Number of observations per variable pair.
md.pairs(data)
data | A data frame or a matrix containing the incomplete data. Missing
values are coded as |
---|
A list of four components named rr
, rm
, mr
and
mm
. Each component is square numerical matrix containing the number
observations within four missing data pattern.
The four components in the output value is have the following interpretation:
response-response, both variables are observed
response-missing, row observed, column missing
missing -response, row missing, column observed
missing -missing, both variables are missing
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
https://www.jstatsoft.org/v45/i03/
Stef van Buuren, Karin Groothuis-Oudshoorn, 2009
pat <- md.pairs(nhanes) pat#> $rr #> age bmi hyp chl #> age 25 16 17 15 #> bmi 16 16 16 13 #> hyp 17 16 17 14 #> chl 15 13 14 15 #> #> $rm #> age bmi hyp chl #> age 0 9 8 10 #> bmi 0 0 0 3 #> hyp 0 1 0 3 #> chl 0 2 1 0 #> #> $mr #> age bmi hyp chl #> age 0 0 0 0 #> bmi 9 0 1 2 #> hyp 8 0 0 1 #> chl 10 3 3 0 #> #> $mm #> age bmi hyp chl #> age 0 0 0 0 #> bmi 0 9 8 7 #> hyp 0 8 8 7 #> chl 0 7 7 10 #># show that these four matrices decompose the total sample size # for each pair pat$rr + pat$rm + pat$mr + pat$mm#> age bmi hyp chl #> age 25 25 25 25 #> bmi 25 25 25 25 #> hyp 25 25 25 25 #> chl 25 25 25 25# percentage of usable cases to impute row variable from column variable round(100 * pat$mr / (pat$mr + pat$mm))#> age bmi hyp chl #> age NaN NaN NaN NaN #> bmi 100 0 11 22 #> hyp 100 0 0 12 #> chl 100 30 30 0