Machine Learning for Networks: Regression (continued) and Classification

Andrea Araldo

September 14, 2023

Regression (continued)

- Polynomial Regression
- Variance vs. Bias Trade-Off
- Regularization
- Scaling
- Feature Selection

Classification

- Logistic Regression
. Classification Performance
- Class imbalance

Section 1

Polynomial Regression and hyper-parameter tuning

Univariate Polynomial Regressions

- A univariate polynomial regression of degree p is

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} \cdot x+\theta_{2} \cdot x^{2}+\ldots \theta_{p} \cdot x^{p}
$$

- $p=1$: linear
$p=2$: quadratic
$p=3$: cubic
- Equivalent to linear regression with features

$$
x, x^{2}, \ldots, x^{p}
$$

- p is a hyper-parameter: parameter of the learning algorithm.
- How to choose p ?

Multi-variate polynomial regression

- With $j=1 \ldots N$ features, all terms of degree 2 are included:

$$
\begin{aligned}
h_{\theta}(\mathbf{x}) & =\theta_{0}+\theta_{1} \cdot x_{1}+\cdots+\theta_{N} \cdot x_{N} \\
& +\theta_{N+1} \cdot x_{1}^{2}+\cdots+\theta_{N+N} \cdot x_{N}^{2} \\
& +\theta_{1,2} \cdot x_{1} x_{2}+\theta_{1,3} \cdot x_{1} x_{3}+\cdots+\theta_{1, N} \cdot x_{1} x_{N} \\
& +\theta_{2,3} \cdot x_{2} x_{3}+\theta_{2,4} \cdot x_{2} x_{4}+\ldots
\end{aligned}
$$

- A pol. regression of degree p includes the following terms:
- Bias term

$$
\theta_{0}
$$

- Powers of features

$$
x_{j}^{k} \quad k=1, \ldots, p
$$

- Mixed terms of power 2:

$$
x_{j} \cdot x_{j^{\prime}} \quad j^{\prime}>j
$$

- Mixed terms of power 3

$$
x_{j} \cdot x_{j^{\prime}} \cdot x_{j^{\prime \prime}} \quad j^{\prime \prime}>j^{\prime}>j
$$

- Mixed terms of power p

Hyper-parameter tuning

BufferHealth	BufferProgress	BufferValid	label	label_num
10.241165	0.015357	true	q360p	360
4.446780	0.007103	true	q144p	144
3.989780	0.006509	true	q144p	144
3.700462	0.005897	true	q360p	360
4.512780	0.007156	true	q360p	360
9.454706	0.016805	true	q360p	360
4.606780	0.008046	true	q144p	144
5.301853	0.007990	true	q720p	720
3.638107	0.005493	true	q240p	240
5.314732	0.009400	true	q240p	240
8.554780	0.011688	true	q480p	480
4.189780	0.007516	true	q360p	360
3.633641	0.005897	true	q480p	480
1.495841	0.002473	true	q720p	720
8.802211	0.014076	true	q1080p	1080
4.611142	0.009263	true	q144p	144
5.590378	0.009113	true	q480p	480
4.940168	0.008851	true	q1080p	1080
4.940168	0.008851	true	q1080p	1080
9.239532	0.016335	true	q720p	720

Hyper-parameter tuning

Buttertealth	ButterProgress	Butiervalid label	label_num	
10.241165	0.015357	true a360p	360	
4.446780	0.007103	true q144p	144	
3.989780	0.006509	true al44p	144	
3.700462	0.005897	true a360p	360	
4.512780	0.007156	true a360p	360	
9.454706	0.016805	true a360p	360	
4.606780	0.008046	true al44p	144	
5.301853	0.007990	true atzop	720	TRAINING
3.638107	0.005493	true q240p	240	$\}$ SET
5.314732	0.009400	true $\mathrm{q}^{240 \mathrm{p}}$	240	
8.554780	0.011688	true a^{4880}	480	
4.889780	0.007516	tree a360p	360	
3.633641	0.005897	tree a480p	480	
1.495841	${ }^{0.002473}$	true a720p	720	
8.802211	0.014076	true q9080p	1080	
4.611142	${ }^{0.009263}$	tree $\mathrm{q}^{144 \mathrm{p}}$	144	
5.590378	0.009113	true a480p	480	
4.940168	0.008851	true q^{10800}	1080	
4.940168	0.008851	true q1080p	1080	TEST
9.239532	0.016335	true a720p	${ }_{720}$	

- Divide training and test sets

Hyper-parameter tuning

Butertealth	Butererrogress	Buttervalid label	label_num	TRAINING SET TEST SET
10.241165	0.015357	true a360p	360	
4.446780	0.007103	true q144p	144	
3.989780	0.006509	true al44p	144	
3.70462	0.005897	true a360p	360	
4.512780	0.007156	true a360p	360	
9.454706	0.016805	true a360p	360	
4.606780	0.008046	true al44p	144	
5.301853	0.007990	true a720p	720	
3.638107	0.005493	true a420p	240	
5.144732	0.009400	true q240p	240	
8.554780	0.011688	true 9480 p	480	
4.189780	0.007516	tree a360p	360	
3.633641	0.005897	true a480p	480	
1.495841	0.002473	true a720p	720	
8.802211	0.014076	true q1080p	1080	
4.611142	0.009263	true q144p	144	
5.500378	0.009113		480	
4.940100	$\underbrace{0.008851}$	Uue almee	1080	
4.940168	0en	1080 p	1080	

- Divide training and test sets
- Use only training set

Hyper-parameter tuning

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
- Construct a model with such values
- Compute cross-validation error

Hyper-parameter tuning

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
- Construct a model with such values
- Compute cross-validation error
- Select the model with the smallest cross-validation error

Hyper-parameter tuning

BufferHealth	BufferProgress	BufferValid	label	label_num	
10.241165	0.015357	true	q360p	360	
4.446780	0.007103	true	q144p	144	
3.989780	0.006509	true	q144p	144	
3.700462	0.005897	true	q360p	360	
4.512780	0.007156	true	q360p	360	
9.454706	0.016805	true	q360p	360	
4.606780	0.008046	true	q144p	144	
5.301853	0.007990	true	q720p	720	TRAINING
3.638107	0.005493	true	q240p	240	SET
5.314732	0.009400	true	q240p	240	
8.554780	0.011688	true	q480p	480	
4.189780	0.007516	true	q360p	360	
3.633641	0.005897	true	q480p	480	
1.495841	0.002473	true	q720p	720	
8.802211	0.014076	true	q1080p	1080	
4.611142	0.009263	true	q144p	144	
5.590378	0.009113	true	q480p	480	
4.940168	0.008851	true	q1080p	1080	
4.940168	0.008851	true	q1080p	1080	TEST
9.239532	0.016335	true	q720p	720	SEI

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
- Construct a model with such values
- Compute cross-validation error
- Select the model with the smallest cross-validation error
- Train the selected model on the training set
- Test error on the test set

Hyper-parameter tuning

		labe		
10.241165	0.015357	ssop	350	
4446780	0.07703	tve al4ap	144	
${ }^{3.899780}$	0.006509	tree ${ }^{1 / 44 \mathrm{p}}$	${ }^{144}$	
3.700462	0.005897	tue asbop	350	
4512780	0.007156	tue assop	380	
9.447706	0.006805	tue a 9360	330	
4.608780	${ }^{0.008046}$	tue altap		
${ }_{5}$ 5301839	0.00790	ar2op	720	TRAINING
3.688107	0.005493	${ }^{2240}$	240	
5314732	0.00930	tve q2400	240	
8.554780	0.011688	tue at800	480	
4.189780	0.007516	a300	${ }^{360}$	
23841	0.005897	tue at800	480	
1.495841	0.00273	tue arope	720	
${ }^{8.802211}$	0.014476	tue quoso	1080	
4.611142	0.00923	tue alisp	144	
5.590378	0.009113	at800	480	
4.490168	0.008851	Ive qutiosp	1080	
4940168	0.008851	tre alosop	1080	TEST
9239532	0.016355	tue arzop	720	

- Divide training and test sets
- Use only training set
- For all the hyper-parameter values
- Construct a model with such values
- Compute cross-validation error
- Select the model with the smallest cross-validation error
- Train the selected model on the training set
- Test error on the test set

We have only used the training set to select the best parameter

Let's code ...

Go to notebook
03.regression_contd-and-classification/a.polynomial-regression.ipynb

Complexity and Variance

More complexity, More model variance

Example of polynomial regression with degree 1 (linear), and then higher degrees Image from [AWS].

Complexity and Variance

Higher $p \Longrightarrow$ higher complexity \Longrightarrow higher variance (the model adapts too flexibly to the training data)

Bias-Variance trade-off

$$
8 \text { / } 42
$$

If you reduce bias (on the training set) you increase the variance. And vice-versa. This is a fundamental limit of Machine Learning [KW96].

Section 2

Regularization

Regularization

- Force the model to be simple.

Cost function:

$$
J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}})=\frac{1}{M} \sum_{i=1}^{M}\left(y^{(i)}-h_{\theta}\left(\mathbf{x}^{(i)}\right)\right)^{2}+\underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }}
$$

- Parameters forced to be small \Longrightarrow less overfit
- Bias term θ_{0} not regularized. Why?
- Force the model to be simple.

Cost function:

$$
J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}})=\frac{1}{M} \sum_{i=1}^{M}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }}
$$

- Parameters forced to be small \Longrightarrow less overfit
- Bias term θ_{0} not regularized. Why?
- It is just an offset. It does not add complexity.

Regularization

- Force the model to be simple.

Cost function:

$$
J(\boldsymbol{\theta}, \mathbf{X}, \hat{\mathbf{y}})=\frac{1}{M} \sum_{i=1}^{M}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }}
$$

- Parameters forced to be small \Longrightarrow less overfit
- Bias term θ_{0} not regularized. Why?
- It is just an offset. It does not add complexity.
- Should regularization term considered when evaluating test error?

$$
\begin{gathered}
J_{\text {train }}=\frac{1}{\left|\mathscr{D}^{\text {train }}\right|} \sum_{i \in \mathscr{D}^{\text {train }}}\left(y^{(i)}-h_{\theta}\left(\mathbf{x}^{(i)}\right)\right)^{2} \underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }} \\
J_{\text {test }}=\frac{1}{\left|\mathscr{D}^{\text {test }}\right|} \sum_{i \in \mathscr{D}^{\text {test }}}\left(y^{(i)}-h_{\theta}\left(\mathbf{x}^{(i)}\right)\right)^{2}
\end{gathered}
$$

Effects of α

$$
J_{\text {train }}=\frac{1}{\left|\mathscr{D}^{\text {train }}\right|} \sum_{i \in \mathscr{D}^{\text {train }}}\left(y^{(i)}-h_{\theta}\left(\mathbf{x}^{(i)}\right)\right)^{2}+\underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }}
$$

- What if $\alpha \rightarrow 0$? Linear regression
- And if $\alpha \rightarrow+\infty$?

Effects of α

$$
J_{\text {train }}=\frac{1}{\left|\mathscr{D}^{\text {train }}\right|} \sum_{i \in \mathscr{D}^{\text {train }}}\left(y^{(i)}-h_{\theta}\left(\mathbf{x}^{(i)}\right)\right)^{2}+\underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }}
$$

- What if $\alpha \rightarrow 0$?

Linear regression

- And if $\alpha \rightarrow+\infty$?

$$
\text { Only } \theta_{0}
$$

- Suppose
- you try different α and
- the best error is with $\alpha \rightarrow+\infty$.

What do you conclude?
In this case, the best model is the simple average of y.

Let's code ...
12 / 42

Section 3

Scaling

Regularization and scaling

Features may have different magnitudes

- Regularization squashes blindly all features uniformly.
- "Small" features would need instead larger
- Need to scale features before applying regularization.

$$
J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})=\frac{1}{M} \sum_{i=1}^{M}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \underbrace{+\alpha \sum_{j=1}^{N} \theta_{j}^{2}}_{\text {regularization term }}
$$

$$
\boldsymbol{\theta}^{*}=\arg \min _{\theta} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})
$$

Standard scaler

- If μ_{j} is avg of j-feature and σ_{j} the stdev:

Standard Scaler

$$
x_{j}^{(i)^{\prime}}=\frac{x_{j}^{(i)}-\mu_{j}}{\sigma_{j}}
$$

Which is the correct way of applying scaling?
vs.

- Divide

$$
(\mathbf{X}, \mathbf{y}) \rightarrow\left(\mathbf{X}_{\text {train }}, \mathbf{y}_{\text {train }}\right),\left(\mathbf{X}_{\text {test }}, \mathbf{y}_{\text {test }}\right)
$$

- $\mathbf{X}_{\text {train }}{ }^{\prime}=\operatorname{scale}\left(\mathbf{X}_{\text {train }}\right)$
- $\mathbf{X}_{\text {test }}{ }^{\prime}=\operatorname{scale}\left(\mathbf{X}_{\text {test }}\right)$
- Train the model using ($\left.\mathbf{X}_{\text {train }}{ }^{\prime}, \mathbf{y}_{\text {train }}\right)$
- Test using $\left(\mathbf{X}_{\text {test }}{ }^{\prime}, \mathbf{y}_{\text {test }}\right)$ using $\mu_{j}, \sigma_{j}, \min _{j}$, max $_{j}$ found in training
- $\mathbf{X}^{\prime}=\operatorname{scale}(\mathbf{X})$
- Divide $\left(\mathbf{X}^{\prime}, \mathbf{y}\right) \rightarrow\left(\mathbf{X}_{\text {train }}{ }^{\prime}, \mathbf{y}_{\text {train }}\right),\left(\mathbf{X}_{\text {test }}{ }^{\prime}, \mathbf{y}_{\text {test }}\right)$
- Train the model using $\left(\mathbf{X}_{\text {train }}{ }^{\prime}, \mathbf{y}_{\text {train }}\right)$
- Test using ($\left.\mathbf{X}_{\text {test }}, \mathbf{y}_{\text {test }}\right)$

Standard scaler

- If μ_{j} is avg of j-feature and σ_{j} the stdev:

Standard Scaler

$$
x_{j}^{(i)^{\prime}}=\frac{x_{j}^{(i)}-\mu_{j}}{\sigma_{j}}
$$

Which is the correct way of applying scaling?
vs.

- Divide

$$
(\mathbf{X}, \mathbf{y}) \rightarrow\left(\mathbf{X}_{\text {train }}, \mathbf{y}_{\text {train }}\right),\left(\mathbf{X}_{\text {test }}, \mathbf{y}_{\text {test }}\right)
$$

- $\mathbf{X}_{\text {train }}{ }^{\prime}=\operatorname{scale}\left(\mathbf{X}_{\text {train }}\right)$
- $\mathbf{X}_{\text {test }}{ }^{\prime}=\operatorname{scale}\left(\mathbf{X}_{\text {test }}\right)$
- Train the model using ($\left.\mathbf{X}_{\text {train }}{ }^{\prime}, \mathbf{y}_{\text {train }}\right)$
- Test using $\left(\mathbf{X}_{\text {test }}{ }^{\prime}, \mathbf{y}_{\text {test }}\right)$ using $\mu_{j}, \sigma_{j}, \min _{j}, \max _{j}$ found in training

Data Leakage (Ch. 8 of [Teo19])

In the 2 nd case we would calculate $\mu_{j}, \sigma_{j}, \min _{j}, \max _{j}$ using data from test cot

Effect of scaling

When is scaling important

Is scaling important in a linear regression?

When is scaling important

Is scaling important in a linear regression?

- It does not affect the accuracy of the model
- Because coefficients can scale based on the feature magnitude.
- But it's good for interpretability, when features are standardized
- Since we impose the stddev of all features to be 1 , the value of the coefficient is an indication of feature importance
- (how much a variation of a feature impacts the target)

Is scaling important in a polynomial regression?

Section 4

Feature selection

Feature selection

- We have already seen some methods:
- Check the Pearson's correlation
- Run a lin.regr. on the scaled dataset and check the magnitude of the coefficients.
- See if a model improves/deteriorates when removing a feature
- Another method: Recursive Feature Elimination (RFE)
- Standardize your features
- Train your model with all features
- Remove the feature with the smallest coeff
- Train the model again
- Remove the feature with the smallest coeff
- ...
- Repeat until you are left with N features.
- Why do we need to standardize the features?

Otherwise the coefficient weights are not an indication of feature importance.

- RFE + Cross Validation (RFECV)
- Repeat the process for different N and select the N providing the smallest cross-validation error.

Let's code ...

Go to notebook 03.regression_contd-and-classification/b.regularization

Section 5

Classification: Logistic Regression

Classification

Supervised ML task where the labels are in a finite set.

- Ex.: Classify video resolution based on network information Labels are 144p, 360p, etc.

Binomial Logistic Regression

- Classes $k=0$ (negative) and 1 (positive).
- We do not predict directly the class k of sample \mathbf{x}
- We instead predict probabilities
- The predicted probability of being positive is

$$
\begin{aligned}
\hat{p}_{1}^{(i)} & =\mathbb{P}\left[\mathbf{x}^{(i)} \text { is of class 1 }\right] \\
& =h_{\boldsymbol{\Theta}}\left(\mathbf{x}^{(i)}\right)=\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)
\end{aligned}
$$

- The predicted probability of being negative is

$$
\hat{p}_{0}^{(i)}=1-\hat{p}_{1}^{(i)}
$$

- If $y^{(i)}$ is the true class of sample $\mathbf{x}^{(i)}$, the predicted probability of being of the true class is

$$
\hat{p}_{y^{(i)}}^{(i)}
$$

- Sigmoid $\sigma(t)=\frac{1}{1+e^{-t}}$

Picture from [Gér17]

- The predicted label is:

$$
\hat{y}^{(i)}= \begin{cases}1 & \text { if } \hat{p}_{1}^{(i)} \geq 0.5 \\ 0 & \text { if } \hat{p}_{1}^{(i)}<0.5\end{cases}
$$

Neural Network

Logistic regression is a NN with one neuron

Log-Loss function

Picture from stackexchange

- For any sample $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$:

$$
\begin{aligned}
J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right) & \triangleq-\ln \left(\hat{p}_{y^{(i)}}^{(i)}\right)= \begin{cases}-\ln \left(\hat{p}_{1}^{(i)}\right) & \text { if } y^{(i)}=1 \\
-\ln \left(\hat{p}_{0}^{(i)}\right) & \text { if } y^{(i)}=0\end{cases} \\
& = \begin{cases}-\ln \left(\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)\right) & \text { if } y^{(i)}=1 \\
-\ln \left(1-\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)\right) & \text { if } y^{(i)}=0\end{cases}
\end{aligned}
$$

- For the entire dataset (\mathbf{X}, \mathbf{y}) :

$$
\begin{equation*}
J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) \triangleq \frac{1}{M} \sum_{i=1}^{M} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right) \tag{1}
\end{equation*}
$$

Log-Loss function

Picture from stackexchange

- For any sample $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$:

$$
\begin{aligned}
J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right) & \triangleq-\ln \left(\hat{p}_{y^{(i)}}^{(i)}\right)= \begin{cases}-\ln \left(\hat{p}_{1}^{(i)}\right) & \text { if } y^{(i)}=1 \\
-\ln \left(\hat{p}_{0}^{(i)}\right) & \text { if } y^{(i)}=0\end{cases} \\
& = \begin{cases}-\ln \left(\sigma\left(\theta^{T} \cdot \mathbf{x}^{(i)}\right)\right) & \text { if } y^{(i)}=1 \\
-\ln \left(1-\sigma\left(\theta^{T} \cdot \mathbf{x}^{(i)}\right)\right) & \text { if } y^{(i)}=0\end{cases}
\end{aligned}
$$

- How can we find:

$$
\theta^{*}=\arg \min _{\theta} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) ?
$$

- For any $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$, the loss function is derivable and convex:

$$
\begin{aligned}
& \nabla J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right) \\
& = \begin{cases}\nabla\left[-\ln \left(\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)\right)\right] & \text { if } y^{(i)}=1 \\
\nabla\left[-\ln \left(1-\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)\right)\right] & \text { if } y^{(i)}=0\end{cases}
\end{aligned}
$$

- For the entire dataset (\mathbf{X}, \mathbf{y}) :

$$
\begin{equation*}
J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) \triangleq \frac{1}{M} \sum_{i=1}^{M} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right) \tag{1}
\end{equation*}
$$

Gradient Descent

- At each iteration

$$
\theta:=\theta-\eta \cdot \nabla_{\theta} J(\theta, \mathbf{X}, \mathbf{y})
$$

where (see (1))

$$
\nabla_{\theta} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})=\frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)=\frac{1}{M} \sum_{i=1}^{M}\left[\begin{array}{c}
\frac{\partial}{\partial \theta_{0}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right) \\
\vdots \frac{\partial}{\partial \theta_{N}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)
\end{array}\right]
$$

- For any sample i we can compute that ${ }^{1}$ (No need to learn it by heart):

$$
\frac{\partial}{\partial \theta_{j}} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)=(\underbrace{\underbrace{\sigma\left(\theta^{T} \cdot \mathbf{x}^{(i)}\right)}-y^{(i)}}) \cdot x_{j}^{(i)}
$$

Gradient Descent

- At each iteration

$$
\theta:=\theta-\eta \cdot \nabla_{\theta} J(\theta, \mathbf{X}, \mathbf{y})
$$

where (see (1))

$$
\nabla_{\theta} J(\theta, \mathbf{X}, \mathbf{y})=\frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)=\frac{1}{M} \sum_{i=1}^{M}\left[\begin{array}{c}
\frac{\partial}{\partial \theta_{0}} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right) \\
\vdots \frac{\partial}{\partial \theta_{N}} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)
\end{array}\right]
$$

- For any sample i we can compute that ${ }^{1}$ (No need to learn it by heart):

$$
\frac{\partial}{\partial \theta_{j}} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)=(\underbrace{\underbrace{\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)}-y^{(i)}}_{\hat{p}^{(i)}}) \cdot x_{j}^{(i)}
$$

Gradient Descent

- At each iteration

$$
\theta:=\theta-\eta \cdot \nabla_{\theta} J(\theta, \mathbf{X}, \mathbf{y})
$$

where (see (1))

$$
\nabla_{\theta} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})=\frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)=\frac{1}{M} \sum_{i=1}^{M}\left[\begin{array}{c}
\frac{\partial}{\partial \theta_{0}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right) \\
\vdots \frac{\partial}{\partial \theta_{N}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)
\end{array}\right]
$$

- For any sample i we can compute that ${ }^{1}$ (No need to learn it by heart):

$$
\frac{\partial}{\partial \theta_{j}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)=(\underbrace{\underbrace{\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right)}_{\hat{p}^{(i)}}-y^{(i)}}_{-\boldsymbol{\varepsilon}^{(i)}}) \cdot x_{j}^{(i)}
$$

Gradient Descent

- At each iteration

$$
\theta:=\theta-\eta \cdot \nabla_{\theta} J(\theta, \mathbf{X}, \mathbf{y})
$$

where (see (1))

$$
\nabla_{\theta} J(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y})=\frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)=\frac{1}{M} \sum_{i=1}^{M}\left[\begin{array}{c}
\frac{\partial}{\partial \theta_{0}} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right) \\
\vdots \frac{\partial}{\partial \theta_{N}} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)
\end{array}\right]
$$

- For any sample i we can compute that ${ }^{1}$ (No need to learn it by heart):

$$
\frac{\partial}{\partial \theta_{j}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)=(\underbrace{\underbrace{\sigma\left(\theta^{T} \cdot \mathbf{x}^{(i)}\right)}_{\hat{p}^{(i)}}-y^{(i)}}_{-\varepsilon^{(i)}}) \cdot x_{j}^{(i)}
$$

- Therefore

$$
\nabla_{\theta} J\left(\theta, \mathbf{x}^{(i)}, y^{(i)}\right)=-\varepsilon^{(i)} \cdot \mathbf{x}^{(i)}
$$

Gradient Descent

At each iteration

$$
\theta:=\theta-\eta \cdot \nabla_{\theta} J(\theta, \mathbf{X}, \mathbf{y})
$$

Training with Gradient Descent

1. Full Gradient Descent:

- Initialize a random θ
- Compute $h_{\theta}\left(\mathbf{x}^{(i)}\right)$ for all $\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in \mathscr{D}^{\text {train }}$
- Compute the residuals

$$
\varepsilon^{(i)}=h_{\boldsymbol{\theta}}(\mathbf{x})-y^{(i)}
$$

- Apply the update:

$$
\theta:=\theta-\eta \cdot \underbrace{\frac{1}{M} \sum_{i=1}^{M} \varepsilon^{(i)} \cdot \mathbf{x}^{(i)}}_{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathbf{x}, \mathbf{y})}
$$

- Repeat several epochs.

The more the error on a $\mathbf{x}^{(i)}$, the more its contribution to the update.
Problem: what happens if $\mathscr{D}^{\text {train }}$ is huge?
2. Stochastic gradient descent

- Randomly select one sample $\left(\mathbf{x}^{(i)}, y^{(i)}\right)$
- Directly update

$$
\theta:=\theta-\eta \cdot \underbrace{\varepsilon^{(i)} \cdot \mathbf{x}^{(i)} \nabla}_{\nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)}
$$

- Why stochastic: we apply a quantity which on expectation is equal to the actual gradient

3. Batch gradient descent

- Partition $\mathscr{D}^{\text {train }}$ into batches
- For each batch
- Predict all the data

Logistic Regression is a linear classifier

Decision boundary: Surface of \mathbb{R}^{N+1} that divides the region in which the classifier predicts 1 and the region in which it predicts 0 .

Theorem

The decision boundary of Logistic
Regression is a hyperplane
Logistic regression predicts 1 if

$$
\begin{aligned}
& \hat{p}_{1}^{(i)}=h_{\boldsymbol{\theta}}(\mathbf{x})=\sigma\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)}\right) \geq 0.5 \\
& \Longleftrightarrow \\
& \boldsymbol{\theta}^{T} \cdot \mathbf{x}^{(i)} \geq 0
\end{aligned}
$$

Therefore, the boundary decision is the set of \mathbf{x} such that

$$
\boldsymbol{\theta}^{T} \cdot \mathbf{x}=0
$$

Picture above from [Gér17]

This surface is described by a linear equation, and thus it is a hyperplane.

Multinomial Logistic Regression

Extension to multiple classes.

- Each class has its weight parameter $\theta_{k} \in \mathbb{R}^{N+1}$, except the last
- Compute a score $s_{k}(\mathbf{x}) \triangleq \theta_{k}{ }^{T} \cdot \mathbf{x}$
- For any \mathbf{x}, we have the score of all classes

$$
s_{1}(\mathbf{x}), \ldots, s_{K}(\mathbf{x})
$$

- We define that:

$$
\begin{aligned}
\hat{p}_{k} & =\mathbb{P}[\mathbf{x} \in \operatorname{class} k]=\operatorname{softmax}\left(s_{k}(\mathbf{x})\right) \\
& \triangleq \frac{\exp s_{k}(\mathbf{x})}{\sum_{z=1}^{K} \exp s_{z}(\mathbf{x})}=\frac{\exp \left(\boldsymbol{\theta}_{k}^{T} \cdot \mathbf{x}\right)}{\sum_{z=1}^{K} \exp \left(\theta_{z}^{T} \cdot \mathbf{x}\right)}
\end{aligned}
$$

- Predicted Class:

$$
k^{*}=\arg \max _{k} \operatorname{softmax}\left(\boldsymbol{\theta}_{k}^{T} \cdot \mathbf{x}\right)=\arg \max _{k} \boldsymbol{\theta}_{k}^{T} \cdot \mathbf{x}
$$

Multinomial Logistic Regression (2)

We to compute $K-1$ parameter vectors:

$$
\begin{aligned}
\hat{p}_{k}^{(i)} & =\frac{\exp \left(-\theta_{K}\right)}{\exp \left(-\theta_{K}\right)} \cdot \frac{\exp \left(\boldsymbol{\theta}_{k}^{T} \cdot \mathbf{x}\right)}{\sum_{z=1}^{K} \exp \left(\boldsymbol{\theta}_{z}^{T} \cdot \mathbf{x}\right)} \\
& =\frac{\exp \left(\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}_{K}\right)^{T} \cdot \mathbf{x}\right)}{\sum_{z=1}^{K} \exp (\underbrace{\left(\theta_{z}-\theta_{K}\right)^{T} \cdot \mathbf{x}}_{\theta_{z}^{\prime}})} \\
& =\frac{\exp \left(\theta_{k}^{\prime T} \cdot \mathbf{x}\right)}{1+\sum_{z=1}^{K-1} \exp \left(\theta_{z}^{\prime T} \cdot \mathbf{x}\right)}
\end{aligned}
$$

Cross-entropy

- The loss function for each sample is the cross-entropy

$$
J\left(\boldsymbol{\theta}, \mathbf{x}^{(i)}, y^{(i)}\right)=-\sum_{k} \ln \hat{p}_{y^{(i)}}^{(i)}
$$

where $y_{k}^{(i)}=1 \Longleftrightarrow \mathbf{x}^{(i)} \in$ class k

- We want $\hat{p}_{y^{(i)}}^{(i)}$ to be as high as possible.
- Softmax "amplifies" the most probable class.

Homework

Assignement

Show that the Multinomial Logistic Regression with $K=2$ is equivalent to Binary Logistic Regression.

In other words, show that

$$
\mathbb{P}[\mathbf{x} \in \text { class } 1]=\operatorname{softmax}\left(\boldsymbol{\theta}^{T} \cdot \mathbf{x}\right)
$$

is equivalent to the binomial case

$$
\mathbb{P}[\mathbf{x} \in \text { class } 1]=\sigma\left(\theta^{T} \cdot \mathbf{x}\right)
$$

Then show that the loss function is also equivalent.

Let's code ...

Go to notebook 03.regression_contd-and-classification.ipynb

Section 6

Class imbalance and performance metrics

Confusion Matrix

Class imbalance

When there are classes with many samples and other with less samples.
How to cope with it:

- Synthetic Minority Over-Sampling TEchnique (SMOTE) [CBHK02]
- 10 K citations!
- Others (you can explore yourself, if you want)
- Under-sampling majority class
- Use different weights in the loss function
- Others: see this blog.

Classification Report

					- Precision: 29\% of samples classified as 0 are actually 0 - Recall: 75\% of class 0 samples are correctly classified
	precision	recall	f1-score	support	- Accuracy: 61% of classifications are correct
${ }^{0}$	0.29 0.55	0.75 0.66	0.41 0.57	${ }_{10}^{8}$	
${ }^{2}$	0.89	0.59	0.71	41	- Support: 8 samples in the test set are of class 0
macro avg	0.57	0.65	0.56	59	
weighted avg	0.75	0.61	0.64	59	- f1-score: A combination of precision and recall:

$$
F_{1}=\frac{2}{\frac{1}{\text { precision }}+\frac{1}{\text { recall }}}
$$

\uparrow precision,\uparrow recall $\Longrightarrow \uparrow F_{1}$

Regression (continued)

- Polynomial Regression
- Variance vs. Bias Trade-Off
- Regularization
- Scaling
- Feature Selection

Classification

- Logistic Regression
. Classification Performance
- Class imbalance

To know more

- Video about feature scaling.
- More on feature selection.
- Several loss functions for classification (Video) [Mic]
- Another way of looking at Logistic Regression, based on likelihood: Sec. 4.3 of [JWHT13].

References I

[AWS] Amazon Machine Learning Developer Guide, https://docs.aws.amazon.com/machine-learning/.
[CBHK02] N. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research 16 (2002), 321-357.
[Gér17] Aurélien Géron, Hands-on machine learning with scikit-learn and tensorflow, 2017.
[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An introduction to Statistical Learning, vol. 7, 2013.
[KW96] Ron Kohavi and David H. Wolpert, Bias plus variance decomposition for zero-one loss functions, International Conference on Machine Learning (ICML96), 1996.

References II

[Mic] Microsoft, Principles of Machine Learning I Loss Function for Classification, https://youtu.be/r-vYJqcFxBI.
[Teo19] Jake Teo, Data Science Documentation, 2019.

