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Machine Learning for Networks:
Neural Networks
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Supervised
Regression x x
Classification x x x

Unsupervised
Clustering x x
Dimensionality reduction x
Anomaly detection x x x
Recommender Systems x



Outline
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• Structure of NNs
• Training (backpropagation)
• Design choices and hyper-paramters



Section 1

Introduction



Our heritage
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18K citations!



Neural Network - Human brain
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- By ZEISS Microscopy from Germany (Cultured Rat Hippocampal Neuron) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via
Wikimedia Commons

- https://pixabay.com/en/neurons-brain-cells-brain-structure-1739997/

• Walter Pitts: logician
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

• Warren McCulloc: neurophysiologist



The life of a genius
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Walter Pitts:

• When he was 12, he criticized Principia
Mathematica from Bertrand Russel.

• Russel invited him to Cambridge University and
Pitts refused.

source: Wikipedia



Neural Network - Multi-Layer Perceptron
(MLP) 7 / 60
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Neural Network - Single neuron
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Let us look at the q-th neuron in the l-layer.
Do you recognize it?
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• Output from the previous layer:

x[l−1] = (1,x[l−1]
1 ,x[l−1]

2 , . . .)

• Weights:

θ[l]
q = (θ

[l]
0q,θ

[l]
1q, . . .)

• Weighted input

a[l]q = θ[l]
q

T
·x[l−1]

• Activation function σ(·)
• Output:

x[l]q = σ(a[l]q )

This can be fed to further
neurons.



Activation Functions
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Figure from [SCYE17].



Depth of a NN
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Source: Andrew Ng, Deep Neural Networks (see also Fig.10-7 of [Ger19])

Deep NN: NN with many hidden layers.



Prediction with neural networks
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Information is processed from left to right (forward propagation)



NN for regression
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ŷ = hθ(x)
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Universal Approximator
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A single hidden layer neural network is a universal approximator: any continuous
function can be approximated to arbitrary accuracy, provided that there are
enough neurons.

Let’s write the weights to approximate the function above . . . .



Solution
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Binary Classification: Desiderata
15 / 60

Source: Google



Multiclass Classification: Desiderata
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Ex.: Telstra Kaggle Competition [Tai17]:
• Features: description of events (location, resource involved, type of event)
• Predict: the severity of fault

  

x1x2x3x4
1

Low

Mid

High

x1x2x3x4
1
x1x2x3x4
1
x1x2x3x4
1

A class is coded in a string with one 1.



NN for classification
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Multiclass Classification: Prediction
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Multiclass Classification: Prediction
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Multiclass Classification: Prediction
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Activation functions in the output layer
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Regression: no activation function
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Section 2

Training (backpropagation)



Training
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• A NN is completely specified by the weight matrix θ

• Training: Given a training set of (Xtrain,ytrain), find the “best” matrix

θ∗ ≜ argmin
θ

J(θ,Xtrain,ytrain) = argmin
θ

∑
i

J(θ,x(i),y(i))
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Regression:

J(θ,x(i),y(i)) = MSE = (y(i)− ŷ(i))2
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Neural Network - Loss minimization
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• Objective: minθ J(θ,X,y)
– where (X,y) is the training dataset.

• Initialize θ randomly
– ... but wisely (see pagg 333-4 of [Ge19] for initialization techniques)

• Gradient Descent: at each iteration

θ := θ−η ·∇θJ(θ,X,y)

• η : learning rate

• Gradient: ∇J(θ,X,y)≜
(

∂

∂θqv
[l] J(θ,X,y)

)
qvl

– θqv
[l]: weight of layer l connecting neuron q to neuron v.



Non-convexity
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Logistic Regression:
J(θ,X,y) derivable and convex
(unique minimum)

=⇒ Convergence to minimum
guaranteed.

By JackB09 [Public domain], via Wikimedia Commons

Neural Network:
J(θ,X,y) derivable but not convex (local
minima)

=⇒ Gradient descent may be trapped in local
minima

Figure from Bauso, Dario & Gao, Jian & Tembine, Hamidou. (2017). Distributionally
Robust Games: f-Divergence and Learning.



Derivatives in the last layer L
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Regression:

J(θ,x(i),y(i)) = (y(i)− ŷ(i))2

=

y(i)−

≜Weighted input a[L]︷ ︸︸ ︷
∑
q
θq

[L] · x(i)q
[L−1]

︸ ︷︷ ︸
ε(i)


2

=⇒ ∂

∂θq
[L]

J(θ,x(i),y(i)) =−2 · ε(i) · x(i)q
[L−1]
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J(θ,x(i),y(i)) =− ln p̂(i)k(i)

=− ln
exp

(
θ
[L]
k(i)

T
·x(i)[L−1]

)
∑

K
z=1 exp

(
θ[L]

z
T
·x(i)[L−1]

)
k(i): true class of sample i.
θ[L]

z : vector of weights of the z-th exit.
We can compute ∂

∂θqz
[L] J(θ,x(i),y(i))

*****



Backpropagation (i.e. ∇θJ() computation)
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Let us compute ∂J
∂θ

[l]
vq
(θ,x,y), ∀ training sample (x,y):

• Consider the q-th neuron of intermediary layer l.

• Weighted input (to the neuron):

a[l]q = θ[l]
q

T
·x[l−1] = ∑

z
θ
[l]
zq · x[l−1]

z

• ∂J
∂θ

[l]
vq
=

∂J

∂a[l]q︸︷︷︸
≜ error δ

[l]
q

· ∂a[l]q

∂θ
[l]
vq︸ ︷︷ ︸

x[l]v

= δ
[l]
q · x[l−1]

v

• Multivariable chain rule of derivation:
δ
[l]
q ≜ ∂J

∂a[l]q
= ∑z

∂J
∂a[l+1]

z
· ∂a[l+1]

z

∂a[l]q
= ∑z δ

[l+1]
z · ∂a[l+1]

z

∂a[l]q

• Recall that
a[l+1]

z = ∑z′ θ
[l+1]
z′z · x[l]z′ = ∑z′ θ

[l+1]
z′z ·σ(a[l]z′ )

• =⇒ ∂a[l+1]
z

∂a[l]q
= θ

[l+1]
qz ·σ ′(a[l]q )

• =⇒ δ
[l]
q = σ ′(a[l]q ) ·∑z δ

[l+1]
z ·θ[l+1]

qz
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aq
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The errors δ
[l+1]
z

propagate back to
layer l.

In NN for regression, in
the last layer L there is
only one neuron and

δ
[L] = 1

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
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[L]
q

J(θ,x(1),y(1)) = ε
(1) · x(1)q

[L−1]

for all θ[L]q in the last layer
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• We thus obtain ∇J(θ,x(i),y(i))



Forward and Backward Propagation
26 / 60

  

∑

∑

∑

∑

∑

∑

∑

∑

111
x1

(1)

x2
(1)

x3
(1)

x4
(1)

ϵ
(1)

= y (1)
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• Do the same for all the samples
• Finally

∇J(θ,X,y) =
1
M

M

∑
i=1

∇J(θ,x(i),y(i))

And update
θ := θ−η ·∇J(θ,X,y)



Training strategies
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1. Full Gradient Descent

• Predict ŷ(i) for all x(i) in D train

• ∇J(θ,X,y) = 1
M ∑

M
i=1 ∇J(θ,x(i),y(i))

• Update weights θ := θ−η ·∇J(θ,X,y)
2. Stochastic Gradient Descent
(update parameters at each sample)

• For each sample x(i)

– Predict ŷ(i)

– Compute J(θ,x(i),y(i))
– Assume ∇J(θ,x(i),y(i))≃ ∇J(θ,X,y)
– Update weights

θ := θ−η ·∇J(θ,x(i),y(i))

3. Batch Gradient Descent

• Divide D train in batches

• Update the parameters after predicting each
batch.

• Epoch: Sequence of
predictions on the entire
D train

• How many parameter
updates per-epoch (using
the 3 strategies)?

• Usually many epochs are
needed



Multi-Layer Perceptron Implementation
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On the right: weights θ (potentiometers adjust via motors)

θ := θ−η ·∇J(θ,x(i),y(i))

Figure from [Bis06]



Section 3

Design of NNs



Neural Network - Dimensionality
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Compression vs. Augmentation.
Some authors use the
same number of
neurons per layer - pag.
324 of [Ger19]



Model complexity and Overfitting
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Overfitting

From User:Gringer, Wikipedia

Solution:

• Use smaller architectures

• Regularize

• Early Stopping:
stop training when the test error
does not improve for some
consecutive epochs

From [Smi18]



Regularization
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• NN with many parameters are too flexible: they can approximate weird
functions

• To avoid overfitting the training data, we must reduce their flexibility
• Regularization
• The loss function to minimize during training is

– For regression

J(θ,X,y) =
1
M

M

∑
i=1

(y(i)− ŷ(i))2

︸ ︷︷ ︸
Error term

+ α||θ||2︸ ︷︷ ︸
Regularization term

– For classification

J(θ,X,y) =− 1
M

M

∑
i=1

ln p̂(i)
y(i)︸ ︷︷ ︸

Error term

+ α||θ||2︸ ︷︷ ︸
Regularization term

where y(i) is the true class of sample i



Scaling
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• Activation functions like sigmoids are intended to get values in a small
range, otherwise they saturate.

Ex. If we enter to the neuron 8,10 the output is practically the same.

• Scaling is also needed because we regularize NNs

• =⇒ Always scale the dataset (StandardScaler)



The art of Designing NN
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• Hyper-parameters:
– Architecture

• Layers? (start with few, increase if needed)
• Neurons per layer?

– Learning rate η : too high: noise; too low: slow to converge.
– How many epochs?
– Regularization weight α

– Weight initialization.
– Batch size.
– Activation Functions.

• Strategies for tuning
– Grid search (time consuming)
– Random search, Bayesian Optimization, Design Space Exploration (time

consuming) - see pagg.320-323 of [Ger19]
– Trial and error, experience (people with less money need to be smarter)



Fixed learning rate
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θ := θ−η ·∇J(θ,X,y)

η too large

From S. Harrington blog

η too small

From ProgrammerSought blog.

From CS231 class at

Stanford

https://thelaziestprogrammer.com/sharrington/math-of-machine-learning/gradient-descent-learning-rate-too-high
http://www.programmersought.com/article/7918868038/
http://cs231n.github.io/neural-networks-3/


Learning rate scheduling
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Start with large learning rates and reduce them after parameter updates

From [Sen13] and [ADR18]

See pagg.359-364 of [Ger19] to know more.



Faster optimizers
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Gradient descent is

θ := θ−η ·∇θJ(θ,X,y)

Other optimizers use a different parameter update equation, using gradient in a
smarter way.

Most popular: Adaptive Moment Estimation (Adam )

Animated comparison of optimizers.

See pagg. 351-359 of [Ger19] to know more.

http://images1.programmersought.com/161/71/719991b559da253316f0138d095b7721.gif


Batch size
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“Friends, don’t let friends use
mini-batches larger than 32 ”
Yann LeCun tweet, 2018

From Wikipedia

Yann LeCun (Facebook, New York
University, ACM Turing Award)

Large minibatches

• Allow to use GPU parallelization

• Risk of instability in loss minimization



Activation functions
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In the last layer
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Classification: softmax

In the hidden layer: The most
popular is relu
Sigmoid: old school, don’t use it
The derivative of the sigmoid is almost zero
far from zero
⇒ Vanishing gradient (p 325 of [Ger19])

Updates by gradient descent are too small

Figure from [SCYE17].



Section 4

Complex architectures



Other architectures
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Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Multi-layer perceptron Other architectures

Figure from [Ger19].

• Limit of Multi-Layer Perceptron: all input data are “deformed” by hidden
layers.

• Other architectures are able to bypass some hidden layer
• Feel free to experiment with them in your project (pagg.308-313 of [Ger19]).



Notable deep Neural Networks
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Convolutional NN:

• Image processing

Recurrent NN:

• Time series, language modeling

Autoencoder (AE):

• Dimensionality reduction and
anomaly detection

Generative Adversarial Networks
(GAN):

• To generate images or sounds

Figures from [Ger19], missinglink.ai, medium.com, [Ger19]

https://missinglink.ai/guides/neural-network-concepts/cnn-vs-rnn-neural-network-right/
https://medium.com/@encodebox/auto-encoder-in-biology-9264da118b83


How to choose the right Neural Network?
43 / 60

No standard procedure ⇒ Need for intuition, experience and, more importantly,
trial and test ⇒ Neural Networks are an art!

However, some rough guidelines are:
• Image in input ⇒ Convolutional Neural Networks (slide 42)
• Time series in input ⇒ Recurrent Neural Networks (slide 42)
• The output layer depends on the task (regression or classification - slide 19)
• Size: start with a small neural network (few layers, few neurons per layer)

and check the test result. Improve this result via Early Stopping and
Regularization (slide 31). The result will be your reference baseline. Then,
try with bigger architectures and compare the test error with the reference
baseline (slide 42)

• Activation function and optimizers: use the latest findings from research
(e.g., relu as activation function and Adam as optimizer - slide 9)

• If you have a lot of servers and a lot of time: automatically train several
neural networks and get the best after some days / weeks! (grid search,
randomized search)

Note that guidelines are continuously broken/replaced, as deep learning
progresses!



Let’s code ...
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Go to notebook 04.neural-networks.ipynb



Convolutional NN
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A celebrity among cats: Hubel and Wiesel (Nobel prize ’81) cat
(Harvard)

Source: Purves, Brains: How They Seem to Work Source: youtube
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A celebrity among cats: Hubel and Wiesel (Nobel prize ’81) cat
(Harvard)

Source: Purves, Brains: How They Seem to Work Source: youtube



Convolutional NN
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• Instead of representing neurons stacked in columns, for image recognition it
is easier to imagine them organized in matrices

• No difference in terms of mathematics

Source: Saulius Garalevicius 2010



Convolutional NN
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Main idea
• In “classic” NN, we let it learn “wild” by

– drawing all weights
– let the weights take any value

• Can we learn from the cat?
– Add structure to the architecture of the NN
– Add constraints to the values of the weights
– Do this by taking inspiration from the way vision works in living beings



1st Hidden Layer: Feature Maps
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Source: Nando de Freitas, Lectures Machine

Learning, University of British Columbia

Who decides the filters?

Gradient descent

How to force the
neurons of a feat.map to
look for the same
feature?

Shared weights

• Each neuron in the 1st layer is only connected to a
patch (e.g., 5px X 5px) of pixels.

• Several neurons (3 in the example) are attached to
the same patch, each looking for a different feature.
Output ∼ 0 or ∼ 1.

• Feature map: Set of neurons looking for the same
feature

From [Ger19]

• A neuron “implements” a vertical filter when its
weights are 1 in the center line and 0 elsewhere.
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1st Hidden Layer: Feature Map
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• Patches “seen” by
neurons on the same
feature map often
overlaps

• Hyperparameter: stride
length (by how much we
slide the patch.)

• Sliding patch

Source: M. Nielsen - Neural Networks and Deep

Learning



1st Hidden Layer: Feature Map
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• We can visually organize the 1st layer as a set of feature maps

Source: M. Nielsen - Neural Networks and Deep Learning



2nd Hidden Layer: Pooling
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• Max (or other function - hyperparameter!) of the output of a patch in a feature map

• Meaning: is the feature present in a region of the image?

• No weights to learn here

Source: M. Nielsen - Neural Networks and Deep Learning



2nd Hidden Layer: Pooling
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Source: M. Nielsen - Neural Networks and Deep Learning. Pooling layer is the one on the right.

• One pool per feature map
• Similar to convolutional layer, but

no weights
– Just take the average or the max

of the patch

• Goal: summarizing features From video on Simplilearn.

https://youtu.be/Jy9-aGMB_TE?t=937


Output Layer
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• One category per output neuron

• Ex: bus, car, truck, etc.

Source: M. Nielsen - Neural Networks and Deep Learning



Many possible architectures for
convolutional NN 54 / 60

• Ex: Add another hidden layer to summarize information further, before
classification

Source: M. Nielsen - Neural Networks and Deep Learning



Recurrent NN
55 / 60

• In all the NN seen so far, all neurons take input that depends on the current
sample forward-propagated

• In Recurrent NN, samples are submitted in sequences

• Some neurons is connected to previous samples

• What is this model aimed for?

• Language processing, Speach recognition
• Zaremba (NUY) and Sutskever (Google), “’Learning to execute”

– Their NN takes the words, one by one, of a (very simple) python scripts
– It learns to predict the output!
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• In all the NN seen so far, all neurons take input that depends on the current
sample forward-propagated

• In Recurrent NN, samples are submitted in sequences

• Some neurons is connected to previous samples

• What is this model aimed for?

• Language processing, Speach recognition
• Zaremba (NUY) and Sutskever (Google), “’Learning to execute”

– Their NN takes the words, one by one, of a (very simple) python scripts
– It learns to predict the output!



Autoencoders (AE)
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• Generative models

• Training: Find the weights submitting many images of cats

• Use: Give it a random input and get a synthetic cat image

• “Few” neurons in the hidden layer. Why?

• Serious use: drug discovery, music generation



Recap
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In this lesson

• Structure of NNs

• Training (backpropagation)

• Design choices and
hyper-paramters

In next lesson

• Random Forests



References I
58 / 60

[ADR18] Andrea Araldo, György Dán, and Dario Rossi, Caching Encrypted
Content via Stochastic Cache Partitioning, IEEE/ACM Transactions
on Networking 26 (2018), no. 1, 548–561.

[Bis06] Christopher M. Bishop, Pattern Recognition and Machine Learning,
2006.

[Ger19] Aurelien Geron, Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow, O’Reilly, 2019.

[SCYE17] Vivienne Sze, Yu Hsin Chen, Tien Ju Yang, and Joel S. Emer,
Efficient Processing of Deep Neural Networks: A Tutorial and Survey,
Proceedings of the IEEE 105 (2017), no. 12, 2295–2329.

[Sen13] Andrew Senior, An Empirical Study of the Learning Rates in Deep
Neural Networks for Speech Recognition, IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013.



References II
59 / 60

[Smi18] Leslie N. Smith, A disciplined approach to neural network
hyper-parameters: Part 1 – learning rate, batch size, momentum, and
weight decay, Tech. report, US Naval Research Laboratory, 2018.

[Tai17] D. S. Taimanov, Network disruption prediction based on neural
networks, 2017.



To know more
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• Convolutional Neural Networks for Computer Vision (Ch.11 of [Ger19])

• Christopher M. Bishop. Pattern Recognition and Machine Learning,
Springer - Sections 5.1, 5.2, 5.3

• http://neuralnetworksanddeeplearning.com

http://neuralnetworksanddeeplearning.com
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