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Supervised
Regression x x
Classification x x x

Unsupervised
Clustering x x
Dimensionality reduction x
Anomaly detection x x x
Recommender Systems x



Outline
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• Supervised Learning Models
• Linear Regression
• Train / Test / Cross-Validation



Section 1

Introduction to Supervised Learning
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Cambridge English Dictionary:

the process of getting an understanding of something by studying it or by
experience

What can we learn in a network, by just observing traffic (encrypted)?

• Anomaly/attack

• Application protocols hidden in encrypted traffic

• Quality of Experience (QoE)

• Malfunctioning of a device

• . . .
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• Problem [KEB19]:
Infer video chunk resolution
only observing network information, e.g., throughput, packet size,
inter-arrival times, etc.
Traffic is encrypted.

• Motivation:
Network operators can have insights on QoE without Deep Packet Inspection
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Features (or Columns):

• Throughput mean (bps)
Throughput st.dev. (bps)
Packet size mean (B)
Packet size st.dev.
Inter-arrival mean (ms), etc.

Label (or target):

• Resolution of downloaded video chunks (360p, 720p)

• (it indicates the number of vertical pixels)

Model:

• A function h(features) = label

• If label ∈ R: regression model

• If label discrete: classification model
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• Model: function h used to predict
Which of the two models would you trust more to predict?

• h is “good” if h(x(i))≃ y(i) for the new samples.
• But we do not know y(i) for the new samples.

• We can just evaluate how h(·) performs in our dataset.
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ŷ(
i)
=

h(
x(

i)
)

O
ur

da
ta

se
t

x(1)T
= 2 Mbps 1 Kbps 1 KB 300 B 30 ms 475 482

1083

...
...

...
...

...
...

...
...

...

x(M)T
= 2 Mbps 1.1 Kbps 1.3 KB 400 B 20 ms 720 693

323

N
ew

sa
m

pl
es x(M+1)T

= 2 Mbps 1 Kbps 1 KB 300 B 30 ms ? 1078

376

...
...

...
...

...
...

...
...

...

• Model: function h used to predict

Which of the two models would you trust more to predict?
• h is “good” if h(x(i))≃ y(i) for the new samples.
• But we do not know y(i) for the new samples.

• We can just evaluate how h(·) performs in our dataset.



Example
9 / 54

Features (or Independent variables) True
Label

Pred
Label

Pred
Label

Sa
m

pl
e

T
P

m
ea

n

T
P

st
.d

ev
.

Pk
ts

iz
e

m
ea

n

Pk
ts

td
.d

ev
.

In
t-

A
rr

iv
m

ea
n

y(
i)

(R
es

ol
ut

io
n)

ŷ(
i)
=

h(
x(

i)
)

ŷ(
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ŷ(
i)
=

h(
x(

i)
)

ŷ(
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Archimedes (III cent. BC)

Newton (XVII cent.)

Maxwell (XVII cent.)

They created a model h(·) relating a target to some features, based on
observation.

Generalization
For any object with m and a, we know the force F it produces.

Pictures: Wikipedia
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• Convention

x(i)
T
= (

1,

x(i)1 , . . . ,x(i)N ) ∈ RN+1

• Linear Model

hθ(x(i)) = θT ·x(i) =
N

∑
j=0

θj · x(i)j

= θ0 +θTP mean · x(i)TP mean

+θTP st.dev. · x(i)TP st.dev. + . . .

• Quadratic Model

hθ(x(i)) = θ0 +θ1x(i)1 + · · ·+θNx(i)N

+θN+1 · x(i)1

2
+ · · ·+θN · x(i)N+N

2

+θ2N+1 · x(i)1 · x(i)2 +θ2N+1 · x(i)1 · x(i)N

+ . . .

• Neural Network (NN):

hθ(·) is the output of a NN with
weights θ.

Loss: J = 1
M ∑

M
i=1

y(i)−hθ(x(i))︸ ︷︷ ︸
Residual ε(i)


2

Training

Find θ∗ ≜ argminθ J(θ,X,y)
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Predict the video resolution just based on KB received in 100ms time slot.
Are you able to find a simple model h(KBytesReceived) “by hand”?
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Generalization
If we see that a new connection with 500 KB /
100ms, what is the predicted video resolution?

[Source of data [GGA+19]]
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Find θ0,θ1 such that hθ(x(i))≃ θ0 +θ1 · x(i)1 .

• Regression “by hand”

• Ordinary Least Square (OLS) regression

θ∗ = argmin
θ

J θ∗0 = 351.8 θ∗1 = 0.7.

Source of data [GGA+19]
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Bi-variate linear model
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Figure 3.1 of [HTF09]



Matricial form
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• Matrix of samples: X =


x(1)T

...
x(M)T

=

 1 x(1)1 x(1)2 . . . x(1)N
. . . . . . . . . . . . . . .

1 x(M)
1 x(M)

2 . . . x(M)
N



• Vector of true labels: y =

 y(1)
...

y(M)



• Vector of model parameters: θ=


θ0
θ1
...
θN


• Vector of predicted labels: ŷ =

 ŷ(1)
...

ŷ(M)

=

 hθ(x(1))
...

hθ(x(M))





Examples of loss function
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For regression

• Mean Square Error (MSE)

J(θ,X,y)=
1
M

M

∑
i=1

y(i)−hθ(x(i))︸ ︷︷ ︸
Residual ε(i)


2

• Root Mean Square Error (RMSE)

J(θ,X,y)=

√
1
M

M

∑
i=1

(
y(i)−hθ(x(i))

)2

• . . .

For classification:

• Misclassification Rate

J(θ,X,y) =
1
M

M

∑
i=1

Iy(i) ̸=hθ(x(i))

• . . .



Training
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Training

Find θ∗ ≜ argminθ J(θ,X,y)

Solution algorithm:

• Linear regression: matrix inversion

• Neural network: backpropagation

• ...

Note that

• θ∗ depends on the observed data
(X,y).

• If we observed other data (X′,y′)
we would get another θ∗.

• ...



Section 2

Ordinary Least Squares



Training a Linear Regression Model
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For any sample x(i), a linear model is:

hθ(x(i)) = θ0 ·1+θ1 · x(i)1 + · · ·+θN · x(i)N = x(i)
T ·θ

Assume the loss function below:

MSE = J(θ,X, ŷ) =
1
M

M

∑
i=1

(
y(i)−hθ(x(i))

)2

The model hθ∗ that minimizes MSE is called Ordinary Least Squares
(OLS) model.

Theorem: Normal equation

The optimal parameter vector is

θ∗ = (XT ·X)−1 ·XT ·y (1)

(provided that (XT ·X)−1 is invertible)

NB: Given a certain training set (X,y), we can immediately find the
optimal θ∗.



Training a Linear Regression Model (I)
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For any sample x(i), the prediction is (This proof is similar to §3.2 of [HTF09].):

hθ(x(i)) = θ0 ·1+θ1 · x(i)1 + · · ·+θN · x(i)N = x(i)
T ·θ

The loss function is:

J(θ,X, ŷ) =
1
M

M

∑
i=1

(
y(i)−hθ(x(i))

)2
=

1
M

M

∑
i=1

(
y(i)−x(i)

T ·θ
)2

=
1
M
(y−X ·θ)T · (y−X ·θ)

To minimize the function, we set the gradient to 0:

∇θJ(θ,X, ŷ) = 0

Chain rule of derivation:

2
M
(y−X ·θ) ·∇θ(y−X ·θ) = 0

(2)
2
M
(y−X ·θ) · (−X) = 0

(3)

−y ·X+X ·θ ·X = 0 (4)



Training a Linear Regression Model (II)
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Let us isolate θ:

X ·θ ·X = y ·X (5)

XT ·X ·θ ·X = XT ·y ·X (6)

Multiply on the left by (XT ·X)−1

(Assuming it exists):

θ ·X = (XT ·X)−1 ·XT ·y ·X (7)

Multiply on the right by XT

θ ·X ·XT = (XT ·X)−1 ·XT ·y ·X ·XT

(8)

Multiply on the right bya (X ·XT)−1:

θ= (XT ·X)−1 ·XT ·y (9)

aBy the property of transpose matrices, if
(XT ·X)−1 exists, then (X ·XT)−1 exists as well.



Interpreting regression results: sign
22 / 54

You want to predict Resolution based
on KBytesReceived:

ŷ(i) = θ0 +θKBytesReceived · x(i)KBytesReceived

Running the OLS model we get:

The model is

ŷ(i) = 351.76+0.71 · x(i)KBytesReceived

Does the sign makes sense?
Positive/negative dependency.



Interpreting regression results: p-value
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p-values: significance of a coefficient.

Hypothesis testing:

• Null hypothesis: No dependency
between KBytesReceived and the
target.

• Performing OLS, under the null hp

P
[
|θ̊∗KBytesReceived| ≥ 0.71

]
= 0.001

• Would you accept or reject the null
hp?

– Accept ⇒ 0.71 is not significant
– Reject ⇒ 0.71 is significant.

Usually:

• p-value≤ 5% ⇒ reject null hp ⇒ Coeff significant

• o.w. Coeff not significant



Interpreting regression results: p-value
23 / 54

p-values: significance of a coefficient.

Hypothesis testing:

• Null hypothesis: No dependency
between KBytesReceived and the
target.

• Performing OLS, under the null hp

P
[
|θ̊∗KBytesReceived| ≥ 0.71

]
= 0.001

• Would you accept or reject the null
hp?

– Accept ⇒ 0.71 is not significant
– Reject ⇒ 0.71 is significant.

Usually:

• p-value≤ 5% ⇒ reject null hp ⇒ Coeff significant

• o.w. Coeff not significant



Interpreting regression results: p-value
23 / 54

p-values: significance of a coefficient.

Hypothesis testing:

• Null hypothesis: No dependency
between KBytesReceived and the
target.

• Performing OLS, under the null hp

P
[
|θ̊∗KBytesReceived| ≥ 0.71

]
= 0.001

• Would you accept or reject the null
hp?

– Accept ⇒ 0.71 is not significant
– Reject ⇒ 0.71 is significant.

Usually:

• p-value≤ 5% ⇒ reject null hp ⇒ Coeff significant

• o.w. Coeff not significant



Interpreting regression results: p-value
23 / 54

p-values: significance of a coefficient.

Hypothesis testing:

• Null hypothesis: No dependency
between KBytesReceived and the
target.

• Performing OLS, under the null hp

P
[
|θ̊∗KBytesReceived| ≥ 0.71

]
= 0.001

• Would you accept or reject the null
hp?

– Accept ⇒ 0.71 is not significant
– Reject ⇒ 0.71 is significant.

Usually:

• p-value≤ 5% ⇒ reject null hp ⇒ Coeff significant

• o.w. Coeff not significant



Interpreting regression results
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Predict Resolution based on
PacketsSent, KBytesReceived and
BufferHealth:

ŷ(i) = θ0 +θ1 · x(i)1 +θ2 · x(i)2 +θ3 · x(i)3

Training the OLS model:

The model is

ŷ(i) = 282.9−0.56 · x(i)1 +0.60 · x(i)2 +18.34 · x(i)3

Interpretation:

• Fixing all features

• 1KB more received (in the 100 ms
window) ⇒ resolution ↗ by 0.60p

• ⇐⇒ increase of 1MB ⇒
resolution ↗ of 600p.



Interpreting regression results
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ŷ(i) = 282.9−0.56 · x(i)1 +0.60 · x(i)2 +18.34 · x(i)3

Do the signs make sense?



Interpreting regression results
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ŷ(i) = 282.9−0.56 · x(i)1 +0.60 · x(i)2 +18.34 · x(i)3

Do the signs make sense?

Are coefficients significant?



How is the p-value computed (I)
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Theorem
Assume that

• for any sample x, the target is a random variable (r.v.):

ẙ = xT ·β+ϵ (10)

– β: some “true” parameter vector
– ϵ: noise, Gaussian r.v. ϵ∼ N(0,σ2)
– σ2: variance of the residuals

• The true label y(i) is a realization of ẙ.

Then

• the coefficients θ̊∗j we get from linear regression are also Gaussian
r.v. They are unbiased, i.e.,

E
[
θ̊∗j

]
= βj



How is the p-value computed (II)
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Theorem
Assume that

  

Picture from [LR19], Ch.1

Then

  



How is the p-value computed (III)
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Proof of the previous claim. 1

• Let’s write (10) in vectorial form. Given a dataset X =


x(1)T

...
x(M)T

, the target

vector is:

ẙ = X ·β+ϵ

It is a Gaussian r.v., since it is a constant matrix X ·β plus a random vector ϵ.
• The parameter vector we get from OLS regression is:

θ̊∗ = (XT ·X)−1 ·XT · ẙ
It is a Gauss.r.v., since it is a constant matrix (XT ·X)−1 ·XT multiplied by
the Gauss.r.v. ẙ).

• The mean is

E
[
θ̊∗

]
= (XT ·X)−1 ·XT ·E [ẙ] = (XT ·X)−1 ·XT ·X ·β= β

and thus E
[
θ̊∗j

]
= βj

• We can also compute the variance of θ̊∗.2
1To know more, check Sec. 3.8 of [HTF09], these videos and this video.
2See this video if you want to know the actual values.

https://www.khanacademy.org/math/ap-statistics/inference-slope-linear-regression#inference-slope
https://youtu.be/jyBtfhQsf44
https://youtu.be/jyBtfhQsf44


How is the p-value computed (IV)
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• Compute
θ∗ = (XT ·X)−1 ·XT ·y

• θ∗ is a realization of the Gauss.r.v.

θ̊∗ = (XT ·X)−1 ·XT · ẙ

• For any feature j:

– θ∗j realization of θ̊∗j , such that E
[
θ̊∗j

]
= βj

– Assume true parameter βj = 0.
– Compute the variance Var(θ̊∗j ).
– Draw the probability density of θ̊∗j .

  

p-value

P
[
|θ̊∗j | ≥ θ∗j

]



Significance degradation
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Adding features can degrade significance



Average of OLS predictions
32 / 54

Theorem: prediction and true value averages

In an OLS regression, the average of the predictions equals the average of
the true values of the target:

¯̂y = ȳ

where:

¯̂y ≜
1
M

M

∑
i=1

ŷ(i) ȳ ≜
1
M

M

∑
i=1

y(i)

Proof Normal equation:

θ∗ = (XTX)−1XTy

Multiplying on the left by XTX:

XTX ·θ∗︸ ︷︷ ︸

ŷ

=XTy

=⇒XT ŷ=XTy

The first element is:

[1 . . .1] · ŷ = [1 . . .1] ·y
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ŷ(i) ȳ ≜
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=⇒XT ŷ=XTy

The first element is:
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1
M

M

∑
i=1

y(i)

Proof Normal equation:

θ∗ = (XTX)−1XTy

Multiplying on the left by XTX:

XTX ·θ∗︸ ︷︷ ︸
ŷ
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The first element is:
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Role of the bias
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ŷ = θ0 +θ1x1 + · · ·+θNxN︸ ︷︷ ︸
dependency

• θ0 does not capture (x,y) dependency

• θ0 just “aligns” predictions to meet the label average.



Section 3

Validation of a model



Train and Test a model
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• Supervised learning: we construct a model h(x)
based on observed (x(1),x(2), . . .) for the purpose of
approximating y for new samples x.

• Generalization:a when the constructed model h(x)
is good at approximating labels y of new samples x:

h(x)≃ y

• How do we test if the model generalizes.

=⇒
• Student analogy

– He/she checks the answers during training
– Answers are hidden during the test

aSec. 3.1 of [GBD92].



Training and test sets
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X y

Train using only the training set
(X, ŷ):

θ∗ ≜ argmin
θ

J(θ,Xtrain ,ytrain)

The trained model is

hθ∗(·)

Evaluate the quality of the trained
model via:

J(θ∗,Xtest ,ytest)

(Test error or generalization errora

or out-of-sample error)

The J used during training and test
may be different.

aSec. 7.2 of [HTF09]
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Training and test sets
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Which method is better?

  

What if the data
provider first
experimented with all
low resolutions and
finally with all the
highest?



Let’s code ...
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Go to notebook 02.regression/a.regression.ipynb



Section 4

Instability of a model (Variance)



Zero-variance features
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Var(j) =
1

M−1

M

∑
i=1

(x(i)j −µj)
2

• Suppose x(i)j = c for all samples i

• X =

 1 x(1)1 . . . c . . . x(1)N
...

...
...

...
...

...
1 x(M)

1 . . . c . . . x(M)
N


• Not full rank

• ⇒ (XTX)−1 does not exist

• θ∗ = (XT ·X)−1 ·XT ·y impossible



Collinearity
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• Two features j1, j1 (columns of X) are collinear if
they are proportional

x(1)j1
...

x(N)
j1

= α


x(1)j2

...
x(N)

j2


In this case, column j2 adds no information about
prediction.

• =⇒ X has no full rank

• =⇒ (XT ·X) is not invertible

• =⇒ not unique.

• =⇒ The normal equation

θ∗ = (XT ·X)−1 ·XT ·y

cannot be computed.



Quasi-collinearity
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• In real world, perfect collinearity is
rare, but

x(1)j1
...

x(N)
j1

≃ α


x(1)j2

...
x(N)

j2


and the computer is able to
compute the normal equation, but ...

• For any model hθ:

hθ(x) = θj1xj1 +θj2xj2 + ∑
j/∈{j1,j2}

θjxj

≃ (αθj1 +θj2)xj2 + ∑
j/∈{j1,j2}

θjxj

• Infinite pairs of (θj1 ,θj2) would be
almost equivalent

– Ex.

• How does OLS choose among such
pairs? Randomly

• Small differences of X ⇒
big differences in (θ∗j1 ,θ

∗
j2)

• ⇒ Variance



Multi-collinearity
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• If j-th feature is a linear combination of others

Xj = α1Xj1 +α2Xj2 + . . .

• X = [1|X1| . . . |XN ] no full rank

• The normal equation
θ∗ = (XT ·X)−1 ·XT ·y

cannot be computed.

• How to discover Multi-collinearity? . . .



Variance of a model
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• Humans are good at generalizing
knowledge ...

• ... because their perception models
have low variance

Variance
A model suffers high variance if, by
perturbing a bit the training dataset,
the model changes completely.
Suppose X̃, ỹ is a slightly perturbed
version of X,y. If a model has high
variance:

θ̃∗ = argmin
θ

J(θ, X̃, ỹ)

completely different than

θ∗ = argmin
θ

J(θ,X,y)

• Variance is the contrary of
Stability

• High variance ⇒ high sensitivity to
training data.
(§5 of [BK11])

  

       

A good learner would learn the same
things from the two datasets.



Let’s code ...
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Go to notebook 02regression/.a.regression.ipynb



Section 5

Cross-validation



Cross validation
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How can we be sure that, if we change
train/test split the error does not change?
=⇒ Cross-validation.

Algorithm 1 K-fold validation
1: Divide the dataset in K subsets
2: for i = 1 to K do
3: Keep subset i for test
4: Train on all the others
5: Compute test error
6: end for
7: Error = average of test errors

  

TRAINING
SET

TEST
SET



Let’s code ...
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Go to notebook 02.regression/a.regression.ipynb



To recap
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In this lesson
• Supervised Learning
• First Model in Python

(Linear Regression)
• Feature selection
• Validation: Train/Test; Cross-validation



Next lesson
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Regression (continued)
• Polynomial Regression
• Model Variance / Complexity
• Regularization
• Scaling
• Feature Selection

Classification
• Logistic Regression
• Classification Performance
• Class imbalance



To know more
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• Dealing with Multi-collinearity [DEB+13]

• Variance Inflation Factor for testing Multi-collinearity: pag. 101-102 of
[JWHT13]

• Cross-validation from machinelearningmastery

https://machinelearningmastery.com/k-fold-cross-validation/
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