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Machine Learning for Networks:
Neural Networks

Andrea Araldo

September 21, 2023
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Outline
2/60

. Structure of NN
. Training (backpropagation)
. Design choices and hyper-paramters



Section 1

Introduction



Our heritage
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BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

18K citations!

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.



Neural Network - Human brain
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- By ZEISS Microscopy from Germany (Cultured Rat Hippocampal Neuron) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via
Wikimedia Commons

- https://pixabay.com/en/neurons-brain-cells-brain-structure-1739997/
o Walter Pitts: logician
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

e Warren McCulloc: neurophysiologist




The life of a genius
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Walter Pitts:

e When he was 12, he criticized Principia
Mathematica from Bertrand Russel.

e Russel invited him to Cambridge University and
Pitts refused.

source: Wikipedia




Neural Network - Multi-Layer Perceptron
(MLP) 7/60




Neural Network - Single neuron
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Let us look at the g-th neuron in the /-layer. e Output from the previous layer:
Do you recognize it?

x-1 = (l,x[llfu,x[zlfl},...)
o Weights:

ol = (6g,.01)....)

e Weighted input

al = eg]T.xwfu

e Activation function o(-)

e Output:

U ( U )

xqg =0(aq

This can be fed to further
neurons.



Activation Functions
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Sigmoid Hyperbolic Tangent
1 1
Traditional
Non-Linear 0 0
Activation
i Kl B
Functions 1 0 1 ) o 1
y=1/(1+e™) y=(e*-ex) f(e*+e™)
Re"“'ie(;e"l_izja" Unit | cakyReLU  Exponential LU
1 1 1
Modern i
Non-Linear o E— 0
Activation
Functions ) y
-1 0 1 -1 0 1 -1 0 1
X, x20
y=max(@,x) y=max(ax,Xx) y={u(e>‘—1),x<0

a = small const. (e.g. 0.1)

Figure from [SCYE17].



Depth of a NN
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X1 x SO
*2 g % *‘.O Oy
X3 x3 O
logistic regression 1 hidden layer
W \O\ MO N MO
x £ x
xl .i":o .g .O . g ”D D '() g 0 >
2 Ko X y ao o oo g ¥
3 ay % o ) w w
2 hidden layers 5 hidden layers
Andrew Ng

Source: Andrew Ng, Deep Neural Networks (see also Fig.10-7 of [Ger19])

Deep NN: NN with many hidden layers.



Prediction with neural networks
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Information is processed from left to right (forward propagation)



NN for regression
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NN for regression
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NN for regression
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NN for regression
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NN for regression
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Universal Approximator
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A single hidden layer neural network is a universal approximator: any continuous
function can be approximated to arbitrary accuracy, provided that there are
enough neurons.

Let’s write the weights to approximate the function above ....



Solution
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Binary Classification: Desiderata
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Source: Google



Multiclass Classification: Desiderata
16 /60
& TELSTRA . .
Ex.: Telstra Kaggle Competition [Tail7]:
o Features: description of events (location, resource involved, type of event)
e Predict: the severity of fault

A class is coded in a string with one 1.



NN for classification
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NN for classification
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NN for classification
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NN for classification
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NN for classification
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NN for classification
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expsi(x)
L1 exps;

ﬁ,(f) = softmax (si(x)) =

k* = arg max ﬁ,(f)



Multiclass Classification: Prediction
18 /60




Multiclass Classification: Prediction
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Multiclass Classification: Prediction
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Activation functions in the output layer
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@

Regression: no activation function Classification: softmax




Section 2

Training (backpropagation)



Training
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o A NN is completely specified by the weight matrix ©

e Training: Given a training set of (Xirain, Yirain ) find the “best” matrix

0" = argn'gn-](e’xtraimytrain) = argrrgnZJ(G,X(i),y(i))
i

Regression: Classification:

J(8,x y) = MSE = (y!) — ()2 J(8,x9 y\0) = cross-entropy = — lnﬁi’g.)



Neural Network - Loss minimization
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Objective: ming J(6,X,y)
— where (X,y) is the training dataset.

Initialize © randomly
— ... but wisely (see pagg 333-4 of [Ge19] for initialization techniques)

Gradient Descent: at each iteration

0:=0-1-VoJ(0,X,y)

7n: learning rate

Gradient: VJ(0,X,y) = (ﬁ](@,X,y))
qv

qvl
- O Up weight of layer / connecting neuron ¢ to neuron v.



Non-convexity

23/60
Logistic Regression: Neural Network:
J(0,X,y) derivable and convex  J(0,X,y) derivable but not convex (local
(unique minimum) minima)
= Convergence to minimum = Gradient descent may be trapped in local
guaranteed. minima

By JackB09 [Public domain], via Wikimedia Commons

Figure from Bauso, Dario & Gao, Jian & Tembine, Hamidou. (2017). Distributionally
Robust Games: f-Divergence and Learning.



Derivatives in the last layer L

Regression:

J(0,xy7) = (1 —5)?

£Weighted input alt!

; AlL-1
= |y _Zeq[L] .x((l)
q

2

]

(i)

d L o
_ () Oy = _9. ), D
89q[”](e’x ) 2.V xy

s als als als als

[L-1]

b

b,

b

Classification:

J(,x 3y = —1np¥

T N L—
exp <e][(L(]l) .X(l)[L 1]

N

softmax

k(i)

)

=—In P
z:lexp

k(i): true class of sample i.

(o x~1)

(S] LL]: vector of weights of the z-th exit.

We can compute 30,7

LJ(Q,X(i)jy(i))



Backpropagation (i.e. VoJ() computation)
Let us compute a 207 J(8,x,y), V training sample (x,y):

e Consider the g-th neuron of intermediary layer /.

e Weighted input (to the neuron):

ol =l X1 =yl ]
Z

i
o 9J _8a[q] _ st =
* %0 = 510 A
va dag 9By
~— =
Semord) ) The errors 8.
e Multivariable chain rule of derivation: propagate back to
RS aJ a7 dalt! (+1] 9alt"
6‘] =) 2a T ’ a;g] = ZSZ : aag] layer 1.
Recall that .
° A — v.0 gl+1] _ i1, O_(a[z]) In NN for regression, in
’ [1+1]Z ¥ / ¢V 7 the last layer L there is
o aa‘"m = g;r .o (ag]) only one neuron and
dq

— &' = o'(a))-x. 80 ol §IH =1


https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Forward and Backward Propagation
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Forward and Backward Propagation
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Forward and Backward Propagation
26 /60




Forward and Backward Propagation
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Forward and Backward Propagation
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Forward and Backward Propagation
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e Compute

0 nlL-1
71(9,X(1),y(1)) — el .x((I )

a6y

for all G,BL Jin the last layer



Forward and Backward Propagation
26 /60

o Compute



Forward and Backward Propagation

> X

y

e Compute

8/ 1 =c'd) a0y
Z

e and

)
-1
a0l "

7 5[1[171] e

[i-1]
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Forward and Backward Propagation
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e Do the same for all the weights, backward, to compute
d _ -1
[1—1]'] - 55 . 'xsl)[ }
901y

for all weights G[Vl[]I



Forward and Backward Propagation
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o We thus obtain VJ(8,x(%), y())



Forward and Backward Propagation
26 /60

e Do the same for all the samples
e Finally

S

1

VI(0,X,y) =33 VI (0,x,y1)

[
—

And update
0:=0—-n-VJ(0,X)y)



Training strategies

1. Full Gradient Descent

o Predict ) for all x(9) in @train

o VJ(0,X,y) = 3 X, VJ(0,x1), )

e Update weights © :=0 —n-VJ(0,X,y)
2. Stochastic Gradient Descent
(update parameters at each sample)

e For each sample x(¥
— Predict $1)
Compute J(0,x1), y(?))
— Assume VJ(0,x y()) ~VvJ(0,X,y)
Update weights
0:=0—n-VJ(0,x y)
3. Batch Gradient Descent

e Divide 2"" in batches

e Update the parameters after predicting each

batch.

27 /60

e Epoch: Sequence of
predictions on the entire
@train

e How many parameter
updates per-epoch (using
the 3 strategies)?

e Usually many epochs are
needed



Multi-Layer Perceptron Implementation

On the right: weights © (potentiometers adjust via motors)

0:=0—n-vJ(O,x" y)

Figure from [Bis06]



Section 3

Design of NNs



Neural Network - Dimensionality
30/60

Some authors use the

Compression vs. Augmentation. same number of
neurons per layer - pag.
324 of [Ger19]



Model complexity and Overfitting

. 31/60
Overfitting
€
A
Optimal
<] Test data
5 /
5 Underfitting | Overfitting
> S
- o
2 /
n_ P
From User:Gringer, Wikipedia Training data
Solution:

Model complexity
From [Smil8]

e Use smaller architectures
e Regularize
e Early Stopping:
stop training when the test error

does not improve for some
consecutive epochs



Regularization
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e NN with many parameters are too flexible: they can approximate weird
functions
e To avoid overfitting the training data, we must reduce their flexibility
e Regularization
e The loss function to minimize during training is
— For regression

1
M !

Mk

J(0,X,y) = OV =302+ alle|?
i N——

———o ——— Regularization term

Error term

— For classification

y
\———— " Regularization term

Error term

A
JO.Xy) = - Y npll +  ale|
i=1

where y(i) is the true class of sample i



Scaling
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e Activation functions like sigmoids are intended to get values in a small
range, otherwise they saturate.

1.0
osf| — U(t):Hle"

0.6

0.4

0.2

0.0

-10 -5 0 5 10
t

Ex. If we enter to the neuron 8, 10 the output is practically the same.
e Scaling is also needed because we regularize NNs

e — Always scale the dataset (StandardScaler)



The art of Designing NN
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e Hyper-parameters:
— Architecture

o Layers? (start with few, increase if needed)
e Neurons per layer?

Learning rate 1): too high: noise; too low: slow to converge.
How many epochs?

— Regularization weight o

Weight initialization.

Batch size.

Activation Functions.

e Strategies for tuning
— Grid search (time consuming)
— Random search, Bayesian Optimization, Design Space Exploration (time
consuming) - see pagg.320-323 of [Ger19]
— Trial and error, experience (people with less money need to be smarter)



Fixed learning rate

0:=0-1-VJ(0,X)y)
n too large

3008

2508

-~ __
N |
-

2008

Mean Squared Error

1508 400k

350k
1008

300k

250k

From S. Harrington blog

1 too small

From ProgrammerSought blog.

loss

/' very high learning rate

low learning rate

high learning rate

good learning rate

epoch

35/60

From CS231 class at
Stanford


https://thelaziestprogrammer.com/sharrington/math-of-machine-learning/gradient-descent-learning-rate-too-high
http://www.programmersought.com/article/7918868038/
http://cs231n.github.io/neural-networks-3/

Learning rate scheduling
36 /60

Start with large learning rates and reduce them after parameter updates

(g
4.10
Reciprocal
110° F Moderate
1e-01 pm= o i Conditional
Performance N B Unif ———-
2 Power 7 6 n
=1e-02 Exponential - o 210
=) . 2
= & -
S1e-03 - 1.10° B
@
3
1e-04
0 5 10 15 20
56
3 55
8 g
5 B
g :
o Performance.. ——— =
£ Power =
= 52 Exponential -
& F Constant - - + L o L
0 5 10 15 20 0 5 10 15 20 25 30 35
Training frames x 1e9 Total Time (min)

From [Sen13] and [ADR18]

See pagg.359-364 of [Ger19] to know more.



Faster optimizers
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Gradient descent is
0:=0-n-VoJ(6,X,y)

Other optimizers use a different parameter update equation, using gradient in a
smarter way.

Most popular: Adaptive Moment Estimation (Adam )
Animated comparison of optimizers.

See pagg. 351-359 of [Ger19] to know more.


http://images1.programmersought.com/161/71/719991b559da253316f0138d095b7721.gif

Batch size

“Friends, don’t let friends use
mini-batches larger than 32 ”
Yann LeCun tweet, 2018

Large minibatches

e Allow to use GPU parallelization

38/60

From Wikipedia
Yann LeCun (Facebook, New York
University, ACM Turing Award)

e Risk of instability in loss minimization



Activation functions

In the last layer

NI
V,,A‘%éu 7)

Regression: no activation function

In the hidden layer: The most
popular is relu

Sigmoid: old school, don’t use it
The derivative of the sigmoid is almost zero
far from zero

= Vanishing gradient (p 325 of [Ger19])

Updates by gradient descent are too small

39/60

—/
softmax

Classification: softmax

Sigmoid Hyperbolic Tangent
1 1
Traditional
Non-Linear 0 0
Activation
i Bl B
Functions " ° 1 1 ° 1
y=1/(1+e™) y=(eX-eX)/(e*+e™)
Rectified Linear Unit 1
(ReLU) Leaky ReLU Exponential LU
1 1 1
Modern
Non-Linear g o] — 0
Activation
Functions
-1 -1 El
-1 0 1 0 1 -1 0 1
X, x20
y=max(0,x) y=max(ax,x) y={a(e"-1),x<a

a = small const. (e.g. 0.1)

Figure from [SCYE17].



Section 4

Complex architectures



Other architectures
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Multi-layer perceptron Other architectures

Output Layer

$

[ Output Layer ]

Output Layer ‘

[ Concat ]

Hidden Layer 2 ‘

[ Hidden2 |
Deep 3
Hidden 1

Hidden 2
Hidden 1
Input Layer

Hidden Layer 1

Wide

—

Input Layer

[ Input A ][ Input B ]

Figure from [Ger19].
e Limit of Multi-Layer Perceptron: all input data are “deformed” by hidden
layers.
e Other architectures are able to bypass some hidden layer
e Feel free to experiment with them in your project (pagg.308-313 of [Ger19]).



Notable deep Neural Networks

Convolutional NN:

e Image processing

Convolution  Pooling Convolution Pooling Fully connected

Recurrent NN:

e Time series, language modeling

3288 2
B DE@B o

Unrolled Recurrent Neural Network

Autoencoder (AE):

e Dimensionality reduction and
anomaly detection

Generative Adversarial Networks
(GAN):
e To generate images or sounds

Fake/Real

[ piscriminator | }Gcal = tell fake from real

NG
Fake n ' Real

m } Goal = trick the discriminator

Noise

Figures from [Ger19], missinglink.ai, medium.com, [Ger19]


https://missinglink.ai/guides/neural-network-concepts/cnn-vs-rnn-neural-network-right/
https://medium.com/@encodebox/auto-encoder-in-biology-9264da118b83

How to choose the right Neural Network?

43 /60

No standard procedure = Need for intuition, experience and, more importantly,
trial and test = Neural Networks are an art!

However, some rough guidelines are:

Image in input = Convolutional Neural Networks (slide 42)

Time series in input = Recurrent Neural Networks (slide 42)

The output layer depends on the task (regression or classification - slide 19)
Size: start with a small neural network (few layers, few neurons per layer)
and check the test result. Improve this result via Early Stopping and
Regularization (slide 31). The result will be your reference baseline. Then,
try with bigger architectures and compare the test error with the reference
baseline (slide 42)

Activation function and optimizers: use the latest findings from research
(e.g., relu as activation function and Adam as optimizer - slide 9)

If you have a lot of servers and a lot of time: automatically train several
neural networks and get the best after some days / weeks! (grid search,
randomized search)

Note that guidelines are continuously broken/replaced, as deep learning
progresses!



Let’s code ...
44 / 60

/

Go to notebook 04.neural-networks.ipynb



A perimental setup i Stimulus
presented

Light bar stimulus

Recording from visual cortex




A Experimental setup Stimulus Stimulus
ation  presented

&,
&
3

N\ NN [=[A1 1711




Input image
Level 0 32x32 pixels
8x8 nodes




Convolutional NN
47 / 60

Main idea
e In “classic” NN, we let it learn “wild” by
— drawing all weights
— let the weights take any value
e Can we learn from the cat?

— Add structure to the architecture of the NN
— Add constraints to the values of the weights
— Do this by taking inspiration from the way vision works in living beings



Feature | Fea}ure
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Feature | Fea}ure
map 1 L, a0 map 2
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= Horizontal filter




Feature | Fea}ure
map 1 L, a0 map 2

T
= Horizontal filter




Feature | Fea}ure
map 1 by map 2

5
= Horizontal filter




Feature | Fea}ure
map 1 by map 2

5
= Horizontal filter




1st Hidden Layer: Feature Map

49 /60
input neurons &G -
e first hidden layer e Patches “seen by
83888 8 neurons on the same
00000
feature map often

overlaps

e Hyperparameter: stride
length (by how much we
slide the patch.)

e Sliding patch

input neurons Source: M. Nielsen - Neural Networks and Deep
00000 st hidden layes
60000 first hidden layer .
00000 o Learning
00000
CoooT






2nd Hidden Layer: Pooling
51/60

hidden neurons {output from feature map)

max-pooling units

e Max (or other function - hyperparameter!) of the output of a patch in a feature map
e Meaning: is the feature present in a region of the image?

e No weights to learn here

Source: M. Nielsen - Neural Networks and Deep Learning



Rectified feature map

Pooled feature map

max pooling with 2x2 filters

and stride 2 I

Max(3,4,1,2) = 4



https://youtu.be/Jy9-aGMB_TE?t=937







Recurrent NN
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e In all the NN seen so far, all neurons take input that depends on the current
sample forward-propagated

e In Recurrent NN, samples are submitted in sequences
e Some neurons is connected to previous samples

e What is this model aimed for?

e Language processing, Speach recognition

e Zaremba (NUY) and Sutskever (Google), ‘“’Learning to execute”

— Their NN takes the words, one by one, of a (very simple) python scripts
— It learns to predict the output!



Recurrent NN
55/60

e In all the NN seen so far, all neurons take input that depends on the current
sample forward-propagated

e In Recurrent NN, samples are submitted in sequences
e Some neurons is connected to previous samples

e What is this model aimed for?

e Language processing, Speach recognition

e Zaremba (NUY) and Sutskever (Google), ‘“’Learning to execute”

— Their NN takes the words, one by one, of a (very simple) python scripts
— It learns to predict the output!



Autoencoders (AE)
56 / 60

Generative models

Training: Find the weights submitting many images of cats

Use: Give it a random input and get a synthetic cat image

e “Few” neurons in the hidden layer. Why?

Serious use: drug discovery, music generation



Recap

In this lesson
e Structure of NNs
e Training (backpropagation)
e Design choices and
hyper-paramters

In next lesson

¢ Random Forests

57 /60
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To know more
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e Convolutional Neural Networks for Computer Vision (Ch.11 of [Ger19])

e Christopher M. Bishop. Pattern Recognition and Machine Learning,
Springer - Sections 5.1, 5.2, 5.3

e http://neuralnetworksanddeeplearning.com


http://neuralnetworksanddeeplearning.com
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