
Data Augmentation and Stochastic Weight Averaging
in ResNetV2

Amir Darwesh∗

adarwesh@tamu.edu

Abstract

This project evaluates Data Augmentation techniques and Stochastic Weight av-
eraging (SWA) in ResNet networks for Deep Learning on the CIFAR-10 dataset.
An original (ResNet-20) and a proposed version based other works is used for
comparison for SWA and data augmentation. Our best accuracy achieved 95.15%
on the CIFAR-10 test set via the standard augmentation technique (flip, crop, and
normalize). Although other data augmentation techniques did not succeed, a hy-
pothesis is formed explaining potential causes for failure. For SWA, improvement
gains seen from other papers were not realized - though this may be due to untuned
learning rates.

1 Introduction

1.1 ResNet

The original Residual Network paper, published by Kaiming et. al. [1], utilized a shortcut function
after applying non-linearity. In the updated version (ResNet-V2) [2], the shortcut function was
changed such that they do not go through a non-linear transform, subsequently named "identity
mappings" due to the direct connection of model inputs to outputs. Within either version of the
ResNet, two flavors of residual blocks were used: (1) standard blocks, and (2) bottleneck blocks.
Standard blocks were used in-cases where the network architecture was very shallow (e.g. less than
50 layers), where as bottle-neck blocks were used in deep networks due to performance draw-downs
of the standard blocks.

In this project, we have focused on trying to develop improvements in different areas in ResNetV2
architecture. Improvement experiments for this project included changing the network architecture
by following some previous work on GitHub[4], our own data augmentation experiments, and model
generalization via Stochastic Weight Averaging (SWA) [3]. The following sections will detail the
original and proposed network architectures, data augmentation experiments, and the procedure for
SWA implementation in PyTorch. The design of experiments section details the procedure for testing
improvement experiments, and the training procedure section provides details on training such as the
learning rate, epoch stopping, training visualization, and model check-pointing. Finally, we present
our training results, and end by summarizing conclusions from the experiments.

1.1.1 ResNetV2-20

ResNet-20 is a shallow architecture, presented first in [1]. Modifcations of this network include
the update of Identity mappings and Pre-activation functions detailed in [2], hence the name V2. A
summary of model parameters, and figure of the network architecture is presented in Table 1 and
Fig. 1, respectively.

∗Graduate Student, Texas A&M University. https://amirdarwesh.com

CSCE 636 - FALL 2020 TERM PROJECT

https://amirdarwesh.com


Table 1: ResNet20 Structure

Layer Name Output Size Weight Structure # of Parameters
Conv1 32 × 32 × 16 3 × 3, 16 432

ConvStack1 32 × 32 × 16

[
3 × 3
3 × 3

]
× 3 13,824

ConvStack2 16 × 16 × 32

[
3 × 3
3 × 3

]
× 3 51,200

ConvStack3 8 × 8 × 64

[
3 × 3
3 × 3

]
× 3 204,800

AvgPool 8 × 8 × 1
F.C. 10 × 1 65 × 10 650

Total 272,154

Input (n, 3, 32, 32)

Conv1 (3x3), P=1, S=1

convStack1 (n x 16 x 32 x 32)

convStack2 (n x 32 x 16 x 16)

convStack3 (n x 64 x 8 x 8)

F.C. Linear (n x 10)

AveragePool (n x 64 )

convStack

ResUnitV2

ResUnitV2

SoftMax

ResUnitV2

ResUnitV2

Figure 1: ResNet-20 Architecture[2]

1.1.2 ResNetV2-Proposed

After some searching on various pytorch implementations of ResNet, an interesting version was
found in [4]. Since the main components of the report is data augmentation and SWA, a similar
implementation is done from the GitHub. The original network code was cleaned up, restructured,
and organized for code readability. Further, the authors of the original repository missed some
implementation details from the ResNetV2 paper, and subsequently mis-represented the network as
ResNet-18 - when infact it was more similar to ResNet-164.

Still however, the network found in [4] reported good accuracy (95.1%). The network structure
utilizes a standard Resiudal Unit Block (as opposed to the BottleNeck block), and is actually quite
similar to the network found in [1] used in the ImageNet classifcation network. The main difference
between this implementation and ResNet-164 is that there four residual network stacks, and the final
output feature map is half that of the original (4x4) vs. (8x8), respectively. Fig. 2 and Table 2 detail
the network architecture and layer structures.

1.2 Data Augmentation

For image augmentation, we test four different types of augmentation techniques. For image
Augmentation, we initially utilized the ImgAug package which provides support for PyTorch;
however, this package added 40s of additional computation per epoch. The augmentation library
utilized was then switched to one from torchvision. The augmentations are applied randomly at each
batch interval, which allows the training dataset to have the original size of 50k. Fig. 3 illustrates the
the training data without any augmentation.

2

https://github.com/aleju/imgaug
https://pytorch.org/docs/stable/torchvision/transforms.html


Input (n, 3, 32, 32)

Conv1 (3x3)

convStack1 (n x 64 x 32 x 32)

convStack2 (n x 128 x 16 x 16)

convStack3 (n x 256 x 8 x 8)

F.C. Linear (n x 10)

AveragePool (n x 512)

softmax

convStack3 (n x 512 x 4 x 4)

convStack

ResUnitV2

ResUnitV2

ResUnitV2

Figure 2: Proposed ResNet Architecture [2],[4]

Table 2: ResNet-Prop Structure

Layer Name Output Size Weight Structure # of Parameters
Conv1 32 × 32 × 64 3 × 3, 64 1,728

ConvStack1 32 × 32 × 64

[
3 × 3
3 × 3

]
× 2 151,456

ConvStack2 16 × 16 × 128

[
3 × 3
3 × 3

]
× 2 524,288

ConvStack3 8 × 8 × 256

[
3 × 3
3 × 3

]
× 2 2,097,152

ConvStack4 4 × 4 × 512

[
3 × 3
3 × 3

]
× 2 8,388,608

AvgPool 4 × 4 × 1
F.C. 10 × 1 513 × 10 5,130

Total 11,171,146

In all techniques, we normalize each channel by subtracting the per channel mean, and dividing
by the channel standard deviation, as shown in Eq. (1) below, based on the entire training dataset.
For the CIFAR-10 dataset, the per channel mean and standard deviation is [0.4914, 0.4822, 0.4465],
and [0.2470, 0.2435, 0.2616], respectively. These normalization constants are also applied to the
CIFAR-10 and private testing datasets.

D̂ =
(D − D̄)

σD
(1)

Table 3:

Augmentation Name Crop LR Flip (%) Translate Rotate Scale Shear
Standard TRUE 0.5 N/A N/A N/A N/A
Transform1 TRUE 0.5 (-10,10) % -20,20 deg N/A N/A
Transform2 TRUE 0.5 (-20,20) % -20,20 deg (90,110) % (-8,8)

3



Figure 3: 12 CIFAR 10 Images with no transformation

2.5 3.0 3.5 4.0 4.5 5.0
Execution Time [ms]

0

50

100

150

200

250

300

Fr
eq

Execution Performance for Image Augmentations
Transform Standard
Transform1
Transform2
Transform3

Figure 4: Execution time per batch with various image augmentation transforms using torchvision

1.2.1 Standard Augmentation

For the first augmentation technique, labeled as ImageAugmentationStandard, we apply random crops
and random flip to the training dataset. This method is consistent with the original paper presented
by Kaming et. Al., and hence the naming convention "standard". These transforms are illustrated in
Fig. 5 below.

Figure 5: Standard Image Augmentation (crop and flip)

1.2.2 Augmentation Transform 1

For the 2nd augmentation, labeled as ImageAugmentationTranaform1, we include the standard
augmentation and add a random rotation and translation. These transforms are illustrated in Fig. 6
below.

1.2.3 Augmentation Transform 2

For the 3rd augmentation, labeled as Image AugmentationTransform2, we increase the ranges of
rotation and translations from the previous transform, and also include a shear transform, as illustrated
in Fig. 7 below.

4

https://pytorch.org/docs/stable/torchvision/transforms.html


Figure 6: Transform 1 Image Augmentation (crop, flip, rotate, translate)

1.2.4 Augmentation Transform 3

A minor late-addition includes Augmentation Transform 3. This transform is the same as the
StandardAugmentation, but includes a probability chance of 10% of any given image being converted
into gray-scale. The motivation here is to have the network learn features via color independence.

Figure 7: Transform 2 Image Augmentation (crop, flip, rotate,translate, shear)

Figure 8: Transform 3 Image Augmentation (crop, flip, and BW p = 0.1)

1.3 Stochastic Weight Averaging

Stochastic Weight Averaging (SWA), introduced by Izmailov .et. al., is a method that averages points
on the gradient direction in Stochastic Gradient Descent to provide better model generalization [3].
The authors of SWA noted sizable increases in model performances in different networks trained
on CIFAR-10. For ResNet-164, the authors were able to improve performance from 95.28 ± 0.1 to
95.56 ± 0.11 accuracies.

Starting from PyTorch 1.6, SWA is included in the optim library as swa-utils. As SWA is easy to
implement and has low overhead, it was included in our Design of Experiments to try and improve
model accuracy in both ResNet architectures studied in this paper. In implementation, SWA kicks
in at around 75% of the training epochs. However, it was also tested with SWA kicking in at much
lower epochs such as at 10%.

1.4 Code Architecture

The architecture for the code is summarized in Table 4. Mostly everything is modularized, with
Network.py and Module.py serving as the main files containing the bulk of the operations. If
Stochastic Weight Averaging is needed, lines 6/7 in main.py should be switched to utilize model.py
or model_SWA.py.

5

https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/


Table 4: Summary table for code files in submission

File Name Description
Configure.py Configuration File that contains dictionaries defining the

training Parameters. Passed to main.py.

DataLoader.py Loads the CIFAR-10 and Private Image Testing sets. Uses
torchvision for the CIFAR 10 datasets, and custom class
file for private dataset. Returns torch DataSet format with
optional transform definition for images. Images are (chan-
nel,width,height) (3,32,32).

ImageUtils.py Defines Image Augmentation transform sequence. Loaded
in Configure.py and passed to DataLoader.py

Network.py Defines netork structure for ResNetV2-20 or Prop. Called in
model.py / model_SWA.py and returns Torch nn.module.

Model.py Defines training procedure and checkpoint feature. Logs
training statistics to tensor board, and manages terminal text
output.

Model_SWA.py Same as Model.py, but with stochastic weight averaging for
training procedure.

main.py Main function to load all modules and run either training, test-
ing, or prediction. Loads either Model_SWA.py or Model.py
depending on which one is uncommented.

utils.py Helper file for common functions

PrivateDataset.py Torch dataset class to define custom private dataset. Loads
the numpy array.

2 Design of Experiments

For the Design of Experiments, an initial set of experiments was conducted with training with and
without Stochastic Weight Averaging for both ResNetV2-Proposed and ResNetV2-20 using the
standard image transformation. For other image transformations, most were tested in both network
models, with the exception of Transform 3 - which was only tested in the proposed network.

2.1 Training Procedure

In total, over 50 experiments were conducted exceeding over 150 hours of training times - though only
9 are presented in this work. Most of the experiments were initial testing with training / validation
splits at 45/5k to tune training hyper-parameters. For the 9 experiments, presented in Table 5, the
entire CIFAR-10 50k image training set was used, with accuracies reported from the test set. For
training, a learning rates are presented in the tensorboard log file, with a batchsize of 128. Starting
too high (lr > 0.1) with a learning rate caused the gradients to explode, while starting too low
(lr < 0.05) resulted increased iterations. For logging, Tensorboard is utilized, where the loss,
train/test accuracy, and learning rate is logged. . Batch sizes 256, 512, 1024 were tested; however,
though these batch sizes led to better utilization of the computational resources, the model accuracy
suffered.

2.2 Computing Resources

For computing resources, two machines were primariy utilized: (1) An Alienware Laptop with GTX
1060, (2) a Lambda system with two NVidia Titan RTXs (48 GB GPU RAM available). Training
generally took six hours on the 1060, and two hours on the Lambda system. An extensive analysis
has not been conducted, but it appeared that the main bottleneck was the CPU capacity.

6

https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/
https://lambdalabs.com/gpu-workstations/vector


3 Results

Results for the experiments presented in Table 5. Although extensive hyper-parameter tests were done
for the Data Augmentation, it appeared that the standard augmentation (crop and flip) appeared to
have the best network performance at 95.15% test accuracy. Note that the shallow network ResNet-20
suffered extremely in performance with image augmentation, compared to the proposed network.

Table 5: Experimental Results after hyper-parameter testing. Model Checkpoints avaialble here

Network / Augmentation Log Test
Acc (%)

ResNetV2-20 Standard link 91.23
ResNetV2-20 Transform1 link 88.19
ResNetV2-20 Transform2 link 88.17
SWA-ResNetV2-20 Standard link 91.23

ResNetV2-Prop Standard link 95.15
ResNetV2-Prop Transform1 link 94.64
ResNetV2-Prop Transform2 link 93.02
SWA-ResNetV2-Prop Standard link 94.64
ResNetV2-Prop Transform3 link 94.89

4 Conclusions & Future Work

This project targeted two areas detailed in the project description:

• "Data pre-processing, normalizations and augmentations", via 4 transform augmentation
techniques

• "Training strategies, optimizers, parameter initializations, regularizations, etc." via Stochas-
tic Weight Averaging in the training procedure

Further, we also updated a publicly available pytorch based ResNet with better documentation, better
code readability, and small improvements, dubbed as ResNet-prop.

Although the expected imrpovements from SWA and image augmentation were not realized, various
insights were developed throughout the course project. For data augmentation, Transforms 1 and 2
had trouble getting good accuracy due to the large amount of blacked out data caused by rotating the
image while maintaining the same feature input map. Improvements to this area could include lesser
rotations, such as < 5 deg, or full rotations such as 90 deg.

For SWA, the proposed network actually suffered a degradation in performance. This may be due to
the fact the learning rate adjustment for SWA was not tuned, and hence did not update the model
average as precisely. Future work should include an extensive test on hyper-parameters with regards
to SWA.

References
[1] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385

[cs.CV].
[2] Kaiming He et al. Identity Mappings in Deep Residual Networks. 2016. arXiv: 1603.05027

[cs.CV].
[3] Pavel Izmailov et al. Averaging Weights Leads to Wider Optima and Better Generalization.

2019. arXiv: 1803.05407 [cs.LG].
[4] Kuang Liu. pytorch-cifar. 2020. URL: https://github.com/kuangliu/pytorch-cifar.

7

https://drive.google.com/drive/folders/15TU7cZj6ke8fERephWuX5J624cr4VNe-?usp=sharing
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://tensorboard.dev/experiment/sEAhrRHqRJePZ26pPo1ZsA/#scalars
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1803.05407
https://github.com/kuangliu/pytorch-cifar

	Introduction
	ResNet
	ResNetV2-20
	ResNetV2-Proposed

	Data Augmentation
	Standard Augmentation
	Augmentation Transform 1
	Augmentation Transform 2
	Augmentation Transform 3

	Stochastic Weight Averaging
	Code Architecture

	Design of Experiments
	Training Procedure
	Computing Resources

	Results
	Conclusions & Future Work

