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The challenge of Big Data
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From D. Marcus (Google, Waze) presentation

Supervised Learning is impossible:
• Users do not label their actions
• We cannot label data manually

https://www.slideshare.net/DanielMarcous/big-data-big-insights-61897317


Section 1

Clustering



Outline
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Unsupervised Learning: Clustering
• K-means clustering

Unsupervised Learning: Dimensionality
reduction (next class)

Anomaly detection
• k-means anomaly detection
• Isolation Forests
• Neural Networks: Autoencoders



What is Clustering?
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• Clustering means grouping M observations into clusters (partitions).

• There are no labels y
– We group observations, x(i), by their similarity
– unsupervised learning

• Exploratory technique to discover interesting relationships in data.



Clustering Application: Marketing
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• Customer segmentation based on brand loyalty and price sensitivity scores.

Fig. from http://www.select-statistics.co.uk/



Discover events in Waze
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K -means Clustering
7 / 50

• K: Number of clusters.
Hyper-parameter.

• Cluster centroid: mean of
observations assigned to cluster Ck:

x̄k ≜
1

|Ck| ∑
x∈Ck

x

(|Ck| is the number of samples of group k)

• Within-cluster variation of Ck

(§10.3.1 of [JWHT13])

W(Ck)≜
1

|Ck| ∑
x∈Ck

d(x, x̄k)
2

also called inertia [Cha].
• d(., .) is usually Euculidean

distance
– Scale!

• Goal: minimize total inertia

minW =
K

∑
k=1

W(Ck)

• ⇒ Assign x to Ck with minimum
d(x, x̄k)

Source: www.scikit-learn.org



K -means Clustering: Illustration
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Minimize total inertia:

min
K

∑
k=1

1
|Ck| ∑

x∈Ck

d(x, x̄k)
2

Fig.: Cristopher M. Bishop, Pattern Recognition and Machine Learning
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Minimize total inertia:

min
K
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k=1

1
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If you change initial centroids ⇒ final clusters change
• Repeat random initial centroids at least 20 times , and choose the clustering with the

lowest W.

Fig.: Cristopher M. Bishop, Pattern Recognition and Machine Learning
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K -means Clustering: Algorithm
10 / 50

initialize K
centroids

start

assign ob-
servations
to clusters

update
cluster

centroids

convergence
reached?

stop
yes

no

From [ZZPBA17]

• Thm: at each Assign and Update, the total W
decreases until convergence.

• Smallest possible W at convergence?

• The W at convergence depends on the initial
centroids chosen. So?

• Repeat the algorithm with different random
initial centroids at least 20 times , and choose the
clustering with the lowest W.



Choice of K
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Which K would you choose?

Other clustering techniques choose K for
you.

• Hierarchical Clustering

• DBScan

• . . .



Hierarchical Clustering: Dendrogram
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Source: James et Al., Introduction to Statistical Learning• Distance in the y axis

• Distance between 5 and 7? And
between {5,7,8,2} and { 9 }?

• Are 2 and 9 “close”? Distance between
2 and 9? Distance between {5,7,8} and
{9}?



Hierarchical Clustering: Linkage
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• Single linkage:
minimum distance or nearest
neighbor (2 closest border points)

• Complete linkage:
maximum distance or farthest
neighbor (2 farthest border points)

• Average linkage:
average distance (all to all)
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D

E

A

B

C
D

E

A

B

C
D

E

From [ZZPBA17]



Building a dendrogram
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create N
singleton
clusters

start

merge
two most
similar
clusters

update
between-
cluster

distances

only one
cluster left?

stop
yes

no

From [ZZPBA17]



Choosing the clusters
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We decide a Cut

Source: James et Al., Introduction to Statistical Learning

Same cluster with K-means, K=2?



Practical Considerations
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Advantages

• No apriori number of clusters required

• Simple algorithms

• Self-organized structural view of data

Disadvantages

• Dendrogram often difficult to visualize
• Bad performance when inherent clusters are not hierarchical by nature

– Ex.: incidents in the road



Similarity Measures
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• How similar are two
observations?

– Color
– Price
– Size
– Brand
– Fabric
– ...



Similarity Measures: Distance
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Comparing two vectors, zk and zj, with r variables
• With Numerical data:

– Euclidean distance

d(zk,zj) =

√
r

∑
i=1

(zki − zji)2

– Manhattan distance

d(zk,zj) =
r

∑
i=1

|zki − zji|

– Minkowski distance

d(zk,zj) =
[ r

∑
i=1

|zki − zji|m
]1/m

• Observe that:
– Different groupings
– Subjective and domain-dependent
– Dependent on the variable type (discrete, continuous, binary).



Scaling
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Without scaling, cluster would
be just driven by features with
large values.



Limits of within-cluster variation
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Good clustering should:
• Minimize within-cluster variation (W)
• ... but also maximize the separation between clusters
• ⇒ Inertia W is not enough

Fig. from http://www.select-statistics.co.uk/



Silhouette
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Silhouette:
• Silhouette of sample x:

s(x)≜
b(x)−a(x)

max(a(x),b(x))
• a(x)= average distance between x and all other elements of its cluster

(intra-cluster distance)
• b(x)= average distance between x and all elements of the second nearest

cluster.

• Measures how well an observation fits a
cluster

−1 < s(x)< 1

• We want a(x) to be small and b(x) to be
large:

a(x)≪ b(x) =⇒ s(x)→ 1
Source: http://www.select-statistics.co.uk/



Silhouette: visualization
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See:

• silhouette
score:
Avg silhouette
across all
samples

• Cluster size

Fig. from Scikit-learn doc.

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html


Choose the number K of clusters
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Check the silhouette score

Take k = 4 in the example.

Fig. From [Ger19]



Limits of K-means clustering
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It can only find “spherical clusters”, all with the same size.
Otherwise you need to resort to other approaches (like DBSCAN)

Fig. from Wikipedia, User:Chire.

https://en.wikipedia.org/wiki/Cluster_analysis


Section 2

Anomaly detection



Definition
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Anomaly: A sample that is not
“normal” = outlier.
Causes:

• Intrusion or Fraud

• Sensor measurement errors

• Fault or Damage

• Unpredictable event (accident)

Credits to Tiunov

From [KH08]

https://blog.statsbot.co/time-series-anomaly-detection-algorithms-1cef5519aef2


Methods
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Supervised methods:

• Training set with samples labeled
as “normal”, “anomaly type 1”, ,
“anomaly type 2”

What if a new anomaly occurs, never
seen before?

Unsupervised methods:

• Clustering

• Isolation Forests
• Neural Networks

– Auto-Encoders
– Self-organizing map
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Application: Insider Threat
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Wikipedia:
Edward J. Snowden copied and leaked
highly classified information from the
National Security Agency (NSA) in 2013
when he was a Central Intelligence
Agency (CIA) employee

The activity of a malicious employee is
different than normal =⇒ Anomaly.

We take inspiration
from [GSG+15, TKH+17].
A sample is the activity of one employee
in a day:

• Role (director, manager, intern)

• Department

• Project

• Num of files open

• Num of files written

• Num of copies to USB device

• Num of emails sent

• Size of attachments in emails

• . . .



Anomaly detection with K-means clustering
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• Find K clusters
• Anomaly score s(x(i)): distance to

the closest centroid
– Don’t confuse it with the

silhouette score.

• If s(x(i))> τ =⇒ x(i) is an anomaly

To know more: [HKF04]
  

τ

anomalies

Variation:
Clusters with few samples are also
considered anomalies.

  

anomalies

Fig. from Keppel and Schmalz.

https://www.inovex.de/blog/real-time-detection-of-anomalies-in-computer-networks-with-methods-of-machine-learning/
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Precision and Recall
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True anomalies

Alarms

Among the alarms, 
how many are the 
true anomalies?

Among the 
anomalies, how 
many we found?

(False alarms)

  

τ

anomalies

τ ↗=⇒ precision↗, recall↘
τ ↘=⇒ precision↘, recall↗

  

τ

P
re

ci
si

on

Recall

Figs. from Wikipedia and Walber (Wikipedia), modified.

https://commons.wikimedia.org/wiki/File:ROCCurve.png
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg#/media/File:Precisionrecall.svg
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Precision and Recall
30 / 50

  

True anomalies

Alarms

Among the alarms, 
how many are the 
true anomalies?

Among the 
anomalies, how 
many we found?

(False alarms)

  

τ

anomalies

τ ↗=⇒ precision↗, recall↘
τ ↘=⇒ precision↘, recall↗

  

τ
P

re
ci

si
on

Recall

Figs. from Wikipedia and Walber (Wikipedia), modified.

https://commons.wikimedia.org/wiki/File:ROCCurve.png
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg#/media/File:Precisionrecall.svg


Precision-Recall Curve
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τ>x
(1)
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Recall

τ=x
(1)

τ=x
(2)

τ=x
(3)

Fig. from Wikipedia.

To build the curve with K-means clust.:

• K-means clustering

• Compute anomaly score s(x(i))
(nothing to do with silhouette!)

• Order x(i) from the highest to the
lowest s(x(i))

• Compute Pr. and Re. when
anomaly is x(1)

• Compute Pr. and Re. when
anomalies are x(1),x(2), . . .

• Compute Pr. and Re. when
anomalies are x(1),x(2),x(3) . . .

• . . .

https://commons.wikimedia.org/wiki/File:ROCCurve.png


Area Under the Curve
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P
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Fig. from [LC19].

In this figure:

• Each curve represents a different
anomaly detection method

• Each point represents an anomaly
detector

• Area Under the Curve (AUC):
quality of a method



ROC Curve
33 / 50

Receiver-Operating Characteristic (ROC) Curve

  

True anomalies

Alarms

Among the alarms, 
how many are the 
true anomalies?

Among the 
anomalies, how 
many we found?

(False alarms)
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False Positive Rate

τ

Right Fig. from

Wikipedia

True Positive Rate = TP/(TP+FN)︸ ︷︷ ︸
All positives

= Recall

False Positive Rate = FP/ (FP+TN)︸ ︷︷ ︸
All normal samples

: Probability of False Alarms.

We want a large Area Under the Curve (AUC)

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


Isolation Forest
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From [ALHK19]

Assumption:

• The samples that isolate
immediately are very different from
the others
=⇒ anomalies

Train an extra-tree

• No need to compute impurity
metrics
=⇒ No labels needed

Compute sample scores (simplified):

• P: average tree depth

• h(x(i)): path length
Depth of the leaf in which the
sample falls, averaged across all
trees

• s(x(i)) = 2−
h(x(i))

P

https://youtu.be/RyFQXQf4w4w?t=481


Isolation Forest
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From [TMZ08]



Autoencoder
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From medium.com
Autoencoder:

• Symmetric NN: num of outputs = num of features
• Train the NN to produce output≃ input:

J(θ,x(i)) = ||x(i)−hθ(x(i))||2

• Bottleneck: to “compress” the information in fewer neurons

https://medium.com/@encodebox/auto-encoder-in-biology-9264da118b83


Autoencoder for anomaly detection
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From medium.com
Assumption:

• Normal samples are the majority

• =⇒ NN learns to reconstruct normal samples

• =⇒ and fails to reconstruct anomalous samples

• =⇒ anomalies are not compressible!

Score = reconstruction
error:

s(x(i)) = ||x(i)−hθ(x(i))||2

https://medium.com/@encodebox/auto-encoder-in-biology-9264da118b83


Self-Organizing Map (SOM)
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Characteristics:

• NN with one layer only

• M neurons, disposed as a square.

• Each feature is connected to all
neurons

• θq: weight of the q-th neuron.

Output:

• For each x(i), the best matching unit
(neuron) is activated

bmu(x(i)) = argmin
q

||x(i)−θq||2

• Dimensionality reduction: we
describe all the samples with fewer
neurons

From [BD13]



SOM: topological properties
39 / 50

Training:

• For each x(i), find the best matching
unit (bmu) q

• Modify θq in order to get closer to
x(i)

• Modify also the weight of the
neighbors of q

After training, similar x(i) tend to
activate close units

• Each cluster of samples
corresponds to a region of the map

  

Sys admin

Office activity

Code dev



Anomaly detection with SOMs
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• A SOM compresses the information
of a dataset into few neuron
weights (similar to auto-encoders).

• A SOM is trained to compress well
the majority of samples (normal)

• The error is large with anomalies.

q∗ = bmu(x(i))

Quantization error:

s(x(i)) = ||x(i)−θq∗ ||2

From [BD13]

From [VBMN18]



Different methods
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From [HBB+18]



Applications to networks
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Goal Features Method Reference
Discover insider
threat

Computer activity
from logs

Deep NN,
Recurrent NN

[TKH+17]

Discover Network
Intrusion

IP and TCP
connection info

Almost all A lot

Find malicious
sensors

Link delays SOM [WWW+13]

Find smart
energy grid meters
reporting wrong
measurements

Electric measures iForests [ALHK19]

Predictive Maintenance:
Predict which turbine
is going to fail

Recordings of
rotation speeds

SOM [VBMN18]

Anomalous electric
signals

Time series of
signals

KMeans Amid Fish blog

http://amid.fish/anomaly-detection-with-k-means-clustering


(Un - Semi)Supervised approaches
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Unsupervised approach:

• Form clusters or forests or train NN
on all the dataset D
(normal + anomaly)

• Compute the score s(x), ∀x ∈ D

• If s(x)> τ =⇒ anomaly

Semi-supervised approach:

• Form clusters or forests or train NN
on only normal samples

• When a new sample x arrives,
compute the score s(x)

• If s(x)> τ =⇒ anomaly

Note: You need to have samples labeled
as normal.

Supervised approach:

• Classify in normal / anomaly

• You can also classify anomaly types

Note: You need to have a training set
with all samples labeled.

Note
The unsupervised and
semi-supervised approaches assume
anomalies are a minority (less than
1%).
Not always true (Denial of Service
attack)
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Training and Test sets
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• Hyper-parameters to tune:
In K-means clustering:

– K
– The distance function (Euclidean,

Manhattan, Minkowski, etc.)
In iForests

– Number of trees
In autoencoders

– The NN architecture

. . .
In general

– The score threshold τ to
recognize anomalies

• We compute Precision, Recall,
ROC Curve, etc, based on ground
truth

To avoid data leakage:

• Split the dataset in training/test data

• Choose the hyperparameters only
based on training data

• Check the performance on test data



To know more
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• Anomaly Detection in Telecommunications by Valentina Djordjevic, Video

• Jan van der Vegt: A walk through the isolation forest | PyData Amsterdam
2019, Video.

• Johnson, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical
Analysis, 5th ed. Prentice Hall Sections 12.1, 12.2, 12.3 and 12.4

• Isolation Forest: original paper [TMZ08] (1062 citations)

• Anomaly Detection with Robust Deep Autoencoders [ZP17]

https://youtu.be/ttRyN9puC6E
https://youtu.be/RyFQXQf4w4w


Outline
46 / 50

Unsupervised Learning: Clustering
• K-means clustering

Unsupervised Learning: Dimensionality
reduction (next class)

Anomaly detection
• k-means anomaly detection
• Isolation Forests
• Neural Networks: Autoencoders
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