Applies lm()
to multiply imputed data set
lm.mids(formula, data, ...)
formula | a formula object, with the response on the left of a ~
operator, and the terms, separated by + operators, on the right. See the
documentation of |
---|---|
data | An object of type 'mids', which stands for 'multiply imputed data
set', typically created by a call to function |
... | Additional parameters passed to |
An objects of class mira
, which stands for 'multiply imputed
repeated analysis'. This object contains data$m
distinct
lm.objects
, plus some descriptive information.
This function is included for backward compatibility with V1.0. The function
is superseded by with.mids
.
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
https://www.jstatsoft.org/v45/i03/
Stef van Buuren, Karin Groothuis-Oudshoorn, 2000
#> #> iter imp variable #> 1 1 bmi hyp chl #> 1 2 bmi hyp chl #> 1 3 bmi hyp chl #> 1 4 bmi hyp chl #> 1 5 bmi hyp chl #> 2 1 bmi hyp chl #> 2 2 bmi hyp chl #> 2 3 bmi hyp chl #> 2 4 bmi hyp chl #> 2 5 bmi hyp chl #> 3 1 bmi hyp chl #> 3 2 bmi hyp chl #> 3 3 bmi hyp chl #> 3 4 bmi hyp chl #> 3 5 bmi hyp chl #> 4 1 bmi hyp chl #> 4 2 bmi hyp chl #> 4 3 bmi hyp chl #> 4 4 bmi hyp chl #> 4 5 bmi hyp chl #> 5 1 bmi hyp chl #> 5 2 bmi hyp chl #> 5 3 bmi hyp chl #> 5 4 bmi hyp chl #> 5 5 bmi hyp chlfit <- lm.mids(bmi ~ hyp + chl, data = imp)#> Warning: Use with(imp, lm(yourmodel).fit#> call : #> lm.mids(formula = bmi ~ hyp + chl, data = imp) #> #> call1 : #> mice(data = nhanes) #> #> nmis : #> age bmi hyp chl #> 0 9 8 10 #> #> analyses : #> [[1]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 21.97200 -2.10751 0.03717 #> #> #> [[2]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 21.1645 -2.1283 0.0436 #> #> #> [[3]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 22.14878 -0.20111 0.02421 #> #> #> [[4]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 23.21196 -2.15281 0.02989 #> #> #> [[5]] #> #> Call: #> lm(formula = formula, data = complete(data, i)) #> #> Coefficients: #> (Intercept) hyp chl #> 20.86029 -3.49178 0.05265 #> #> #>