Notation

Assoc. Prof. Andrea Araldo Télécom SudParis - Institut Polytechnique de Paris

We use, as much as possible, the notation of [Ger19].

Symbol type	Notation
Scalar	a
Vector	$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$
Vector transpose	$\mathbf{a}^T = (a_1, \dots, a_n)$
Matrix	$\mathbf{U} = \begin{pmatrix} u_{1,1} & \dots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{m,1} & \dots & u_{m,n} \end{pmatrix}$
Set	$\mathcal{U} = (\mathbf{u}_1, \mathbf{u}_2, \dots)$

Table 1: Font styles and their meaning.

i	Index of samples
$\mid j \mid$	Index of features
k	Index of classification classes or clusters
q	Index of neurons
$egin{pmatrix} q \ l \end{pmatrix}$	Index of layers in neural networks
M	Number of samples
N	Number of features
Z	Number of model parameters
K	Number of of classification classes or clusters
L	Number of layers in a neural network

Table 2: Indices and cardinalities.

\mathcal{D}	Dataset
$\mathcal{D}^{ ext{train}}$	Training set
$\mathcal{D}^{ ext{test}}$	Test set

Table 3: Sets.

$\mathbf{x}^{(i)} = (1, x_1^{(i)}, \dots, x_N^{(i)})^T$ $y^{(i)}$	<i>i</i> -th sample
$y^{(i)}$	Label of sample $\mathbf{x}^{(i)}$
$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)}^T \\ \vdots \\ \mathbf{x}^{(M)}^T \end{bmatrix}$	Sample matrix
$\mathbf{y} = \begin{bmatrix} \mathbf{x}^{(M)} \\ \vdots \\ y^{(M)} \end{bmatrix}$	Vector of labels
$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_N \end{bmatrix}$ $\hat{y}^{(i)} = h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})$ $\boldsymbol{\epsilon}^{(i)} = y^{(i)} - \hat{y}^{(i)}$	Vector of model parameters
$\hat{y}^{(i)} = h_{\theta}(\mathbf{x}^{(i)})$	Label predicted by the model.
$\epsilon^{(i)} = y^{(i)} - \hat{y}^{(i)}$	Residual of the <i>i</i> -th sample
$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(M)} \end{bmatrix} =$	Vector of predicted labels
$J(\mathbf{\theta}, \mathbf{X}, \mathbf{y})$	Loss function calculated with a model with parameters $\boldsymbol{\theta}$ on a dataset with sample matrix \mathbf{X} and labels \mathbf{y} .

Table 4: Basic elements.

References

[Ger
19] Aurélien Geron, $Hands\mbox{-}On\ Machine\ Learning\ with\ Scikit\mbox{-}Learn,\ Keras\ and\ TensorFlow,\ O'Reilly,\ 2019.$