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What is machine learning?
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loan_amnt | term int_rate | grade | home_ownership | annual_inc
5000.0 36 months [ 10.65% | B RENT 24000.0
2500.0 60 months [ 15.27% | C RENT 30000.0
2400.0 36 months [ 15.96% | C RENT 12252.0
10000.0 36 months [ 13.49% | C RENT 49200.0
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7000.0 60 months [ 15.96% | C RENT 47004.0
3000.0 36 months [ 18.64% | E RENT 48000.0
5600.0 60 months [ 21.28% | F OWN 40000.0
5375.0 60 months [ 12.69% | B RENT 15000.0
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Supervised Learning

(2;,Yi) < p(a,y) iid

Most common applications:
- Automate a manual task
- Predict the future



Classification and Regression

Classification: Regression:
» y discrete e y continuous
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Not only

Also for new data:

(Generalization
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Documentation of scikit-learn 0.17

Quick Start

A very short infroduction into machine
learning problems and how to solve them
using scikit-learn. Introduced basic concepts
and conventions.

Tutorials

Useful tutorials for developing a feel for some
of scikit-learn's applications in the machine
learning field.

Contributing

Information on how to contribute. This also
contains useful information for advanced
users, for example how to build their own
estimators.

User Guide

The main documentation. This contains an
in-depth description of all algorithms and how
to apply them.

API

The exact APl of all functions and classes, as
given by the docstrings. The APl documents
expected types and allowed features for all
functions, and all parameters available for the
algorithms.

Flow Chart

A graphical overview of basic areas of
machine learning, and guidance which kind of
algorithms fo use in a given situation.

Other Versions
® scikit-learn 0.18 (development)
& scikit-learn 0.17 (stable)

# scikit-learn 0.16
® ceikit-learn 0.15

Additional Resources

Talks given, slide-sets and other information
relevant to scikit-learn.

FAQ

Frequently asked questions about the project
and contributing.

http://scikit-learn.org/ 7



Representing Data
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Training and Testing Data

training set
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[Python Notebook:
Part 1 — Data Loading
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Preprocessing
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. plt.boxplot(X)

plt.xticks(np.arange(1l, X.shape[l] + 1), boston.feature names, rotation=38, ha="right")
plt.ylabel("MEDV")

: =matplotlib.text.Text at Ox7T580303eac8>
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Categorical Features
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Categorical Features

{’red”,” green”,”blue” } C R? ’7
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Categorical Variables

“red” “green” “blue”



[Python Notebook:

Part 2 — Preprocessing
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Supervised Machine Learning

Training Data
Training Labels
Test Data Prediction

* Generalization

Test Labels Evaluation

Model Training
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clf = RandomForestClassifier()

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

clf.score(X_test, y_test)

Training Data

= Model

Training Labels

Test Data

Test Labels

\J

Prediction

\

Evaluation
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[Python Notebook:
Part 3 — Supervised Learning
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Nearest neighbors
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Nearest neighbors
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Influence of n_neighbors

n_neighbors=1 n_neighbors=5
n_neighbors=10 n_neighbors=30



aCCcuracy

Model Complexity
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Accuracy

Overfitting and Underfitting

/

Underfitting

!

Sweet spot

Training

Generalization

Overfitting

Model complexity
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Three-fold split

training set validation set test set

Model fitting Parameter selection Evaluation

pro: fast, simple
con: high variance, bad use of data.
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val scores = []
neighbors = np.arange(1l, 15, 2)
for i in neighbors:
knn = KNeighborsClassifier(n neighbors=1i)
knn.fit(X train, y train)
val scores.append(knn.score(X val, y val))
print("best validation score: {:.3f}".format(np.max(val scores)))
best n neighbors = neighbors[np.argmax(val scores)]
print("best n neighbors: {}".format(best n neighbors))

knn = KNeighborsClassifier(n neighbors=best n neighbors)
knn.fit(X trainval, y trainval)
print("test-set score: {:.3f}".format(knn.score(X test, y test)))

best validation score: 0.972
best n neighbors: 3
test-set score: 0.965
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Linear Models for Regression
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Linear Models for Regression




Linear Regression

& Ridge Regression

2 : T 2 2 |
o — . Always has a unique solution.
‘ |w ajz y’L ‘ ‘ _I_ (Xl |w‘ ‘ Tuning parameter alpha.



Linear Models for Classification
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= arg max w;X + b;
€Y

J
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[Python Notebook:
Part 4 — Linear Models for Regression
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Basic API

estimator.fit(X, [y])

estimator.predict

estimator.transform

Classification
Regression

Clustering

Preprocessing
Dimensionality reduction
Feature selection

Feature extraction
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Introduction to

Machine
Learning
with Python

A GUIDE FOR DATA SCIEMTISTS

Andreas C. Muller & Sarah Guido
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Thank you for your attention.

y @amuellerml

Q @amueller

Importamueller@gmail.com
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\ Nﬁ http://amueller.github.io
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