monad generated by S on [A,Set].
Remark 12. MCon(S) is the opposite category of a multi-
sorted Lawvere theory: the sorts are the objects of A. This
theory is not freely generated by operations unless A is
discrete, in which case we recover (multi-sorted) first-order
unification. Even the GB-signature induced (as in Example 6)
by an empty binding signature is not “free”.

Since a substitution is precisely a list of terms sharing the
same metavariable context Γ, a unification problem for two list
of terms is equivalently given by a pair of parallel substitutions

Γ
σ1 //
σ2

// ∆ .

Lemma 13. The most general unifier of two lists of terms
∆;ni ` ti, ui, if it exists, is characterised as the coequaliser
of ~t as ~u as substitutions from (N1 : n1, . . . ) to ∆.

Remark 14. This justifies a common interpretation as
(co)equalisers of the two variants of the notation − ` − =
− ⇒ − a − involved in Figure 2.

Pattern unification is often stated as the existence of a
coequaliser on the condition that there is a unifier. It turns
out that we can get rid of this condition by considering the
category MCon(S) freely extended with a terminal object ⊥,
as we now explain.

Definition 15. Given a category B, let B⊥ denote the
category B extended freely with a terminal object ⊥.

Notation 16. We denote by ! any terminal morphism to ⊥ in
B⊥.

Adding a terminal object results in adding a terminal cocone
to all diagrams. As a consequence, we have the following
lemma.

Lemma 17. Let J be a diagram in a category B. The
following are equivalent:

1) J has a colimit as long as there exists a cocone;
2) J has a colimit in B⊥.

The following result is also useful.

Lemma 18. Given a category B, the canonical embedding
functor B → B⊥ creates colimits.

Therefore,
1) whenever the colimit in MCon⊥(S) is not ⊥, it is also

a colimit in MCon(S);
2) existing colimits in MCon(S) are also colimits in

MCon⊥(S);
3) in particular, coproducts in MCon(S), which are com-

puted as union of metavariable contexts, are also coprod-
ucts in MCon⊥(S).

Categorically speaking, our pattern unification algorithm pro-
vides an explicit proof of the following statement, where the
conditions for a signature to be pattern-friendly are introduced
in the next section (Definition 21).

Theorem 19. Given any pattern-friendly signature S, the
category MCon⊥(S) has coequalisers.

B. Initial Algebra Semantics for GB-signatures

Definition 20. A generalised binding signature, or GB-
signature, is a tuple (A, O, α) consisting of
• a small category A of arities and renamings between

them;
• a functor O−(−) : N×A → Set of operation symbols;
• a functor α :

∫
J → A

where
∫
J denotes the category of elements of J : N×A →

Set mapping (n, a) to On(a)×{1, . . . ., n}, defined as follows:
• objects are tuples (n, a, o, i) such that o ∈ On(a) and
i ∈ {1, . . . , n};

• a morphism between (n, a, o, i) and (n′, a′, o′, i′) is a
morphism f : a → a′ such that n = n′, i = i′ and
o{f} = o′ .

We now introduce our conditions for the generic unification
algorithm to be correct.



Definition 21. A GB-signature S = (A, O, α) is said pattern-
friendly if

1) A has finite connected limits;
2) all morphisms in A are monomorphic;
3) each On(−) : A → Set preserves finite connected limits;
4) α preserves finite connected limits.

Remark 22. The first condition is equivalent to the existence
of equalisers and pullbacks in A, since any finite connected
limit can be constructed from those.

These conditions ensure the following two properties.

Property 23. The following properties hold.
(i) The action of On : A → Set on any renaming is an

injection: given any o ∈ On(b) and renaming f : a→ b,
there is at most one o′ ∈ On(a) such that o = o′{f}.

(ii) Let L be the functor Aop −→ MCon(S) mapping a
morphism x ∈ homA(b, a) to the substitution (X :
a) → (X : b) selecting (by the Yoneda Lemma) the
term X(x). Then, L preserves finite connected colimits:
it maps pullbacks and equalisers in A to pushouts and
coequalisers in MCon(S).

Proof. (i) Since On preserves finite connected limits, it pre-
serves monomorphisms because a morphism f : a → b is
monomorphic if and only if the following square is a pullback
(see [19, Exercise III.4.4]).

A A

A B

f

f

(ii) The proof is deferred to the end of this section.

The first property is used for soundness of the rules P-RIG
and P-FAIL. The second one is used to justify unification of
two metavariables applications as pullbacks and equalisers in
A, in the rules U-FLEX and P-FLEX.

Remark 24. A metavariable application Γ; a ` M(x) cor-
responds to the composition Lx[inM ], where inM is the
coproduct injection (X : m) ∼= (M : m) ↪→ Γ.

The rest of this section can be safely skipped at first reading:
we provide Initial Algebra Semantics for the generated syntax
that we exploit to prove Property 23.(ii).

Any GB-signature S = (A, O, α), generates an endofunctor
FS on [A,Set], that we denote by just F when the context is
clear, defined by

FS(X)a =
∐
n∈N

∐
o∈On(a)

Xo1 × · · · ×Xon .

Lemma 25. F is finitary and generates a free monad T .
Moreover, TX is the initial algebra of Z 7→ X + FZ.

Proof. F is finitary because filtered colimits commute with
finite limits [19, Theorem IX.2.1] and colimits. The free
monad construction is due to [23].

Lemma 26. The syntax generated by a GB-signature (see Def-
inition 4) is recovered as free algebras for F . More precisely,
given a metavariable context Γ = (M1 : m1, . . . ,Mp : mp),

T (Γ)a ∼= {t | Γ; a ` t}

where Γ : A → Set is defined as the coproduct of repre-
sentable functors

∐
i ymi, mapping a to

∐
i homA(mi, a).

Notation 27. Given a metavariable context Γ. We sometimes
denote Γ just by Γ.

If Γ = (M1 : m1, ...,Mp : mp) and ∆ are metavariable
contexts, a Kleisli morphism σ : Γ → T∆ is equivalently
given (by the Yoneda Lemma and the universal property
of coproducts) by a metavariable substitution from Γ to ∆.
Moreover, Kleisli composition corresponds to composition of
substitutions. This provides a formal link between the category
of metavariable contexts MCon(S) and the Kleisli category of
T

Lemma 28. The category MCon(S) is equivalent to the full
subcategory of KlT spanned by coproducts of representable
functors.

We will exploit this characterisation to prove various prop-
erties of this category when the signature is pattern-friendly.

Lemma 29. Given a GB-signature S = (A, O, α) such that
A has finite connected limits, FS restricts as an endofunctor
on the full subcategory C of [A,Set] consisting of functors
preserving finite connected limits if and only if the last two
conditions of Definition 21 holds.

Proof. See Appendix §A.

We now assume given a pattern-friendly signature S =
(A, O, α).

Lemma 30. C is closed under limits, coproducts, and filtered
colimits. Moreover, it is cocomplete.

Proof. Cocompleteness follows from [2, Remark 1.56], since
C is the category of models of a limit sketch, and is thus
locally presentable, by [2, Proposition 1.51].

For the claimed closure property, all we have to check is that
limits, coproducts, and filtered colimits of functors preserving
finite connected limits still preserve finite connected limits.
The case of limits is clear, since limits commute with limits.
Coproducts and filtered colimits also commute with finite
connected limits [3, Example 1.3.(vi)].

Corollary 31. T restricts as a monad on C freely generated
by the restriction of F as an endofunctor on C (Lemma 29).

Proof. The result follows from the construction of T using
colimits of initial chains, thanks to the closure properties of
C . More specifically, TX can be constructed as the colimit
of the chain ∅ → H∅ → HH∅ → . . . , where ∅ denotes
the constant functor mapping anything to the empty set, and
HZ = FZ +X .

We now turn to the proof of Property 23.(ii).



By right continuity of the homset bifunctor, any repre-
sentable functor is in C and thus the embedding C → [A,Set]
factors the Yoneda embedding Aop → [A,Set].

Lemma 32. Let D denote the opposite category of A and
K : D → C the factorisation of C → [A,Set] by the Yoneda
embedding. Then, K : D → C preserves finite connected
colimits.

Proof. This essentially follows from the fact functors in C
preserves finite connected limits. Let us detail the argument:
let y : Aop → [A,Set] denote the Yoneda embedding and
J : C → [A,Set] denote the canonical embedding, so that

y = J ◦K. (2)

Now consider a finite connected limit limF in A. Then,

C (K limF,X) ∼= [A,Set](JK limF, JX)
(J is fully faithful)

∼= [A,Set](y limF, JX) (By Equation (2))
∼= JX(limF ) (By the Yoneda Lemma.)
∼= lim(JX ◦ F )

(X preserves finite connected limits)
∼= lim([A,Set](yF−, JX)]

(By the Yoneda Lemma)
∼= lim([A,Set](JKF−, JX)]

(By Equation (2))
∼= lim C (KF−, X) (J is full and faithful)
∼= C (colim KF,X)

(By left continuity of the hom-set bifunctor)

These isomorphisms are natural in X and thus K limF ∼=
colim KF .

Proof of Property 23.(ii). Let T|C be the monad T restricted
to C , following Corollary 31. Since K : D → C preserves
finite connected colimits (Lemma 32), composing it with the
left adjoint C → KlT|C yields a functor D → KlT|C

also preserving those colimits. Since it factors as D
L−→

MCon(S) ↪→ KlT|C , where the right functor is full and
faithful, L also preserves finite connected colimits.

IV. SOUNDNESS OF THE UNIFICATION PHASE

In this section, we assume a pattern-friendly GB-signature
S and discuss soundness of the main rules of the main
unification phase in Figure 2, which computes a coequaliser in
MCon⊥(S). More specifically, we discuss the rule sequential
rule U-SPLIT (Section §IV-A), the rule U-FLEX unifying
metavariable with itself (Section §IV-B), and the failing rule
U-CYCLIC for cyclic unification of a metavariable with a term
which includes it deeply (Section §IV-C).

A. Sequential unification (rule U-SPLIT)

The rule U-SPLIT follows from a stepwise construction of
coequalisers valid in any category, as noted by [25, Theorem

9]: if the first two diagrams below are coequalisers, then the
last one as well.

Γ

A1 Γ ∆1 A2 ∆1 ∆2

Γ

t1

u1

σ1

t2 σ1

u2 σ1

σ2

A1 +A2

t1,t2 //
u1,u2

// Γ
σ2◦σ1 // ∆2

B. Flex-Flex, same metavariable (rule U-FLEX)

Here we detail unification of M(x) and M(y), for x, y ∈
homA(m, a). By Remark 24, M(x) = Lx[inM ] and M(y) =
Ly[inM ]. We exploit the following lemma with u = Lx and
v = Ly.

Lemma 33. In any category, denoting morphism composition
g ◦ f by f [g], the following rule applies:

B ` u = v ⇒ h a C
B +D a u[inB ] = v[inB ]⇒ h+ 1D a C +D

In other words, if the below left diagram is a coequaliser, then
so is the below right diagram.

A
u //
v
// B

h // C

B inB))
A

u 77

v ''
B +D

h+1D// C +D

B inB

55

It follows that it is enough to compute the coequaliser of Lx
and Ly. Furthermore, by Property 23.(ii), it is the image by L
of the equaliser of x and y, thus justifying the rule U-FLEX.

C. Flex-rigid, cyclic (rule U-CYCLIC)

The rule U-CYCLIC handles unification of M(x) and a term
u such that u is rigid and M occurs in u. In this section, we
show that indeed there is no unifier. More precisely, we prove
Corollary 38 below, stating that if there is a unifier of a term u
and a metavariable application M(x), then either M occurs at
top-level in u, or it does not occur at all. The argument follows
the basic intuition that σM = u[M 7→ σM ] is impossible if M
occurs deeply in u because the sizes of both hand sides can
never match. To make this statement precise, we need some
recursive definitions and properties of size.

Definition 34. The size5 |t| ∈ N of a term t is recursively
defined by |M(x)| = 0 and |o(~t)| = 1 + |~t|, with |~t| =

∑
i ti.

We will also need to count the occurrences of a metavari-
ables in a term.

Definition 35. For any term t we define |t|M recursively by
|M(x)|M = 1, |N(x)|M = 0 if N 6= M , and |o(~t)|M = |~t|M
with the sum convention as above for |~t|M .

Lemma 36. For any term Γ,M : m; a `t, if |t|M = 0, then
Γ; a ` t. Moreover, for any Γ = (M1 : m1, . . . ,Mn : mn),

5The difference with the notion of size introduced in Section §II-C is that
metavariables are of size 0.



well-formed term t in context Γ; a, and substitution σ : Γ →
∆, we have |t[σ]| = |t|+

∑
i |t|Mi × |σi|.

Corollary 37. For any term t in context Γ,M : m; a,
substitution σ : Γ → ∆, morphism x ∈ homA(m, a) and
u in context ∆;u, we have |t[σ,M 7→ u]| ≥ |t| + |u| × |t|M
and |M(x)[u]| = |u|.

Corollary 38. Let t be a term in context Γ,M : m; a and
x ∈ homA(m, a) such that (σ,M 7→ u) : (Γ,M : m) → ∆
unifies t and M(x). Then, either t = M(y) for some y ∈
homA(m, a), or Γ; a ` t.

Proof. Since t[σ, u] = M(x)[u], we have |t[σ, u]| =
|M(x)[u]|. Corollary 37 implies |u| ≥ |t| + |u| × |t|M .
Therefore, either |t|M = 0 and we conclude by Lemma 36, or
|t|M > 0 and |t| = 0, so that t is M(y) for some y.

V. SOUNDNESS OF THE NON-CYCLIC PHASE

In this section, we assume a pattern-friendly GB-signature S
and prove soundness of the main rule of the non-cyclic phase.
This phase handles unification of a list of terms Γ;ni ` ti with
a list of fresh metavariable applications M1(x1), . . . ,Mp(xp),
in the extended metavariable context Γ,M1 : m1, . . . ,Mp :
xp. Categorically speaking, we are looking at the following
coequalising diagram in MCon(S).

Γ
−−−→
N : n Γ,

−−−−→
M : m

−−−−→
M : m−−−→

M(x)

~t in1

in2

The P-SPLIT rule is a straightforward adaption of the
U-SPLIT rule specialised to those specific coequaliser dia-
grams.

Remark 39. A unifier Γ,
−−−−→
M : m → ∆ splits into two com-

ponents: a substitution σ : Γ → ∆ and a substitution ~u

from
−−−→
N : n to

−−−−→
M : m such that ti[σ] = ui{xi} for each i ∈

{1, . . . , p}. Moreover, the coequaliser σ, ~u : (Γ,
−−−−→
M : m)→ ∆

is equivalently characterised as a pushout

−−−→
N : n

−−−→
M(x) //

~t

��

−−−−→
M : m

~u

��
Γ

σ
// ∆

This justifies a common interpretation as pushouts of the
two variants of the notation − ` − :> − ⇒ −;− involved
in Figure 2, in Aop and MCon(S).

In the following sections, we detail soundness of the rules
for the rigid case (Section §V-A) and then for the flex case
(Section §V-B).

A. Rigid (rules P-RIG and P-FAIL)

The rules P-RIG and P-FAIL handle non-cyclic unification
of M(x) with Γ; a ` o(~t) in the metavariable context Γ,M : m

for some o ∈ On(a). By Remark 39, a unifier is given by a
substitution σ : Γ→ ∆ and a term u such that

o(~t[σ]) = u{x}. (3)

Now, u is either some M(y) or o′(~v). But in the first case,
u{x} = M(y){x} = M(x ◦ y), contradicting Equation (3).
Therefore, u = o′(~v) for some o′ ∈ On(m) and ~v =
(v1, . . . , vn) is a list of terms such that ∆; o′i ` vi. Then,
u{x} = (o′{x})(v1{xo

′

1 }, . . . , ). It follows from Equation (3)
that o = o′{x}, and ti[σ] = vi{xo

′

i }.
Note that there is at most one o′ such that o = o′{x},

by Property 23.(i). In this case, a unifier is equivalently
given by a substitution σ : Γ → ∆ and a list of terms
~v = (v1, . . . , vn) such that ∆; o′i ` vi and ti[σ] = vi{xo

′

i }.
But, by Remark 39, this is precisely the data for a unifier
of ~t and M1(xo

′

i ), . . . ,Mn(xo
′

n ). This actually induces an
isomorphism between the two categories of unifiers, thus
justifying the rules P-RIG and P-FAIL.

B. Flex (rule P-FLEX)

The rule P-FLEX handles unification of Γ, N : n; a ` N(x)
and M(y) where M is fresh in Γ, N : n.

Note that M(y), as a substitution (A : a) → (M : m), is
isomorphic to Ly, while N(x) = Lx[inN ], by Remark 24.
Thanks to the following lemma, it is actually enough to
compute the pushout of Lx and Ly.

Lemma 40. In any category, denoting morphism composition
by f ◦ g = g[f ], the following rule applies

X ` g :> f ⇒ u;σ a Z
X + Y ` g[in1] :> f ⇒ u[in1];σ + Y a Z + Y

In other words, if the diagram below left is a pushout, then
so is the right one.

A B

X Z

g

f

σ

u

A B

X Z

X + Y Z + Y

g

f

in1

σ+Y

u

in1

By Property 23.(ii), the pushout of Lx and Ly is the image
by L of the pullback of x and y in A, thus justifying the rule
P-FLEX.

VI. APPLICATIONS

In this section, we present various examples of pattern-
friendly signatures. We start in Section §VI-A with a variant of
pure λ-calculus where metavariable arguments are sets rather
than lists. Then, in Section §VI-B, we present simply-typed
λ-calculus, as an example of syntax specified by a multi-
sorted binding signature. Next, we introduce an example of
unification for ordered syntax in Section §VI-C, and finally
we present an example of polymorphic such as System F, in
Section §VI-D.



A. Metavariable arguments as sets

If we think of the arguments of a metavariable as specifying
the available variables, then it makes sense to assemble them
in a set rather than in a list. This motivates considering the
category A = I whose objects are natural numbers and a
morphism n → p is a subset of {1, . . . , p} of cardinal n.
For instance, I can be taken as subcategory of Fm consisting
of strictly increasing injections, or as the subcategory of the
augmented simplex category consisting of injective functions.
Then, a metavariable takes as argument a set of variables,
rather than a list of distinct variables. In this approach, uni-
fying two metavariables (see the rules U-FLEX and P-FLEX)
amount to computing a set intersection.

B. Simply-typed λ-calculus

In this section, we present the example of simply-typed λ-
calculus. Our treatment generalises to any multi-sorted binding
signature [10].

Let T denote the set of simple types generated by a set of
atomic types and a binary arrow type construction − ⇒ −. Let
us now describe the category A of arities, or variable contexts,
and renamings between them. An arity ~σ → τ consists of a
list of input types ~σ and an output type τ . A term t in ~σ → τ
considered as a variable context is intuitively a well-typed
term t of type τ potentially using variables whose types are
specified by ~σ. A valid choice of arguments for a metavariable
M : (~σ → τ) in variable context ~σ′ → τ ′ first requires
τ = τ ′, and consists of an injective renaming ~r between
~σ = (σ1, . . . , σm) and ~σ′ = (σ′1, . . . , σ

′
n), that is, a choice of

distinct positions (r1, . . . , rm) in {1, . . . , n} such that ~σ = σ′~r.
This discussion determines the category of arities as A =

Fm[T ] × T , where Fm[T ] is the category of finite lists of
elements of T and injective renamings between them. Table I
summarises the definition of the endofunctor F on [A,Set]
specifying the syntax, where |~σ|τ denotes the number (as a
cardinal set) of occurrences of τ in ~σ.

The induced signature is pattern-friendly and so the generic
pattern unification algorithm applies. Equalisers and pullbacks
are computed following the same pattern as in pure λ-calculus.
For example, to unify M(~x) and M(~y), we first compute the
vector ~z of common positions between ~x and ~y, thus satisfying
x~z = y~z . Then, the most general unifier maps M : (~σ →
τ) to the term P (~z), where the arity ~σ′ → τ ′ of the fresh
metavariable P is the only possible choice such that P (~z) is
a valid term in the variable context ~σ → τ , that is, τ ′ = τ and
~σ′ = σ~z .

C. Ordered λ-calculus

Our setting handles linear ordered λ-calculus, consisting of
λ-terms using all the variables in context. In this context, a
metavariable M of arity m ∈ N can only be used in the
variable context m, and there is no freedom in choosing the
arguments of a metavariable application, since all the variables
must be used, in order. Thus, there is no need to even mention

those arguments in the syntax. It is thus not surprising that
ordered λ-calculus is already handled by first-order unification,
where metavariables do not take any argument, by considering
ordered λ-calculus as a multi-sorted Lawvere theory where the
sorts are the variable contexts, and the syntax is generated by
operations Ln × Lm → Ln+m and abstractions Ln+1 → Ln.

Our generalisation can handle calculi combining ordered
and unrestricted variables, such as the calculus underlying
ordered linear logic described in [22]. In this section we detail
this specific example.

The set T of types is generated by a set of atomic types
and two binary arrow type constructions⇒ and �. The syntax
extends pure λ-calculus with a distinct application t> u and
abstraction λ>u. Variables contexts are of the shape ~σ|~ω → τ ,
where ~σ, ~ω, and τ are taken in T . The idea is that a term in
such a context has type τ and must use all the variables of ~ω in
order, but is free to use any of the variables in ~σ. Assuming a
metavariable M of arity ~σ|~ω → τ , the above discussion about
ordered λ-calculus justifies that there is no need to specify
the arguments for ~ω when applying M . Thus, a metavariable
application M(~x) in the variable context ~σ′|~ω′ → τ ′ is well-
formed if τ = τ ′ and ~x is an injective renaming from ~σ to ~σ′.
Therefore, we take A = Fm[T ]× T ∗ × T for the category of
arities, where T ∗ denote the discrete category whose objects
are lists of elements of T . The remaining components of the
GB-signature are specified in Table I: we alternate typing
rules for the unrestricted and the ordered fragments (variables,
application, abstraction).

Pullbacks and equalisers are computed essentially as in
Section §VI-B. For example, the most general unifier of M(~x)
and M(~y) maps M to P (~z) where ~z is the vector of common
positions of ~x and ~y, and P is a fresh metavariable of arity
σ~z|~ω → τ .

D. Intrinsic polymorphic syntax

We present intrinsic System F, in the spirit of [16]. The
syntax of types in type variable context n is inductively
generated as follows, following the De Bruijn level convention.

1 ≤ i ≤ n
n ` i

n ` t n ` u
n ` t⇒ u

n+ 1 ` t
n ` ∀t

Let S : Fm → Set be the functor mapping n to the set Sn of
types for system F taking free type variables in {1, . . . , n}. In
other words, Sn = {τ |n ` τ}. Intuitively, a metavariable arity
n|~σ → τ specifies the number n of free type variables, the list
of input types ~σ, and the output type τ , all living in Sn. This
provides the underlying set of objects of the category A of
arities. A term t in n|~σ → τ considered as a variable context
is intuitively a well-typed term of type τ potentially involving
ground variables of type ~σ and type variables in {1, . . . , n}.

A metavariable M : (n|σ1, . . . , σp → τ) in the variable
context n′|~σ′ → τ ′ must be supplied with
• a choice (η1, . . . , ηn) of n distinct type variables among
{1, . . . n′}, such that τ [~η] = τ ′, and

• an injective renaming ~σ[~η] → ~σ′, i.e., a list of distinct
positions r1, . . . , rp such that ~σ[~η] = σ′~r.



TABLE I
EXAMPLES OF GENERALISED BINDING SIGNATURES (DEFINITION 20)

Simply-typed λ-calculus
(Section §VI-B)

Typing rule On(~σ → τ) = ...+ αo = (...)

x : τ ∈ Γ

Γ ` x : τ
{vi|i ∈ |~σ|τ} ()

Γ ` t : τ ′ ⇒ τ Γ ` u : τ ′

Γ ` t u : τ
{aτ ′ |τ ′ ∈ T}

(
~σ → (τ ′ ⇒ τ)
~σ → τ ′

)
Γ, x : τ1 ` t : τ2

Γ ` λx.t : τ1 ⇒ τ2
{lτ1,τ2 |τ = (τ1 ⇒ τ2)} (~σ, τ1 → τ2)

Ordered λ-calculus
(Section §VI-C)

Typing rule On(~σ|~ω → τ) = ...+ αo = (...)

x : τ ∈ Γ

Γ|· ` x : τ
{vi|i ∈ |~σ|τ and ~ω = ()} ()

Γ|x : τ ` x : τ
{v>|~ω = ()} ()

Γ|Ω ` t : τ ′ ⇒ τ Γ|· ` u : τ ′

Γ|Ω ` t u : τ
{aτ ′ |τ ′ ∈ T}

(
~σ|~ω → (τ ′ ⇒ τ)
~σ|()→ τ ′

)
Γ|Ω1 ` t : τ ′ � τ Γ|Ω2 ` u : τ ′

Γ|Ω1,Ω2 ` t> u : τ
{a~ω1,~ω2
τ ′ |τ ′ ∈ T and ~ω = ~ω1, ~ω2}

(
~σ|~ω1 → (τ ′ ⇒ τ)
~σ|~ω2 → τ ′

)
Γ, x : τ1|Ω ` t : τ2

Γ|Ω ` λx.t : τ1 ⇒ τ2
{lτ1,τ2 |τ = (τ1 ⇒ τ2)} (~σ, τ1|~ω → τ2)

Γ|Ω, x : τ1 ` t : τ2

Γ|Ω ` λ>x.t : τ1 � τ2
{l>τ1,τ2 |τ = (τ1 � τ2)} (~σ, τ1|~ω → τ2)

System F
(Section §VI-D)

Typing rule On(p|~σ ` τ) = ...+ αo = (...)

x : τ ∈ Γ

n|Γ ` x : τ
{vi|i ∈ |~σ|τ} ()

n|Γ ` t : τ ′ ⇒ τ n|Γ ` u : τ ′

n|Γ ` t u : τ
{aτ ′ |τ ′ ∈ Sn}

(
n|~σ → τ ′ ⇒ τ
n|~σ → τ ′

)
n|Γ, x : τ1 ` t : τ2

n|Γ ` λx.t : τ1 ⇒ τ2
{lτ1,τ2 |τ = (τ1 ⇒ τ2)} (n|~σ, τ1 → τ2)

n|Γ ` t : ∀τ1 τ2 ∈ Sn
n|Γ ` t · τ2 : τ1[τ2]

{Aτ1,τ2 |τ = τ1[τ2]} (n|~σ → ∀τ1)

n+ 1|wk(Γ) ` t : τ

n|Γ ` Λt : ∀τ
{Λτ ′ |τ = ∀τ ′} (n+ 1|wk(~σ)→ τ ′)

This defines the data for a morphism in A between (n|~σ →
τ) and (n′|~σ′ → τ ′). The intrinsic syntax of system F can
then be specified as in Table I. The induced GB-signature is
pattern-friendly. For example, morphisms in A are easily seen
to be monomorphic; we detail in Appendix §B the proof of
the following statement.

Lemma 41. A has finite connected limits.

Pullbacks and equalisers in A are essentially computed
as in Section §VI-B, by computing the vector of common
(value) positions. For example, given a metavariable M of
arity m|~σ → τ , to unify M(~w|~x) with M(~y|~z), we compute
the vector of common positions ~p between ~w and ~y, and the
vector of common positions ~q between ~x and ~z. Then, the most
general unifier maps M to the term P (~p|~q), where P is a fresh

metavariable. Its arity m′|~σ′ → τ ′ is the only possible one for
P (~p|~q) to be well-formed in the variable context m|~σ → τ ,
that is, m′ is the size of ~p, while τ ′ = τ [pi 7→ i] and
~σ′ = σ~q[pi 7→ i].

VII. CONCLUSION

We presented a generic unification algorithm for Miller’s
pattern fragment with its associated categorical semantics,
parameterised by a new notion of signature for syntax with
metavariables. In the future, we plan to a implement a reusable
library based on this work. We also plan to see how this
work applies to dependently-typed languages, going beyond
polymorphic syntax. Finally, we are interesting in further
extending the setting to cover unification modulo equations,
or linear syntax without restriction on the order the variables
are used.
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APPENDIX A
PROOF OF LEMMA 29

Notation 42. Given a functor F : I → B, we denote the limit
(resp. colimit) of F by

∫
i:I
F (i) or limF (resp.

∫ i:I
F (i) or

colim F ) and the canonical projection limF → Fi by pi for
any object i of I .

This section is dedicated to the proof of the following
lemma.

Lemma 43. Given a GB-signature S = (A, O, α) such that
A has finite connected limits, FS restricts as an endofunctor
on the full subcategory C of [A,Set] consisting of functors
preserving finite connected limits if and only if each On ∈ C ,
and α :

∫
J → A preserves finite limits.

We first introduce a bunch of intermediate lemmas.

Lemma 44. If B is a small category with finite connected
limits, then a functor G : B → Set preserves those limits if
and only if

∫
B is a coproduct of filtered categories.

Proof. This is a direct application of [3, Theorem 2.4 and
Example 2.3.(iii)].

Corollary 45. Assume A has finite connected limits. Then
J : N×A → Set preserves finite connected limits if and only
if each On : A → Set does.

Proof. This follows from
∫
J ∼=

∐
n∈N

∐
j∈{1,...,n}

∫
On.

Lemma 46. Let F : B → Set be a functor. For any functor
G : I →

∫
F , denoting by H the composite functor I G−→∫

F → B, there exists a unique x ∈ lim(F ◦ H) such that
Gi = (Hi, pi(x)).

Proof.
∫
F is isomorphic to the opposite of the comma

category y/F , where y : Bop → [B,Set] is the Yoneda
embedding. The statement follows from the universal property
of a comma category.

Lemma 47. Let F : B → Set and G : I →
∫
F such that

F preserves the limit of H : I
G−→

∫
F −→ B. Then, there

exists a unique x ∈ F limH such that Gi = (Hi, Fpi(x))
and moreover, (limH,x) is the limit of G.
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Proof. The unique existence of x ∈ F limH such that Gi =
(Hi, Fpi(x)) follows from Lemma 46 and the fact that F
preserves limH . Let C denote the full subcategory of [B,Set]
of functors preserving limG. Note that

∫
F is isomorphic to

the opposite of the comma category K/F , where K : Bop →
C is the Yoneda embedding, which preserves colim G, by
an argument similar to the proof of Lemma 32. We conclude
from the fact that the forgetful functor from a comma category
L/R to the product of the categories creates colimits that L
preserve.

Corollary 48. Let I be a small category, B and B′ be
categories with I-limits (i.e., limits of any diagram over I).
Let F : B → Set be a functor preserving those colimits.
Then,

∫
F has I-limits, preserved by the projection

∫
F → B.

Moreover, a functor G :
∫
F → B′ preserves them if and only

if for any d : I → B and x ∈ F lim d, the canonical morphism
G(lim d, x)→

∫
i:I
G(di, Fpi(x)) is an isomorphism.

Proof. By Lemma 47, a diagram d′ : I →
∫
F is equivalently

given by d : I → B and x ∈ F lim d, recovering d′ as d′i =
(di, Fpi(x)), and moreover lim d′ = (lim d, x).

Corollary 49. Assuming that A has finite connected limits
and each On preserves finite connected limits, the finite
limit preservation on α :

∫
J → A of Lemma 43 can be

reformulated as follows: given a finite connected diagram
d : D → A and element o ∈ On(lim d), the following
canonical morphism is an isomorphism

oj →
∫
i:D

o{pi}j

for any j ∈ {1, . . . , n}.

Proof. This is a direct application of Corollary 48 and Corol-
lary 45.

Lemma 50 (Limits commute with dependent pairs). Given
functors K : I → Set and G :

∫
K → Set, the following

canonical morphism is an isomorphism

∫
i:I

∐
x∈Ki

G(i, x)→
∐

α∈limK

∫
i:I

G(i, pi(α))

Proof. It is straightforward to check that both sets share the
same universal property.

Proof of Lemma 43. Let d : I → A be a finite connected
diagram and X be a functor preserving finite connected limits.
Then,

∫
i:I

F (X)di =

∫
i:I

∐
n

∐
o∈On(di)

Xo1 × · · · ×Xon

∼=
∐
n

∫
i:I

∐
o∈On(di)

Xo1 × · · · ×Xon

(Coproducts commute with connected limits)

∼=
∐
n

∐
o∈

∫
i
On(di)

∫
i:I

X
pi(o)1

× · · · ×X
pi(o)n

(By Lemma 50)

∼=
∐
n

∐
o∈

∫
i
On(di)

∫
i:I

X
pi(o)1

× · · · ×
∫
i:I

X
pi(o)n

(By commutation of limits)

Thus, since X preserves finite connected limits by assumption,∫
i

F (X)di =
∐
n

∐
o∈

∫
i
On(di)

X∫
i:I
pi(o)1

× · · · ×X∫
i:I
pi(o)n

(4)

Now, let us prove the only if statement first. Assuming that
α :

∫
J → A and each On preserves finite connected limits.

Then,

∫
i

F (X)di
∼=

∐
n

∐
o∈

∫
i
On(di)

X∫
i:I
pi(o)1

× · · · ×X∫
i:I
pi(o)n

(By Equation (4))
∼=

∐
n

∐
o∈On(lim d)

X∫
i:I
o{pi}1

× · · · ×X∫
i:I
o{pi}n

(By assumption on On)
∼=

∐
n

∐
o∈On(lim d)

Xo1 × · · · ×Xon

(By Corollary 49)
= F (X)lim d

Conversely, let us assume that F restricts to an endofunctor
on C . Then, F (1) =

∐
nOn preserves finite connected limits.

By Lemma 44, each On preserves finite connected limits. By
Corollary 49, it is enough to prove that given a finite connected
diagram d : D → A and element o ∈ On(lim d), the following
canonical morphism is an isomorphism

oj →
∫
i:D

o{pi}j

Now, we have∫
i:I

F (X)di
∼= F (X)lim d (By assumption)

=
∐
n

∐
o∈On(lim d)

Xo1 × · · · ×Xon



On the other hand,∫
i:I

F (X)di
∼=

∐
n

∐
o∈

∫
i
On(di)

X∫
i:I
pi(o)1

× · · · ×X∫
i:I
pi(o)n

(By Equation (4))

=
∐
n

∐
o∈On(lim d)

X∫
i:I
o{pi}1

× · · · ×X∫
i:I
o{pi}n

(On preserves finite connected limits)

It follows from those two chains of isomorphisms that each
function Xoj → X∫

i:I
o{pi}j

is a bijection, or equivalently (by

the Yoneda Lemma), that C (Koj , X)→ C (K
∫
i:I
o{pi}j , X)

is an isomorphism. Since the Yoneda embedding is fully
faithful, oj →

∫
i:D

o{pi}j is an isomorphism.

APPENDIX B
PROOF OF LEMMA 41

In this section, we show that the category A of arities for
System F (Section §VI-D) has finite connected limits. First,
note that A is the op-lax colimit of the functor from Fm to the
category of small categories mapping n to Fm[Sn]× Sn. Let
us introduce the category A′ whose definition follows that of
A, but without the output types: objects are pairs of a natural
number n and an element of Sn. Formally, this is the op-lax
colimit of n 7→ Fm[Sn].

Lemma 51. A′ has finite connected limits, and the projection
functor A′ → Fm preserves them.

Proof. The crucial point is that A′ is not only op-fibred over
Fm by construction, it is also fibred over Fm. Intuitively, if
~σ ∈ Fm[Sn] and f : n′ → n is a morphism in Fm, then
f!~σ ∈ Fm[Sn′ ] is essentially ~σ restricted to elements of Sn
that are in the image of Sf . We can now apply [15, Corollary
4.3], since each Fm[Sn] has finite connected limits.

We are now ready to prove that A has finite connected
limits.

Proof of Lemma 41. Since S : Fm → Set preserves finite
connected limits,

∫
S has finite connected limits and the

projection functor to Fm preserves them by Corollary 48.
Now, the 2-category of small categories with finite con-

nected limits and functors preserving those between them is
the category of algebras for a 2-monad on the category of
small categories [6]. Thus, it includes the weak pullback of
A′ → Fm ←

∫
S. But since

∫
S → Fm is a fibration, and thus

an isofibration, by [18] this weak pullback can be computed
as a pullback, which is A.
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