
Schematron Based Semantic
Constraints Specification Framework
& Validation Rules Engine for JSON

Advisor: Dr. Lixin Tao

Student: Dr. Amer Ali

DPS 2014

Abstract
• JavaScript Object Notation (JSON) has emerged as a popular format for business

data exchange. It has a grammar-based schema language called – JSON Schema
(IETF draft 7). The JSON Schema provides facilities to specify syntax constraints on
the JSON data. There are a number of tools available in a variety of programming
languages for JSON Schema validation. However, JSON does not have a standard or
a framework to specify the semantic constraints, neither it has any reusable
validation tool for semantic rules. In order for JSON data validation to be effective,
it needs both syntax and semantic specification standards/frameworks and
validation toolset[2].

• XML is another popular format for business data exchange that preceded JSON.
XML has a mature ecosystem for specifying and validating syntax and semantic
constraints. It has XML Schema and several other syntax constraints specification
standards. It has Schematron as a semantic constraints specification language
which is an ISO standard [ISO/IEC 19757-3].

• This study proposes a framework for specifying semantic constraints for JSON
data in JSON format, drawing upon the power, simplicity, and semantics of
Schematron standard. A reusable JavaScript/NodeJS based validation tool was
also developed to process the JSON semantic rules.

• The framework assumes that due to inherent differences between XML and JSON
data formats, not all Schematron concepts will be applicable to this study.

2

Why Business Data Validation?

• $ 1 billion Automotive Industry losses
– National Institute of Standards and Technology (NIST) study[9]

• 10-25% of total revenue losses for an org
– Larry English [4]

• 40% initiatives fail due to invalid data
– Gartner 2011 report [11]

• 26 – 32 % bad data in orgs
– Experian 2015 study [12]

• $3.1 trillion estimated total cost
– of bad data to the US economy [1]

– Tibbett -based on $314B Healthcare industry[10]

Causes of Data Quality Issues
– Singh et al[13] 2010 study

• degrades during data handling stages

– at the source
– during integration/profiling

– during data ETL (extraction, transformation
and loading)

– even data modeling

When to Validate Data ?

– The SiriusDecisions 1-10-100 Rule
– W. Edwards Deming [14]

Figure 1 1-10-100 Rule

3

JSON – JavaScript Object Notation
• JSON (JavaScript Object Notation) is a:
• Lightweight,
• text-based,
• language-independent data interchange format
• Based on a subset of the JavaScript, ECMA-262
• Officially name “The JSON Data Interchange Format”

– Ecma Standard in 2013 (ECMA 404)

• Looks like data strucures used in many languages

• Two main structures
– Object: Collection of name/value pairs

• Object, record, struct, dictionary, hashtable, keyed-list
• { “key1”: value, “key2”: value2}

– Array: An ordered list of values
• Array, vector, list or sequence
• [value1, value2, valueN]

– Value: object, array, number, string, true, false, null

Listing 1

4

Loan Data Example

<loan_data>
<loans>

<loan>
<loan type="FHA">
<loan_id> 989773 </loan_id>
<customer_id>FLN498765</customer_id>
<data_time>20100601120000</data_time>
<amount>250000 </amount>
<interest_rate> 3.75 </interest_rate>
<prime_rate> 3.25 </prime_rate>
<mip_rate> 1.5 </mip_rate>
<down_payment> 5</down_payment>
<loan_restricted/>
<escrow>true</escrow>
<origination_id> branch </origination_id>
<branch_id>34567</branch_id>
<electronic>true</electronic>
<email>john.doe@gmail.com</email>
<customer>

<customer_id > JD689457 </customer_id>
<customer_fname>John </customer_fname>
<customer_lname>Doe </customer_lname>
<customer_address> 4 Way Loop, New York, NY 10038
</customer_address>

</customer>
<loan>

</loans>
</loan_data>

{
"loan_data":{

"loans":[
{

"loan_id":"1234567",
"loan_type":"FHA",
"customer_id":"JD689457",
"data_time":"20100601120000",
"amount":500000,
"interest_rate":3.75,
"prime_rate":3.25,
"mip_rate":1.5,
"down_payment":5,
"loan_restricted":false,
"escrow":true,
"origination_id":"branch",
"branch_id":"5463",
"electronic":true,
"email":"john.doe@gmail.com",
"customer":{

"customer_id":"JD689457",
"customer_fname":"John",
"customer_lname":"Doe",
"customer_address":" 4 Way Loop,
New York, NY 10038"

}

}
] }

}

XML JSON

Listing 2 Listing 3

5

Data Validation (Analogy)

• Semantic
– Co-constraints

• class = business (20Ibs)
• class = economy (14Ibs)

• Syntax
– Structure of data

• H=56 cm W=45 cm D=25 cm

• Specifications
– Schema
– Standard
– Framework

• Validators
– Processor

Figure 2

Figure 3

Figure 4

6

JSON Constraint Specification & Validation

• Syntax
– Specficication

• JSON Schema
– IETF Draft

– Validation Tools
• Multiple

• Semantic
– Specification

• None

– Validation Tools
• None standard

• Host platform

Figure 5

Figure 6
7

Syntax Validation

• Loan type should be present
• Loan type should be one of the values: FHA, Traditional, Jumbo,

Commercial
– Enum

• Loan id should be present
– Loan id should be minimum 7 chars and maximum 8 chars

• Customer id should be present
• Amount should be present
• Amount should be minimum 100,000 [minimum = 100000]
• Interest rate should be present

– Default interest rate is 3.5%

• Prime rate should be present
• Mip rate is optional/conditional

– Min .85%, max 1.75%

• Down payment should be present
• Escrow should be present
• Origination id is required
• Origination id should be one of: branch, web, phone, third party
• Branch id is optional/conditional
• If electronic = true, valid email should be present

– Dependencies : electronic ["customer_email"]
– Email: "format": email

• Customer_name is required

Listing 5

JSON Schema

Semantic Validation

• If loan type is FHA, amount can't exceed 500K

• If loan type is FHA, mip_rate can't be 0 or less

• If loan type is traditional, amount can't exceed 1MM

• If loan type is jumbo, the amount can't be less than 1M

• Interest rate should at least be .25 % more than prime
rate

• If loan type is not FHA, down payment can't be less
than 20%

• If origination id is 'branch' then 'branch_id' should be
present

• Customer id under loan and customer id under
customer should match

{
"loan_data":{
"loans":[

{
"loan_id":"1234567",
"loan_type":"FHA",
"customer_id":"JD689457",
"data_time":"20100601120000",
"amount":500000,
"interest_rate":3.75,
"prime_rate":3.25,
"mip_rate":1.5,
"down_payment":5,
"loan_restricted":false,
"escrow":true,
"origination_id":"branch",
"branch_id":"5463",
"electronic":true,
"email":"john.doe@gmail.com",
"customer":{

"customer_id":"JD689457",
"customer_fname":"John",
"customer_lname":"Doe",
"customer_address":" 4 Way Loop, New York,
NY 10038"

}
}]}

Listing 6 9

Limitations of Current JSON Validation
• Not able to handle variance in the

schema
– No facility on consumer side to

handle variance

• No abstractions higher than elements
– Simple and complex elements only

• No facility to define business rules
– Heavily oriented to tech developers
– No facility for BA, QA, Legal, and

Compliance people

• No facility to specify constraints on
graph/tree pattern relationships
– Any addressable location for any

other addressable location

• Assertion messages not human
readable
– Technical stack traces only

• Lack of efficiency
– Select a single node and then test all

assertions against it

• JSON Schema has very limited
semantic facilities

• No semantic constraints
standard/framework

• No platform agnostic tools
– host platform only

• No progressive validation
– mechanism to divide the validation into

phases to support validation of a particular
constraint or workflow

• No dynamic validation
– assume that all constraints are of

equal severity and
– must be treated the same way at the

same time.
– No mechanism to invoke a subset of

constraints based on the needs.

• No logical groupings of constraints
– don’t support logical grouping of

constraints based on various needs
outside their structural formations

10

Rules Specification
Framework

Rules Validator Engine

Platform Agnostic

Progressive Validation

Dynamic Validation

Logical Groupings

Variance in Schema

Higher Abstractions

Business Rules

Graph/Tree Patterns

Assertion Messages
Human Readable

Efficient Validation

XML
• Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a

format that is both human-readable and machine-readable.
• Syntax Validation

– XML Schema, DTD, RELAXNG

• Semantic Validation
– Schematron

• Multiple validators for both

<address>
...
<city> New York City </city>
<state> NY </state>
<zipcode> 10038 </zipcode>
....

</address>

XML Instance

<xs1:schema xmlns:xs1="http://www.w3.org/2001/XMLSchema">
<xs1:element name="address">

<xs1:complexType>
<xs1:sequence>

<xs1:element name="city" type="xs1:string"/>
<xs1:element name="state" type="xs1:string"/>
<xs1:element name="zipcode" type="xs1:string"/>

</xs1:sequence>
</xs1:complexType>

</xs1:element>
</xs1:schema>

XML Syntax Constraints
(XML Schema)

<rule context="address">

<assert test="city">Address must have city name </assert>

<assert test="state">Address must have state name</assert>

<assert report ="zipcode">Address has a zipcode </report>

</rule>

XML Semantic Constraints

(Schematron)

Listing 7 11

Schematron
• Schematron is a rule-based XML validation schema language for making assertions about the presence or absence of

patterns in XML trees

• Capable of specifying rules that syntax based schema languages can’t
– Control the contents of an element vial its siblings

• Fundamental difference
– Syntax-based: grammar based
– Schematron: based on finding tree patterns

• Rick Jelliffe invented it at Academia Sinica, Taipei (1999-2001)
– “a feather duster to reach the corners that other schema languages cannot reach”

• Standardized by the ISO as:
– “Information technology, Document Schema Definition Languages (DSDL),

Part 3: Rule-based validation, Schematron (ISO/IEC 19757-3:2016)”

• Main building blocks
– Schema: Top level element.Everything enclosed in it. Attributes – title, schemaVersion,

queryBinding and defaultPhase
– Phase: Abstraction. Specifies a group of patterns to be activated. #DEFAULT and #ALL

special phases
– Pattern: Abstraction. Set of rules elments. Not same as regex pattern.
– Rule: One or more assertions applied to ‘context’ nodeset selected via query language
– Context: Query language expression to select nodeset
– Assertions: Contains ‘test’. Tests are conditions that are applied to context. A ‘message’

is displayed. Assert vs. Report
– Reporting: Validation result report. Left up to implementations

schema
title
phase
pattern+

rule+
(assert or report)+

12

Schematron Data Model

Schema

Pattern(s)

Rule(s)

Phase(s)

Assertion(s)

Figure 7 13

Solution Methodology
• ISO Schematron 19757-3 as base co-

constrain/validation rules specification standard
• JSON as rules specification data format
• JSONPath as query language
• JavaScript as implementation language
• Input-Process-Output (IPO) as software

implementation pattern
• Node.js as runtime platform
• API Led Connectivity / Microservice as architecture
• Eclipse as Integrated Development Environment (IDE)
• GitHub as repository
• Node Package Manager (NPM) as registry

14

JSON Schematron Rules

{"schema":{

"id":"Loan Data Rules",
"title":"Schematron Semantic Validation Rules",
"schemaVersion":"ISO Schematron 2016",
"queryBinding":“jsonpath",
"defaultPhase":"phaseid1",

"phase":[
{
"id":"phaseid1",
"active":["patternid1"]
}],

"pattern":[
{
"id":"patternid1",
"title":"Loan Amount Pattern",
"rule":[

{
"id":"FHArule1",
"context": "$.loan_data.loans[?(@.loan_type === 'FHA')]",
"assert":[

{
"id":"assertidFHA21",
"test": "jp.query(contextNode,'$..amount') <= 500000",
"message": "Assert 1: For FHA Loan, Amount cannot exceed $500K"

}
]}]}]}}

Listing 8 15

Semantic Validation

• If loan type is FHA, amount can't exceed 500K

• If loan type is FHA, mip_rate can't be 0 or less

• If loan type is traditional, amount can't exceed 1MM

• If loan type is jumbo, the amount can't be less than 1M

• Interest rate should at least be .25 % more than prime rate

• If loan type is not FHA, down payment can't be less than 20%

• If origination id is 'branch' then 'branch_id' should be present

• Customer id under loan and customer id under customer
should match

Listing 9

New Rules

API Layers

System API Layer

Process API Layer

Experience API Layer

Load_jsonpath Load_minimist

parsePattern

parsePatterns parseAssert

parsePhases parseRule validateRule

validatePatterns

validatePatternvalidateAssert

Report

CLI GUI API
Place Holder

for future
consumers

Place Holder for
more 3rd party

modules

Figure 8

17

Report Highlights

Listing 10
18

Use Cases

• Command Line Interface - CLI
• Graphical User Interface – GUI
• Application Programming Interface – API
• Frontend and Backend Hybrid Validation
• Syntax & Semantic Validation
• Handling Partial Validation
• Handling Variation Document Versions
• Handling Multiple Form Factors
• Assumptions & Limitations

– Assumes implicit compliance through implementation
– No control over upstream systems
– Some dependency on host language

19

Experimental Study
• Data

– Motivating example
• All examples described in motivating examples

– Store data example
• Popular data set to test JSON schema implementations

– IBM Schematron tutorial
• Popular tutorial to learn & test Schematron
• Originall in XML
• Translated all XML instance into JSON documents
• Translated all Rules file into JSON rules files
• Created it as a stand alone tutorial

• Tests
– Jasmine
– ~300

20

Data Snippet Rules Snippet
C

o
m

m
an

d
O

u
tp

u
t

R
ep

o
rt

loandata_pattern_good2.json loandata-rules_dissertation_pattern_good2.json



Data Snippet Rules Snippet
C

o
m

m
an

d
O

u
tp

u
t

R
ep

o
rt

loandata_dataForRules_bad1.json loandata-rules_dissertation_rules_good1.json



Contributions

• Schematron based framework to specify
semantic validation constraints
– ‘schema’,’phase’, ‘pattern’, ‘rule’, and ‘assert’

• Reusable Schema for syntax validation of
rules

• Reusable Semantic Validation Rules Engine

• Comprehensive Reporting Component

• Augmentation of syntax rules for
– Progressive, partial, dynamic validation

• Schematron JSON Tutorials

• 300 Jasmine Unit Tests

Rules Specification Framework

Rules Validator Engine

Reusable Rules Meta Schema

Reporting Component

300 Tests

Platform Agnostic

Progressive Validation

Dynamic Validation

Logical Groupings

Variance in Schema

Higher Abstractions

Business Rules

Graph/Tree Patterns

Assertion Messages Human Readable

Efficient Validation

23

Adaptation of Solution to Solve Similar
Problems in Other Domains

• API Gateway

• MDM - Master Data Management

• TDM - Test Data Management

• Big Data

• OVAL for JSON
– Open Vulnerability Assesment Language

• Social Media OVAL

• NoSQL, Document Oriented DBMS

• Enhancement for action
24

Potential Future Work

• Implement remaining Schematron non core features

• Switch query language

• Individual APIs optimization

• Experience APIS for main platforms

• Streaming JSON data processing

• Action instead of just message

• For Bigdata SIMD (Single Instruction, Multiple Data)

• Serverless Hosting of Validation Service

• AI/Machine Learning to to automatically generate and
adjust rules

25

Conclusion
• JSON data format has serious void in semantic

constraints specification and validation area
• In this study,

– we created a Schematron based framework for constraints
specification

– A reusable JavaScript/Node validator

• We tested both of the components with almost 300
tests

• The component along with all its documentation and
tests is hosted on GitHub and NPM registry

• Should serve as a ready to use system as well as test
bed for further research in JSON semantic validation
area

26

References
• [1] T. Redman, “Data: An unfolding quality disaster,” Dm Rev., vol. 14, no. 8, pp. 21–23, 2004.
• [2] N. Chomsky, Chomsky Hierarchy, Chomsky Normal Form. General Books LLC, 2010.
• [3] M. W. Bovee, T. L. Roberts, and R. P. Srivastava, “Decisison Useful Financial Reporting Information

Characteristics: An Empirical Validation of the Proposed FASB/IASB International Accounting Model,” AMCIS 2009
Proc., p. 368, 2009.

• [4] L. P. English, Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs
and Increasing Profits. New York, New York, USA: John Wiley and Sons, Inc, 1999.

• [5] S. L. Meyers, “CIA Fires Officer Blamed in Bombing of Chinese Embassy,” The New York Times, p. A1, 09-
Apr-2000.

• [6] M. S. Donaldson, J. M. Corrigan, L. T. Kohn, and others, To err is human: building a safer health system, vol.
6. National Academies Press, 2000.

• [7] P. Mcgeehan, “An Unlikely Clarion Calls for Change,” The New York Times, 16-Jun-2002.
• [8] M. R. Alvarez, S. Ansolabehere, E. Antonsson, and J. Bruck, “Voting, What Is, What Could Be,” Rep.

CALTECHMIT VOTING Technol. Proj., Jul. 2001.
• [9] S. Brunnermeier and S. A. Martin, Interoperability cost analysis of the US automotive supply chain. DIANE

Publishing, 1999.
• [10]H. Tibbetts, “$3 Trillion Problem: Three Best Practices for Today’s Dirty Data Pandemic | Microservices Expo.”

[Online]. Available: http://soa.sys-con.com/node/1975126. [Accessed: 02-Jul-2017].
• [11] F. Ted and M. Smith, “Measuring the Business Value of Data Quality,” Gartner, Analysis G00218962, Oct.

2011.
• [12] Experian Data Quality, “The Data Quality Benchmark Report,” Experian Information Solutions, Boston,

MA, White Paper, Jan. 2015.
• [13] R. Singh, K. Singh, and others, “A descriptive classification of causes of data quality problems in data

warehousing,” Int. J. Comput. Sci. Issues, vol. 7, no. 3, pp. 41–50, 2010.
• [14] V. K. Omachonu, J. E. Ross, and J. A. Swift, Principles of total quality. Boca Raton, Fla.: CRC Press, 2004.

27

Appendix

28

NPM

29

Schematron.com

30

NPM

31

GitHub

32

Stackoverflow

33

Stackoverflow

34

JSON Schema
• JSON Schema is a JSON-based format for describing the structure of JSON data
• JSON Schema asserts what a JSON document must look like, ways to extract information from it, and how to

interact with it
• It defines media type "application/schema+json“
• Unlike XML Schema, JSON Schema is not an ISO standard yet. It is an Internet Engineering Task Force (IETF) draft.
• The latest as of October, 2017 is draft 6 that was published on April 21st, 2017
• Since the latest draft is still being debated, this study will use IETF draft version 4

Listing 4
35

‘phase’ Element

JSON Schema Snippet Rules Snippet

36

‘pattern’ Element

JSON Schema Snippet Rules Snippet

37

‘rule’ Element

JSON Schema Definition Rules Snippet

The “context” expression in “jsonpath” states:
Select all loan objects from the loan_data json document.

38

Assertion Elements

JSON Schema Definition

Rules Snippet

“test”: <test goes here>
“message”:< Assertion message here >

<assert test=“test expression”> Assertion message here </assert>

39

40

phase

$ node JSONValidator -i <json instance doc > -r <Schematron rule file> phase1 phase2 phase3

myReport = jsontron.JSONTRON.validate(schInstance, mySchRules, [‘phase1’, ‘phase2’, ‘phase3’])

41

IPO Pattern

Rule Processing Engine
(Node.js Module)

JSON Instance Document
(.json)

Semantic Rules
Document (Schematron

based) (.json)

Validation Report
(.json)

Syntax Rules Document
(JSON Schema based)

(.json)

1

3

2

4 5

2 4 5

3

New Components Developed

Optional Input

42

Node.js Architecture

Courtesy: http://latestittrends.tumblr.com/

43

jsonpath

44

Two Assertions

One failed
assertion

45

context expression

46

‘jsonpath’

‘jsonpath’ query JavaScript
expression

47

Start of Report

Which Patterns are being parsed

Requested vs. Processed & Ignored Patterns

Overall Validation Result

Final Status

Errors Found

Warnings Found

Total Validations

Failed Validations

Full Report Object

Passed Assertion

Failed Assertion

48

