Applies lm() to multiply imputed data set

lm.mids(formula, data, ...)

Arguments

formula

a formula object, with the response on the left of a ~ operator, and the terms, separated by + operators, on the right. See the documentation of lm and formula for details.

data

An object of type 'mids', which stands for 'multiply imputed data set', typically created by a call to function mice().

...

Additional parameters passed to lm

Value

An objects of class mira, which stands for 'multiply imputed repeated analysis'. This object contains data$m distinct lm.objects, plus some descriptive information.

Details

This function is included for backward compatibility with V1.0. The function is superseded by with.mids.

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. https://www.jstatsoft.org/v45/i03/

See also

Author

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

Examples

imp <- mice(nhanes)
#> #> iter imp variable #> 1 1 bmi hyp chl #> 1 2 bmi hyp chl #> 1 3 bmi hyp chl #> 1 4 bmi hyp chl #> 1 5 bmi hyp chl #> 2 1 bmi hyp chl #> 2 2 bmi hyp chl #> 2 3 bmi hyp chl #> 2 4 bmi hyp chl #> 2 5 bmi hyp chl #> 3 1 bmi hyp chl #> 3 2 bmi hyp chl #> 3 3 bmi hyp chl #> 3 4 bmi hyp chl #> 3 5 bmi hyp chl #> 4 1 bmi hyp chl #> 4 2 bmi hyp chl #> 4 3 bmi hyp chl #> 4 4 bmi hyp chl #> 4 5 bmi hyp chl #> 5 1 bmi hyp chl #> 5 2 bmi hyp chl #> 5 3 bmi hyp chl #> 5 4 bmi hyp chl #> 5 5 bmi hyp chl
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
#> Warning: Use with(imp, lm(yourmodel).
fit
#> call : #> lm.mids(formula = bmi ~ hyp + chl, data = imp) #> #> call1 : #> mice(data = nhanes) #> #> nmis : #> age bmi hyp chl #> 0 9 8 10 #> #> analyses : #> [[1]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 21.97200 -2.10751 0.03717 #> #> #> [[2]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 21.1645 -2.1283 0.0436 #> #> #> [[3]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 22.14878 -0.20111 0.02421 #> #> #> [[4]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 23.21196 -2.15281 0.02989 #> #> #> [[5]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 20.86029 -3.49178 0.05265 #> #> #>