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Abstract

Autonomous vehicles rely heavily on deep fusion modeling,
which utilize multiple inputs for its inferences and decision
making. By using the data from these inputs, the deep fusion
model benefits from shared information, which is primarily
associated with robustness as these input sources can face
different levels of corruption. Thus, it is highly important
that the deep fusion models used in autonomous vehicles
are robust to corruption, especially to input sources that
are weighted more heavily in different conditions. We ex-
plore a different approach in training the robustness for a
deep fusion model through adversarial training. We train the
model on adversarial examples and evaluate its robustness
against single source noise and other forms of corruption.
Our experimental results show that adversarial training was
effective in improving the robustness of a deep fusion model
object detector against adversarial noise and Gaussian noise
while maintaining performance on clean data. We believe
that this is relevant given the risks that autonomous vehicles
pose to pedestrians - it is important that we ensure the infer-
ences and decisions made by the model are robust against
corruption, especially if it is intentional from outside threats.

1 Introduction

Deep fusion modeling has been used in many applications,
specifically in autonomous vehicles. The key advantage in
this approach is utilizing multiple input sources, in which
they provide shared and complementary information. For
instance, in different environmental conditions such as night-
time or rain, some sensors would be weighted more heavily
than others and can complement the shortcomings of other
input sources. This can be seen in a variety of input sources
for autonomous vehicles such as LIDAR (Light Detection
and Ranging) radars and RGB cameras, which serve different
information about the environment such as distance and de-
tection of other objects. Specifically, LIDAR sensors are more
effective at nighttime in comparison to RGB cameras. Thus,
it is important to ensure that the model can still make robust
predictions when facing single source corruption, especially
in the sensors that are weighted more heavily.

Single source corruption could be the result of physical
damage done to a particular sensor instead of the overall
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inputs themselves, which emphasizes the importance of guar-
anteeing some robustness from the shared information of
the sensors to compensate for the corruption. If this is not
accounted for, there would be serious consequences for allow-
ing a robust-poor autonomous vehicle to drive on the streets
with actual civilians. Kim, Taewan, and Joydeep Ghosh’s [1]
work addresses this issue through implementing two effi-
cient training algorithms for minimizing their novel loss to
ensure robustness without affecting the performance of the
model on clean data.

While these are effective approaches to improving the
robustness of the model, the motivation behind these solu-
tions was to handle random single source corruption, as the
authors generated random noise through sampling from a
Gaussian distribution as well as downsampling. However,
these models are susceptible to intentional corruption, either
through a third party source or a malfunction within the
system, in which the objects are classified as something else.
This poses a particular threat to safety-critical applications
of ML, notably self-driving cars, as the noise can be intention-
ally optimized on the inputted data to control the decisions
made by the model. In order to explore this motivation in
protecting the deep fusion model systems, we examine ad-
versarial training as a method to train for robustness against
single source corruption.

We train three 3D object detection models, which are
trained on clean data, fine-tuned on adversarial data, and
fine-tuned on random noise data. Then, we compare the
results of these models on clean, adversarial, and random
noise data and evaluate their performance on robustness.

Figure 1. Sample Image from KITTI Dataset
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Figure 2. AVOD Model Architecture [6]

2 Data

For our research, we will use the KITTI (Karlsruhe Institute
of Technology and Toyota Technological Institute) dataset,
a popular benchmark dataset for autonomous driving re-
search. This contains six hours of traffic scenarios, which
were recorded using various modalities such as color stereo
cameras and a Velodyne 3D laser scanner. The scenarios
recorded range between different locations such as rural
streets, freeways, and city roads [5]. For our purposes of the
experiment, we utilize the benchmarks for object detection
tasks, which provides accurate bounding boxes in both 3D
and BEV (Bird’s Eye View) for object types such as cars, cy-
clists, and pedestrians. Figure 1 showcases an example of an
RGB image input from this dataset.

3 Model

We use the AVOD (Aggregate View Object Detection) model,
which is a neural network that uses LIDAR point clouds and
RGB images to deliver real-time object detection in the form
of bounding boxes and labels for objects in an image [6]. It is
structured by two subnetworks, a region proposal network
(RPN) and a second stage detector network, the former gen-
erating 3D object proposals for multiple object classes and
the latter creating accurate oriented 3D bounding boxes and
category classifications for predictions.

The AVOD model has state of the art results on the KITTI
object detection benchmark, making it a great candidate for
our baseline model. Using the same setup as Kim, Taewan,
and Joydeep Ghosh [1], we will train the model solely on the
car class for the object detection tasks and use the feature
pyramid network for feature extraction. Figure 2 highlights
the structure of the AVOD model, in which the blue com-
ponents represent the feature extractors, pink components

represent the region proposal network (RPN), green compo-
nents represent the second stage detector network, and the
yellow components representing the adversarial examples
generation process.

4 Methods

As our motivation for pursuing this research is to handle
intentional single source corruption, we explore adversar-
ial training as an approach to developing robustness. Ad-
versarial training focuses on deceiving the model into mis-
labeling an image by altering the pixel values so that the
changes made to the image are indistinguishable to the hu-
man eye, but recognizable by a model. These mislabeled
images through small perturbations are called adversarial
examples. Figure 3 showcases an example of an image of
a pig perturbed to be misidentified as an airliner, despite
visually appearing the same.
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Figure 3. Adversarial Example of a Pig Image [4]

4.1 Adversarial Examples

Since an adversarial example should predict the wrong label,
creating an adversarial example differs from the typical way
of training a classifier. The usual way would be to minimize
the loss of the input’s predicted output to the true output as
represented by

miniemize £(hg(x),y)



where ¢ is the loss function, hg is the model, and x is the
image input. Given the structure of the AVOD model, we
add the perturbation to the image ROIs (Region of Interest),
which are represented as a feature map instead of directly
manipulating the specific pixel values. This is generated from
the region proposal network (RPN) component of the model.
For the model to make its predictions, it converts the differ-
ent input sources information into feature maps, which can
be interpreted and passed through the convolutional layers
of the model.

However, to create an adversarial example, we instead
want to maximize the loss. The optimization problem to
solve would be

maximize £(hg(%),y)
X

where % is the adversarial example we want to maximize
the loss of.

The adversarial example is an image x with noise § added
to it. This noise, more formally referred to as perturbation,
is a mask of values over each pixel value and is specific to a
given image. Rewriting the optimization problem again to
include 8, we get

maximize £(hg(x + 9),y)
SeA

where ¢ indicates the valid set of perturbations to add.
We keep § within A to ensure the perturbed image is still
recognizable to the human-eye. Solving this equation yields
an adversarial example to use for an untargeted attack.

We will implement the Fast Gradient Sign Method (FGSM)
as our primary method of solving for the optimization objec-
tive. For FGSM, we take the largest step possible to maximize
the loss so that § is updated to be as large as possible. To
ensure is still a valid perturbation, § is constrained to be
within +e. For our approach, we select § to be a fixed value
as a maximum perturbation. This means the magnitude of §
is maxed to be € in FGSM. We then With this constraint, the
equation for updating & in FGSM becomes the following.

d =€ - sign(g)

This process creates an adversarial example on one image.
For computation speed, we propose using FGSM to produce
an adversarial example. To train a model adversarially, mul-
tiple examples need to be created and the overall loss on the
prediction of all these images need to be minimized.

4.2 Adversarial Training

To train a model against adversarial attacks, we create adver-
sarial examples and include them into the training set. The
loss for predicting all the adversarial examples would need

to be minimized. Formally, this optimization problem can be
written as

1
minimize — maximize £ (hg(X),
7 |S|X;S imize £(ho(%). )

where S represents the input and output pairs and the inner
maximization is the same as the previous section.

This optimization problem, also known as the outer min-
imization problem, can be solved using standard gradient
descent. For our experiment, the model is fine-tuned using
adversarial examples, as it is initially constructed using clean
data. This allows us to focus on a standard baseline model
and compare the effects of introducing adversarial examples
as a means of fine-tuning the initial parameters.

4.3 Proposed Training Algorithm

We will implement our adversarial training algorithm through
developing adversarial examples from the input sources and
optimizing the maximum perturbation added to the data.
Specifically, we plan on perturbing the image input of our
model due to difficulties in translating the noise over to the
LIDAR input [2]. Although we recognize that we can add
perturbation to both input sources, we understand that there
would be a different range of perturbations added. For in-
stance, the noise added to the LIDAR input would be of a
different magnitude and for our exploration, we plan on only
focusing on images.

Initially, we train the model normally given clean data, but
fine-tune the parameters based on the adversarial examples
we provide later. We calculate the best perturbation to add by
using FGSM to the image input for each image ROI (Region
of Interest). We repeat this procedure after initially training
on the clean data so that we can fine-tune the parameters
in the training procedure with adversarial examples. We
illustrate our procedure below:

5 Experimental Results

We test our training algorithm for the 3D and BEV object
detection tasks on the car class of the KITTI dataset and
compare our results to the previous work done by Taewan
Kim and Joydeep Ghosh [1]. These results are based on the
difficulty levels within the dataset, ranging between easy,
medium, and hard. We follow the standard metric of using
an Average Precision (AP) score and reporting the minimum
AP score across all input sources to assess robustness.

We compare three different algorithms and assess their
performance based on the data provided: the AVOD model
trained on (i) clean data, (ii) single source randomly gen-
erated noisy data, and (iii) adversarial examples. For our
training purposes, we opted to use the metrics recorded by



Proposed Algorithm
1. For fine-tuning AVOD model on adversarial data:
a. Select mini-batch B
i.  For each (x;, y;) in B:
1. Compute gradient of classification loss
with respect to image ROIs =;
9=V llho(:), vi)
2. Calculate the perturbation
§ = sign(g) * €
3. Add perturbation to ;
T, =T+ 0
ii.  Perform backpropagation

1
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Figure 4. Pseudocode for Training Algorithm

Taewan Kim and Joydeep Ghosh [1] for the following: AVOD
model trained on (i) clean data and (ii) single source random
noise and the inference on both of these data. Hence, we
focus on the following experimental set-up to generate our

results:
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Figure 5. Experimental Set-Up

5.1 Results

From our results, we observed that on the clean test data, the
adversarial model performed slightly worse than the clean
and SSN models but managed to perform slightly better than
the SSN model on SSN data (Figure 6). We find this inter-
esting as the SSN model was trained specifically to handle
random single source generated noise, but our adversarial
model proved to be as robust in handling random noise. Al-
though our adversarial model performed slightly worse on
the clean dataset compared to the other two models, its per-
formance is comparable in that there is not a significant drop
as seen with the adversarial test data for the clean and SSN

model.
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Figure 6. AP Scores of Models on Easy KITTI Validation
Data

We also observed that the adversarial model performed
significantly better than the other two models on adversarial
data. Specifically, we observe a comparable performance of
the adversarial model to the other types of data, clean and
SSN, but when comparing the adversarial inferences of the
clean model and the SSN model, their performances dramat-
ically dropped close to zero. For instance, the clean model
dropped from a performance of 89.33 to 0.0536 from a switch
from clean to adversarial data. Although the clean model had
the highest performance on clean data, it is concerning that
it was not robust at all to handle adversarial corruption. This
indicates that the adversarial attacks were successful against
the deep fusion models and proved their lack of robustness
against adversarial attacks. However, the adversarial model
proved to be robust against these attacks while maintaining
comparable performance on the other benchmarks.
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Figure 7. AP Scores of Models (Clean, SSN) on Easy KITTI
Validation Data



Average Precision (AP) Score: 3D Object Detection
Clean Data Easy Moderate Hard
AVOD 76.41 72.74 66.86
+SSN 73.50 65.66 64.74
+ADV 71.09 63.75 63.73
SSN Data Easy Moderate Hard
AVOD 69.04 55.08 54.63
+SSN 62.46 53.85 47.62
+ADV 69.12 54.89 54.55
ADV Data Easy Moderate Hard
AVOD 0.0018 0.0035 0.0057
+SSN 0.0037 0.0105 0.0120
+ADV 66.11 60.40 61.04

Table 1. Car detection (3D) performance of AVOD with element-wise mean fusion layers against Gaussian SSN and Adversarial

Examples on the KITTI validation set

Average Precision (AP) Score: BEV Object Detection
Clean Data Easy Moderate Hard
AVOD 89.33 86.49 79.44
+SSN 88.27 85.65 78.98
+ADV 86.97 78.47 78.29
SSN Data Easy Moderate Hard
AVOD 87.77 78.38 78.41
+SSN 77.77 68.71 67.89
+ADV 87.83 78.40 78.33
ADV Data Easy Moderate Hard
AVOD 0.0536 0.0890 0.1177
+SSN 0.0630 0.1264 0.1617
+ADV 83.85 76.84 76.43

Table 2. Car detection (BEV) performance of AVOD with element-wise mean fusion layers against Gaussian SSN and Adversarial

Examples on the KITTI validation set

6 Future Work

For further development within this research, we would
like to experiment with different values of +e to understand
how we can best define the maximum perturbation. For
our approach, we decided to choose a value that added a
small perturbation to each value within the feature map but
not drastic to the extent where the input data itself is com-
pletely manipulated. Additionally, we would like to certify
the robustness of our model, specifically utilizing Chiang,
Ping-yeh, et al’s Certified Object Detection [3] approach for
verifying robustness of object detectors for two categories
of object detection: bounding-box and label. Their method
involves smoothing based on Gaussian medians as opposed
to Gaussian means and can ensure model robustness against
all possible attackers and would be helpful in certifying that
our model is robust against any generalized attack instead
of just adversarial and random Gaussian noise.

7 Conclusion

We explored the importance of developing robustness in
deep fusion modeling as seen in the area of autonomous ve-
hicles. While there has been much research done in making
these models as accurate as they can be, it is imperative that
we focus on ensuring that the model can still make proper
and reasonable inferences when faced with unforeseen cir-
cumstances. Through adversarial training, we were able to
demonstrate that this is a viable approach in improving the
robustness against single source corruption in addition to
previous works. The adversarial model proved to be robust
against both single source Gaussian noise as well as adversar-
ial examples, whereas the other models performed extremely
poorly against adversarial examples. While our models’ per-
formance was comparable on the other validation datasets,
it is important that these models are robust against any at-
tacks, especially those that are intentional like adversarial



attacks from third parties. We hope our work inspires fur-
ther exploration of using adversarial training in developing
robustness.
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