Large scale non-linear learning
on a single CPU
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* Non-linear — because real-world problems are not.

» Single CPU — Because parallelization is hard
(and often unnecessary)
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Three regimes of data

o Fits In RAM (up to 256 GB?)
e Fits on a Hard Drive (up to 6TB?)
 Doesn't fit on a single PC



Nobody ever got fired for using Hadoop on a cluster

Antony Rowstron, Dushyanth Marayanan, Austin Donnelly, Greg O'Shea, and Andrew Douglas
10 April 2012



Why not do to out of core learning.



Your data Is not that big!



vCPU ECU

Memory Optimized - Current Generation

r3.large 2 6.5
rd.xlarge 4 13
r3.2xlarge 8 26
r3.4xlarge 16 52
r3.8xlarge 32 104

Storage Optimized - Current Generation

i2.xlarge 4 14
i2.2xlarge 8 27
i2.4xlarge 16 53
i2.8xlarge 32 104

Memory (GiB)

15
30.5
61
122

244

30.5
61
122

244

Instance Storage (GB)

1x32SSD
1 x 80 88D
1 x160 SSD
1 x 320 SSD

2 x 320 SSD

1 x 800 SSD
2 x 800 ssD
4 % 800 SSD

8 x 800 SSD

Linux/UNIX Usage

$0.195 per Hour
$0.39 per Hour
$0.78 per Hour
$1.56 per Hour

$3.12 per Hour

$0.938 per Hour
$1.876 per Hour
$3.751 per Hour

$7.502 per Hour
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"256Gb ought to be enough for anybody."
- me
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"256Gb ought to be enough for anybody."
- me

(for machine learning)
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Subsamplel
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The scikit-learn way
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Linear Classification

from sklearn.linear model import SGDClassifier
sgd = SGDClassifier()

for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
sgd.partial fit(X batch, y batch, classes=[0, 1]
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Linear Classification

from sklearn.linear model import SGDClassifier

sgd = SGDClassifier()

csv iterator = pd.read csv("my large file.csv", chunksize=10000)

for chunk in csv iterator:
X batch = csv iterator[features]
y batch = csv iterator["label"]
sgd.partial fit(X batch, y batch, classes=[0, 1]
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Linear Classification

from sklearn.linear model import SGDClassifier
sgd = SGDClassifier()

for i in range(n iter):
for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
sgd.partial fit(X batch, y batch, classes=[0, 1])
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1° nonlinear option:
Stateless Transformers
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Text Classification: Bag Of Word

“This 1s how you get ants.”
i tokenizer
['this', 'is', 'how', 'you', 'get', 'ants']

i Build a vocabulary over all documents

[ 'aardvak', 'amsterdam', 'ants', ... 'you',
'vour', 'zyxst']

i Sparse matrix encoding

aardvak ants get you zyxst
-,..010,..,0,1,0,...,0,10,....,0]
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Text Classification: Hashing Trick

“This 1s how you get ants.”

i tokenizer
['this', 'is', 'how', 'you', 'get', 'ants']

i hashing

[hash('this'), hash('is'), hash('how'), hash('you'),
hash('get'), hash('ants')]
= [832412, 223788, 366226, 81185, 835749, 173092]

i Sparse matrix encoding

0,..010..,01,0, ..,0,1,0,...,0]
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Text Classification: Hashing Trick

sgd = SGDClassifier()
hashing vectorizer = HashingVectorizer()

for batch name in glob("*.pickle"):
with open(batch name) as f:
text batch, y batch = pickle.load(batch name)

X batch = hashing vectorizer.transform(text batch)
sgd.partial fit(X batch, y batch, classes=[0, 1
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Kernel Approximation

sgd = SGDClassifier()

kernel approximation = RBFSampler(gamma=.001, n_ components=400)

kernel approximation.fit(np.zeros(l, n features))

for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
X kernel = kernel approximation.transform(X batch)
sgd.partial fit(X kernel, y batch, classes=[0, 1])
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Random Neural Nets

sgd = SGDClassifier()
random basis = RandomBasisFunctions()
random basis.fit(np.zeros(1l, n features))

for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
X _random = random basis.transform(X batch)
sgd.partial fit(X random, y batch, classes=[0, 1])

(not merged yet)
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2" nonlinear option:
Learn Transformations on Subsets
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RandomForests

from sklearn.ensemble import RandomForestClassifier

X, Yy = load my subset that fits in ram()
rf = RandomForestClassifier(max depth=5, n estimators=100).fit(X, vy)

rf enc = OneHotEncoder()
rf enc.fit(rf.apply(X))

sgd = SGDClassifier()

for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
X transformed rf_enc.transform((rf.apply(X batch)))|
sgd.partial fit(X transformed, y batch, classes=[0, 1])
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3" nonlinear option:
Online Nonlinear Classification
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Neural Networks (MLPs)

sgd = SGDClassifier()

for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
sgd.partial fit(X batch, y batch, classes=[0, 1])

(not merged yet)
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Neural Networks (MLPs)

nn = MLPClassifier(n hidden=(1000, 1000))

for batch name in glob("*.pickle"):
with open(batch name) as f:
X batch, y batch = pickle.load(batch name)
nn.partial fit(X batch, y batch, classes=[0, 1])

(not merged yet)
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Other algorithms

Nalve Bayes
MinibatchKMeans

Birch

IncrementalPCA
MiniBatchDictionarylLearning
Scalers
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What Else 1s Out There?

* Vowpal Wabbit (VW)
* More deep learning

* Hogwild!
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o

Introduction to *

Machine
Learning
with Python

A GUIDE FOR DATA SCIENTISTS

Andreas C. Muller & Sarah Guido

Release June 2016
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Thank you!

(and talk to me if you still think you need a cluster for ML)

, @amuellerml

LI @amueller

amueller@nyu.edu

(‘\

(‘9 http://amueller.io
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