The D2-statistic pools test statistics from the repeated analyses. The method is less powerful than the D1- and D3-statistics.
D2(fit1, fit0 = NULL, use = "wald")
fit1 | An object of class |
---|---|
fit0 | An object of class |
use | A character string denoting Wald- or likelihood-based based tests. Can be either |
Li, K. H., X. L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. Significance Levels from Repeated p-Values with Multiply-Imputed Data. Statistica Sinica 1 (1): 65–92.
https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:chi
# Compare two linear models: imp <- mice(nhanes2, seed = 51009, print = FALSE) mi1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl)) mi0 <- with(data = imp, expr = lm(bmi ~ age + hyp)) D2(mi1, mi0)#> test statistic df1 df2 dfcom p.value riv #> 1 ~~ 2 3.649642 1 11.69791 NA 0.08089545 1.408231# \donttest{ # Compare two logistic regression models imp <- mice(boys, maxit = 2, print = FALSE) fit1 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc + reg, family = binomial)) fit0 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc, family = binomial)) D2(fit1, fit0)#> test statistic df1 df2 dfcom p.value riv #> 1 ~~ 2 2.47825 4 222.4287 NA 0.04500903 0.09706164# }