Number of observations per variable pair.

md.pairs(data)

Arguments

data

A data frame or a matrix containing the incomplete data. Missing values are coded as NA.

Value

A list of four components named rr, rm, mr and mm. Each component is square numerical matrix containing the number observations within four missing data pattern.

Details

The four components in the output value is have the following interpretation:

list('rr')

response-response, both variables are observed

list('rm')

response-missing, row observed, column missing

list('mr')

missing -response, row missing, column observed

list('mm')

missing -missing, both variables are missing

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. https://www.jstatsoft.org/v45/i03/

Author

Stef van Buuren, Karin Groothuis-Oudshoorn, 2009

Examples

pat <- md.pairs(nhanes) pat
#> $rr #> age bmi hyp chl #> age 25 16 17 15 #> bmi 16 16 16 13 #> hyp 17 16 17 14 #> chl 15 13 14 15 #> #> $rm #> age bmi hyp chl #> age 0 9 8 10 #> bmi 0 0 0 3 #> hyp 0 1 0 3 #> chl 0 2 1 0 #> #> $mr #> age bmi hyp chl #> age 0 0 0 0 #> bmi 9 0 1 2 #> hyp 8 0 0 1 #> chl 10 3 3 0 #> #> $mm #> age bmi hyp chl #> age 0 0 0 0 #> bmi 0 9 8 7 #> hyp 0 8 8 7 #> chl 0 7 7 10 #>
# show that these four matrices decompose the total sample size # for each pair pat$rr + pat$rm + pat$mr + pat$mm
#> age bmi hyp chl #> age 25 25 25 25 #> bmi 25 25 25 25 #> hyp 25 25 25 25 #> chl 25 25 25 25
# percentage of usable cases to impute row variable from column variable round(100 * pat$mr / (pat$mr + pat$mm))
#> age bmi hyp chl #> age NaN NaN NaN NaN #> bmi 100 0 11 22 #> hyp 100 0 0 12 #> chl 100 30 30 0