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Regression (continued)
• Polynomial Regression
• Variance vs. Bias Trade-Off
• Regularization
• Scaling
• Feature Selection

Classification
• Logistic Regression
• Classification Performance
• Class imbalance



Section 1

Polynomial Regression and hyper-parameter
tuning



Univariate Polynomial Regressions
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• A univariate polynomial regression of degree p is

hθ(x) = θ0 +θ1 · x+θ2 · x2 + . . .θp · xp

• p = 1: linear
p = 2: quadratic
p = 3: cubic
. . .

• Equivalent to linear regression with features

x,x2, . . . ,xp

• p is a hyper-parameter: parameter of the learning algorithm.

• How to choose p?



Multi-variate polynomial regression
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• With j = 1 . . .N features, all terms of degree 2 are included:

hθ(x) = θ0 +θ1 · x1 + · · ·+θN · xN

+θN+1 · x2
1 + · · ·+θN+N · x2

N

+θ1,2 · x1x2 +θ1,3 · x1x3 + · · ·+θ1,N · x1xN

+θ2,3 · x2x3 +θ2,4 · x2x4 + . . .

• A pol. regression of degree p includes the following terms:
– Bias term

θ0

– Powers of features

xk
j k = 1, . . . ,p

– Mixed terms of power 2:

xj · xj′ j′ > j

– Mixed terms of power 3

xj · xj′ · xj′′ j′′ > j′ > j

– . . .
– Mixed terms of power p

x1 . . .xN

x2
1 . . .x

2
N

...

xp
1 . . .x

p
N



Hyper-parameter tuning
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• Divide training and test sets

• Use only training set
• For all the hyper-parameter values

– Construct a model with such
values

– Compute cross-validation error

• Select the model with the smallest
cross-validation error

• Train the selected model on the
training set

• Test error on the test set

We have only used the training set to select the best parameter
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Let’s code ...
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Go to notebook
03.regression_contd-and-classification/a.polynomial-regression.ipynb



Complexity and Variance
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More complexity, More model variance

Example of polynomial regression with degree 1 (linear), and then higher degrees
Image from [AWS].



Complexity and Variance
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Higher p =⇒ higher complexity =⇒ higher variance
(the model adapts too flexibly to the training data)

  

Test error

Training error

Different 
Train-test
splits

OverfitUnderfit



Bias-Variance trade-off
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If you reduce bias (on the training set) you increase the variance. And vice-versa.
This is a fundamental limit of Machine Learning [KW96].

  

Test error

Training error

Different 
Train-test
splits

OverfitUnderfit



Section 2

Regularization



Regularization
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• Force the model to be simple.
Cost function:

J(θ,X, ŷ) =
1
M

M

∑
i=1

(
y(i)−hθ(x(i))

)2
+α

N

∑
j=1

θj
2

︸ ︷︷ ︸
regularization term

• Parameters forced to be small =⇒ less overfit
• Bias term θ0 not regularized. Why?

– It is just an offset. It does not add complexity.
• Should regularization term considered when evaluating test error?

Jtrain =
1

|D train| ∑
i∈D train

(
y(i)−hθ(x(i))

)2
+α

N

∑
j=1

θj
2

︸ ︷︷ ︸
regularization term

Jtest =
1

|D test| ∑
i∈D test

(
y(i)−hθ(x(i))

)2
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Effects of α
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Jtrain =
1

|D train| ∑
i∈D train

(
y(i)−hθ(x(i))

)2
+α

N

∑
j=1

θj
2

︸ ︷︷ ︸
regularization term

  

Test error

Training error

High α Low α 

• What if α → 0 ?
Linear regression

• And if α →+∞?

Only θ0

• Suppose
– you try

different α and
– the best error is

with α →+∞.

What do you
conclude?
In this case, the best
model is the simple
average of y.
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Let’s code ...
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Section 3

Scaling



Regularization and scaling
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Features may have different magnitudes
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J(θ,X,y)=
1
M

M

∑
i=1

(
y(i)−hθ(x(i))

)2
+α

N

∑
j=1

θj
2

︸ ︷︷ ︸
regularization term

θ∗ = argmin
θ

J(θ,X,y)

• Regularization squashes blindly all
features uniformly.

• “Small” features would need
instead larger

• Need to scale features before
applying regularization.



Standard scaler
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• If µj is avg of j-feature and σj the stdev:
Standard Scaler

x(i)j
′
=

x(i)j −µj

σj

Which is the correct way of applying scaling?

• Divide
(X,y)→ (Xtrain,ytrain),(Xtest,ytest)

• Xtrain
′ = scale(Xtrain)

• Xtest
′ = scale(Xtest)

• Train the model using
(Xtrain

′,ytrain)

• Test using (Xtest
′,ytest) using

µj,σj,minj,maxj found in training

vs.

• X′ = scale(X)

• Divide
(X′,y)→ (Xtrain

′,ytrain),(Xtest
′,ytest)

• Train the model using (Xtrain
′,ytrain)

• Test using (Xtest
′,ytest)

Data Leakage (Ch.8 of [Teo19])
In the 2nd case we would calculate µj,σj,minj,maxj using data from test
set.
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Effect of scaling
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When is scaling important
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Is scaling important in a linear regression?

• It does not affect the accuracy of the model
– Because coefficients can scale based on the feature magnitude.

• But it’s good for interpretability, when features are standardized
– Since we impose the stddev of all features to be 1, the value of the coefficient

is an indication of feature importance
• (how much a variation of a feature impacts the target)

Is scaling important in a polynomial regression?
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Section 4

Feature selection



Feature selection
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• We have already seen some methods:
– Check the Pearson’s correlation
– Run a lin.regr. on the scaled dataset and check the magnitude of the

coefficients.
– See if a model improves/deteriorates when removing a feature

• Another method: Recursive Feature Elimination (RFE)
– Standardize your features
– Train your model with all features
– Remove the feature with the smallest coeff
– Train the model again
– Remove the feature with the smallest coeff
– . . .
– Repeat until you are left with N features.

• Why do we need to standardize the features?
Otherwise the coefficient weights are not an indication of feature importance.

• RFE + Cross Validation (RFECV)
– Repeat the process for different N and select the N providing the smallest

cross-validation error.



Let’s code ...
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Go to notebook 03.regression_contd-and-classification/b.regularization



Section 5

Classification: Logistic Regression



Classification
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Supervised ML task where the labels are in a finite set.

• Ex.: Classify video resolution based on network information
Labels are 144p, 360p, etc.



Binomial Logistic Regression
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• Classes k = 0 (negative) and 1 (positive).

• We do not predict directly the class k of
sample x

• We instead predict probabilities
– The predicted probability of being positive

is

p̂(i)1 = P
[
x(i) is of class 1

]
= hθ(x(i)) = σ(θT ·x(i))

– The predicted probability of being
negative is

p̂(i)0 = 1− p̂(i)1

– If y(i) is the true class of sample x(i), the
predicted probability of being of the true
class is

p̂(i)
y(i)

• Sigmoid σ(t) = 1
1+e−t

Picture from [Gér17]

• The predicted label is:

ŷ(i) =

{
1 if p̂(i)1 ≥ 0.5

0 if p̂(i)1 < 0.5



Neural Network
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Logistic regression is a NN with one neuron

∑
h𝛉(x)1 𝛉0𝛉1𝛉2

x1x2 σ



Log-Loss function
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Picture from stackexchange

• For any sample (x(i),y(i)):

J(θ,x(i),y(i))≜− ln
(

p̂(i)
y(i)

)
=

− ln
(

p̂(i)1

)
if y(i) = 1

− ln
(

p̂(i)0

)
if y(i) = 0

=

− ln
(

σ(θT ·x(i))
)

if y(i) = 1

− ln
(

1−σ(θT ·x(i))
)

if y(i) = 0

• For the entire dataset (X,y):

J(θ,X,y)≜
1
M

M

∑
i=1

J(θ,x(i),y(i))

(1)

• How can we find:

θ∗ = argmin
θ

J(θ,X,y)?

• For any (x(i),y(i)), the loss function
is derivable and convex:

∇J(θ,x(i),y(i))

=

∇

[
− ln

(
σ(θT ·x(i))

)]
if y(i) = 1

∇

[
− ln

(
1−σ(θT ·x(i))

)]
if y(i) = 0

• =⇒ J(θ,X,y) is also derivable and
convex

• =⇒ We can use gradient descent.

https://datascience.stackexchange.com/a/40986/71674
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Gradient Descent
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• At each iteration

θ := θ−η ·∇θJ(θ,X,y)

where (see (1))

∇θJ(θ,X,y) =
1
M

M

∑
i=1

∇θJ(θ,x(i),y(i)) =
1
M

M

∑
i=1

[
∂

∂θ0
J(θ,x(i),y(i))

... ∂

∂θN
J(θ,x(i),y(i))

]
• For any sample i we can compute that1 (No need to learn it by heart):

∂

∂θj
J(θ,x(i),y(i)) =


σ(θT ·x(i))︸ ︷︷ ︸

p̂(i)

− y(i)

︸ ︷︷ ︸

−ε(i)


· x(i)j

• Therefore
∇θJ(θ,x(i),y(i)) =−ε

(i) ·x(i)

1Eq. 4.18 of [Gér17]
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Gradient Descent
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At each iteration

θ := θ−η ·∇θJ(θ,X,y)



Training with Gradient Descent
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1. Full Gradient Descent:

• Initialize a random θ

• Compute hθ(x(i)) for all (x(i),y(i)) ∈ D train

• Compute the residuals

ε
(i) = hθ(x)− y(i)

• Apply the update:

θ := θ−η · 1
M

M

∑
i=1

ε
(i) ·x(i)︸ ︷︷ ︸

∇θJ(θ,X,y)

• Repeat several epochs.

The more the error on a x(i), the more its
contribution to the update.
Problem: what happens if D train is huge?

2. Stochastic gradient descent

• Randomly select one
sample (x(i),y(i))

• Directly update

θ := θ−η · ε
(i) ·x(i)∇︸ ︷︷ ︸

∇θJ(θ,x(i),y(i))

• Why stochastic:
we apply a quantity which
on expectation is equal to
the actual gradient

3. Batch gradient descent

• Partition D train into batches
• For each batch

– Predict all the data



Logistic Regression is a linear classifier
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Decision boundary: Surface of RN+1 that
divides the region in which the classifier predicts
1 and the region in which it predicts 0.

Theorem
The decision boundary of Logistic
Regression is a hyperplane

Logistic regression predicts 1 if

p̂(i)1 = hθ(x) = σ(θT ·x(i))≥ 0.5

⇐⇒
θT ·x(i) ≥ 0

Therefore, the boundary decision is the set of x
such that

θT ·x = 0

This surface is described by a linear equation,
and thus it is a hyperplane.

Picture above from [Gér17]

https://en.wikipedia.org/wiki/Hyperplane#Affine_hyperplanes


Multinomial Logistic Regression
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Extension to multiple classes.

• Each class has its weight parameter
θk ∈ RN+1, except the last

• Compute a score sk(x)≜ θk
T ·x

• For any x, we have the score of all classes

s1(x), . . . ,sK(x)

• We define that:

p̂k = P [x ∈ class k] = softmax(sk(x))

≜
expsk(x)

∑
K
z=1 expsz(x)

=
exp

(
θk

T ·x
)

∑
K
z=1 exp

(
θz

T ·x
)

• Predicted Class:

k∗= argmax
k

softmax(θk
T ·x)= argmax

k
θk

T ·x

∑1x1
s1

∑
s2x2

∑
s3

𝚹1𝚹2
𝚹3

p̂1

p̂2

p̂3softmax



Multinomial Logistic Regression (2)
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We just need to compute K −1 parameter
vectors:

p̂(i)k =
exp(−θK)

exp(−θK)
·

exp
(
θk

T ·x
)

∑
K
z=1 exp

(
θz

T ·x
)

=
exp

(
(θk −θK)

T ·x
)

∑
K
z=1 exp

(θz −θK)
T ·x︸ ︷︷ ︸

θ′
z


=

exp
(
θ′

k
T ·x

)
1+∑

K−1
z=1 exp

(
θ′

z
T ·x

)

∑1x1
s1

∑
s2x2

∑
s3

𝚹1𝚹2
𝚹3

p̂1

p̂2

p̂3softmax
⇓

∑1x1
s1

∑
s2x2

𝚹1
𝚹2

p̂1

p̂2

p̂3=1− p̂1− p̂2softmax

https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_log-linear_model


Cross-entropy
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• The loss function for each sample
is the cross-entropy

J(θ,x(i),y(i)) =−∑
k

ln p̂(i)
y(i)

where y(i)k = 1 ⇐⇒ x(i) ∈ class k

• We want p̂(i)
y(i)

to be as high as
possible.

• Softmax “amplifies” the most
probable class.
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Homework
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Assignement

Show that the Multinomial Logistic Regression with K = 2 is equivalent
to Binary Logistic Regression.

In other words, show that

P [x ∈ class 1] = softmax(θT ·x)

is equivalent to the binomial case

P [x ∈ class 1] = σ(θT ·x)

Then show that the loss function is also equivalent.



Let’s code ...
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Go to notebook 03.regression_contd-and-classification.ipynb



Section 6

Class imbalance and performance metrics



Confusion Matrix
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Class imbalance
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When there are classes with many samples and other with less samples.

How to cope with it:
• Synthetic Minority Over-Sampling TEchnique (SMOTE) [CBHK02]

– 10 K citations!
• Others (you can explore yourself, if you want)

– Under-sampling majority class
– Use different weights in the loss function
– Others: see this blog.

https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a


Classification Report
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• Precision: 29% of samples
classified as 0 are actually 0

• Recall: 75% of class 0 samples are
correctly classified

• Accuracy: 61% of classifications
are correct

• Support: 8 samples in the test set
are of class 0

• f1-score: A combination of
precision and recall:

F1 =
2

1
precision +

1
recall

↑ precision,↑ recall =⇒↑ F1



Recap
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Regression (continued)
• Polynomial Regression
• Variance vs. Bias Trade-Off
• Regularization
• Scaling
• Feature Selection

Classification
• Logistic Regression
• Classification Performance
• Class imbalance



To know more
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• Video about feature scaling.

• More on feature selection.

• Several loss functions for classification (Video) [Mic]

• Another way of looking at Logistic Regression, based on likelihood: Sec.
4.3 of [JWHT13].

https://www.coursera.org/lecture/python-machine-learning/linear-regression-ridge-lasso-and-polynomial-regression-M7yUQ
https://towardsdatascience.com/feature-selection-with-pandas-e3690ad8504b
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