A small data set with non-monotone missing values.

Format

A data frame with 25 observations on the following 4 variables.

age

Age group (1=20-39, 2=40-59, 3=60+)

bmi

Body mass index (kg/m**2)

hyp

Hypertensive (1=no,2=yes)

chl

Total serum cholesterol (mg/dL)

Source

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall. Table 6.14.

Details

A small data set with all numerical variables. The data set nhanes2 is the same data set, but with age and hyp treated as factors.

See also

Examples

# create 5 imputed data sets imp <- mice(nhanes)
#> #> iter imp variable #> 1 1 bmi hyp chl #> 1 2 bmi hyp chl #> 1 3 bmi hyp chl #> 1 4 bmi hyp chl #> 1 5 bmi hyp chl #> 2 1 bmi hyp chl #> 2 2 bmi hyp chl #> 2 3 bmi hyp chl #> 2 4 bmi hyp chl #> 2 5 bmi hyp chl #> 3 1 bmi hyp chl #> 3 2 bmi hyp chl #> 3 3 bmi hyp chl #> 3 4 bmi hyp chl #> 3 5 bmi hyp chl #> 4 1 bmi hyp chl #> 4 2 bmi hyp chl #> 4 3 bmi hyp chl #> 4 4 bmi hyp chl #> 4 5 bmi hyp chl #> 5 1 bmi hyp chl #> 5 2 bmi hyp chl #> 5 3 bmi hyp chl #> 5 4 bmi hyp chl #> 5 5 bmi hyp chl
# print the first imputed data set complete(imp)
#> age bmi hyp chl #> 1 1 25.5 1 187 #> 2 2 22.7 1 187 #> 3 1 27.2 1 187 #> 4 3 24.9 2 218 #> 5 1 20.4 1 113 #> 6 3 20.4 1 184 #> 7 1 22.5 1 118 #> 8 1 30.1 1 187 #> 9 2 22.0 1 238 #> 10 2 30.1 2 218 #> 11 1 27.2 1 187 #> 12 2 27.2 2 206 #> 13 3 21.7 1 206 #> 14 2 28.7 2 204 #> 15 1 29.6 1 238 #> 16 1 26.3 1 187 #> 17 3 27.2 2 284 #> 18 2 26.3 2 199 #> 19 1 35.3 1 218 #> 20 3 25.5 2 206 #> 21 1 35.3 1 204 #> 22 1 33.2 1 229 #> 23 1 27.5 1 131 #> 24 3 24.9 1 206 #> 25 2 27.4 1 186