# Machine Learning for Networks: Regression (continued) and Classification

Andrea Araldo

September 14, 2023

### Outline

# Regression (continued)

- Polynomial Regression
- . Variance vs. Bias Trade-Off
- Regularization
- Scaling
- Feature Selection

# Classification

- Logistic Regression
- Classification Performance
- Class imbalance

#### Section 1

# Polynomial Regression and hyper-parameter tuning

#### **Univariate Polynomial Regressions**

• A univariate polynomial regression of degree p is

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2 + \dots + \theta_p \cdot x^p$$

*p* = 1: linear
 *p* = 2: quadratic
 *p* = 3: cubic

. . .

• Equivalent to linear regression with features

$$x, x^2, \ldots, x^p$$

- *p* is a *hyper-parameter*: parameter of the learning algorithm.
- How to choose *p*?

#### Multi-variate polynomial regression

• With  $j = 1 \dots N$  features, all terms of degree 2 are included:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_N \cdot x_N$$
  
+  $\theta_{N+1} \cdot x_1^2 + \dots + \theta_{N+N} \cdot x_N^2$   
+  $\theta_{1,2} \cdot x_1 x_2 + \theta_{1,3} \cdot x_1 x_3 + \dots + \theta_{1,N} \cdot x_1 x_N$   
+  $\theta_{2,3} \cdot x_2 x_3 + \theta_{2,4} \cdot x_2 x_4 + \dots$ 

• A pol. regression of degree *p* includes the following terms: – Bias term

$$\theta_0$$

- Powers of features
- $x_j^k$   $k=1,\ldots,p$
- Mixed terms of power 2:

$$x_j \cdot x_{j'}$$

- Mixed terms of power 3

$$x_j \cdot x_{j'} \cdot x_{j''}$$

 $j^{\prime\prime}>j^\prime>j$ 

j' > j

- ...
- Mixed terms of power p

| BufferHealth | BufferProgress | BufferValid | label  | label_num |
|--------------|----------------|-------------|--------|-----------|
| 10.241165    | 0.015357       | true        | q360p  | 360       |
| 4.446780     | 0.007103       | true        | q144p  | 144       |
| 3.989780     | 0.006509       | true        | q144p  | 144       |
| 3.700462     | 0.005897       | true        | q360p  | 360       |
| 4.512780     | 0.007156       | true        | q360p  | 360       |
| 9.454706     | 0.016805       | true        | q360p  | 360       |
| 4.606780     | 0.008046       | true        | q144p  | 144       |
| 5.301853     | 0.007990       | true        | q720p  | 720       |
| 3.638107     | 0.005493       | true        | q240p  | 240       |
| 5.314732     | 0.009400       | true        | q240p  | 240       |
| 8.554780     | 0.011688       | true        | q480p  | 480       |
| 4.189780     | 0.007516       | true        | q360p  | 360       |
| 3.633641     | 0.005897       | true        | q480p  | 480       |
| 1.495841     | 0.002473       | true        | q720p  | 720       |
| 8.802211     | 0.014076       | true        | q1080p | 1080      |
| 4.611142     | 0.009263       | true        | q144p  | 144       |
| 5.590378     | 0.009113       | true        | q480p  | 480       |
| 4.940168     | 0.008851       | true        | q1080p | 1080      |
| 4.940168     | 0.008851       | true        | q1080p | 1080      |
| 9.239532     | 0.016335       | true        | q720p  | 720       |

| -      |        |             |                |              |
|--------|--------|-------------|----------------|--------------|
| label_ | label  | BufferValid | BufferProgress | BufferHealth |
|        | q360p  | true        | 0.015357       | 10.241165    |
|        | q144p  | true        | 0.007103       | 4.446780     |
|        | q144p  | true        | 0.006509       | 3.989780     |
|        | q360p  | true        | 0.005897       | 3.700462     |
|        | q360p  | true        | 0.007156       | 4.512780     |
|        | q360p  | true        | 0.016805       | 9.454706     |
|        | q144p  | true        | 0.008046       | 4.606780     |
|        | q720p  | true        | 0.007990       | 5.301853     |
|        | q240p  | true        | 0.005493       | 3.638107     |
|        | q240p  | true        | 0.009400       | 5.314732     |
|        | q480p  | true        | 0.011688       | 8.554780     |
|        | q360p  | true        | 0.007516       | 4.189780     |
|        | q480p  | true        | 0.005897       | 3.633641     |
|        | q720p  | true        | 0.002473       | 1.495841     |
|        | q1080p | true        | 0.014076       | 8.802211     |
|        | q144p  | true        | 0.009263       | 4.611142     |
|        | q480p  | true        | 0.009113       | 5.590378     |
|        | q1080p | true        | 0.008851       | 4.940168     |
|        | q1080p | true        | 0.008851       | 4.940168     |
|        | q720p  | true        | 0.016335       | 9.239532     |

TRAINING SET

TEST SET • Divide training and test sets

| Health BufferPro | rogress BufferVal | d label   | label_num |      |   |
|------------------|-------------------|-----------|-----------|------|---|
| 41165 0.0        | .015357 tru       | ie q360p  | 360       | )    |   |
| 46780 0.0        | .007103 tru       | ie q144p  | 144       |      |   |
| 89780 0.0        | .006509 tru       | ie q144p  | 144       |      |   |
| 00462 0.0        | .005897 tru       | e q360p   | 360       |      |   |
| i12780 0.0       | .007156 tru       | e q360p   | 360       |      |   |
| 54706 0.0        | .016805 tru       | e q360p   | 360       |      |   |
| 06780 0.0        | .008046 tru       | ie q144p  | 144       |      |   |
| 01853 0.0        | .007990 tru       | e q720p   | 720       | TRAI | Ν |
| 38107 0.0        | .005493 tru       | e q240p   | 240       | SET  |   |
| 14732 0.0        | .009400 tru       | ie q240p  | 240       |      |   |
| 54780 0.0        | .011688 tru       | ie q480p  | 480       |      |   |
| 89780 0.0        | .007516 tru       | e q360p   | 360       |      |   |
| 33641 0.0        | .005897 tru       | e q480p   | 480       |      |   |
| 95841 0.0        | .002473 tru       | e q720p   | 720       |      |   |
| 02211 0.0        | .014076 tru       | ie q1080p | 1080      |      |   |
| 11142 0.0        | .009263 tru       | ie q144p  | 144       |      |   |
| i90378 0.0       | .009113 tru       | e q480p   | 480       | J.   |   |
| 40168 0.0        | .008851 tru       | e q1080p  | 1080      | тгот | _ |
| 40168 0.0        | 009801 In         | g1080p    | 1080      | TEST | I |
| 39532 0.0        | .016335 tru       | e q720p   | 720       | SET  |   |

TRAINING SET

- Divide training and test sets
- Use only training set

| BufferHealth | BufferProgress | BufferValid | label  | label_num |
|--------------|----------------|-------------|--------|-----------|
| 10.241165    | 0.015357       | true        | q360p  | 360       |
| 4.446780     | 0.007103       | true        | q144p  | 144       |
| 3.989780     | 0.006509       | true        | q144p  | 144       |
| 3.700462     | 0.005897       | true        | q360p  | 360       |
| 4.512780     | 0.007156       | true        | q360p  | 360       |
| 9.454706     | 0.016805       | true        | q360p  | 360       |
| 4.606780     | 0.008046       | true        | q144p  | 144       |
| 5.301853     | 0.007990       | true        | q720p  | 720       |
| 3.638107     | 0.005493       | true        | q240p  | 240       |
| 5.314732     | 0.009400       | true        | q240p  | 240       |
| 8.554780     | 0.011688       | true        | q480p  | 480       |
| 4.189780     | 0.007516       | true        | q360p  | 360       |
| 3.633641     | 0.005897       | true        | q480p  | 480       |
| 1.495841     | 0.002473       | true        | q720p  | 720       |
| 8.802211     | 0.014076       | true        | q1080p | 1080      |
| 4.611142     | 0.009263       | true        | q144p  | 144       |
| 5.590378     | 0.009113       | true        | q480p  | 480       |
| 4.940100     | 0.008851       | true        | q1080p | 1080      |
| 4.940168     | 0.009001       |             | g1080p | 1080      |
| 9.239532     | 0.016335       | true        | q720p  | 120       |

TRAINING SET

TEST SET

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
  - Construct a model with such values
  - Compute cross-validation error

| BufferHealth | BufferProgress | BufferValid | label  | label_num |
|--------------|----------------|-------------|--------|-----------|
| 10.241165    | 0.015357       | true        | q360p  | 360       |
| 4.446780     | 0.007103       | true        | q144p  | 144       |
| 3.989780     | 0.006509       | true        | q144p  | 144       |
| 3.700462     | 0.005897       | true        | q360p  | 360       |
| 4.512780     | 0.007156       | true        | q360p  | 360       |
| 9.454706     | 0.016805       | true        | q360p  | 360       |
| 4.606780     | 0.008046       | true        | q144p  | 144       |
| 5.301853     | 0.007990       | true        | q720p  | 720       |
| 3.638107     | 0.005493       | true        | q240p  | 240       |
| 5.314732     | 0.009400       | true        | q240p  | 240       |
| 8.554780     | 0.011688       | true        | q480p  | 480       |
| 4.189780     | 0.007516       | true        | q360p  | 360       |
| 3.633641     | 0.005897       | true        | q480p  | 480       |
| 1.495841     | 0.002473       | true        | q720p  | 720       |
| 8.802211     | 0.014076       | true        | q1080p | 1080      |
| 4.611142     | 0.009263       | true        | q144p  | 144       |
| 5.590378     | 0.009113       | true        | q480p  | 480       |
| 4.940100     | 0.008851       | true        | q1080e | 1080      |
| 4.940168     | 0.009001       |             | g1080p | 1080      |
| 9.239532     | 0.016335       | true        | q720p  | 720       |

TRAINING SET

TEST SET

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
  - Construct a model with such values
  - Compute cross-validation error
- Select the model with the smallest cross-validation error

| BufferHealth | BufferProgress | BufferValid | label  | label_num |
|--------------|----------------|-------------|--------|-----------|
| 10.241165    | 0.015357       | true        | q360p  | 360       |
| 4.446780     | 0.007103       | true        | q144p  | 144       |
| 3.989780     | 0.006509       | true        | q144p  | 144       |
| 3.700462     | 0.005897       | true        | q360p  | 360       |
| 4.512780     | 0.007156       | true        | q360p  | 360       |
| 9.454706     | 0.016805       | true        | q360p  | 360       |
| 4.606780     | 0.008046       | true        | q144p  | 144       |
| 5.301853     | 0.007990       | true        | q720p  | 720       |
| 3.638107     | 0.005493       | true        | q240p  | 240       |
| 5.314732     | 0.009400       | true        | q240p  | 240       |
| 8.554780     | 0.011688       | true        | q480p  | 480       |
| 4.189780     | 0.007516       | true        | q360p  | 360       |
| 3.633641     | 0.005897       | true        | q480p  | 480       |
| 1.495841     | 0.002473       | true        | q720p  | 720       |
| 8.802211     | 0.014076       | true        | q1080p | 1080      |
| 4.611142     | 0.009263       | true        | q144p  | 144       |
| 5.590378     | 0.009113       | true        | q480p  | 480       |
| 4.940168     | 0.008851       | true        | q1080p | 1080      |
| 4.940168     | 0.008851       | true        | q1080p | 1080      |
| 9.239532     | 0.016335       | true        | q720p  | 720       |

TRAINING SET

TEST SET

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
  - Construct a model with such values
  - Compute cross-validation error
- Select the model with the smallest cross-validation error
- Train the selected model on the training set
- Test error on the test set

| BufferHealth | BufferProgress | BufferValid | label  | label_num |   |
|--------------|----------------|-------------|--------|-----------|---|
| 10.241165    | 0.015357       | true        | q360p  | 360       | 1 |
| 4.446780     | 0.007103       | true        | q144p  | 144       |   |
| 3.989780     | 0.006509       | true        | q144p  | 144       |   |
| 3.700462     | 0.005897       | true        | q360p  | 360       |   |
| 4.512780     | 0.007156       | true        | q360p  | 360       |   |
| 9.454706     | 0.016805       | true        | q360p  | 360       |   |
| 4.606780     | 0.008046       | true        | q144p  | 144       |   |
| 5.301853     | 0.007990       | true        | q720p  | 720       |   |
| 3.638107     | 0.005493       | true        | q240p  | 240       |   |
| 5.314732     | 0.009400       | true        | q240p  | 240       | 1 |
| 8.554780     | 0.011688       | true        | q480p  | 480       |   |
| 4.189780     | 0.007516       | true        | q360p  | 360       |   |
| 3.633641     | 0.005897       | true        | q480p  | 480       |   |
| 1.495841     | 0.002473       | true        | q720p  | 720       |   |
| 8.802211     | 0.014076       | true        | q1080p | 1080      |   |
| 4.611142     | 0.009263       | true        | q144p  | 144       |   |
| 5.590378     | 0.009113       | true        | q480p  | 480       | 1 |
| 4.940168     | 0.008851       | true        | q1080p | 1080      |   |
| 4.940168     | 0.008851       | true        | q1080p | 1080      |   |
| 9.239532     | 0.016335       | true        | q720p  | 720       |   |

TRAINING SET

> TEST SET

5 / 42

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
  - Construct a model with such values
  - Compute cross-validation error
- Select the model with the smallest cross-validation error
- Train the selected model on the training set
- Test error on the test set

We have only used the training set to select the best parameter

#### Let's code ...

6 / 42



Go to notebook 03.regression\_contd-and-classification/a.polynomial-regression.ipynb

#### **Complexity and Variance**



#### More complexity, More model variance

Example of polynomial regression with degree 1 (linear), and then higher degrees Image from [AWS].

#### **Complexity and Variance**

Higher  $p \Longrightarrow$  higher complexity  $\Longrightarrow$  higher variance (the model adapts too flexibly to the training data)



Model Complexity (df)

#### **Bias-Variance trade-off**

If you reduce bias (on the training set) you increase the variance. And vice-versa. This is a fundamental limit of Machine Learning [KW96].



Model Complexity (df)

# Section 2

# **Regularization**

#### Regularization

• Force the model to be simple. Cost function:

$$J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}}) = \frac{1}{M} \sum_{i=1}^{M} \left( y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2 \underbrace{+ \alpha \sum_{j=1}^{N} \theta_j^2}_{\text{regularization term}}$$

- Parameters forced to be small  $\Longrightarrow$  less overfit
- Bias term  $\theta_0$  not regularized. Why?

#### Regularization

• Force the model to be simple. Cost function:

$$J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}}) = \frac{1}{M} \sum_{i=1}^{M} \left( y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2 \underbrace{+\alpha \sum_{j=1}^{N} \theta_j^2}_{\text{regularization term}}$$

- Parameters forced to be small  $\Longrightarrow$  less overfit
- Bias term  $\theta_0$  not regularized. Why?
  - It is just an offset. It does not add complexity.

#### Regularization

• Force the model to be simple. Cost function:

$$J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}}) = \frac{1}{M} \sum_{i=1}^{M} \left( y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2 \underbrace{+\alpha \sum_{j=1}^{N} \theta_j^2}_{\text{regularization term}}$$

- Parameters forced to be small  $\Longrightarrow$  less overfit
- Bias term  $\theta_0$  not regularized. Why?
  - It is just an offset. It does not add complexity.
- Should regularization term considered when evaluating test error?

$$J_{\text{train}} = \frac{1}{|\mathscr{D}^{\text{train}}|} \sum_{i \in \mathscr{D}^{\text{train}}} \left( y^{(i)} - h_{\theta}(\mathbf{x}^{(i)}) \right)^2 \quad \underbrace{+\alpha \sum_{j=1}^{N} \theta_j^2}_{}$$

regularization term

$$J_{\text{test}} = \frac{1}{|\mathscr{D}^{\text{test}}|} \sum_{i \in \mathscr{D}^{\text{test}}} \left( y^{(i)} - h_{\theta}(\mathbf{x}^{(i)}) \right)^2$$

#### Effects of $\alpha$

11 / 42



Model Complexity (df)

- What if  $\alpha \rightarrow 0$  ? Linear regression
- And if  $\alpha \to +\infty$ ? Only  $\theta_0$

#### Effects of $\alpha$

11 / 42



Model Complexity (df)

- What if  $\alpha \to 0$ ? Linear regression
- And if  $\alpha \to +\infty$ ? Only  $\theta_0$
- Suppose
  - you try
    - different  $\alpha$  and
  - the best error is

with  $\alpha \to +\infty$ .

What do you

conclude?

In this case, the best model is the simple average of y.

#### Let's code ...



# Section 3

Scaling

#### **Regularization and scaling**

Features may have different magnitudes



- Regularization squashes blindly all features uniformly.
- "Small" features would need instead larger
- Need to scale features before applying regularization.

 $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$ 

#### Standard scaler

• If  $\mu_j$  is avg of *j*-feature and  $\sigma_j$  the stdev: Standard Scaler

$$x_j^{(i)\prime} = \frac{x_j^{(i)} - \mu_j}{\sigma_j}$$

Which is the correct way of applying scaling?

vs.

- Divide  $(\mathbf{X}, \mathbf{y}) \rightarrow (\mathbf{X}_{train}, \mathbf{y}_{train}), (\mathbf{X}_{test}, \mathbf{y}_{test})$
- $\mathbf{X}_{train}' = scale(\mathbf{X}_{train})$
- $\mathbf{X}_{test}' = scale(\mathbf{X}_{test})$
- Train the model using  $(X_{\text{train}}', y_{\text{train}})$
- Test using (X<sub>test</sub>', y<sub>test</sub>) using μ<sub>j</sub>, σ<sub>j</sub>, min<sub>j</sub>, max<sub>j</sub> found in training

- $\mathbf{X}' = \text{scale}(\mathbf{X})$
- Divide  $(X', y) \rightarrow (X_{\text{train}}', y_{\text{train}}), (X_{\text{test}}', y_{\text{test}})$
- Train the model using  $(\mathbf{X}_{train}', \mathbf{y}_{train})$
- Test using  $(\mathbf{X}_{test}', \mathbf{y}_{test})$

#### Standard scaler

• If  $\mu_j$  is avg of *j*-feature and  $\sigma_j$  the stdev: Standard Scaler

$$x_j^{(i)\prime} = \frac{x_j^{(i)} - \mu_j}{\sigma_j}$$

Which is the correct way of applying scaling?

vs.

- Divide  $(\mathbf{X}, \mathbf{y}) \rightarrow (\mathbf{X}_{train}, \mathbf{y}_{train}), (\mathbf{X}_{test}, \mathbf{y}_{test})$
- $\mathbf{X}_{train}' = scale(\mathbf{X}_{train})$
- $\mathbf{X}_{test}' = scale(\mathbf{X}_{test})$
- Train the model using  $(X_{\text{train}}', y_{\text{train}})$
- Test using (X<sub>test</sub>', y<sub>test</sub>) using μ<sub>j</sub>, σ<sub>j</sub>, min<sub>j</sub>, max<sub>j</sub> found in training

#### Data Leakage (Ch.8 of [Teo19])

In the 2nd case we would calculate  $\mu_j, \sigma_j, \min_j, \max_j$  using data from test

- $\mathbf{X}' = \text{scale}(\mathbf{X})$
- Divide  $(X', y) \rightarrow (X_{\text{train}}', y_{\text{train}}), (X_{\text{test}}', y_{\text{test}})$
- Train the model using  $(\mathbf{X}_{train}', \mathbf{y}_{train})$
- Test using  $(\mathbf{X}_{test}', \mathbf{y}_{test})$



#### When is scaling important

17 / 42

Is scaling important in a linear regression?

#### When is scaling important

Is scaling important in a linear regression?

- It does not affect the accuracy of the model
  - Because coefficients can scale based on the feature magnitude.
- But it's good for interpretability, when features are standardized
  - Since we impose the stddev of all features to be 1, the value of the coefficient is an indication of **feature importance** 
    - (how much a variation of a feature impacts the target)

Is scaling important in a polynomial regression?

# Section 4

# **Feature selection**

#### **Feature selection**

- We have already seen some methods:
  - Check the Pearson's correlation
  - Run a lin.regr. on the scaled dataset and check the magnitude of the coefficients.
  - See if a model improves/deteriorates when removing a feature
- Another method: Recursive Feature Elimination (RFE)
  - Standardize your features
  - Train your model with all features
  - Remove the feature with the smallest coeff
  - Train the model again
  - Remove the feature with the smallest coeff
  - ...
  - Repeat until you are left with N features.
- Why do we need to standardize the features?

Otherwise the coefficient weights are not an indication of feature importance.

- RFE + Cross Validation (RFECV)
  - Repeat the process for different *N* and select the *N* providing the smallest cross-validation error.

#### Let's code ...

20 / 42



Go to notebook 03.regression\_contd-and-classification/b.regularization

## Section 5

# **Classification: Logistic Regression**

Supervised ML task where the labels are in a finite set.

• Ex.: Classify video resolution based on network information Labels are 144p, 360p, etc.

#### **Binomial Logistic Regression**

- Classes k = 0 (negative) and 1 (positive).
- We do not predict directly the class *k* of sample **x**
- We instead predict probabilities
  - The predicted probability of being positive is

$$\hat{p}_1^{(i)} = \mathbb{P}\left[\mathbf{x}^{(i)} \text{ is of class } \mathbf{1}\right]$$
$$= h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = \boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x}^{(i)})$$

The predicted probability of being negative is

$$\hat{p}_0^{(i)} = 1 - \hat{p}_1^{(i)}$$

v(i

- If  $y^{(i)}$  is the true class of sample  $\mathbf{x}^{(i)}$ , the predicted probability of being of the true class is

• Sigmoid 
$$\sigma(t) = \frac{1}{1+e^{-t}}$$



Picture from [Gér17]

• The predicted label is:

$$\hat{y}^{(i)} = \begin{cases} 1 & \text{if } \hat{p}_1^{(i)} \ge 0.5 \\ 0 & \text{if } \hat{p}_1^{(i)} < 0.5 \end{cases}$$

Logistic regression is a NN with one neuron



# **Log-Loss function**



04 00 -10 -5 0 5

• How can we find:

 $\sigma(t) = \frac{1}{1 + e^{-t}}$ 

0.8

$$\theta^* = \arg\min_{\theta} J(\theta, \mathbf{X}, \mathbf{y})?$$

Picture from stackexchange

• For any sample  $(\mathbf{x}^{(i)}, y^{(i)})$ :

$$\begin{split} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) &\triangleq -\ln\left(\hat{p}_{y^{(i)}}^{(i)}\right) = \begin{cases} -\ln\left(\hat{p}_{1}^{(i)}\right) & \text{if } y^{(i)} = 1\\ -\ln\left(\hat{p}_{0}^{(i)}\right) & \text{if } y^{(i)} = 0 \end{cases} \\ &= \begin{cases} -\ln\left(\sigma(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)})\right) & \text{if } y^{(i)} = 1\\ -\ln\left(1 - \sigma(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)})\right) & \text{if } y^{(i)} = 0 \end{cases} \end{split}$$

• For the entire dataset  $(\mathbf{X}, \mathbf{y})$ :

$$J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) \triangleq \frac{1}{M} \sum_{i=1}^{M} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)})$$
(1)

# **Log-Loss function**



Picture from stackexchange

• For any sample  $(\mathbf{x}^{(i)}, y^{(i)})$ :

$$\begin{split} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) &\triangleq -\ln\left(\hat{p}_{y^{(i)}}^{(i)}\right) = \begin{cases} -\ln\left(\hat{p}_{1}^{(i)}\right) & \text{if } y^{(i)} = 1\\ -\ln\left(\hat{p}_{0}^{(i)}\right) & \text{if } y^{(i)} = 0 \end{cases} \\ &= \begin{cases} -\ln\left(\sigma(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)})\right) & \text{if } y^{(i)} = 1\\ -\ln\left(1 - \sigma(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)})\right) & \text{if } y^{(i)} = 0 \end{cases} \end{split}$$

• For the entire dataset  $(\mathbf{X}, \mathbf{y})$ :

$$J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) \triangleq \frac{1}{M} \sum_{i=1}^{M} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)})$$
(1)



• How can we find:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})?$$

• For any  $(\mathbf{x}^{(i)}, y^{(i)})$ , the loss function is derivable and convex:

$$\begin{split} \nabla J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \\ &= \begin{cases} \nabla \left[ -\ln \left( \boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x}^{(i)}) \right) \right] & \text{if } y^{(i)} = 1 \\ \nabla \left[ -\ln \left( 1 - \boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x}^{(i)}) \right) \right] & \text{if } y^{(i)} = 0 \end{cases} \end{split}$$

- $\Longrightarrow J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$  is also derivable and convex
- $\implies$  We can use gradient descent.

• At each iteration

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$$

where (see (1))

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \frac{1}{M} \sum_{i=1}^{M} \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \\ \vdots \frac{\partial}{\partial \theta_N} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \end{bmatrix}$$

• For any sample i we can compute that<sup>1</sup> (No need to learn it by heart):

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \left(\underbrace{\boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x}^{(i)})}_{\underbrace{\phantom{\boldsymbol{\sigma}}}_{\underbrace{\boldsymbol{\sigma}}} - y^{(i)}}_{\underbrace{\boldsymbol{\sigma}}_{\underbrace{\boldsymbol{\sigma}}}}\right) \cdot x_j^{(i)}$$

• At each iteration

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$$

where (see (1))

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \frac{1}{M} \sum_{i=1}^{M} \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \\ \vdots \frac{\partial}{\partial \theta_N} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \end{bmatrix}$$

• For any sample i we can compute that<sup>1</sup> (No need to learn it by heart):

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \left(\underbrace{\underbrace{\boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x}^{(i)})}_{\hat{p}^{(i)}} - y^{(i)}}_{\hat{p}^{(i)}}\right) \cdot x_j^{(i)}$$

• At each iteration

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$$

where (see (1))

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \frac{1}{M} \sum_{i=1}^{M} \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \\ \vdots \frac{\partial}{\partial \theta_N} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \end{bmatrix}$$

• For any sample i we can compute that<sup>1</sup> (No need to learn it by heart):

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \left(\underbrace{\underbrace{\boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x}^{(i)})}_{\hat{p}^{(i)}} - y^{(i)}}_{-\boldsymbol{\varepsilon}^{(i)}}\right) \cdot x_j^{(i)}$$

• At each iteration

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$$

where (see (1))

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = \frac{1}{M} \sum_{i=1}^{M} \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \\ \vdots \frac{\partial}{\partial \theta_N} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) \end{bmatrix}$$

• For any sample i we can compute that<sup>1</sup> (No need to learn it by heart):

$$\frac{\partial}{\partial \theta_j} J(\theta, \mathbf{x}^{(i)}, y^{(i)}) = \left(\underbrace{\underbrace{\sigma(\theta^T \cdot \mathbf{x}^{(i)})}_{\hat{p}^{(i)}} - y^{(i)}}_{-\varepsilon^{(i)}}\right) \cdot x_j^{(i)}$$

• Therefore

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = -\boldsymbol{\varepsilon}^{(i)} \cdot \mathbf{x}^{(i)}$$

<sup>1</sup>Eq. 4.18 of [Gér17]

#### At each iteration

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})$$



#### **Training with Gradient Descent**

- 1. Full Gradient Descent:
  - Initialize a random  $\theta$
  - Compute  $h_{\theta}(\mathbf{x}^{(i)})$  for all  $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathscr{D}^{\text{train}}$
  - Compute the residuals

$$\boldsymbol{\varepsilon}^{(i)} = h_{\boldsymbol{\theta}}(\mathbf{x}) - y^{(i)}$$

• Apply the update:

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \underbrace{\frac{1}{M} \sum_{i=1}^{M} \boldsymbol{\varepsilon}^{(i)} \cdot \mathbf{x}^{(i)}}_{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})}$$

• Repeat several **epochs**.

The more the error on a  $\mathbf{x}^{(i)}$ , the more its contribution to the update.

**Problem**: what happens if  $\mathscr{D}^{\text{train}}$  is huge?

- 28 / 42
- 2. Stochastic gradient descent
  - Randomly select one sample (**x**<sup>(i)</sup>, y<sup>(i)</sup>)
  - Directly update

$$\boldsymbol{\theta} := \boldsymbol{\theta} - \boldsymbol{\eta} \cdot \underbrace{\boldsymbol{\varepsilon}^{(i)} \cdot \mathbf{x}^{(i)} \nabla}_{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)})}$$

- Why *stochastic*: we apply a quantity which on expectation is equal to the actual gradient
- 3. Batch gradient descent
  - Partition  $\mathscr{D}^{\text{train}}$  into batches
  - For each batch
    - Predict all the data

# Logistic Regression is a linear classifier

**Decision boundary**: Surface of  $\mathbb{R}^{N+1}$  that divides the region in which the classifier predicts 1 and the region in which it predicts 0.

#### Theorem

The decision boundary of Logistic Regression is a hyperplane

Logistic regression predicts 1 if

$$\hat{p}_{1}^{(i)} = h_{\theta}(\mathbf{x}) = \sigma(\theta^{T} \cdot \mathbf{x}^{(i)}) \ge 0.5$$
  
$$\iff$$
  
$$\theta^{T} \cdot \mathbf{x}^{(i)} \ge 0$$

Therefore, the boundary decision is the set of **x** such that

$$\boldsymbol{\theta}^T \cdot \mathbf{x} = 0$$

This surface is described by a linear equation, and thus it is a hyperplane.



Picture above from [Gér17]



#### **Multinomial Logistic Regression**

Extension to multiple classes.

- Each class has its weight parameter
  θ<sub>k</sub> ∈ ℝ<sup>N+1</sup>, except the last
- Compute a *score*  $s_k(\mathbf{x}) \triangleq \mathbf{\theta}_k^T \cdot \mathbf{x}$
- For any **x**, we have the score of all classes

 $s_1(\mathbf{x}),\ldots,s_K(\mathbf{x})$ 

• We define that:

$$\hat{p}_{k} = \mathbb{P}[\mathbf{x} \in \text{class } k] = \text{softmax}(s_{k}(\mathbf{x}))$$
$$\triangleq \frac{\exp s_{k}(\mathbf{x})}{\sum_{z=1}^{K} \exp s_{z}(\mathbf{x})} = \frac{\exp \left(\boldsymbol{\theta}_{k}^{T} \cdot \mathbf{x}\right)}{\sum_{z=1}^{K} \exp \left(\boldsymbol{\theta}_{z}^{T} \cdot \mathbf{x}\right)}$$

• Predicted Class:

$$k^* = \arg\max_k \operatorname{softmax}(\boldsymbol{\theta}_k^T \cdot \mathbf{x}) = \arg\max_k \boldsymbol{\theta}_k^T \cdot \mathbf{x}$$



#### **Multinomial Logistic Regression (2)**

We just need to compute K - 1 parameter vectors:

$$\hat{p}_{k}^{(i)} = \frac{\exp(-\theta_{K})}{\exp(-\theta_{K})} \cdot \frac{\exp\left(\theta_{k}^{T} \cdot \mathbf{x}\right)}{\sum_{z=1}^{K} \exp\left(\theta_{z}^{T} \cdot \mathbf{x}\right)}$$
$$= \frac{\exp\left((\theta_{k} - \theta_{K})^{T} \cdot \mathbf{x}\right)}{\sum_{z=1}^{K} \exp\left(\underbrace{(\theta_{z} - \theta_{K})^{T} \cdot \mathbf{x}}_{\theta_{z}^{'}}\right)}$$
$$= \frac{\exp\left(\theta_{k}^{'T} \cdot \mathbf{x}\right)}{1 + \sum_{z=1}^{K-1} \exp\left(\theta_{z}^{'T} \cdot \mathbf{x}\right)}$$





#### **Cross-entropy**

• The loss function for each sample is the cross-entropy

$$J(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}) = -\sum_{k} \ln \hat{p}_{y^{(i)}}^{(i)}$$

where 
$$y_k^{(i)} = 1 \iff \mathbf{x}^{(i)} \in \text{class } k$$

• We want  $\hat{p}_{y^{(i)}}^{(i)}$  to be as high as possible.

• Softmax "amplifies" the most probable class.



#### Homework

#### Assignement

Show that the Multinomial Logistic Regression with K = 2 is equivalent to Binary Logistic Regression.

In other words, show that

$$\mathbb{P}[\mathbf{x} \in \text{class 1}] = \text{softmax}(\mathbf{\Theta}^T \cdot \mathbf{x})$$

is equivalent to the binomial case

$$\mathbb{P}[\mathbf{x} \in \text{class } 1] = \boldsymbol{\sigma}(\boldsymbol{\theta}^T \cdot \mathbf{x})$$

Then show that the loss function is also equivalent.

#### Let's code ...

34 / 42



Go to notebook 03.regression\_contd-and-classification.ipynb

# Section 6

# **Class imbalance and performance metrics**

### **Confusion Matrix**







When there are classes with many samples and other with less samples.

How to cope with it:

- Synthetic Minority Over-Sampling TEchnique (SMOTE) [CBHK02]
  - 10 K citations!
- Others (you can explore yourself, if you want)
  - Under-sampling majority class
  - Use different weights in the loss function
  - Others: see this blog.

# **Classification Report**

38 / 42

- **Precision**: 29% of samples classified as 0 are actually 0
- **Recall**: 75% of class 0 samples are correctly classified

| • | Accuracy:   | 61% of classifications |
|---|-------------|------------------------|
|   | are correct |                        |

- **Support**: 8 samples in the test set are of class 0
- **f1-score**: A combination of precision and recall:

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}$$

 $\uparrow$  precision,  $\uparrow$  recall  $\Longrightarrow \uparrow F_1$ 

|                                       | precision            | recall               | fl-score             | support        |
|---------------------------------------|----------------------|----------------------|----------------------|----------------|
| 0<br>1<br>2                           | 0.29<br>0.55<br>0.89 | 0.75<br>0.60<br>0.59 | 0.41<br>0.57<br>0.71 | 8<br>10<br>41  |
| accuracy<br>macro avg<br>weighted avg | 0.57<br>0.75         | 0.65<br>0.61         | 0.61<br>0.56<br>0.64 | 59<br>59<br>59 |

# Recap

# Regression (continued)

- Polynomial Regression
- . Variance vs. Bias Trade-Off
- Regularization
- Scaling
- . Feature Selection

# Classification

- Logistic Regression
- Classification Performance
- Class imbalance

- Video about feature scaling.
- More on feature selection.
- Several loss functions for classification (Video) [Mic]
- Another way of looking at Logistic Regression, based on likelihood: Sec. 4.3 of [JWHT13].

#### **References I**

- [AWS] Amazon Machine Learning Developer Guide, https://docs.aws.amazon.com/machine-learning/.
- [CBHK02] N. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research 16 (2002), 321–357.
- [Gér17] Aurélien Géron, *Hands-on machine learning with scikit-learn and tensorflow*, 2017.
- [JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, *An introduction to Statistical Learning*, vol. 7, 2013.
- [KW96] Ron Kohavi and David H. Wolpert, *Bias plus variance decomposition for zero-one loss functions*, International Conference on Machine Learning (ICML96), 1996.

#### **References II**

- [Mic] Microsoft, *Principles of Machine Learning* | *Loss Function for Classification*, https://youtu.be/r-vYJqcFxBI.
- [Teo19] Jake Teo, *Data Science Documentation*, 2019.