Schematron Based Semantic
Constraints Specification Framework
& Validation Rules Engine for JSON

Advisor: Dr. Lixin Tao
Student: Dr. Amer Ali
DPS 2014

PﬁGE

UNIVERSITY
Work toward greatness. ward grea

Abstract

JavaScript Object Notation (JSON) has emerged as a popular format for business
data exchange. It has a grammar-based schema language called — JSON Schema
(IETF draft 7). The JSON Schema provides facilities to specify syntax constraints on
the JSON data. There are a number of tools available in a variety of programming
languages for JSON Schema validation. However, JSON does not have a standard or
a framework to specify the semantic constraints, neither it has any reusable
validation tool for semantic rules. In order for JSON data validation to be effective,
it needs both syntax and semantic specification standards/frameworks and
validation toolset[2].

XML is another popular format for business data exchange that preceded JSON.
XML has a mature ecosystem for specifying and validating syntax and semantic
constraints. It has XML Schema and several other syntax constraints specification
standards. It has Schematron as a semantic constraints specification language
which is an ISO standard [ISO/IEC 19757-3].

This study proposes a framework for specifying semantic constraints for JSON
data in JSON format, drawing upon the power, simplicity, and semantics of
Schematron standard. A reusable JavaScript/NodelS based validation tool was
also developed to process the JSON semantic rules.

The framework assumes that due to inherent differences between XML and JSON
data formats, not all Schematron concepts will be applicable to this study.

Why Business Data Validation?

* S 1 billion Automotive Industry losses
— National Institute of Standards and Technology (NIST) study[9]

 10-25% of total revenue losses for an org
— larry English [4]

e 40% initiatives fail due to invalid data
— Gartner 2011 report [11]

' ?
« 2632 % bad data in orgs When to Validate Data *?

— Experian 2015 study [12] — ThesiriusDecisions 1-10-100 Rule
* $3.1 trillion estimated total cost — W.Edwards Deming [14]

— of bad data to the US economy [1]

— Tibbett -based on $314B Healthcare industry[10] &

Qef 1 S

Causes of Data Quality Issues <710 $

— Singh et al[13] 2010 study
* degrades during data handling stages & 100 $

— atthe source

— during integration/profiling Figure 1 1-10-100 Rule

— during data ETL (extraction, transformation

and loading)

— even data modeling

JSON — JavaScript Object Notation

JSON (JavaScript Object Notation) is a:
Lightweight,

text-based,

language-independent data interchange format

Based on a subset of the JavaScript, ECMA-262 "d§C”=l{ .
. . proiogue :
Officially name “The JSON Data Interchange Format” her wAigh —— Light travel”,
— Ecma Standard in 2013 (ECMA 404) "subtitle": "From fantasy to reality”,
- . "author™:
Looks like data strucures used in many languages a;‘ gt
"member”: "yes"”,
"email"”: "cemereuwafnasa.gov”,

Two main structures

— Object: Collection of name/value pairs
* Object, record, struct, dictionary, hashtable, keyed-list "member”: "yes"
« { “Rey1”: value, “kRey2”: value2} "email”: "okey.agufinavy.mil”,

"name”: "Okechukwu Agu”
object }
H@—Lr—@ :»j—l—®—|]
}s
— Array: An ordered list of values

"section":{}
* Array, vector, list or sequence
» [valuel, value2, valueN]

"name": "Chikezie Emereuwa”

l'h

(ONO)

L

Listing 1

ol — |

F "
NS

— Value: object, array, number, string, true, false, null

Loan Data Example

XML

JSON

<loan_data>
<loans>

<loan>
<loan type="FHA">
<loan_id> 989773 </loan_id>
<customer_id>FLN498765</customer_id>
<data_time>20100601120000</data_time>
<amount>250000 </amount>
<interest_rate> 3.75 </interest_rate>
<prime_rate> 3.25 </prime_rate>
<mip_rate> 1.5 </mip_rate>
<down_payment> 5</down_payment>
<loan_restricted/>
<escrow>true</escrow>
<origination_id> branch </origination_id>
<branch_id>34567</branch_id>
<electronic>true</electronic>
<email>john.doe@gmail.com</email>
<customer>
<customer_id > JD689457 </customer_id>
<customer_fname>John </customer_fname>
<customer_lname>Doe </customer_lname>

<customer_address> 4 Way Loop, New York, NY 10038
</customer_address>

</customer>
<loan>

</loans>
</loan_data>

{
"loan_data":{
"loans":[

1}

"loan_id":"1234567",

"loan_type":"FHA",

"customer_id":"JD689457",

"data_time":"20100601120000",

"amount":500000,

"interest_rate":3.75,

"prime_rate":3.25,

"mip_rate":1.5,

"down_payment":5,

"loan_restricted":false,

"escrow":true,

"origination_id":"branch",

"branch_id":"5463",

"electronic":true,

"email":"john.doe@gmail.com”,

"customer":{
"customer_id":"JD689457",
"customer_fname":"John",
"customer_Iname":"Doe",

"customer_address":" 4 Way Loop,
New York, NY 10038"

}

Listing 2

Listing 3

Data Validation (Analogy)

Semantic W:;
— Co-constraints @‘-
* class = business (201bs) ma&s

* class = economy (14lbs) Figure 2

Syntax BUSINESS
— Structure of data

Specifications
— Schema
— Standard
— Framework

Validators
— Processor

Figure 4

JSON Constraint Specification & Validation

* Syntax
— Specficication

 JSON Schema
— |ETF Draft

— Validation Tools
* Multiple

1 e 0S o
¢ Se ma ntlc @ x\‘ / U :hi- ‘.
— Specification
* None -

— Validation Tools
* None standard
* Host platform

Figure 6

Syntax Vali

dation

JSON Schema

Loan type should be present /

Loan type should be one of the values: FHA, Traditional, Jumbo,
Commercial

Enum

Loan id should be present
Loan id should be minimum 7 chars and maximum 8 chars

Customer id should be present
Amount should be present
Amount should be minimum 100,000 [minimum = 100000

Interest rate should be present
Default interest rate is 3.5%

Prime rate should be present

Mip rate is optional/conditional
Min .85%, max 1.75%

Down payment should be pres
Escrow should be present
Origination id is required
Origination id should be one of: branch, web, phon
Branch id is optional/conditional

If electronic = true, valid email should be present
Dependencies : electronic ["customer_email"
Email: "format": email

Customer_name is required

N

N

4 7
|y required”: [
"loan_1id",
"loan_type",
"customer_id",

l-'-loan_type": {
"type": "string”,
"enum": ["FHA", "Traditional",

"Jumbo", "Commercial"]

"loan_id": {
"type": "string",
\A"minLength"ﬁ,
"maxLength":§|
}s

"amount": {
"type": "number",
"multipleOf": 1,
"minimum": 100000,
"exclusiveMinimum":

1

"interest rate": {
"type": "number"”,
Udefault":3.5

¥

12
"mip_rate": {

"type": "number"”,
\A"maximum": 1.75,
"minimum": @.85,
"exclusiveMaximum":
"exclusiveMinimum":

}J
A "dependencies™: {
"electronic" :|["emaiL"],
"credit card": ["billing address"],
"billing address": ["credit_card"]

Listing 5

Semantic Validation

If loan type is FHA, amount can't exceed 500K

If loan type is FHA, mip_rate can't be 0 or less

If loan type is traditional, amount can't exceed 1IMM

If loan type is jumbo, the amount can't be less than 1M

Interest rate should at least be .25 % more than prime
rate

If loan type is not FHA, down payment can't be less
than 20%

If origination id is 'branch' then 'branch_id' should be
present

Customer id under loan and customer id under
customer should match

{
"loan_data":{
"loans":[
{
"loan_id":"1234567",
"loan_type":"FHA",
"customer_id":"JD689457",
"data_time":"20100601120000",
"amount":500000,
"interest_rate":3.75,
"prime_rate":3.25,
"mip_rate":1.5,
"down_payment":5,
"loan_restricted":false,
"escrow":true,
"origination_id":"branch”,
"branch_id":"5463",
"electronic":true,
"email":"john.doe@gmail.com”,
"customer":{
"customer_id":"JD689457",
"customer_fname":"John",
"customer_Iname":"Doe”,

"customer_address":" 4 Way Loop, New York,
NY 10038"

H}

Listing 6

Limitations of Current JSON Validation

x Rules Specification
* JSON Schema has very limited * Not able to handle variance in the AR
semantic facilities schema
- . x Rules Validator Engine
— No facility on consumer side to

handle variance

* No semantic constraints]
standard/framework x

* No abstractions higher than elements

. — Simple and complex elements onl : dati
* No platform agnostic tools P P Y x

— host platform only

* No facility to define business rules x
. Dynamic Validation
. No progressive validation — Heavily oriented to tech developers
— mechanism to divide the validation into — No facility for BA, QA, Legal, and
phases to support validation of a particular Compliance people x
constraint or workflow

o * No facility to specify constraints on x
* No dynamic validation graph/tree pattern relationships

— assume that all constraints are of — Any addressable location for any
equal severity and other addressable location x
— must be treated the same way at the

same time. . |
. . * Assertion messages not human x Business Rules
— No mechanism to invoke a subset of

constraints based on the needs. readable

— Technical stack traces only x
* No logical groupings of constraints .
— don’t support logical grouping of * Lackof efficiency x Assertion Messages
constraints based on various needs — Select a single node and then test all Human Readable

outside their structural formations assertions against it
x Efficient Validation

10

XML

Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a
format that is both human-readable and machine-readable.

Syntax Validation
— XML Schema, DTD, RELAXNG

Semantic Validation
— Schematron
Multiple validators for both

<address>
<city> New York City </city>
<state> NY </state>
<zipcode> 10038 </zipcode>
</address>

XML Instance

XML Syntax Constraints
(XML Schema) —”

XML Semantic Constraints
(Schematron)

<xsl:schema xmins:xs1="http://www.w3.0rg/2001/XMLSchema">
<xsl:element name="address">
<xsl:complexType>
<xsl:sequence>
<xsl:element name="city" type="xs1:string" />
<xsl:element name="state" type="xsl:string"/>
<xsl:element name="zipcode" type="xsl:string"/>
</xsl:sequence>
</xsl:complexType>
</xsl:element>
</xsl:schema>

<rule context="address">
<assert test="city">Address must have city name </assert>
<assert test="state">Address must have state name</assert>
<assert report ="zipcode">Address has a zipcode </report>

</rule>

Listing 7

11

Schematron

Schematron is a rule-based XML validation schema language for making assertions about the presence or absence of
patterns in XML trees

Capable of specifying rules that syntax based schema languages can’t

— Control the contents of an element vial its siblings scherT\a
title
Fundamental difference phase
— Syntax-based: grammar based
— Schematron: based on finding tree patterns pattern+
rule+

Rick Jelliffe invented it at Academia Sinica, Taipei (1999-2001)

(assert or report)+
“a feather duster to reach the corners that other schema languages cannot reach”

Standardized by the ISO as:

“Information technology, Document Schema Definition Languages (DSDL),
Part 3: Rule-based validation, Schematron (ISO/IEC 19757-3:2016)”

Main building blocks

Schema: Top level element.Everything enclosed in it. Attributes — title, schemaVersion,
gueryBinding and defaultPhase

Phase: Abstraction. Specifies a group of patterns to be activated. #DEFAULT and #ALL
special phases

Pattern: Abstraction. Set of rules elments. Not same as regex pattern.
Rule: One or more assertions applied to ‘context’ nodeset selected via query language
Context: Query language expression to select nodeset

Assertions: Contains ‘test’. Tests are conditions that are applied to context. A ‘message’
is displayed. Assert vs. Report

Reporting: Validation result report. Left up to implementations

Schematron Data Model

Lihema<

tAssertlon(s)
‘assert”:[

"id":"assertidFHA21",
"test": "jp.query(contextNode, ‘§$..amount’) <= 500000",

"message": “Assert 1: For FHA Loan, Amount cannot exceed $500K"

}

Figure 7

13

Solution Methodology

ISO Schematron 19757-3 as base co-
constrain/validation rules specification standard

JSON as rules specification data format
JSONPath as query language
JavaScript as implementation language

Input-Process-Output (IPO) as software
implementation pattern

Node.js as runtime platform

API Led Connectivity / Microservice as architecture
Eclipse as Integrated Development Environment (IDE)
GitHub as repository

Node Package Manager (NPM) as registry

JSON Schematron Rules

{"schema": {

"id":"Loan Data Rules",
"title":"Schematron Semantic Validation Rules”,
"schemaVersion":"ISO Schematron 2016",
"queryBinding":“jsonpath”,
"defaultPhase": "phaseidl”,
"phase": [

{

"id":"phaseidl”,

"active":["patternidl”]

s
"pattern”:[
{
"id":"patternidl”,
"title":"Loan Amount Pattern”,
"rule”:[
{
"id": "FHArulel",
"context": "$.loan data.loans[?(@.loan_type === 'FHA')]",
"assert":[
{
"id":"assertidFHA21",
"test": "jp.query(contextNode, '$..amount’') <= 500000",
"message": "Assert 1: For FHA Loan, Amount cannot exceed $500K"
}
131313}
Listing 8

15

Semantic Validation

New Rules

"id": "rule22”,
“abstract": N
"context": "§.loan_data.loans[?(@.loan_type === 'FHA')]",
"assert":[
{
"id": "assertid221",
)‘y“msr”: "jp.query(contextNode, '$..amount') <= Se0808",

If loan type is FHA, amount can't exceed 500K—

If loan type is FHA, mip_rate can't be 0 or Iess/

. op s 1 /
If loan type is traditional, amount can't exceed 1MM

"message”: "Assert 221: For FHA Loan, Amount cannot exceed $500K"
1
{

"id": "assertid222",

/y "test": "jp.query(contextNode, '$..mip_rate') > @",

"message”: "Assert 222: For FHA loans, You must have MIP (Mortgage Insurance Premium)"
}
"context": "$.loan_data.loans[?(@.loan_type === 'Traditional')]",
"assert":[
{
"id":"assertid31”,
"test": "jp.query(contextNode, '$..amount') <= 1000008",
"message": "Assert 31: For Traditional Loan, Amount cannot exceed $IMM"
}
"context": "$.loan data.loans[?(@.loan_type === 'Jumbo')]",
"assert":[

{

"id": "assertid4l"”,
» "test": "jp.query(contextNode, '$..amount’') >= 1000800",

If loan type is jumbo, the amount can't be less than 1M

Interest rate should at least be .25 % more than prime rate

If loan type is not FHA, down payment can't be less than 20%\

If origination id is 'branch' then 'branch_id' should be present

Customer id under loan and customer id under customer
should match \

Listing 9

"message": "Assert 41: For Jumbo Loan, Amount cannot be less than $1MM"
}
"context": "$.loan data.loans.*",
"assert”:[
{

"id": "assertidsl”,

——P"test": "(jp.query(contextNode, '$..interest_rate') - jp.query(contextNode,'$..prime_rate')) »>= .25",

"message": "Assert 81: Interest Rate should be atleast .25 points more than Prime Rate"

}

"context": "§. Lo.;m_data.loans[?(@.ioan_type I= "FHA')]",
"assert":[

{

\ "id":"assertid251",
“test": "jp.query(contextNode, '$..down_payment') >= 20",

"message": "Assert 251: For non-FHA loans, Minimum 20% downpayment 1is required"”

- } 1
"context": "§. Loémiduta. Loans[?(@.origination_id === 'branch')]",
"assert":[
"id": "assertid261",
"test": "jp.query(contextNode, '$..branch id') 1= """
"message": "Assert 261: Missing Branch ID"
}
"context": "$.loan_data.loans.*",
"assert":[

: "Assert 271: Customer ID mismatch"

APl Layers

““

Experience API Layer

: Place Holder = =
for future

= * consumers = :

fussmsmEEEEmEn rua"

parseRule

parseAssert

parsePatterns

parsePattern

validateAssert

Process API Layer

validateRule

validatePatterns
validatePattern

Load_minimist

Load_jsonpath

System API Layer

P _—
= Place Holder for =

more 3" party

modules
S EsNEEEEEEEEEEEEEEEEE funw

Figure 8

17

Report Highlights

var Report = function(){

this.errors = [];
this.warnings = [];
this.validations =[];

}

Report.prototype.addError = function(instance, schema, attr,msg,detail){

this.errors.push({
schInstance : instance,
schema : schema,
attribute: attr,
message : msg,
detail : detail

s
}

Report.prototype.addwarning = function(instance, schema, attr,msg,detail){

this.warnings.push({
schInstance : instance,
schema : schema,
attribute: attr,
message : msg,
detail : detail

s
}

Report.prototype.addvalidation = function(rule, context, assertionid, test, msg, result){

this.validations.push({
schRule : rule,
ruleContext : context,
assertionid: assertionid,
assertionTest : test,
message : msg,
assertionvalid : result

s

Listing 10

Use Cases

Command Line Interface - CLI

Graphical User Interface — GUI
Application Programming Interface — API
Frontend and Backend Hybrid Validation
Syntax & Semantic Validation

Handling Partial Validation

Handling Variation Document Versions
Handling Multiple Form Factors

Assumptions & Limitations
— Assumes implicit compliance through implementation
— No control over upstream systems
— Some dependency on host language

Experimental Study

e Data

— Motivating example
* All examples described in motivating examples

— Store data example
* Popular data set to test JSON schema implementations

— IBM Schematron tutorial
* Popular tutorial to learn & test Schematron

e Originall in XML
* Translated all XML instance into JSON documents

* Translated all Rules file into JSON rules files
* Created it as a stand alone tutorial
* Tests

— Jasmine
— ~300

Command

Output Report

Data Snippet

Rules Snippet

“loan_data":{

“Toans":[

“IDERO45T",
aleecel112e008",

"customer_id
"data_time
"amount”: 5
"interest_rate
“prime_rate":3.
"mi p_rat e":1
"down_payment
"lc1n7rof1r\c1nd

3

d*: "branch"™,
~anch_id
nie™: R
: "john. doe@gmail .com”,
"customer” : {
"customer_id"
“customer Frldlrle
"customer_lnam

JD(;}?'Jd 57"

“customer_addre:

" 4 way Loop, New York, NY 10838"

}
3y
1
"IDE8I4ST",
data_tin a1e0601120008",
"amoun
"interest_ra 7S,
"prime_rate":3.2
“loan_r blrLLlAd .
“uyru.\-': N
"customer”:
"customer_id": "JD689457",
"customer_fname” : “Jahn ",
"customer_lname" : "Doe”,
“customer_address”:" 4 Way Loop, New York, NY 16038"
}
s

loandata_pattern_good2.json

d": "precheck"”,
"active":["precheck_pattern"]

"id": "newfha”,
"active":["newfha_pattern"]

e

"id": "newfha_pattern"”,
"title":"New FHA MIP Pattern",
"abstract":
"rule":[

{

)

"id": "rule-new",
"abstract
"context’
"assert":[

{
"id":"assertid31",
“test": "jp.query(contextNode, '$..mip_rate') >= 1.8 ",
"message”:

)
"$.loan_data. loans[?(@.loan_id > 2111111 && @. Loan_type

"FHA')]",

"Assert 31: New FHA Loan can't have less than 1.8 percent mortgage insurance premium"

Semantic

Found :
Fount

alidations: 1

Completed
Total Errors
Total Warning

Total ©

Total Failded Assertions

lidation

Tgnored.

:&LL

Command

Output Report

Data Snippet

Rules Snippet

"loans":[

{
"loan_id":"1234567",
"loan_type":"FHA",
"customer_id":"JD6B9457",
"data_time":"28100601120000",
"amount" : 500800,
"in erest rate"‘)
"prime_rate":3.25,
"mip_rate" EJ
"down_payment":5,
"loan_restricted":
"escrow": 3
"origination_id":"branch”,
"branch_id":"5463",
"electronic”: y
"email": "john.doe@gmail . com"
"customer”:{
"customer_id":"JD689457",
"customer_fname": "John",
"customer_lname":"
"customer E-ddr‘@f."

i

Yy

)

)

DOP »
" 4 Way Loop, New York, NY 16838"

}

loandata_dataForRules_bad1.json

"rule":

1" rule-pre’,
”dt’bU'dtl"' ,
"context”: "f. Loan data. loans[?(8. Loan type === 'FHA")]",
"assert"s[
{
"1d"s "assertid3l",
"test"s “jp.query(contexthode, 'S, .mip rate') » 0",

loandata-rules_dissertation_rules_good1.json

nessage”: "Assert 31: FHA Loan can't have zero mortgage insurance premiun”

3\dissertation\rules\loanda orRules badl.json - sertation\rules)lo: rules dissertation rule

BY ENABLING DEBUG WITH -d OPTIO

premium’,

Contributions

. R ruessocision omene
Schematron based framework to specify
o Rules Validator Engine

semantic validation constraints e
— ‘schema’,/phase’, ‘pattern’, ‘rule’, and ‘assert’ @
Reusable Schema for syntax validation of & TS
rules - I
Reusable Semantic Validation Rules Engine &R
Comprehensive Reporting Component M) ommcvaaon |
L) o
o I
U Higher Abstractions
Schematron JSON Tutorials e
300 Jasmine Unit Tests) covmeeraems |
L) cin e i
< I

23

Augmentation of syntax rules for
— Progressive, partial, dynamic validation

Adaptation of Solution to Solve Similar
Problems in Other Domains

* APl Gateway
* MDM - Master Data Management
* TDM - Test Data Management
* Big Data
 OVAL for JSON
— Open Vulnerability Assesment Language

 Social Media OVAL
* NoSQL, Document Oriented DBMS
e Enhancement for action

Potential Future Work

Implement remaining Schematron non core features
Switch query language

Individual APIs optimization

Experience APIS for main platforms

Streaming JSON data processing

Action instead of just message

For Bigdata SIMD (Single Instruction, Multiple Data)
Serverless Hosting of Validation Service

Al/Machine Learning to to automatically generate and
adjust rules

Conclusion

JSON data format has serious void in semantic
constraints specification and validation area
In this study,

— we created a Schematron based framework for constraints
specification

— A reusable JavaScript/Node validator

We tested both of the components with almost 300
tests

The component along with all its documentation and
tests is hosted on GitHub and NPM registry

Should serve as a ready to use system as well as test
bed for further research in JSON semantic validation
area

References

[1] T. Redman, “Data: An unfolding quality disaster,” Dm Rev., vol. 14, no. 8, pp. 21-23, 2004.
(2] N. Chomsky, Chomsky Hierarchy, Chomsky Normal Form. General Books LLC, 2010.

[3] M. W. Bovee, T. L. Roberts, and R. P. Srivastava, “Decisison Useful Financial Reporting Information
Characteristics: An Empirical Validation of the Proposed FASB/IASB International Accounting Model,” AMCIS 2009
Proc., p. 368, 2009.

(4] L. P. English, Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs
and Increasing Profits. New York, New York, USA: John Wiley and Sons, Inc, 1999.

[5] S. L. Meyers, “CIA Fires Officer Blamed in Bombing of Chinese Embassy,” The New York Times, p. Al, 09-
Apr-2000.

[6] M. S. Donaldson, J. M. Corrigan, L. T. Kohn, and others, To err is human: building a safer health system, vol.
6. National Academies Press, 2000.

[7] P. Mcgeehan, “An Unlikely Clarion Calls for Change,” The New York Times, 16-Jun-2002.

[8] M. R. Alvarez, S. Ansolabehere, E. Antonsson, and J. Bruck, “Voting, What Is, What Could Be,” Rep.
CALTECHMIT VOTING Technol. Proj., Jul. 2001.

[9] S. Brunnermeier and S. A. Martin, Interoperability cost analysis of the US automotive supply chain. DIANE
Publishing, 1999.

[10]H. Tibbetts, “S3 Trillion Problem: Three Best Practices for Today’s Dirty Data Pandemic | Microservices Expo.”
[Online]. Available: http://soa.sys-con.com/node/1975126. [Accessed: 02-Jul-2017].

[11] F. Ted and M. Smith, “Measuring the Business Value of Data Quality,” Gartner, Analysis G00218962, Oct.
2011.

[12] Experian Data Quality, “The Data Quality Benchmark Report,” Experian Information Solutions, Boston,
MA, White Paper, Jan. 2015.
[13] R. Singh, K. Singh, and others, “A descriptive classification of causes of data quality problems in data

warehousing,” Int. J. Comput. Sci. Issues, vol. 7, no. 3, pp. 41-50, 2010.
[14] V. K. Omachonu, J. E. Ross, and J. A. Swift, Principles of total quality. Boca Raton, Fla.: CRC Press, 2004.

Appendix

|«

NPM

C @ NPM, Inc. [US] | https://www.npmjs.com/package/jsontron

m Q, Search packages

Share your code. npm Orgs help your team discover, share, and reuse code. Create a free org »

jsontron
0.8.10 + Public » Published 23 days ago

Readme Admin 3 Dependencies

0 Dependents

11 Versions

jsontron

Schematron based JSON Semantic Validator. JSON Semantic Rules Engine.

Installation
S npmijsontron

Note: If you have not installed node and npm. Please follow instructions at
https://docs.npmjs.com/getting-started/installing-node#installing-npm-from-

| »

Usage: Command Line

//go to the 1ib folder of jsontron modules

$ cd $ISONTRON_ROOT/1ib

install

> npm 1 jsontron

+ weekly downloads

16

version

0.8.10

open issues

0

homepage

github.com

last publish
23 days ago

E— |}

license

MIT

pull requests

0

repository

@ github

29

Schematron.com

schematron.com/2018/11/schematron-validation-of-json-data/

] |
¥‘2I|_| =" L

Schematron News Standards Hints Opinion

Schematron reimagined for

JSON/JSONPath

Posted on November 7, 2018 by Rick Jelliffe

On GitHub you can find jsontron which is Schematron moved out of the XML/XSLT/XPath
ecosystem and applied to the JSON/JavaScript/JSONPath ecosystem. What is particularly
pleasing to me is that this seems to be a really full implementation of ISO Schematron, including
phases (not abstract rules and abstract patterns, no biggie.)

It is written in JavaScript, takes a schema that is the JSON equivalent of a Schematron XML
schema, and produces a JSON version of SVRL as output. It looks like something well worth the

while for people who need it.

Amir Ali, who wrote it at Pace University as part of his studies, makes the point that
JSON/JavaScript ecosystem systems need the OVAL (Open Vulnerability and Assement
Language) validation regime as much as XML ecosystems do (perhaps more!). So a Schematron
reimagined for JSON with no whiff of XML/XPath might be be sweeter for JSON/JavaScript

developers.

Of course, not being XML, the schemas are not standard. But Amir Ali seems to have been very

faithful to the structures and names of standard Schematron, so | guess it could be converted to

30

NPM

EEm Q_ Search packages

jsontron
0.8.18 + Public + Published 2 days ago

Readme Admin 3 Dependencies 0 Dependents 17 Versions

jSOﬂtl’Oﬂ install

» npm i jsontron

Schematron based JSON Semantic Validator. JSON Semantic Rules Engine.

+ weekly downloads

Installation 1,039 |
$ npm i jsontron version license
0.8.18 MIT
Note: If you have not installed node and npm. Please follow instructions at
https://docs.npmjs.com/getting-started/installing-node#finstalling-npm-from- open issues pull requests
4] 0 0
Usage: Command Line homepage repository
github.com ® github
//go to the bin folder of jsontron module... last publish
2 days ago

$ cd $ISONTRON_ROOT/bin

31

GitHu

&« C @ GitHub, Inc. [US] | https://github.com/amer-ali/jsontron/tree/master/jsontron

Pull requests Issues Marketplace Explore

amer-ali / jsontron @Watch> 0 HStar 0 0
¢» Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings
Branch: master v jsontron /jsontron / Create new file = Upload files ~ Find file = History
DPS and DPS updated pattern good json Latest commit f9eelef 23 days ago
i bin Updated tests for ibm 23 days ago
M data updated pattern good json 23 days ago
| docs Updated tests for ibm 23 days ago
mlib Updated tests for ibm 23 days ago
B node_modules updates to ignore file a month ago
B schemas Dissertation Testing 9 months ago
B tests Updated tests for ibm 23 days ago
=) .gitignore ignore file a month ago
=) .project First Commit 2 years ago
=) README.md updates of readme a month ago
=) package.json Updated tests for ibm 23 days ago
) scratch2.js updates to ignore file a month ago

&) scratch3,js updates to ignore file a mcmtg igo

3
=" stackoverflow

Home

PUBLIC

&) Stack Overflow
Tags
Users
Jobs

Teams — |
Q&A for work

Learn More

Stackoverflow

JSON: Is there an equivalent of Schematron for JSON and JSON Sche
JSON technology to express co-constraints)

Here is a JSON instance showing the start-time and end-time for a meeting:

{
"start time": "2015-02-19T08:00:00Z",

"end time": "2015-82-19T©9:00:00Z"

¥

| can specify the structure of that instance using JSON Schema: the instance must contain an object
with a "start time" property and an "end time" property and each property must be a date-time
formatted string. See below for the JSON schema. But what | cannot specify is this: the meeting
must start before it ends. That is, the value of "start time" must be less than the value of "end time".
Some people call this data dependency a co-constraint. In the XML world there is a wonderful,
simple technology for expressing co-constraints: Schematron. | am wondering if there is an
equivalent technology in the JSON world? What would you use to declaratively describe the
relationship between the value of "start time" and "end time"? (Note: writing code in some
programming language is not what | mean by "declaratively describe the relationships". | am seeking
a declarative means to describe the data dependencies that are present in JSON documents, not
procedural code.)

{
"$schema": "http://json-schema.org/draft-e4/schema#",

"definitions": {
"meeting": {

"type": "object",

"properties": {
"start time": { "type": "string", "format": "date-time"},
"end time": { "type": "string", "format": "date-time"}

1,

"required”: ["start time", "end time"],

"additionalProperties": false

"$ref": "#/definitions/meeting" 33

Stackoverflow

Sadly, the answer is no. JSON Schema allows you to validate the structure, and permitted values,
but there are no mechanisms for validating sets of values, a'la Schematron.

The simplest way to solve this is to have another script in the pipeline which runs these kinds of

Yes.There is a JSON Semantic Validator based on Schematron available at:
https://www.npmjs.com/package/jsontron

It implements 'schema', 'phase’, 'rule', 'assert' and reporting features of Schematron.
Here is when the original example of start time and end time was run through the validator:

good_time.json file contents:

{
"starttime": "2015-02-19T08:00:0072",

"endtime": "2015-02-19T09:00:00Z"
}

bad_time_json file contents:

{
"starttime": "2015-02-19T09:00:00Z",

"endtime": "2015-02-19T08:00:00Z"
}

Schematron Rules file meeting-times-rules.json snippet:

"rule":[
{
"context": "$",
"assert":[
{
"id":"start_stop_meeting chec",
"test":"jp.query(contextNode, '$..starttime') < jp.query(contextNode, '$..er
"message": "Meeting cannot end before it starts"
}

JSON Schema

JSON Schema is a JSON-based format for describing the structure of JSON data

JSON Schema asserts what a JSON document must look like, ways to extract information from it, and how to
interact with it

It defines media type "application/schema+json”

Unlike XML Schema, JSON Schema is not an ISO standard yet. It is an Internet Engineering Task Force (IETF) draft.
The latest as of October, 2017 is draft 6 that was published on April 215, 2017

Since the latest draft is still being debated, this study will use IETF draft version 4

JSON Schema excerpt

"loan_id": {
"type": "string’

. minLength":7,
constraints on - — "maxLength":8
length of loan_id } JSON Instance excerpt

"loan_type": {

“type": "5tr‘M"loan_id":"1234567",

constraints on what “enum": ["FHA", "Traditional", "Jumbo", "Commercia “loan_type":"FHA",

values can be 4/ "customer_id":"JD689457",

specified b ///“data_time":"ZDIMDI 120000°,
“customer_id": { "amount":500000,

type': “string "interest_rate":3.75,

b

"data_time": {
"type": "string"

}s
"amount™: {

constraint "type": "number",
"multipleOf": 1,

minimumvalueﬂ-_\\ A
"minimum": 100000,
"exclusiveMinimum":
by
"interest_rate": {

"type": "number",
default interest rate €——"4afaylt":2.5 3
5

Listing 4

JSON Schema Snippet

‘ohase’ Element

Rules Snippet

"phase": {
H_typell: llarr_‘ay!l’
"items": {
"type": "object”,
"properties": {
Hidl!: {
"type": "string"
}s
"active": {
"typel!: "ar‘r‘ay")

"items": {
"type": "string”
}
}
}s
"required": [
”,.id”
]

¥

"phase": [
{
"id": "phaseidl”,
"active":["patternidl"]
b
{
"id": "phaseid2”,
"active":["patternid2"]
}
1,

‘pattern’ Element

JSON Schema Snippet Rules Snippet
"pat_ter\n": { "patter‘n" :[
"type": "Gr"!"ay", {
"items": { "id":"patternidl”,
"type": "object”, "title":"pattern title",
"properties”: { "documents”: "pathValue”,
"id": | "abstract”: ,
"type": "string" r?le [
E%itle"' ("id":"rulel1”,
" . e "abstract": s
} type : “string "context": "$.loan_data. loans.*",
g "assert":
"documents”: { { [
"type”: "string” "id":"assertidll”,

}s
"abstract": {

"type": "boolean"

}s

37

‘rule’ Element

JSON Schema Definition

Rules Snippet

"rule”: {
'H_type": ”ar‘r‘ay”,
"items": {

"type": "object”,
"properties”: {
"id": {
"type": "string"”
}s
"abstract": {

"type": "boolean"

}s

"context": {
"type": "string"”
s

"assert": {

"rule":[
{
"id":"rulel”,
"abstract”: ,
"context": "$.loan data.loans.*",

/assert”:[/
{

/ /

The “context” expression in “jsonpath” states:
Select all loan objects from the loan_data json document.

38

Assertion Elements

JSON Schema Definition

"assert": {
"type": "array",
"items": {
"type": "object”,
"properties”: {
"id": {
"type": "string"
}s
"test": {
"type": "string"
}s
"message": {
"type": "string"
}
¥
"required": [
"test"”,
"message"

]
}
}

}s

Rules Snippet

“assert™:]

{

"10": "assertid2l”,
"test": "ip.query(contextNode, '$..amount') <= 500000",
"nessage": "Assert 1: For FHA Loan, Amount cannot exceed $500K"

)

<assert test=“test expression”> Assertion message here </assert>

“test”: <test goes here>

“message”:< Assertion message here > 39

"$schema™: "http://json-schema.org/draft-e4/schema#",

"type": "object”,
"properties”: {
"schema": {
"type": "object",
"properties”: {
"id"s A
"type": "string”

1
"title": {
"type": "string”

e
"schemaVersion": {
"type": "string"

b
"queryBinding": {
"type": "string"

1
"defatulePhase": {
"type": “string"
}J
"phase": {
"type": "array",
"items": {
"type": "object”,
"properties”: {
"id": {
"type": “"string”

»
"active": {
"type": "array",
"items": {
"type": "string’|

}
}s
"required": [
g g
1
}
}J
"pattern”: {
“"type": "array”,
"items": {
"type": "object”,
"properties”: {
"id": {
"type": "string"
b,
"title": {
"type": "string"
2
"documents”: {
"type": "string”

k]
"abstract": {
"type": "boolean"

¥

114
115=
116
117
118 }

"rule": {
"type": "array”,
"items": {

"type": "object”,
"properties": {
i {
"type": "string”

"abstract": {
"type": "boolean"

El
"context": {
"type": "string"

2

"assert": {
"type": “array”,
"items": {

"type": "object",
"properties": {
"id": {
"type": "string"”
s
"test": {
"type": "string”
bl
"message": {
"type": "string”
)
"required": [
"test",
"message"
1
}
}
Fs
"required": [
"context",
"assert”
1
}
}
I
"required": [
"id",
"abstract”
1
}
}
1s
"required": [
"pattern”

1
b
I

"required": [
"schema"

40

$

phase

node JSONValidator -i <json instance doc > -r <Schematron rule file> phasel phase2 phase3

myReport = jsontron.JSONTRON.validate(schInstance, mySchRules, [‘phasel’, ‘phase2’, ‘phase3’])

"jp.query(contextNode, '$..amount"’) <= 500000"

41

IPO Pattern

JSON Instance Document
(.json)

\/—

@ 5

Semantic Rules
Document (Schematron Rule Processing Engine
based) (.json) (Node.js Module)

\/— \/—

Validation Report
(.json)

Syntax Rules Document
(JSON Schema based)

(.json) : @ @ @ New Components Developed

(3 Optional Input

Clients

Node.js Architecture

Single Thread

Delegation

/|

h

Y

=]

S

File

Async IO
threads (libeio)

Callback
Node.JS

Courtesy: http://latestittrends.tumblr.com/

Systemn

43

jsonpath

jp-query(obj, pathExpression[, count])

Find elements in obj matching pathExpression. Returns an array of elements that satisfy the

provided JSONPath expression, or an empty array if none were matched. Returns only first count
elements if specified.

"jp.query(contextNode, '§..amount"') <= 500000"

44

Starting Semantic Validation a%
Parsing Pattern: Major_elements
1 Pattern(s) Requested. 1 Pattern(s) Processed. @ Pattern(s) Ignored.
¥¥ THIS INSTANCE CONTAINS SEMANTIC VALIDATION ISSUES. PLEASE SEE FULL REPORT BY ENABLING DEBUG WITH -d OPTION ****
Completed Semantic Validation
Total Errors Found: @
Total Warnings Found: @
Total Validations: 2
Total Failded Assertions: 1
Full Validation Report :
Report {
errors: [],
warnings: [],
validations
[{ schRule: [Object],
ruleContext: [Object],
assertionid: 'Major_elements_assert_prologue',
assertionTest: 'jp.query(contextNode, \'$..[?(@.prologue)]\').length > @',
message: 'element must have a prologue',
assertionValid: false },
{ schRule: [Object],
ruleContext: [Object],
One failed assertionid: 'Major_elements_assert_section',
assertionTest: 'jp.query(contextNode, \'$..[?(@.section)]\"').length > @',
assertio Ter ”
message: ‘'successful’,
assertionvalid: true }],
nalValldatlonReport
[{ schRule: [Object],
ruleContext: [Object],
assertionid: 'Major_elements_assert_prologue',
assertionTest: 'jp.query(contextNode, \'$..[?(@.prologue)]\').length > @',
message: 'element must have a prologue',
assertionvValid: false }],
valid: false }

Two Assertions

45

"context": "it,Lo&n_data,Loans{?(@,man_rype === "FHA"')} ",
"assert":[

{
"id": "assertid3l”,
"test": "jp.guery(contexiNode, '$..mip_rate') > a",
"message”: “"Assert 31: FHA loan can't have zero mortgage insurance premium”
b
“context": {"$. Loan data. Loans[?(@. Loan type ——= 'FHA')]", | context expression
\
var contextNode = -ji:.n:juerj,rfschlnstance, '$.lnan_data;flnans[?(@.lnan_type === "FHA")]");

46

"context": "5,{nan_data,{nan5f?f@,{nan_rype === "FHA')]",

id": "agssertid3l”,
"test": "jp.query(contextNode, '$..mip rate’) » 8",
“mé#;age": "Assert 31: FHA loan can't have zero mortgage ihsurance premium”

‘jsonpath’

g +

*”context": "$.loan_data. loans| ?{@. loan_type === "FHA'}]",

“test": fjp.quenyfrantextﬁad?, ‘$..mip_rate') > 8",

H

f / \

‘jsonpath’ query JavaScript
expression

"context": "E,Ln&n_duta,Lnans{?(@,tnan_rype === "FHA')}]",
"assert":[
"id": "assertid3l”,
"test": "ip.query(contextNode, '$..mip_rate') » 8",
"message”: “"Assert 31: FHA lean can't have zero mortgage insurance premium”

}

Start of Report >
Which Patterns are being parsed —————————— 3 ' 3 al p f
Requested vs. Processed & Ignored Patterns — i Y (" P .
Overall Validation Result I / O SUES. PLEASE SEE FULL REPORT BY ENABLING DEBUG WITH -d OPTION *®**
Errors Found »
Warnings Found =
Total Validations >
Failed Validations >
Full Report Object >
Passed Assertion >
Failed Assertion >
—
»

Final Status

