Machine Learning for Networks: Regression

Andrea Araldo

May 16, 2023

ML methods

	ML task	Linear Regression	Logistic Regression	Tree-based learning	Neural Networks	k-Neirest Neighbors
Supervised	Regression	Х			X	
Supervised	Classification		X	X	X	
	Clustering				X	X
Unsupervised	Dimensionality reduction				X	
	Anomaly detection			X	X	Х
	Recommender Systems				X	

Supervised Learning Models

- . Linear Regression
- . Train / Test / Cross-Validation

Section 1

Introduction to Supervised Learning

How humans learn

Some think instead that we learn in a different [Tho20]

How humans learn

INFERENCE (prediction)

Some think instead that we learn in a different [Tho20]

How humans learn

Some think instead that we learn in a different [Tho20]

TRAINING (learning)

Training dataset

5 / 54

TRAINING (learning)

Training dataset

INFERENCE (prediction)

TRAINING (learning)

Training dataset

5 / 54

Deep Neural Network better than humans to classify several image datasets.

TRAINING (learning)

Definition of learning

Cambridge English Dictionary:

the process of getting an understanding of something by studying it or by *experience*

Definition of learning

Cambridge English Dictionary:

the process of getting an understanding of something by studying it or by *experience*

What can we learn in a network, by just observing traffic (encrypted)?

- Anomaly/attack
- Application protocols hidden in encrypted traffic
- Quality of Experience (QoE)
- Malfunctioning of a device

• ...

Problem example

• Problem [KEB19]:

Infer video chunk resolution *only observing* network information, e.g., throughput, packet size, inter-arrival times, etc. Traffic is encrypted.

• Motivation:

Network operators can have insights on QoE without Deep Packet Inspection

Formalization

Features (or *Columns*):

• Throughput mean (bps) Throughput st.dev. (bps) Packet size mean (B) Packet size st.dev. Inter-arrival mean (ms), etc.

Label (or *target*):

- Resolution of downloaded video chunks (360p, 720p)
- (it indicates the number of vertical pixels)

Formalization

Features (or *Columns*):

• Throughput mean (bps) Throughput st.dev. (bps) Packet size mean (B) Packet size st.dev. Inter-arrival mean (ms), etc.

Label (or *target*):

- Resolution of downloaded video chunks (360p, 720p)
- (it indicates the number of vertical pixels)

Model:

- A function *h*(features) = *label*
- If label $\in \mathbb{R}$: regression model
- If label discrete: classification model

9 / 54

		Feature	Features (or Independent variables)					
	Sample	TP mean	TP st.dev.	Pkt size mean	Pkt std. dev.	Int-Arriv mean	y ⁽ⁱ⁾ (Resolution)	
	$\mathbf{x}^{(1)T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	475	
r aset	÷	:	:	-	:	:	÷	
dat dat	${\bf x}^{(M)}{}^{T} =$	2 Mbps	1.1 Kbps	1.3 KB	400 B	20 ms	720	
v iples	$\mathbf{x}^{(M+1)^T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	?	
Nev sam	÷	÷		•	÷	÷	:	

		Featur	Features (or Independent variables)					Pred Label	
	Sample	TP mean	TP st.dev.	Pkt size mean	Pkt std. dev.	Int-Arriv mean	$y^{(i)}$ (Resolution)	$\hat{\mathfrak{P}}^{(i)} = h(\mathbf{x}^{(i)})$	
	$\mathbf{x}^{(1)}^{T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	475	482	
ur taset	:	:	•	:	:	÷	÷	÷	
da da	$\mathbf{x}^{(M)T} =$	2 Mbps	1.1 Kbps	1.3 KB	400 B	20 ms	720	693	
v ples	$\mathbf{x}^{(M+1)^T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	?	1078	
New	÷	•	÷	•	:	÷	÷	:	

• Model: function *h* used to predict

9 / 54

		Featur	es (or Indepe	ndent varia	ubles)		True	Pred	Pred
	Sample	TP mean	TP st.dev.	Pkt size mean	Pkt std. dev.	Int-Arriv mean	$y^{(i)}$ (Resolution)	$\hat{\mathfrak{z}}^{(i)} = h(\mathbf{x}^{(i)})$	$\hat{\mathcal{S}}^{(i)} = h(\mathbf{x}^{(i)})$
	$\mathbf{x}^{(1)T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	475	482	1083
ur ıtaset	:	÷		•	÷	÷	:	÷	:
್ ರ	$\mathbf{x}^{(M)^{T}} =$	2 Mbps	1.1 Kbps	1.3 KB	400 B	20 ms	720	693	323
v ıples	$\mathbf{x}^{(M+1)^T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	?	1078	376
Nev san	÷	:		•		÷	:	÷	:

• Model: function *h* used to predict

Which of the two models would you trust more to predict?

		Featur	es (or Indepe	ndent varia	bles)		True Label	Pred Label	Pred Label
	Sample	TP mean	TP st.dev.	Pkt size mean	Pkt std. dev.	Int-Arriv mean	$y^{(i)}$ (Resolution)	$\hat{\mathfrak{P}}^{(i)} = h(\mathbf{x}^{(i)})$	$\hat{\mathfrak{P}}^{(i)} = h(\mathbf{x}^{(i)})$
	$\mathbf{x}^{(1)}^{T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	475	482	1083
ur taset	:	:		:	:	÷	÷	:	:
Q da	$\mathbf{x}^{(M)I} =$	2 Mbps	1.1 Kbps	1.3 KB	400 B	20 ms	720	693	323
v ples	$\mathbf{x}^{(M+1)^T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	?	1078	376
New samj	:	:				÷	÷	:	:

• Model: function *h* used to predict

Which of the two models would you trust more to predict?

• *h* is "good" if $h(\mathbf{x}^{(i)}) \simeq y^{(i)}$ for the new samples.

		Features (or Independent variables)						Pred Label	Pred Label
	Sample	TP mean	TP st.dev.	Pkt size mean	Pkt std. dev.	Int-Arriv mean	$y^{(i)}$ (Resolution)	$\hat{\mathfrak{P}}^{(i)} = h(\mathbf{x}^{(i)})$	$\hat{\mathfrak{P}}^{(i)} = h(\mathbf{x}^{(i)})$
	$\mathbf{x}^{(1)}^{T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	475	482	1083
ur taset	:	÷	:	:	:	÷	:	:	:
ੁ ਦੇ	$\mathbf{x}^{(M)I} =$	2 Mbps	1.1 Kbps	1.3 KB	400 B	20 ms	720	693	323
ples	$\mathbf{x}^{(M+1)^T} =$	2 Mbps	1 Kbps	1 KB	300 B	30 ms	?	1078	376
New samj	÷	÷	:	•	:	÷	:		:

• Model: function *h* used to predict

Which of the two models would you trust more to predict?

- *h* is "good" if $h(\mathbf{x}^{(i)}) \simeq y^{(i)}$ for the new samples.
- But we do not know $y^{(i)}$ for the new samples.
- We can just evaluate how $h(\cdot)$ performs in our dataset.

Famous examples of models "by hand"

Archimedes (III cent. BC)

weight of displaced fluid = weight of object in vacuum - weight of object in fluid

Newton (XVII cent.)

 $\mathbf{F} = m\mathbf{a}$

They created a model $h(\cdot)$ relating a target to some features, **based on observation**.

Generalization

For any object with m and \mathbf{a} , we know the force \mathbf{F} it produces.

Pictures: Wikipedia

• Convention

$$\mathbf{x}^{(i)^T} = (x_1^{(i)}, \dots, x_N^{(i)}) \in \mathbb{R}^{N+1}$$

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Linear Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta^T \cdot \mathbf{x}^{(i)} = \sum_{j=0}^{N} \theta_j \cdot x_j^{(i)}$$
$$= \theta_0 + \theta_{\text{TP mean}} \cdot x_{\text{TP mean}}^{(i)}$$
$$+ \theta_{\text{TP st.dev.}} \cdot x_{\text{TP st.dev.}}^{(i)} + \dots$$

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Quadratic Model

$$h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \dots + \theta_N x_N^{(i)}$$

• Linear Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \mathbf{\theta}^T \cdot \mathbf{x}^{(i)} = \sum_{j=0}^{N} \theta_j \cdot x_j^{(i)}$$
$$= \theta_0 + \theta_{\text{TP mean}} \cdot x_{\text{TP mean}}^{(i)}$$
$$+ \theta_{\text{TP st.dev.}} \cdot x_{\text{TP st.dev.}}^{(i)} + \dots$$

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Linear Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta^{T} \cdot \mathbf{x}^{(i)} = \sum_{j=0}^{N} \theta_{j} \cdot x_{j}^{(i)}$$
$$= \theta_{0} + \theta_{\text{TP mean}} \cdot x_{\text{TP mean}}^{(i)}$$
$$+ \theta_{\text{TP st.dev.}} \cdot x_{\text{TP st.dev.}}^{(i)} + \dots$$

• Quadratic Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \dots + \theta_N x_N^{(i)} \\ + \theta_{N+1} \cdot x_1^{(i)^2} + \dots + \theta_N \cdot x_{N+N}^{(i)^{-2}}$$

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Linear Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta^T \cdot \mathbf{x}^{(i)} = \sum_{j=0}^{N} \theta_j \cdot x_j^{(i)}$$
$$= \theta_0 + \theta_{\text{TP mean}} \cdot x_{\text{TP mean}}^{(i)}$$
$$+ \theta_{\text{TP st.dev.}} \cdot x_{\text{TP st.dev.}}^{(i)} + \dots$$

• Quadratic Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_{0} + \theta_{1} x_{1}^{(i)} + \dots + \theta_{N} x_{N}^{(i)} \\ + \theta_{N+1} \cdot x_{1}^{(i)^{2}} + \dots + \theta_{N} \cdot x_{N+N}^{(i)^{2}} \\ + \theta_{2N+1} \cdot x_{1}^{(i)} \cdot x_{2}^{(i)} + \theta_{2N+1} \cdot x_{1}^{(i)} \cdot x_{N}^{(i)} \\ + \dots$$

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Linear Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta^T \cdot \mathbf{x}^{(i)} = \sum_{j=0}^{N} \theta_j \cdot x_j^{(i)}$$
$$= \theta_0 + \theta_{\text{TP mean}} \cdot x_{\text{TP mean}}^{(i)}$$
$$+ \theta_{\text{TP st.dev.}} \cdot x_{\text{TP st.dev.}}^{(i)} + \dots$$

• Quadratic Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_{0} + \theta_{1} x_{1}^{(i)} + \dots + \theta_{N} x_{N}^{(i)} \\ + \theta_{N+1} \cdot x_{1}^{(i)^{2}} + \dots + \theta_{N} \cdot x_{N+N}^{(i)} \\ + \theta_{2N+1} \cdot x_{1}^{(i)} \cdot x_{2}^{(i)} + \theta_{2N+1} \cdot x_{1}^{(i)} \cdot x_{N}^{(i)} \\ + \dots$$

Neural Network (NN):
 h_θ(·) is the output of a NN with weights θ.

• Convention

$$\mathbf{x}^{(i)^{T}} = (1, x_{1}^{(i)}, \dots, x_{N}^{(i)}) \in \mathbb{R}^{N+1}$$

• Linear Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta^{T} \cdot \mathbf{x}^{(i)} = \sum_{j=0}^{N} \theta_{j} \cdot x_{j}^{(i)}$$
$$= \theta_{0} + \theta_{\text{TP mean}} \cdot x_{\text{TP mean}}^{(i)}$$
$$+ \theta_{\text{TP st.dev.}} \cdot x_{\text{TP st.dev.}}^{(i)} + \dots$$

Loss:
$$J = \frac{1}{M} \sum_{i=1}^{M} \left(\underbrace{y^{(i)} - h_{\theta}(\mathbf{x}^{(i)})}_{\text{Residual } \varepsilon^{(i)}} \right)^2$$

• Quadratic Model

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_{0} + \theta_{1} x_{1}^{(i)} + \dots + \theta_{N} x_{N}^{(i)} \\ + \theta_{N+1} \cdot x_{1}^{(i)^{2}} + \dots + \theta_{N} \cdot x_{N+N}^{(i)}^{2} \\ + \theta_{2N+1} \cdot x_{1}^{(i)} \cdot x_{2}^{(i)} + \theta_{2N+1} \cdot x_{1}^{(i)} \cdot x_{N}^{(i)} \\ + \dots$$

Neural Network (NN):
 h_θ(·) is the output of a NN with weights θ.

Training

Find $\boldsymbol{\theta}^* \triangleq \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$

Example of univariate model

Predict the video resolution just based on KB received in 100ms time slot. Are you able to find a simple model h(KBytesReceived) "by hand"?

avg_qual	KBytesReceived
0	10.086
0	16.218
0	16.187
0	13.187
360	36.199
0	16.832
0	17.040
0	16.522
144	77.605
0	16.475
0	16.344
144	75.432
0	11.361
0	11.507
0	17.902
360	278.065
0	19.808
360	27.840

[Source of data [GGA+19]]

Example of univariate model

Predict the video resolution just based on KB received in 100ms time slot. Are you able to find a simple model h(KBytesReceived) "by hand"?

Generalization

If we see that a new connection with 500 KB / 100ms, what is the predicted video resolution?

[Source of data [GGA+19]]

avg_qual	KBytesReceived
0	10.086
0	16.218
0	16.187
0	13.187
360	36.199
0	16.832
0	17.040
0	16.522
144	77.605
0	16.475
0	16.344
144	75.432
0	11.361
0	11.507
0	17.902
360	278.065
0	19.808
360	27.840

Training a Linear Model: Example

			KBytesReceived	avg_qual
			10.086	0
12	00 T		16.218	0
10	100 -	• • • • • • • • • • • • • • • • • • • •	16.187	0
	00 -		13.187	0
			36.199	360
			16.832	0
40	1 00	- ··· ·	17.040	C
200 -	1	· · · · ·	16.522	0
0 -			77.605	144
		0 200 400 600 800 1000 1200 KBytes received	16.475	0
d A		h_{1} such that $h_{2}(\mathbf{x}^{(i)}) \sim h_{2} + h_{1} \cdot \mathbf{x}^{(i)}$	16.344	0
iu .	-	u_0, v_1 such that $n_0(\mathbf{x}^{(1)}) \simeq v_0 + v_1 \cdot x_1$.	75.432	144
	R	egression "by hand"	11.361	0
			11.507	0
			17.902	0
			278.065	360
			19.808	0
			27.840	360

Source of data [GGA+19]

10 / EA

Training a Linear Model: Example

		KBytesReceived	avg_qual
		10.086	0
	1200	16.218	0
	1000 -	16.187	0
	800 -	13.187	0
tion	600 -	36.199	360
Recol	400-	16.832	0
		17.040	0
	— Regression by hand	16.522	0
	0 - Linear Regression (OLS)	77.605	144
	0 200 400 600 800 1000 1200 KBytes received	16.475	0
Fi	nd θ_0, θ_1 such that $h_{\theta}(\mathbf{x}^{(i)}) \simeq \theta_0 + \theta_1 \cdot x_1^{(i)}$.	16.344	0
		75.432	144
	• Regression by hand	11.361	0
	 Ordinary Least Square (OLS) regression 	11.507	0
		17.902	0
	$\theta^* = \arg\min_{0} J \qquad \theta_0^* = 351.8 \qquad \theta_1^* = 0.7.$	278.065	360
	σ	19.808	0
		27.840	360

Source of data [GGA+19]

10 / EA

Bi-variate linear model

Figure 3.1 of [HTF09]

Matricial form

15 / 54

• Matrix of samples:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)^T} \\ \vdots \\ \mathbf{x}^{(M)^T} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_N^{(1)} \\ \dots & \dots & \dots & \dots \\ 1 & x_1^{(M)} & x_2^{(M)} & \dots & x_N^{(M)} \end{bmatrix}$$

• Vector of true labels: $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(M)} \end{bmatrix}$
• Vector of model parameters: $\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_N \end{bmatrix}$
• Vector of predicted labels: $\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(M)} \end{bmatrix} = \begin{bmatrix} h_{\boldsymbol{\theta}}(\mathbf{x}^{(1)}) \\ \vdots \\ h_{\boldsymbol{\theta}}(\mathbf{x}^{(M)}) \end{bmatrix}$
Examples of loss function

For regression

• . . .

• Mean Square Error (MSE)

$$J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} \left(\underbrace{y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})}_{\text{Residual } \boldsymbol{\varepsilon}^{(i)}} \right)^2$$

• Root Mean Square Error (RMSE)

$$J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \sqrt{\frac{1}{M} \sum_{i=1}^{M} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2}$$

For classification:

• . . .

• Misclassification Rate

$$J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} I_{y^{(i)} \neq h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})}$$

Training

Training

• ...

Find $\boldsymbol{\theta}^* \triangleq \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$

Solution algorithm:

- Linear regression: matrix inversion
- Neural network: backpropagation

Note that

- θ^* depends on the observed data (\mathbf{X}, \mathbf{y}) .
- If we observed other data (X', y') we would get another θ^* .

• ...

Section 2

Ordinary Least Squares

Training a Linear Regression Model

For any sample $\mathbf{x}^{(i)}$, a linear model is:

$$h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = \theta_0 \cdot 1 + \theta_1 \cdot x_1^{(i)} + \dots + \theta_N \cdot x_N^{(i)} = \mathbf{x}^{(i)^T} \cdot \boldsymbol{\theta}$$

Assume the loss function below:

$$MSE = J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}}) = \frac{1}{M} \sum_{i=1}^{M} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$

The model h_{θ^*} that minimizes MSE is called **Ordinary Least Squares** (OLS) model.

Theorem: Normal equation

The optimal parameter vector is

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$
(1)

(provided that $(\mathbf{X}^T \cdot \mathbf{X})^{-1}$ is invertible)

NB: Given a certain training set (X, y), we can immediately find the optimal θ^* .

Training a Linear Regression Model (I)

For any sample $\mathbf{x}^{(i)}$, the prediction is (This proof is similar to §3.2 of [HTF09].):

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_0 \cdot 1 + \theta_1 \cdot x_1^{(i)} + \dots + \theta_N \cdot x_N^{(i)} = \mathbf{x}^{(i)^T} \cdot \theta_N$$

The loss function is:

$$J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}}) = \frac{1}{M} \sum_{i=1}^{M} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2 = \frac{1}{M} \sum_{i=1}^{M} \left(y^{(i)} - \mathbf{x}^{(i)^T} \cdot \boldsymbol{\theta} \right)^2$$
$$= \frac{1}{M} (\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\theta})^T \cdot (\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\theta})$$

To minimize the function, we set the gradient to 0:

 $abla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}}) = \mathbf{0}$

Chain rule of derivation:

$$\frac{2}{M}(\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}}(\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\theta}) = \mathbf{0} \qquad -\mathbf{y} \cdot \mathbf{X} + \mathbf{X} \cdot \boldsymbol{\theta} \cdot \mathbf{X} = \mathbf{0} \qquad (4)$$

$$(2)$$

$$\frac{2}{M}(\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\theta}) \cdot (-\mathbf{X}) = \mathbf{0}$$

$$(3)$$

Training a Linear Regression Model (II)

Let us isolate θ :

$$\mathbf{X} \cdot \boldsymbol{\theta} \cdot \mathbf{X} = \mathbf{y} \cdot \mathbf{X} \tag{5}$$

$$\mathbf{X}^T \cdot \mathbf{X} \cdot \boldsymbol{\theta} \cdot \mathbf{X} = \mathbf{X}^T \cdot \mathbf{y} \cdot \mathbf{X}$$
(6)

Multiply on the left by $(\mathbf{X}^T \cdot \mathbf{X})^{-1}$ (Assuming it exists):

$$\boldsymbol{\theta} \cdot \mathbf{X} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y} \cdot \mathbf{X}$$
(7)

Multiply on the right by \mathbf{X}^T

$$\boldsymbol{\theta} \cdot \mathbf{X} \cdot \mathbf{X}^T = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y} \cdot \mathbf{X} \cdot \mathbf{X}^T$$
(8)

Multiply on the right by^{*a*} $(\mathbf{X} \cdot \mathbf{X}^T)^{-1}$:

$$\boldsymbol{\Theta} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$
(9)

^{*a*}By the property of transpose matrices, if $(\mathbf{X}^T \cdot \mathbf{X})^{-1}$ exists, then $(\mathbf{X} \cdot \mathbf{X}^T)^{-1}$ exists as well.

Interpreting regression results: sign

You want to predict Resolution based on KBytesReceived:

$$\hat{y}^{(i)} = \theta_0 + \theta_{\text{KBytesReceived}} \cdot x_{\text{KBytesReceived}}^{(i)}$$

KBytesReceived	Resolution
36.199	360
77.605	144
75.432	144
278.065	360

Running the OLS model we get: coef P>|t|

const 351.7606 0.000

KBytesReceived 0.7115 0.001

The model is

$$\hat{y}^{(i)} = 351.76 + 0.71 \cdot x_{\text{KBytesReceived}}^{(i)}$$

Does the **sign** makes sense? Positive/negative dependency.

p-values: *significance* of a coefficient.

	coef	P> t
const	351.7606	0.000
KBytesReceived	0.7115	0.001

Hypothesis testing:

• Null hypothesis: No dependency between KBytesReceived and the target.

p-values: *significance* of a coefficient.

	coef	P> t
const	351.7606	0.000
KBytesReceived	0.7115	0.001

Hypothesis testing:

• Null hypothesis: No dependency between KBytesReceived and the target.

• Performing OLS, under the null hp

$$\mathbb{P}\left[|\mathring{\theta}^*_{\texttt{KBytesReceived}}| \geq 0.71\right] = 0.001$$

23 / 54

• Would you *accept* or *reject* the null hp?

p-values: significance of a coefficient.

	coef	P> t
const	351.7606	0.000
KBytesReceived	0.7115	0.001

Hypothesis testing:

• Null hypothesis: No dependency between KBytesReceived and the target.

• Performing OLS, under the null hp

 $\mathbb{P}\left[|\mathring{\theta}^*_{\texttt{KBytesReceived}}| \geq 0.71\right] = 0.001$

- Would you *accept* or *reject* the null hp?
 - Accept $\Rightarrow 0.71$ is not significant
 - Reject $\Rightarrow 0.71$ is significant.

p-values: *significance* of a coefficient.

	coef	P> t
const	351.7606	0.000
KBytesReceived	0.7115	0.001

Hypothesis testing:

• Null hypothesis: No dependency between KBytesReceived and the target.

• Performing OLS, under the null hp

 $\mathbb{P}\left[|\mathring{\theta}^*_{\texttt{KBytesReceived}}| \geq 0.71\right] = 0.001$

23 / 54

- Would you *accept* or *reject* the null hp?
 - Accept $\Rightarrow 0.71$ is not significant
 - Reject $\Rightarrow 0.71$ is significant.

Usually:

- p-value $\leq 5\% \Rightarrow$ reject null hp \Rightarrow Coeff significant
- o.w. Coeff not significant

Interpreting regression results

Predict Resolution based on PacketsSent, KBytesReceived and BufferHealth:

$$\hat{y}^{(i)} = \theta_0 + \theta_1 \cdot x_1^{(i)} + \theta_2 \cdot x_2^{(i)} + \theta_3 \cdot x_3^{(i)}$$

PacketsSe	ent	KBytesReceived	BufferHealth	Resolution
	6	36.199	10.241165	360
	10	77.605	4.446780	144
	14	75.432	3.989780	144
	33	278.065	3.700462	360
	6	27.840	4.512780	360
	58	658.375	9.454706	360
	14	77.429	4.606780	144
	33	201.903	5.301853	720
	18	172.740	3.638107	240
	23	181.476	5.314732	240

Training the OLS model: coef P>|t| const 282.8794 0.017 PacketsSent -0.5551 0.925 KBytesReceived 0.5986 0.194 BufferHealth 18.3779 0.343 The model is Packets

$$\hat{y}^{(i)} = 282.9 - 0.56 \cdot x_1^{(i)} + 0.60 \cdot x_2^{(i)} + 18.34 \cdot x_3^{(i)}$$

Interpretation:

- Fixing all features
- 1KB more received (in the 100 ms window) ⇒ resolution ∧ by 0.60p
- \iff increase of 1MB \Rightarrow resolution \nearrow of 600p.

Interpreting regression results

25 / 54

	coef	P> t
const	282.8794	0.017
PacketsSent	-0.5551	0.925
KBytesReceived	0.5986	0.194
BufferHealth	18.3779	0.343

$$\hat{y}^{(i)} = 282.9 - 0.56 \cdot x_1^{(i)} + 0.60 \cdot x_2^{(i)} + 18.34 \cdot x_3^{(i)}$$

Do the **signs** make sense?

Interpreting regression results

26	151
20	54

	coef	P> t
const	282.8794	0.017
PacketsSent	-0.5551	0.925
KBytesReceived	0.5986	0.194
BufferHealth	18.3779	0.343

$$\hat{y}^{(i)} = 282.9 - 0.56 \cdot x_1^{(i)} + 0.60 \cdot x_2^{(i)} + 18.34 \cdot x_3^{(i)}$$

Do the signs make sense?

Are coefficients significant?

How is the *p*-value computed (I)

Theorem

Assume that

• for any sample **x**, the target is a random variable (r.v.):

$$\mathring{y} = \mathbf{x}^T \cdot \boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{10}$$

- β : some "true" parameter vector
- ϵ : noise, Gaussian r.v. $\epsilon \sim N(0, \sigma^2)$
- $-\sigma^2$: variance of the residuals
- The true label $y^{(i)}$ is a realization of \mathring{y} .

Then

 the coefficients θ^{*}_j we get from linear regression are also Gaussian r.v. They are **unbiased**, i.e.,

$$\mathbb{E}\left[\mathring{\theta}_{j}^{*}\right] = \beta_{j}$$

How is the *p*-value computed (II)

Theorem

Assume that

Picture from [LR19], Ch.

Then

How is the *p*-value computed (III)

Proof of the previous claim.¹

• Let's write (10) in vectorial form. Given a dataset $\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)^T} \\ \vdots \\ \mathbf{x}^{(M)^T} \end{bmatrix}$, the target

vector is:

$$\mathbf{y} = \mathbf{X} \cdot \mathbf{\beta} + \mathbf{\varepsilon}$$

It is a Gaussian r.v., since it is a constant matrix $\mathbf{X} \cdot \boldsymbol{\beta}$ plus a random vector $\boldsymbol{\varepsilon}$.

• The parameter vector we get from OLS regression is:

$$\hat{\boldsymbol{\theta}^*} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \boldsymbol{\mathring{y}}$$

It is a Gauss.r.v., since it is a constant matrix $(\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T$ multiplied by the Gauss.r.v. $\mathbf{\hat{y}}$).

• The mean is

$$\mathbb{E}\left[\boldsymbol{\theta}^{*}\right] = (\mathbf{X}^{T} \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^{T} \cdot \mathbb{E}\left[\boldsymbol{\mathring{y}}\right] = (\mathbf{X}^{T} \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^{T} \cdot \mathbf{X} \cdot \boldsymbol{\beta} = \boldsymbol{\beta}$$

and thus $\mathbb{E}\left[\mathring{\theta}_{j}^{*}\right] = \beta_{j}$

• We can also compute the variance of θ^* .²

¹To know more, check Sec. 3.8 of [HTF09], these videos and this video.

How is the *p*-value computed (IV)

• Compute

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

• θ^* is a realization of the Gauss.r.v.

$$\mathring{\theta^*} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathring{\mathbf{y}}$$

- For any feature *j*:
 - θ_j^* realization of $\mathring{\theta}_j^*$, such that $\mathbb{E}\left[\mathring{\theta}_j^*\right] = \beta_j$
 - Assume true parameter $\beta_j = 0$.
 - Compute the variance $\operatorname{Var}(\mathring{\theta}_i^*)$.
 - Draw the probability density of $\mathring{\theta}_i^*$.

 $\frac{\text{p-value}}{\mathbb{P}\left[|\mathring{\theta}_{j}^{*}| \geq \theta_{j}^{*}\right]}$

Significance degradation

Adding features can degrade significance

	coef	P> t
const	351.7606	0.000
KBytesReceived	0.7115	0.001

	coef	P> t
const	282.8794	0.017
PacketsSent	-0.5551	0.925
KBytesReceived	0.5986	0.194
BufferHealth	18.3779	0.343

Theorem: prediction and true value averages

In an OLS regression, the average of the predictions equals the average of the true values of the target:

$$\bar{\hat{y}} = \bar{y}$$

where:

$$\bar{\hat{y}} \triangleq \frac{1}{M} \sum_{i=1}^{M} \hat{y}^{(i)} \qquad \qquad \bar{y} \triangleq \frac{1}{M} \sum_{i=1}^{M} y^{(i)}$$

Proof Normal equation:

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Theorem: prediction and true value averages

In an OLS regression, the average of the predictions equals the average of the true values of the target:

$$\bar{\hat{y}} = \bar{y}$$

where:

$$\bar{\hat{y}} \triangleq \frac{1}{M} \sum_{i=1}^{M} \hat{y}^{(i)} \qquad \qquad \bar{y} \triangleq \frac{1}{M} \sum_{i=1}^{M} y^{(i)}$$

Proof Normal equation:

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{X}^T \underbrace{\mathbf{X} \cdot \mathbf{\theta}^*}_{\mathbf{X}} = \mathbf{X}^T \mathbf{y}$$

Theorem: prediction and true value averages

In an OLS regression, the average of the predictions equals the average of the true values of the target:

$$\bar{\hat{y}} = \bar{y}$$

where:

$$\bar{\hat{y}} \triangleq \frac{1}{M} \sum_{i=1}^{M} \hat{y}^{(i)} \qquad \qquad \bar{y} \triangleq \frac{1}{M} \sum_{i=1}^{M} y^{(i)}$$

Proof Normal equation:

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{X}^T \underbrace{\mathbf{X} \cdot \mathbf{\theta}^*}_{\hat{\mathbf{y}}} = \mathbf{X}^T \mathbf{y}$$

Theorem: prediction and true value averages

In an OLS regression, the average of the predictions equals the average of the true values of the target:

$$\bar{\hat{y}} = \bar{y}$$

where:

$$\bar{\hat{y}} \triangleq \frac{1}{M} \sum_{i=1}^{M} \hat{y}^{(i)} \qquad \qquad \bar{y} \triangleq \frac{1}{M} \sum_{i=1}^{M} y^{(i)}$$

Proof Normal equation:

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{X}^T \underbrace{\mathbf{X} \cdot \mathbf{\theta}^*}_{\hat{\mathbf{y}}} = \mathbf{X}^T \mathbf{y} \Longrightarrow \mathbf{X}^T \hat{\mathbf{y}} = \mathbf{X}^T \mathbf{y}$$

Theorem: prediction and true value averages

In an OLS regression, the average of the predictions equals the average of the true values of the target:

$$\bar{\hat{y}} = \bar{y}$$

where:

$$\bar{\hat{y}} \triangleq \frac{1}{M} \sum_{i=1}^{M} \hat{y}^{(i)} \qquad \qquad \bar{y} \triangleq \frac{1}{M} \sum_{i=1}^{M} y^{(i)}$$

Proof

Normal equation:

The first element is:

$$\boldsymbol{\Theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \qquad [1 \dots 1] \cdot \hat{\mathbf{y}} = [1 \dots 1] \cdot \mathbf{y}$$

$$\mathbf{X}^T \underbrace{\mathbf{X} \cdot \mathbf{\theta}^*}_{\hat{\mathbf{y}}} = \mathbf{X}^T \mathbf{y} \Longrightarrow \mathbf{X}^T \hat{\mathbf{y}} = \mathbf{X}^T \mathbf{y}$$

- θ_0 does not capture (\mathbf{x}, y) dependency
- θ_0 just "aligns" predictions to meet the label average.

Section 3

Validation of a model

Train and Test a model

- Supervised learning: we construct a model *h*(**x**) based on observed (**x**⁽¹⁾, **x**⁽²⁾,...) for the purpose of approximating *y* for new samples **x**.
- Generalization:^{*a*} when the constructed model *h*(**x**) is good at approximating labels *y* of **new** samples **x**:

$$h(\mathbf{x}) \simeq y$$

• How do we test if the model generalizes.

- Student analogy
 - He/she checks the answers during training
 - Answers are hidden during the test

^aSec. 3.1 of [GBD92].

BufferHealth	BufferProgress	BufferValid	label	label_num
10.241165	0.015357	true	q360p	360
4.446780	0.007103	true	q144p	144
3.989780	0.006509	true	q144p	144
3.700462	0.005897	true	q360p	360
4.512780	0.007156	true	q360p	360
9.454706	0.016805	true	q360p	360
4.606780	0.008046	true	q144p	144
5.301853	0.007990	true	q720p	720
3.638107	0.005493	true	q240p	240
5.314732	0.0.040	true	q240p	240
8.554780	0.0716	true	q480p	X
4.189780	0.007516	true	q360p	360
3.633641	0.005897	true	q480p	480
1.495841	0.002473	true	q720p	720
8.802211	0.014076	true	q1080p	1080
4.611142	0.009263	true	q144p	144
5.590378	0.009113	true	q480p	480
4.940168	0.008851	true	q1080p	1080
4.940168	0.008851	true	q1080p	1080
9.239532	0.016335	true	q720p	720

		label_num	label	BufferValid	BufferProgress	BufferHealth
		360	q360p	true	0.015357	10.241165
		144	q144p	true	0.007103	4.446780
		144	q144p	true	0.006509	3.989780
		360	q360p	true	0.005897	3.700462
		360	q360p	true	0.007156	4.512780
	7	- 260	q360p	true	7 ^{0.016805}	9.45478
		1	q144p	true	0.008046	4.606780
•	L,	720	q720p	true	007990	5.301852
aın	tr	240	g2 0p	rai	0.005493	3.638107
		240	q240p	true	0.009400	5.314732
		480	q480p	true	0.011688	8.554780
		360	q360p	true	0.007516	4.189780
		480	q480p	true	0.005897	3.633641
		720	q720p	true	0.002473	1.495841
λ.		1080	q1080p	true	0.014076	8.802211
			q144p	true	0.009263	4.611142
2/	TA		q480p	true	0.009113	5.590378
H.	Y &)		q1080p	true	0.008851	4.940168
et.	to	-	q1080p	oct	0.008851	4.940168
30	ιε		q720p		0.016335	9.239532

Train using only the training set $(\mathbf{X}, \hat{\mathbf{y}})$:

$$\boldsymbol{\theta}^{*} \triangleq \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}})$$

The trained model is

 $h_{\mathbf{\theta}^*}(\cdot)$

Evaluate the quality of the trained model via:

$$J(\mathbf{\theta}^*, \mathbf{X}_{\text{test}}, \mathbf{y}_{\text{test}})$$

(*Test error* or generalization error^a or out-of-sample error)

The *J* used during training and test may be different.

Which method is better?

BufferHealth	BufferProgress	BufferValid	label	label_num
10.241165	0.015357	true	q360p	360
4.446780	0.007103	true	q144p	144
3.989780	0.006509	true	q144p	144
3.700462	0.005897	true	q360p	360
4.512780	0.007156	true	q360p	360
9.454706	0.016805	true	q360p	360
4.606780	0.008046	true	q144p	144
5.301853	0.007990	true	q720p	720
3.638107	0.005493	true	q240p	240
5.314732	0.009400	true	q240p	240
8.554780	0.011688	true	q480p	480
4.189780	0.007516	true	q360p	360
3.633641	0.005897	true	q480p	480
1.495841	0.002473	true	q720p	720
8.802211	0.014076	true	q1080p	1080
4.611142	0.009263	true	q144p	
5.590378	0.009113	true	q480p	
4.940168	0.008851	true	q1080p	
4.940168	0.008851	true	q1080p	
9.239532	0.016335	true	q720p	

BufferHealth	BufferProgress	BufferValid	label	label_num
10.241165	0.015357	true	q360p	360
4.446780	0.007103	true	q144p	144
3.989780	0.006509	true	q144p	
3.700462	0.005897	true	q360p	360
4.512780	0.007156	true	q360p	
9.454706	0.016805	true	q360p	360
4.606780	0.008046	true	q144p	144
5.301853	0.007990	true	q720p	
3.638107	0.005493	true	q240p	
5.314732	0.009400	true	q240p	240
8.554780	0.011688	true	q480p	480
4.189780	0.007516	true	q360p	360
3.633641	0.005897	true	q480p	
1.495841	0.002473	true	q720p	
8.802211	0.014076	true	q1080p	1080
4.611142	0.009263	true	q144p	144
5.590378	0.009113	true	q480p	
4.940168	0.008851	true	q1080p	1080
4.940168	0.008851	true	q1080p	1080
9.239532	0.016335	true	q720p	

What if the data provider first experimented with all low resolutions and finally with all the highest?

Let's code ...

38 / 54

Go to notebook 02.regression/a.regression.ipynb

Section 4

Instability of a model (Variance)

Zero-variance features

$$\operatorname{Var}(j) = \frac{1}{M-1} \sum_{i=1}^{M} (x_j^{(i)} - \mu_j)^2$$

• Suppose
$$x_j^{(i)} = c$$
 for all samples i
• $\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & c & \dots & x_N^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(M)} & \dots & c & \dots & x_N^{(M)} \end{bmatrix}$

- Not full rank
- $\Rightarrow (\mathbf{X}^T \mathbf{X})^{-1}$ does not exist
- $\boldsymbol{\theta}^* = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$ impossible

Collinearity

• Two features *j*₁, *j*₁ (columns of **X**) are **collinear** if they are proportional

$$\begin{bmatrix} x_{j_1}^{(1)} \\ \vdots \\ x_{j_1}^{(N)} \end{bmatrix} = \alpha \begin{bmatrix} x_{j_2}^{(1)} \\ \vdots \\ x_{j_2}^{(N)} \end{bmatrix}$$

In this case, column j_2 **adds no information** about prediction.

- \Longrightarrow X has no full rank
- \implies ($\mathbf{X}^T \cdot \mathbf{X}$) is not invertible
- \implies not unique.
- \implies The normal equation

$$\boldsymbol{\theta}^* = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

cannot be computed.
Quasi-collinearity

• In real world, perfect collinearity is rare, but

$$\begin{bmatrix} x_{j_1}^{(1)} \\ \vdots \\ x_{j_1}^{(N)} \end{bmatrix} \simeq \alpha \begin{bmatrix} x_{j_2}^{(1)} \\ \vdots \\ x_{j_2}^{(N)} \end{bmatrix}$$

and the computer is able to compute the normal equation, but ...

• For any model h_{θ} :

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \theta_{j_1} x_{j_1} + \theta_{j_2} x_{j_2} + \sum_{j \notin \{j_1, j_2\}} \theta_j x_j$$
$$\simeq (\alpha \theta_{j_1} + \theta_{j_2}) x_{j_2} + \sum_{j \notin \{j_1, j_2\}} \theta_j x_j$$

Infinite pairs of (θ_{j1}, θ_{j2}) would be almost equivalent

- Small differences of X ⇒ big differences in (θ^{*}_{j1}, θ^{*}_{j2})
- \Rightarrow Variance

– Ex.

Multi-collinearity

• If *j*-th feature is a linear combination of others

$$\mathbf{X}_j = \alpha_1 \mathbf{X}_{j_1} + \alpha_2 \mathbf{X}_{j_2} + \dots$$

- $\mathbf{X} = [\mathbf{1}|\mathbf{X}_1| \dots |\mathbf{X}_N]$ no full rank
- The normal equation

$$\mathbf{\theta}^* = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

cannot be computed.

• How to discover Multi-collinearity? ...

Variance of a model

- Humans are good at generalizing knowledge ...
- ... because their perception models have low variance

Variance

A model suffers **high variance** if, by perturbing a bit the training dataset, the model changes completely. Suppose $\tilde{\mathbf{X}}, \tilde{\mathbf{y}}$ is a slightly perturbed version of \mathbf{X}, \mathbf{y} . If a model has high variance:

> $\tilde{\theta^*} = \arg\min_{\theta} J(\theta, \tilde{\mathbf{X}}, \tilde{\mathbf{y}})$ completely different than $\theta^* = \arg\min_{\theta} J(\theta, \mathbf{X}, \mathbf{y})$

- Variance is the contrary of Stability
- High variance ⇒ high sensitivity to training data.
 (§5 of [BK11])

Let's code ...

45 / 54

Go to notebook 02regression/.a.regression.ipynb

Section 5

Cross-validation

Cross validation

How can we be sure that, if we change train/test split the error does not change? \implies Cross-validation.

Algorithm 1 *K*-fold validation

- 1: Divide the dataset in *K* subsets
- 2: **for** *i* = 1 to *K* **do**
- 3: Keep subset *i* for test
- 4: Train on all the others
- 5: Compute test error
- 6: **end for**
- 7: Error = average of test errors

abel_num	label	BufferValid	BufferProgress	BufferHealth
360	q360p	true	0.015357	10.241165
144	q144p	true	0.007103	4.446780
144	q144p	true	0.006509	3.989780
360	q360p	true	0.005897	3.700462
360	q360p	true	0.007156	4.512780
360	q360p	true	0.016805	9.454706
144	q144p	true	0.008046	4.606780
720	q720p	true	0.007990	5.301853
240	q240p	true	0.005493	3.638107
240	q240p	true	0.009400	5.314732
480	q480p	true	0.011688	8.554780
360	q360p	true	0.007516	4.189780
480	q480p	true	0.005897	3.633641
720	q720p	true	0.002473	1.495841
1080	q1080p	true	0.014076	8.802211
144	q144p	true	0.009263	4.611142
480	q480p	true	0.009113	5.590378
1080	q1080p	true	0.008851	4.940168
1080	q1080p	true	0.008851	4.940168
720	a720p	true	0.016335	9 239532

TRAINING SET

TEST SET

Let's code ...

48 / 54

Go to notebook 02.regression/a.regression.ipynb

To recap

In this lesson

- Supervised Learning
- First Model in Python (Linear Regression)
- Feature selection
- Validation: Train/Test; Cross-validation

Next lesson

Regression (continued)

- Polynomial Regression
- . Model Variance / Complexity
- Regularization
- Scaling
- . Feature Selection

Classification

- Logistic Regression
- Classification Performance
- Class imbalance

- Dealing with Multi-collinearity [DEB⁺13]
- Variance Inflation Factor for testing Multi-collinearity: pag. 101-102 of [JWHT13]
- Cross-validation from machinelearningmastery

References I

- [BK11] Eric Bauer and Ron Kohavi, An Empirical Comparison of Voting Classification Algorithms : Bagging, Boosting, and Variants, Machine Learning 38 (2011), no. 1998, 1–38.
- [DEB⁺13] Carsten F. Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R.García Marquéz, Bernd Gruber, Bruno Lafourcade, Pedro J. Leitão, Tamara Münkemüller, Colin Mcclean, Patrick E. Osborne, Björn Reineking, Boris Schröder, Andrew K. Skidmore, Damaris Zurell, and Sven Lautenbach, *Collinearity: A review of methods to deal with it and a simulation study evaluating their performance*, Ecography **36** (2013), no. 1, 027–046.
- [GBD92] Stuart Geman, Elie Bienenstock, and René Doursat, *Neural Networks and the Bias/Variance Dilemma*, Neural Computation **4** (1992), no. 1, 1–58.

References II

- [GGA⁺19] Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett, and Gil Zussman, *Requet: Real-time QoE detection for encrypted YouTube traffic*, ACM MMSys, 2019.
- [HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, *The Elements of Statistical Learning*, 2nd ed., vol. 1, Springer, 2009.
- [JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, *An introduction to Statistical Learning*, vol. 7, 2013.
- [KEB19] Muhammad Jawad Khokhar, Thibaut Ehlinger, and Chadi Barakat, From Network Traffic Measurements to QoE for Internet Video, IFIP Networking, 2019, pp. 1–9.
- [LR19] Julie Legler and Paul Roback, *Broadening Your Statistical Horizons*, online, 2019.

References III

54 / 54

[Tho20]

Simon Thorpe, *Intelligence artificielle et intelligence naturelle – vers l'IA bio-inspiré*, https://www.college-de-france.fr/site/stephane-mallat/seminar-2020-02-26-11h00.htm, 2020.