
ROS Meets Cassandra: Data Management
in Smart Environments with NoSQL

André DIETRICHa, Siba MOHAMMADb, Sebastian ZUGa and Jörg KAISERa

University of Magdeburg, Germany

Abstract. Distributed and smart environments can be seen as a distributed stor-
age for data, information, and knowledge. Thus, one of the key challenges for fu-
ture smart environments is the organization, access, and querying of this distributed
storage, while allowing entities to dynamically access both real-time and histori-
cal data. A relatively new approach for data management, the NoSQL (Not only
SQL) databases, promises data-model flexibility, high scalability, and availability
without the overhead in the fully fledged traditional Relational Database Manage-
ment Systems (RDBMS)s. In our work, we exploit the previous benefits of NoSQL
databases by integrating Cassandra into the Robotic Operating System (ROS). We
evaluated our approach in two scenarios; within a realistic robotic exploration and
with a pessimistic benchmark using randomly generated data.

Keywords. data management, smart environment, sensor data, robotics, cloud

Introduction

A large part of research for smart environments copes with interconnecting entities by
developing communication middleware protocols (e. g., IO- Link1), and standards (e. g.,
IEEE 1451 [1]). Interoperability is reached by transmitting data, whereas everything
else, such as analyzing and processing of data is left out to the application. To enable
autonomous systems in smart environments to cooperate, serve tasks, and solve prob-
lems, sharing real-time data is simply not sufficient enough and can be seen as the “tip
of the iceberg”. Whereas access to real-time data is necessary for applications in smart
environment, a wide range of these applications requires access to historical data. Exam-
ples of such applications are mining of sensor logs to detect unusual patterns, analysis of
historical trends, and post-mortem analysis of particular events. Thus, the archival stor-
age of past sensor data is becoming more important; which requires the use of a more
sophisticated data management.

One of the approaches for storing data in smart environments uses relational
databases (RDBs). An example of such systems is the Monitoring System Toolkit
(MOST) [2], which uses MySQL. Another example uses PostgreSQL in [3] to store sen-

aA. Dietrich, S. Zug and J. Kaiser are with the Department of Distributed Systems, at the Otto-von-Guericke-
Universität Magdeburg in Germany; E-mail {dietrich, zug, kaiser}@ivs.cs.uni-magdeburg.de}

bS. Mohammad is with the Database and Information Systems Group at the Otto-von-Guericke-Universität
Magdeburg in Germany; E-mail: siba.mohammad@iti.cs.uni-magdeburg.de

1Enables the interconnection of intelligent sensors & actuators in automation systems: www.io-link.com

http://eos.cs.ovgu.de/dietrich
http://wwwiti.cs.uni-magdeburg.de/~smohamma/
http://eos.cs.ovgu.de/zug
http://eos.cs.ovgu.de/kaiser
http://ivs.cs.uni-magdeburg.de
http://www.uni-magdeburg.de
http://www.uni-magdeburg.de
mailto:dietrich@ivs.cs.uni-magdeburg.de?subject=BalticDB2014
mailto:zug@ivs.cs.uni-magdeburg.de?subject=BalticDB2014
mailto:kaiser@ivs.cs.uni-magdeburg.de?subject=BalticDB2014
http://wwwiti.cs.uni-magdeburg.de/iti_db/
http://www.uni-magdeburg.de
http://www.uni-magdeburg.de
mailto:siba.mohammad@iti.cs.uni-magdeburg.de?subject=BalticDB2014
www.io-link.com


sor readings and in the MavHome-Project [4] for data mining. Various improvements
on the RDB structure were made such as in [5]. An extended survey on RDB systems
integrated into the software of control systems for industrial applications is given in [6].

However, conventional systems often fail to meet the increasing scalability, avail-
ability, and real-time requirements of applications. Therefore, other systems that lever-
age the problems of classical RDBs in smart environments have evolved. An example
of such a system is the Universal Industrial Databases (UNIDB) [7]. It sets on the top
of standard SQL servers, and is used for long-term storage of real-time data in indus-
trial automation systems. Another example is GaianDB, a distributed federated Database
(DB) on top of multiple other RDBs, that uses biologically-inspired self-organization
principles to minimize management [8].

Another approach tries to leverage the centralized DB notion in total and thus leaves
out data storage and processing to where it comes from, i. e., to the sensor nodes. One
of the most prominent DB examples for distributed sensor networks is TinyDB [9] and
COUGAR [10]. An overview on such approaches is given in [11]. However, all of these
approaches are specialized on long-term measurements with sensor networks with lim-
ited power, memory, computation, and communication capabilities.

A smart environment with appearing and disappearing entities, overlapping work-
spaces, changing tasks, etc. can be seen as some kind of distributed mind that is contin-
uously producing new data, information, and knowledge. Systems in such environments
will have to continuously adapt to these changes, and therefore will require holistic ac-
cess to this distributed mind. Thus, one of the main problems that will arise in future is
to store, organize, and enable access to all that data, information, and knowledge (other
problems are discussed in [12]). But at the moment, we even lack of sharing data. Data is
either transmitted directly (raw or in specialized formats and protocols) or stored (within
files, DBs, or knowledgebases) and abstracted (e. g., converted to specific datasets, 3D
models, maps, action sequence, etc.) by every entity itself, without having the possibility
to dynamically access even historical measurements or abstracted data. Furthermore, we
require new methods to request and filter data, because the pure amount of data generated
by new types of sensors is too large to be handled within the main memory.

For the aforementioned reasons, we suggest the combination of dynamic proper-
ties of smart environments with distributed DBs. By connecting entities within DB clus-
ters, we allow holistic access to every entity’s “mind”. We also obtain the possibility for
querying and filtering of historical data. By integrating Cassandra [13] into the Robot
Operating System (ROS) [14], we enable a system to dynamically access both real-time
and historical data. Therefore, every entity hosts a local Cassandra DB instance, which
is individually filled and updated for its own purposes. But, it can also be queried from
foreign entities within the cluster and vice-versa.

The rest of this paper is organized as follows. Within the next section, we will give a
brief overview on related work. After that, in Section 2, we explain in details our system
approach followed by Section 3 which illustrates the evaluation in two scenarios. We
finish the paper with insights into possible future work directions.

1. Background and Related Work

The Robot Operating System (ROS) is a framework for the development of robotic ap-
plications. It offers services that deal with hardware abstraction, device control, mes-



sage passing between processes, and package management for commonly-used function-
alities. And it has to become a standard in the scientific robotics community. Entities
(nodes) in a ROS publish/subscribe-network exchange real-time data via logical chan-
nels (so called topics). Messages are therefore standardized and described by a language-
neutral interface definition language (cf. Lis. 2).

Selecting an appropriate data management system is a tough challenge. The authors
of [15] examined what might be the most appropriate DB to store sensor data. They
argued that it is more advantageous to use NoSQL DBs than to use classical RDBs. Three
DB systems were therefore selected for further investigation: PostgreSQL, Cassandra,
and MongoDB. Their evaluation revealed that Cassandra is the best choice, when dealing
with large and critical sensor applications or when scalability is important. MongoDB
performs best for small or medium sized non-critical sensor application and when write
performance is relevant. In [16,17], NoSQL DBs (especially Cassandra) were identified
as ideal memory management systems for future robotic applications. They can handle
terabytes of data and their timestamp mechanism allows querying and retrieving current
data without additional efforts. Sensor data and all other messages in ROS are strictly
typed, so that extensible record stores are the best choice. Therefore, and because of the
other advantages, such as horizontal and vertical partitioning, scalability, and fast access,
we decided to use Cassandra for our approach. Cassandra also offers interesting features,
such as extended querying using CQL[18], its data model supports super columns for
columns nesting, data can be marked with a time-to-live (and thus also be forgotten after
a certain time), and it is under continuous development.

To the best of our knowledge, there is currently no standard approach or project
that combines distributed DBs with smart environments or robotic applications, except
warehousewg2. warehousewg is a ROS package that uses MongoDB to provide a per-
sistent DB layer for ROS. It allows to store ROS messages in binary format and to asso-
ciate each message with metadata that can be indexed and queried. However, the binary
stored messages cannot be directly queried. Querying messages is only enabled by man-
ually attaching metadata, which inflates the storage space consumption, requires addi-
tional efforts and foreknowledge, such as what attributes are relevant for the application,
what might be interesting in the future, and what is the format of a message, etc.

2. A System for Data Management in Smart Environments

In this part, we describe the architecture of our approach. The system is segregated into
two major parts. The first one abstracts the DB management, whereas the other enables
data access in a ROS typical manner. A simplified draft of the system-architecture and its
classes is given in Figure 1. The whole library as well as the evaluation (see Section 3)
were programmed in Python3. The project is freely available under the GNU public
license and free for download on http://ros.org/wiki/cassandra_ros.

The class Cassandra uses the pycassa32-library to implement standard functionali-
ties, such as connecting to a cluster, maintaining connection pools, or creating and delet-
ing column families, etc. RosCassandra is the topic management system, abstracting
and hiding all CassandraDB related stuff with an interface designed to be as close as

2http://ros.org/wiki/warehousewg
3Python Programming Language: www.python.org

http://ros.org/wiki/cassandra_ros
http://ros.org/wiki/warehousewg
www.python.org


CassandraTopic−

-msgClass

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic...

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic−binary

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic−yaml

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic−ros

...: ...

-encode(msg)
-decode(data)
-getColValidationClasses()
-parseMsg()
-ros2cassandra()
-cassandra2ros()
...

CassandraTopic

...: ...

+getMeta()
+setMeta(...)
+addData(msg, key, ttl)
+getData(key, to key, queue)
+removeData(key, to key, queue)
-createKey()
+ ...

Cassandra

sysManager : pycassa.SystemManager
pool : pycassa.ConnectionPool
...: ...

+createKeyspace(...)
+dropKeyspace(...)
+existKeyspace(...)
+connect2Keyspace(...)
+createColumnFamily(...)
+dropColumnFamily(...)
+existColumnFamily(...)
+getColumnFamily(...)
+setColumnFamilyComment(str, ...)
+ ...

RosCassandra

...: ...

+addTopic(topic, format, msg class, ...)
+getTopic(topic)
+existTopic(topic)
+removeTopic(topic)
+getTopicMeta(topic)
-topic2Hash(topic)
+executeCQL(query)
+ ...

Figure 1. Simplified UML class diagram of the current implementation divided into topic handling (left) and
DB management (right) classes

possible to the common ROS ideology. Thus, messages are stored and queried in their
typical manner, without bothering about message conversion or DB related issues; an
example is given in Lis. 1. Column families are applied as (topic-) containers, storing
one ROS-message per row. Since column family names are limited to a maximum size
of only 48 B, whereas topic names easily exceed this limit, hashes of topic names are
applied as column family names. The real topic names as well as other metadata, such as
the ROS message format, type of primary key (e. g., a timestamp, a hash value, or a part
of the message itself), the storage format (binary, yaml, json, string, encoded ROS, etc.),
are stored during creation time of a CassandraTopic within the comment field of every
column family.

Listing 1: Minimal source-code example

1 rosCas = RosCassandra(host , port) # connect to Cassandra

2 rosCas.connectToKeyspace(keyspace)

3 rosCas.addTopic(’topic’, format=’ros’) # create a new topic

4 casTopic = rosCas.getTopic(’topic’)

5 casTopic.addData(msg) # add and get a message

6 msg = casTopic.getData(key)

Storing metadata within the comment field has several advantages compared to the
usage of a separate column family. To begin with, it does not affect any column family
structure and is easy to extend and interpret. It also does not require any further replica-
tion or synchronization. Furthermore, this kind of information storage is used for topic
identification, which allows topics to exist in parallel with other column families within
the same keyspace. Thus, requesting for available topics or other metadata is done via
retrieving and parsing all column family comment fields.

2.1. Translation of Messages

As mentioned before, our system allows storing in various formats, such as string,
json, ros, or binary. As depicted in Figure 1, the parents of CassandraTopic de-



fine the storage format, in other words, how messages are translated into a format
that is storable in CassandraDB. A class therefore just has to implement the methods
encode(msg), decode(data), and getColValidationClasses() from the abstract
class CassandraTopic . The last method is only called during the creation of new
CassandraTopic (and thus, a new column family) and is used to define the format
of every column. In some cases this is done statically, if the whole message is stored
as once by using just one column, like in binary- (BYTES TYPE) or in string-format
(UTF8 TYPE). Column validation classes are required for building secondary indexes on
columns. The usage of such single column formats enables fast read/write access but it
also diminishes possibilities for filtering and querying.

Class CassandraTopic ros for example enables to fully exploit CassandraDB’s
querying methods on secondary indexes (by using CQL, pycassa.index, etc.). There-
fore, the definition formats of ROS-messages (cf. Lis. 2), are parsed and trans-
lated from a nested message structure into a list of columns. Furthermore, primi-
tive ROS types4, are translated into CassandraDB data types5, to define column val-
idation classes. Lis. 3 shows the resulting translation for the message definition of
geometry msgs/TransformStamped6. The fact, that the originally tree structure is
transferred into column names, allows to query or to filter messages with a similar syn-
tax as it is used to access message objects from a programming language like C++ or
Python. We demonstrate this in detail in Section 3.1.1.

Listing 2: Example of a ROS
nested message definition for type
geometry msgs/TransformStamped

1 std_msgs/Header header uint32 seq

2 time stamp

3 string frame_id

4 string child_frame_id

5 geometry_msgs/Transform transform

6 geometry_msgs/Vector3 translation

7 float64 x

8 float64 y

9 float64 z

10 geometry_msgs/Quaternion rotation

11 ...

Listing 3: ROS encoded version of
geometry msgs/TransformStamped

into CassandraDB columns

1 header.seq: INT_TYPE

2 header.stamp: DATE_TYPE

3 header.frame_id: UTF8_TYPE

4 child_frame_id: UTF8_TYPE

5 transform.translation.x: DOUBLE_TYPE

6 transform.translation.y: DOUBLE_TYPE

7 transform.translation.z: DOUBLE_TYPE

8 transform.rotation.x: DOUBLE_TYPE

9 transform.rotation.y: DOUBLE_TYPE

10 transform.rotation.z: DOUBLE_TYPE

11 transform.rotation.w: DOUBLE_TYPE

2.2. Accessing and Querying

We support two different flavors for this. On the one hand, data can be directly accessed
with the help of CassandraTopic and its methods, such as addData, getData, etc.
(cf. Figure 1). Messages of one topic are automatically converted into different Cas-
sandra formats and vice versa. On the other hand, querying over multiple topics (col-
umn families) requires more dedicated methods than just key value requests. In class
RosCassandra, we offer method exequteCQL that gets a string (CQL statement) as in-
put, translates topic names into their column family names (hashes), and executes the
query using Cassandra’s Python driver for CQL. The returned result is an array of values.
An example of both query methods is given in Section 3.1.1.

4List of primitive ROS types: www.ros.org/wiki/msg
5List of CassandraDB’s data types: www.datastax.com/docs/0.8/ddl/column_family
6Commonly used for maintaing relationship between different coordinate frames (cf. Section 3.1.1).

www.ros.org/wiki/msg
www.datastax.com/docs/0.8/ddl/column_family


3. Evaluation

The evaluation is divided into two parts. In the first, we apply our approach in a realis-
tic scenario; with real robots and sensors. In the second part, we perform a pessimistic
comparison of different system for data storage and querying, using artificial sensor data.

3.1. Scenario

Inspired by our previous evaluation in [19], we chose a simple and common robot ex-
ploration scenario as described in Figure 2. A mobile robot is instructed to survey a
certain area. The collected data of this trail (ca. 18 GB) and the information are ex-
tracted and analyzed with the help of our system. To visualize this part of the evaluation
and the achieved results, we created uploaded some videos to our YouTube-channel at
www.youtube.com/ivsmagdeburg, screenshots are depicted in Figure 3.

We equip a differential driven robot
with two laser scanners (Hokuyo for
short distance mapping and Sick for
long distance localization and nav-
igation), a Kinect (for 3D sensing),
and ultrasonic array (for reactive be-
havior) and two laptops. One Lap-
top is responsible for navigation and
control, the other one for measuring
and recording, see Section 3.2.1 for
the hard- and soft-configurations.

(a) Description

Hokuyo

(b) Front with Sensors

Kinect

US

Sick

(c) Back with Corridor

Figure 2. Setup of the robotic platform that was used for exploration task

3.1.1. Storyboard

This should serve as an example of several applications within distributed smart envi-
ronments and how to query them. A cube (with markers) is randomly placed within our
setup in which another application is interested. It could therefore connect to all camera
streams and analyze them. A topic containing a camera stream can be easily identified
by analyzing the metadata of each column family (cf. Lis. 1):
for topic in rosCas.getAllTopics ():

if topic.getMeta[’msg_class ’] in [’Image’, ’CompressedImage ’]:

...

The cube in our example was detected within one of the analyzed video streams,
gained from the exploration robot, as depicetd in Figure 3a. There is a point in time (t1)
when the cube was firstly detected within the stream and another point in time (t2) when
it was last seen. These values are gathered from the primary keys of the stored camera
images. As mentioned before, adding additional metadata to a stored topic is not a big
deal. Every column family is tagged with the nodeID of the producing entity, to ease a
nodes identification, which can be queried as follows:
nodeID = topicCamera.getMeta[’nodeID ’]

www.youtube.com/ivsmagdeburg


Now that the nodeID (Who) and the time frame (t1, t2) (When) are known, it is
possible to use simple CQL statements to clarify where these pictures were recorded.
The position of an object relative to another object or to a coordinate origin is published
via tf7, which are stored in queryable ros format (cf. Lis. 3). The operational area of the
robot, at a certain point in time, can now be deduced with the following statements:
stmt = ’select ... translation.x from tf where ... child_frame_id=’ \

+ nodeID + ’ and KEY > ’ + str(t1 -5) + ...

x_list = rosCas.exequteCQL(stmt)

x_min = min(x_list)[0]; x_max = max(x_list)[0]

The upper example shows a simplified version, where all x values are queries that
belong to certain node and that were stored between t1 minus 5 s and t2 plus 5 s (the
additional seconds are simply used to enlarge the horizon of the map, which will be
generated for this area with the help of the other sensor measurements). The executeCQL
method of class RosCassandra was used, because plain topic (column family) names
like tf (transformation) have to be substituted by their hash values, as mentioned earlier.
The result is an array that can easily be filtered to determine the min and max values of
the x and y coordinates.

In the same way, it is now also possible to query tf about other systems/nodes that
were located in the same area or to retrieve a map (see Figure 3c). Of course, we are
aware of the sensor systems, which were mounted on the robot, but it is also possible to
determine relevant sensor systems by querying tf, and to search for nodes whose parent
(frame id) is equal to the exploration robot’s nodeID. Replaying these sensor readings
is quite simple, as listed below and depicted in Figure 3b. It should be remarked that the
results of method getData are always returned with the correct ROS format, so that they
can be used and interpreted immediately:
hokuyo=rosCas.getTopic(’/hokuyo_scan ’).getData(key=t1 -5,to_key=t2+5)

kinect=rosCas.getTopic(’/depth/points ’).getData(key=t1 -5,to_key=t2+5)

type(hokuyo [0]) # sensor_msgs/LaserScan

type(kinect [0]) # sensor_msgs/PointCloud2

Now think of another robot that reaches the mentioned environment and has to grab
the cube. It is able to access the existing measurements and generate an appropriate map
of the environment to fulfill individual tasks. In our example, the robot generates an
occupancy grid, based on the laser scans. Afterwards, it filters the Kinect 3D measure-
ments, related to possible obstacles in the environment which are not detectable by the
laser scanner close to the ground. The filter criteria depend on the height of the robot.
This Information (contour of chairs and desks) is included in the basic map. Figure 3d
illustrates this process that results in a robot specific representation of the environment.

3.2. Benchmark

Within the following subsection, we compare our solution against two other solutions
for sensor data storage that are commonly used in ROS-applications (rosbag8 and
mongo ros). In our evaluation, we consider a complex message structure to test the ef-

7ROS transformation package (cf. Lis. 2): ros.org/wiki/tf
8A library that enables to store and access serialized messages in a file: www.ros.org/wiki/rosbag

ros.org/wiki/tf
www.ros.org/wiki/rosbag


(a) Detected cube9

(b) Overlayed sensor data10 (c) Map based on laser scans only11 (d) Map with selected Kinect data12

Figure 3. (a) and (b) depict a basic replay of ROS sensor data, stored within Cassandra, (c) and (d) show
occupancy grid maps of the the same operational area; note the differences in the center of each map, caused
by a table in the scene, visible only to Kinect

fect of different data types on the query performance. We therefore applied a specific
ROS message, containing 5 different data types (i. e., 8 bit, 16 bit, 32 bit, 64 bit, and ran-
dom arbitrary size (ranging from 1 B to 200 B)). Furthermore, we examine the mem-
ory usage and storing performance in relation to the number of messages. We used the
term “pessimistic” because all values were generated randomly, making them difficult to
index.

3.2.1. Configuration

All tests run on the same PCs with the configurations listed in Table 1. Every utilized
software system was executed with its standard-settings. Only Python and Python-APIs
were used to exclude the possible impact of different programming languages on the per-
formance tests. The use of compression may lead to some performance improvements.
However, taking into consideration the random nature of data, this improvement will be
too small and can be neglected. Consequently, we did not apply compression of messages
in any of the systems for our experiment.

3.2.2. Writing (Effect on Size & Speed)

In this first test, we examine the storage and time consumptions related to the number
of messages. Fluctuations in the size of a message are only caused by the random sized
element. However, these random length values are equal for all DBs, due to the usage of
a certain seed-value. The consumed storage space for the tested systems with and without
indexing is depicted in Figure 4a.

All systems show a “nearly” linear behavior in their usage of storage. It is not sur-
prising that rosbag shows the best results. Two things are remarkable in this evalua-

9www.youtube.com/watch?v=lQczBtVmomc 10www.youtube.com/watch?v=tfczj1jb3B4
11www.youtube.com/watch?v=czLQ-yxBYC4 12www.youtube.com/watch?v=y6LqLNB4VDk

www.youtube.com/watch?v=lQczBtVmomc
www.youtube.com/watch?v=tfczj1jb3B4
www.youtube.com/watch?v=czLQ-yxBYC4
www.youtube.com/watch?v=y6LqLNB4VDk


Table 1. Soft- & Hard-Configuration.

Java-Version: 1.7.0 07 Kubuntu
OpenJDK Runtime Environment: IcedTea7 2.3.2 Version: 12.04 (precise)
OpenJDK Server VM: build 23.2-b09, mixed mode Kernel: 3.2.0-32-generic-pae

Python: 2.7.3 Cassandra: 1.1.3 ROS: Fuerte
pycassa: 1.6.0 CQL: 1.0.10 MongoDB: 2.0.4

CPU: Intel R©CoreTM i5-540M Disk: Samsung SSD PM800 2.5
speed: 2.53 GHz cores: 2 size: 256 GB write: 185 MB/s
cache: 3072 kB threads: 4 cache: 128 MB read: 220 MB/s

Memory size: 3.74 GB

tion. First, our ROS-Cassandra implementation consumes just a little bit more storage
(without secondary indexes) than rosbag does. Even with the usage of indexes, Cassan-
dra requires less storage than MongoDB. This fact can be easily explained by the ROS-
MongoDB implementation. To be able to store and thus to restore the original message,
they have to be stored in a binary format. Furthermore, to be able to query for specific
messages, meta-information has to be generated and stored. Whereas, our implementa-
tion is able to parse every message-format and thus to generate specialized columns. The
Second thing to be noticed is the consumption of storage shows a similar pattern as the
consumption time, as depicted in Figure 4b.

0.1

1.0

10.0

100.0

102 103 104 105 106

Number of Messages

St
or

ag
e

Si
ze

[M
B

]

Bag-Files
Cassandra
Cassandrai
MongoDBi
MongoDB

(a) Relative storage consumptions for different
amounts of messages

0.5

1.0

1.5

2.0

0 250000 500000 750000 1000000
Messages

W
ri

te
Sp

ee
d

pe
rM

sg
.[

m
s]

Bag-File
Cassandra
Cassandrai
MongoDBi
MongoDB

(b) Writing time for a single message relative to the
number of messages already stored

Figure 4. Overall writing performance, whereby i denotes the application of indexes

In both diagrams rosbag shows the best results, closely followed by Cassandra, but
also the writing time for indexed columns in Cassandra decreases similarly as to the trend
in storage usage. Furthermore, MongoDB also shows equal patterns, divergences at the
beginning and then a complete overlapping. The oscillations in the measurement courses
of MongoDB can be explained by its tactics of memory pre-allocation, where multiple
files are used for data storage. Once a file is running out of size the next one is generated,
with a larger file size. In summary, MongoDB performs bad in comparison to Cassandra
and rosbag, while Cassandra shows for both tests results close to rosbag.

3.2.3. Reading (Keys & Data Types & Complex)

This benchmark is divided into two parts. In the first part, we investigate how fast key-
value request performs (response time) in relation to different DB sizes. In the second
part, we investigate how good every system performs for complex requests (filtered with
random generated “WHERE-clauses”).



Response time is measured as the duration between the submission of a request and
the reception of message in the correct data format. It is expected that rosbag and Mon-
goDB perform better, because messages are stored by them in a binary format and do
not have to be reassembled, as it is done by our Cassandra implementation. Because a
timestamp is added to every message by each system, this timestamp was chosen as a
primary key. The results of 1000 key-value request according to different DB size are
presented as boxplots in Figure 5a; all axes with a logarithmic scale. All keys were ran-
domly chosen. In rosbag they were randomly chosen from the last 10 % of stored data.
The reason for this is the sequential storage and search of data within bagfiles, which
would otherwise lead to uniform distributed results (concerning the response time).

As Figure 5a shows, response time of rosbag is directly (linear) affected by the
size of stored messages. This is caused by the fact that all messages are loaded into the
main memory and then searched sequentially. At the same time, Cassandra shows nearly
no effect where the median response time of 1.71 ms for a DB containing 102 messages
increase to 2.03 ms for a DB containing 106 messages.

Since primary keys are always indexed by Cassandra, there was no difference be-
tween the results for indexed and non indexed columns. In contrast to Cassandra, Mon-
goDB showed different response times for indexed and non indexed columns. Using
indexes, MongoDB could gain a decrease of the median response time falling from
551.75 ms to 4.84 ms for a DB storing 106 messages. Nonetheless, this decreased time is
twice as long as Cassandra’s response time.

For the last evaluation, we created queries with random length and random terms.
The used version of CQL supports queries composed of the operators : “=”, “<” , “>”,
“<=”, “>=”, and “and”, while at least one “=” operator has to be used. The results of
this evaluation are presented in Figure 5b. In contrast to MongoDB and Cassandra, the
time for querying bagfiles was not affected by the number of returned results, but instead
affected by the number of stored messages within the DB, resulting in the following
median durations: 102:0.0054 s, 103:0.0546 s, 104:0.5521 s, 105:5.52 s, and 106:56.43 s.

Bag-File Cassandra(i) MongoDB MongoDBi

102

103

104

105

106

.01 1 10 .01 1 10 .01 1 10 .01 1 10

N
um

be
ro

fM
es

sa
ge

s

Time [s]

(a) Response time for random key-value requests

0

2

4

6

8

0 1000 2000 3000 4000
Number of Messages

Ti
m

e
[s

]

Cassandrai
MongoDB
MongoDBi

(b) Execution duration related to the # of messages

Figure 5. Overall reading performance, whereby i denotes the application of indexes

Figure 5b also reveals that the influence of returned messages on MongoDB, whether
indexed or non-indexed, is much higher than on Cassandra. Cassandra indeed seems also
to be linearly affected by the number of returned messages but the duration increases
much more slowly. Returning 1000 messages took 1.55 s while returning 4000 messages
required 1.72 s only.



3.3. Discussion

With the evaluation scenario, we tried to demonstrate that sensory or actuator data in a
complex environment is more than just a single value labeled with a key and a times-
tamp, as it is traditionally treated [15]. On the one hand, sensor data can be a complex
composition of many different values, where only few values might be interesting. On
the other hand, the same data can be interpreted in many different ways, according to the
task and the context.

By applying different (key-value, range, and select) queries combined with advanced
algorithms for marker detection, localization, and map building it was possible to identify
relevant data and to deduce all required information (i. e., the generation of an occupancy
grid map for a certain area and height from different sensor values and types). But this
was only possible due to contextual knowledge about the task, algorithms, and data types.
Accessing and requesting data in future smart environments will require novel kinds of
querying methods (in terms of explorative search) as well as an intelligent combination
with various algorithms to interpret sensor data in different ways.

The results reveal that Cassandra seems to be an ideal DB system for sensor data
in smart environments, although it was originally intended to serve for another purpose.
Even with our conversion methods for messages, storing data consumes only a little more
memory than it is required to save it to a file. The same is also true for the amount of
time that is needed to store data. But this tiny overhead pays off, if data needs to be
queried. Cassandra showed significantly better results for both single key-value requests
and complex queries where the performance was nearly not affected by the size of the
database, in contrast to all other solutions.

There is one current drawback, the complexity of queries is restricted by using CQL
and require further filtering within the program code. Fortunately, the development of
Cassandra is an ongoing process with improvements and new functionalities, so that this
drawback may be remedied in the next versions.

4. Future Work

Currently our system supports only the storage of raw data, such as sensor data or con-
trol commands, but there is much more data present in distributed smart environments.
Any kind of data might be necessary for an application and thus needs to be organized,
accessed, and queried. To put all available information about robots, sensors, and local
environments into a spatial context and thus, to keep track of local changes in smart
environments, we developed a hierarchical concept in [20]. But, as pointed out by the
evaluation, location is only one possible context, others are infrastructure, safety and se-
curity requirements, time, physical conditions, etc. Therefore, we need to develop new
concepts for data organization, representation, and querying that are able to cope with
new requirements in distributed smart environments. In our next steps we will extend our
approach and integrate methods for storing and accessing any kind of abstract data like
maps, 3D models, trajectories, etc. as well as different types contextual information. A
first step in this direction is also the development and application of new programming
paradigms13 for 3D environments.

13See the project-site of our new querying language SelectScript:
https://pythonhosted.org/SelectScript_OpenRAVE/

https://pythonhosted.org/SelectScript_OpenRAVE/


Acknowledgement

This work is (partly) funded and supported by the German Ministry of Education and
research within the project ViERforES-II (grant no. 01IM10002B) and by the EU FP7-
ICT program under the contract number 288195 “Kernel-based ARchitecture for safetY-
critical cONtrol” (KARYON).

References

[1] Song E., Lee K. Understanding IEEE 1451-Networked smart transducer interface standard-What is a
smart transducer? IEEE Instrumentation & Measurement Magazine, 2008, 11(2), 11–17.

[2] Zach R., Glawischnig S., Hönisch M., Appel R., Mahdavi A. MOST: An open-source, vendor and
technology independent toolkit for building monitoring, data preprocessing, and visualization. In: eWork
and eBusiness in Architecture, Engineering and Construction (ECPPM). CRC Press, 2012.

[3] Youngblood M., Cook D., Holder L. Seamlessly Engineering a Smart Environment. In: International
Conference on Systems, Man and Cybernetics (SMC). IEEE, 2005. 548–553.

[4] Cook D.J., Youngblood G.M., Heierman III E.O., Gopalratnam K., Rao S., Litvin A., Khawaja F.
MavHome: An Agent-Based Smart Home. In: 1st IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), volume 3. IEEE Computer Society Press, 2003. 521–524.

[5] Zach R., Schuss M., Bräuer R., Mahdavi A. Improving building monitoring using a data preprocessing
storage engine based on MySQL. In: eWork and eBusiness in Architecture, Engineering and Construc-
tion (ECPPM). CRC Press, 2012.

[6] Zolotová I., Flochová J., Ocelı́ková E. Database Technology and Real Time Industrial Transaction
Techniques In Control. Journal of Cybernetics and Informatics, 2005, 5, 18–23.

[7] Research C.S., Center D. Universal industrial database v1.3. [WWW] www.industrial-database.
com. (accessed 09.10.2013).

[8] Bent G., Dantressangle P., Vyvyan D., Mowshowitz A., Mitsou V. A Dynamic Distributed Federated
Database. In: Proc. 2nd Ann. Conference International Technology Alliance (ITA), 2008.

[9] Madden S., Franklin M., Hellerstein J., Hong W. TinyDB: An acquisitional query processing system for
sensor networks. ACM Transactions on Database Systems (TODS), 2005, 30(1), 122–173.

[10] Bonnet P., Gehrke J., Seshadri P. Towards sensor database systems. In: Mobile Data Management.
Springer, 2001. 3–14.

[11] Bin Ahmad M., Asif M., Islam M., Aziz S. A short survey on distributed in-network query processing in
wireless sensor networks. In: 1st International Conference on Networked Digital Technologies (NDT).
IEEE, 2009. 541–543.

[12] Remy S., Blake M. Distributed Service-Oriented Robotics. IEEE Internet Computing, 2011, 15(2),
70–74.

[13] Lakshman A., Malik P. Cassandra - A decentralized structured storage system. ACM SIGOPS Operating
Systems Review, 2010, 44(2), 35–40.

[14] Quigley M., Conley K., Gerkey B., Faust J., Foote T., Leibs J., Wheeler R., Ng A. ROS: an open-source
Robot Operating System. In: ICRA Workshop on Open Source Software, volume 3, 2009.

[15] van der Veen J., van der Waaij B., Meijer R. Sensor Data Storage Performance: SQL or NoSQL, Physical
or Virtual. In: Proc. of the 5th Intl. Conference on Cloud Computing (CLOUD). IEEE, 2012. 431–438.

[16] Vijaykumar S., Saravanakumar S. Future Robotics Memory Management. Advances in Digital Image
Processing and Information Technology, 2011, 315–325.

[17] Vijaykumar S., Saravanakumar S. Future Robotics Database Management System along with Cloud
TPS. International Journal on Cloud Computing: Services and Architecture (IJCCSA), 2011, 103–114.

[18] DataStax. CQL 3 Language Reference. [WWW] http://www.datastax.com/docs/1.1/

references/cql/index. (accessed 09.10.2013).
[19] Zug S., Penzlin F., Dietrich A., Nguyen T.T., Albert S. Are Laser Scanners Replaceable by Kinect Sen-

sors in Robotic Applications? In: IEEE International Symposium on Robotic and Sensors Environments
(ROSE 2012). Magdeburg, Germany, 2012.

[20] Dietrich A., Zug S., Mohammad S., Kaiser J. Distributed Managment and Representation of Data
and Context in Robotic Applications. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2014. (Accepted).

http://www.vivera.org/ViERforES
http://www.karyon-project.eu
www.industrial-database.com
www.industrial-database.com
http://www.datastax.com/docs/1.1/references/cql/index
http://www.datastax.com/docs/1.1/references/cql/index

