Applies glm()
to a multiply imputed data set
glm.mids(formula, family = gaussian, data, ...)
formula | a formula expression as for other regression models, of the
form response ~ predictors. See the documentation of |
---|---|
family | The family of the glm model |
data | An object of type |
... | Additional parameters passed to |
An objects of class mira
, which stands for 'multiply imputed
repeated analysis'. This object contains data$m
distinct
glm.objects
, plus some descriptive information.
This function is included for backward compatibility with V1.0. The function
is superseded by with.mids
.
Van Buuren, S., Groothuis-Oudshoorn, C.G.M. (2000) Multivariate Imputation by Chained Equations: MICE V1.0 User's manual. Leiden: TNO Quality of Life.
Stef van Buuren, Karin Groothuis-Oudshoorn, 2000
#> #> iter imp variable #> 1 1 bmi hyp chl #> 1 2 bmi hyp chl #> 1 3 bmi hyp chl #> 1 4 bmi hyp chl #> 1 5 bmi hyp chl #> 2 1 bmi hyp chl #> 2 2 bmi hyp chl #> 2 3 bmi hyp chl #> 2 4 bmi hyp chl #> 2 5 bmi hyp chl #> 3 1 bmi hyp chl #> 3 2 bmi hyp chl #> 3 3 bmi hyp chl #> 3 4 bmi hyp chl #> 3 5 bmi hyp chl #> 4 1 bmi hyp chl #> 4 2 bmi hyp chl #> 4 3 bmi hyp chl #> 4 4 bmi hyp chl #> 4 5 bmi hyp chl #> 5 1 bmi hyp chl #> 5 2 bmi hyp chl #> 5 3 bmi hyp chl #> 5 4 bmi hyp chl #> 5 5 bmi hyp chl# logistic regression on the imputed data fit <- glm.mids((hyp == 2) ~ bmi + chl, data = imp, family = binomial)#> Warning: Use with(imp, glm(yourmodel).fit#> call : #> glm.mids(formula = (hyp == 2) ~ bmi + chl, family = binomial, #> data = imp) #> #> call1 : #> mice(data = nhanes) #> #> nmis : #> age bmi hyp chl #> 0 9 8 10 #> #> analyses : #> [[1]] #> #> Call: glm(formula = formula, family = family, data = complete(data, #> i)) #> #> Coefficients: #> (Intercept) bmi chl #> -4.98053 0.02486 0.01474 #> #> Degrees of Freedom: 24 Total (i.e. Null); 22 Residual #> Null Deviance: 25.02 #> Residual Deviance: 23.12 AIC: 29.12 #> #> [[2]] #> #> Call: glm(formula = formula, family = family, data = complete(data, #> i)) #> #> Coefficients: #> (Intercept) bmi chl #> -7.51505 0.02664 0.02666 #> #> Degrees of Freedom: 24 Total (i.e. Null); 22 Residual #> Null Deviance: 25.02 #> Residual Deviance: 22.03 AIC: 28.03 #> #> [[3]] #> #> Call: glm(formula = formula, family = family, data = complete(data, #> i)) #> #> Coefficients: #> (Intercept) bmi chl #> -8.29196 0.10502 0.01992 #> #> Degrees of Freedom: 24 Total (i.e. Null); 22 Residual #> Null Deviance: 25.02 #> Residual Deviance: 21.99 AIC: 27.99 #> #> [[4]] #> #> Call: glm(formula = formula, family = family, data = complete(data, #> i)) #> #> Coefficients: #> (Intercept) bmi chl #> -7.09719 0.01271 0.02846 #> #> Degrees of Freedom: 24 Total (i.e. Null); 22 Residual #> Null Deviance: 29.65 #> Residual Deviance: 25.16 AIC: 31.16 #> #> [[5]] #> #> Call: glm(formula = formula, family = family, data = complete(data, #> i)) #> #> Coefficients: #> (Intercept) bmi chl #> -2.55325 -0.10346 0.02218 #> #> Degrees of Freedom: 24 Total (i.e. Null); 22 Residual #> Null Deviance: 29.65 #> Residual Deviance: 26.23 AIC: 32.23 #> #>